

https://helda.helsinki.fi

The first known virus isolates from Antarctic sea ice have complex infection patterns

Luhtanen, Anne-Mari

2018-04

Luhtanen , A-M , Eronen-Rasimus , E L , Oksanen , H M , Tison , J-L , Delille , B , Dieckmann , G S , Rintala , J-M & Bamford , D H 2018 , ' The first known virus isolates from Antarctic sea ice have complex infection patterns ' , FEMS Microbiology Ecology , vol. 94 , no. 4 , 028 . https://doi.org/10.1093/femsec/fiy028

http://hdl.handle.net/10138/300595 https://doi.org/10.1093/femsec/fiy028

acceptedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.

2 3	1	Host specificity and temperature adaptation of the first known Antarctic sea-
4 5	2	ice virus isolates
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	3	
	4	Anne-Mari Luhtanen ^{1,2,3} , Eeva Eronen-Rasimus ¹ , Hanna M. Oksanen ² , Jean-Louis
	5	Tison ⁴ , Bruno Delille ⁵ , Gerhard S. Dieckmann ⁶ , Janne-Markus Rintala ^{3,7} and
	6	Dennis H. Bamford ²
	7	
	8	¹ Marine Research Centre, Finnish Environment Institute, Helsinki, Finland,
	9	² Programme on molecules, cells and systems, University of Helsinki, Helsinki,
	10	Finland, ³ Tvärminne Zoological Station, University of Helsinki, Hanko, Finland,
21 22	11	⁴ Laboratoire de Glaciologie, DGES, Université Libre de Bruxelles, Belgium,
23 24	12	⁵ Unité d'Océanographie Chimique, Université de Liège, Belgium, ⁶ Alfred
25 26	13	Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven,
27 28	14	Germany, ⁷ Department of Environmental Sciences, University of Helsinki,
29 30	15	Helsinki, Finland
31 32	16	
33	17	
34 35	18	Correspondence:
30 37	19	D.H. Bamford, Programme on molecules, cells and systems, FIN-00014 University
38 39	20	of Helsinki, Finland. E-mail: dennis.bamford@helsinki.fi
40 41	21	
42 43	22	Conflict of Interest
44 45	23	The authors declare no conflict of interest.
46 47	24	
48 49	25	
50 51		
52		
55 54		
55 56		
57 58		
59 60		ScholarOne Support 1-434/964-4100

26 Abstract

Viruses are recognized as important actors in ocean ecology and biogeochemical cycles, but many details are not yet understood. We participated in a winter expedition to the Weddell Sea, Antarctica, to isolate viruses and to measure virus-like particle abundance (flow cytometry) in sea ice. We isolated 59 bacterial strains and the first four Antarctic sea-ice viruses known (PANV1, PANV2, OANV1, and OANV2), which grow in bacterial hosts belonging to the typical sea-ice genera Paraglaciecola and Octadecabacter. The viruses were cold-active and specific for bacteria at the strain level, although OANV1 was able to infect strains from two different classes. Both PANV1 and PANV2 infected 11/15 isolated Paraglaciecola strains that had almost identical 16S rRNA gene sequences, but the plating efficiencies differed among the strains, whereas OANV1 infected 3/7 Octadecabacter and 1/15 Paraglaciecola strains and OANV2 1/7 Octadecabacter strains. The results showed that virus-host interactions can be very complex and that the viral community can also be dynamic in the winter-sea ice.

e.e.

42 Introduction

Almost 10% of the world's ocean is covered by sea ice at least once per year, which makes it one of the largest biomes on Earth (Dieckmann and Hellmer 2010). Although being a cold and harsh environment, sea ice is full of life. Specialized organisms live inside brine channels and pockets that are formed during freezing conditions, when salts and nutrients from the seawater become concentrated between the ice crystals (Thomas and Dieckmann 2002). The sea-ice microbial community consists of protists, bacteria, archaea, and their viruses (Maranger et al. 1994; Mock and Thomas 2005; Arrigo et al. 2010; Deming and Collins 2017). Here, we use the term bacteria instead of prokaryotes, even if in some cases archaea may also be involved. Microbes affect the biogeochemical properties of the sea ice, gas exchange between the ocean and atmosphere, and provide food for ice-associated animals, e.g. krill (Arrigo and Thomas 2004).

Viruses are the most numerous of life forms and are presumed to play important roles in the biogeochemical cycles of the oceans (Fuhrman 1999; Suttle 2007). The most commonly found viruses, bacteriophages (phages) i.e. viruses infecting bacteria, are possibly the main cause of bacterial mortality (Weinbauer 2004; Suttle 2007). Since viruses can multiply only within their host cells, their activity is dependent on the abundance and activity of their hosts (Maranger et al. 1994; Marchant et al. 2000). Due to their host specificity, they are crucial to control of bacterial community composition and activity (Proctor and Fuhrman 1990; Wommack and Colwell 2000; Suttle 2005; 2007). However, most studies of marine environments are conducted in the water column, whereas knowledge of viruses and their functions in sea ice is still very limited.

The numbers of virus-like particles (VLPs) measured, range between 10^5 and 10^8 ml⁻¹ in bulk Arctic and Antarctic sea ice from spring to autumn. The lowest values

FEMS Microbiology Ecology

have been observed during the winter in Antarctic bulk ice (Paterson and Laybourn-Parry 2012), whereas the highest numbers of VLPs occur during freezing or spring algal mass growth (Maranger et al. 1994; Collins and Deming 2011). However, VLPs may also contain particles other than viruses, e.g. gene transfer agents or membrane vesicles (Forterre et al. 2013; Soler et al. 2015). VLPs are positively correlated with bacterial abundance, activity, and chlorophyll-a (chl-a) concentrations (Maranger et al. 1994; Gowing et al. 2002, 2004). In aquatic environments, a typical virus-to-bacteria ratio (VBR; more precisely VLP-to-prokaryotic cell ratio) is 10:1 (Maranger and Bird 1995). Bacterial and viral density specifies their contact rate, which is one of the key controls in virus-host interactions. The semienclosed environment of brine channels may increase this contact rate, especially during winter, when the brine channels are narrower and the brine even more concentrated (Wells and Deming 2006a). Sea ice may, therefore, be a place where virus-host interactions can be enhanced, compared with the open ocean. To understand these effects, virus-host systems need to be isolated to examine their interactions in detail.

To the best of our knowledge, only three virus-host systems to date have been isolated from Arctic and seven from Baltic sea ice (Borriss et al. 2003; Luhtanen et al. 2014, Yu et al. 2015), but none from Antarctic sea ice. The viruses isolated represented different phage morphologies. The Arctic virus isolates Shewanella phage 1a and *Colwellia* phage 21c are icosahedral viruses with either a contractile or noncontractile tail, resembling double-stranded DNA (dsDNA) phages of the order *Caudovirales* (Borriss *et al.* 2003; 2007). The filamentous nonlytic phage f327 from the Arctic infects a *Pseudoalteromonas* strain and is reminiscent of viruses in the family Inoviridae (Yu et al. 2015). In addition, seven tailed icosahedral dsDNA phages infecting strains from either Flavobacterium or Shewanella were isolated from Baltic Sea ice (Luhtanen et al. 2014; Senčilo et al. 2015). All virulent sea-ice phage isolates have a narrow host range, are cold-active

2	100	
3 1	100	(capable of infection and production at ≤ 4 °C; Wells and Deming 2006b), and
5	101	produce plaques (clear zones on bacterial lawns used to determine the number of
6 7	102	infectious viruses) only at the lower end of their host bacterial temperature growth
8	103	range (Borriss et al. 2003; Luhtanen et al. 2014). In addition, a cold-active
10	104	siphophage 9A was isolated from Arctic nepheloid layer seawater (Wells and
11 12	105	Deming 2006b) for <i>Colvallia</i> nsychrapythraga strain 34H isolated originally from
13 14	105	Defining 20000) for Corwellia psychier yunraea strain 5411, isolated originally from
15	106	Arctic shelf sediments (Huston <i>et al.</i> 2000). It was reminiscent of the isolates from
16 17	107	sea ice, because it also has a narrow host range, is cold-active, and has a more
18 10	108	restricted growth temperature range than the host bacteria.
20	109	
21 22	110	Here, we report the isolation of the first cultivable phage-host systems and VLP
23 24	111	abundance from the winter-sea ice in the Weddell Sea, Antarctica. Studying phage-
25	112	host systems gives us valuable information on sea-ice microbial communities and
26 27	112	their notential roles in the sea ice ecosystem
28 29	113	then potential toles in the sea-lee ecosystem.
30	114	
31 32		
33		
34 25		
35 36		
37		
38		
39 40		
41		
42		
43		
44		
45 46		
47		
48		
49		
50		
51		
52		
53 54		
55		
56		
57		
58		
59		ScholarOne Support 1 424/064 4100
60		SCHUIdIUTE SUPPORT 1-454/904-4100

Page 7 of 41

2	
3 115 Materials and Methods	
5 116 Sea-ice sampling and ice properties	
⁶ ₇ 117 Pack ice samples were collected from the Weddell Sea (Antarcti	ca) during the
⁸ ₉ 118 austral winter as part of the Antarctic Winter Ecosystem Climate	e Study (AWECS)
¹⁰ 119 aboard R/V Polarstern in June–August 2013 (leg ANT-XXIX/6)	. Sampling was
12 120 performed either with a metal basket (pancake ice at stations 486	5, 488, and 489) or
¹⁴ 121 using a motorized, trace-metal-clean (electropolished steel) CRR	EL-type ice-
¹⁶ 122 coring auger (Lannuzel <i>et al.</i> 2006), 14 cm in diameter. For this	study, full-depth
12 ice cores (one or two) were taken from 10 locations (ice-stations	486, 488, 489,
¹⁹ 124 493, 496, 500, 503, 506, 515, and 517) (Table 1), as described in	n Tison <i>et al</i> . 2017.
²¹ ₂₂ 125 Bulk ice was used, because some of the microbes may have beer	n attached to the
$^{23}_{24}$ 126 brine channel walls and could have been lost if only the liquid br	rine were sampled
$^{25}_{26}$ 127 (Meiners <i>et al.</i> 2008). The ice cores were cut into one, three, five	e, or seven layers,
²⁷ ₂₈ 128 depending on the ice thickness, and crushed gently with a hamm	er inside a
$\frac{29}{30}$ 129 polyethylene plastic bag. The corresponding layers of the possib	le sibling ice cores
$^{31}_{32}$ 130 were pooled (Table 1). The VLP abundances were measured from	m these layers.
³³ 131 The bacterial abundances (Table 1), bacterial production (measu	red as thymidine
incorporation), and bacterial community composition analyses fr	rom these ice cores
have been published elsewhere (Eronen-Rasimus <i>et al.</i> 2017). Fo	or the isolation
³⁸ ³⁹ 134 work, we used the ice samples from first-year ice-station 500 and	d early second-
40 41 135 year ice-station 515a (Tison <i>et al.</i> 2017). The surface parts of the	e 515a core were
$\frac{42}{43}$ 136 removed to minimize contamination, and the core was cut into 1	2 layers (~14 cm
⁴⁴ ₄₅ 137 each; Table 2), using an electric-band saw sterilized with 70% et	thanol. The 12
$\frac{46}{47}$ 138 layers were used separately to isolate the bacterial strains. The bacterial strains is $\frac{46}{47}$	acterial
⁴⁸ 139 community composition of ice core 515a has also been published	d under the name
⁵⁰ 140 515 T (0–56 cm), M (56–126 cm), and B (126–166 cm) (Eronen	-Rasimus <i>et al</i> .
⁵² 141 2017). For virus isolation, bulk ice from station 500 and core 513	5a was used. The
⁵⁵ 142 ice samples were left to melt in sterilized containers at 4 °C over	night, after which
56 57	

59 60

143the remaining ice was melted in a water bath with continuous shaking (Rintala *et*144*al.* 2014). After melting, the samples were immediately transferred back to 4 °C.

The pancake ice at stations 486 and 488 was 6 cm and 35 cm thick, the first-year ice at stations 489–506 and 517 was 37–90 cm, and the early second-year ice at station 515 was 179 cm (Table 1, Tison et al. 2017). The ice temperature varied between -1.7 and -12.6 °C, with a median temperature of -3.8 °C and ice chl-a median concentration of 2.4 μ g l⁻¹(Tison *et al.* 2017). The ice at station 500 was dominated by frazil ice and at station 515 by mixed columnar and frazil ice (Tison et al. 2017). The brine salinity varied from 122 to 40 practical salinity units (Tison *et al.* 2017).

²⁵ 155 Isolation of the bacterial strains

Isolation of the bacterial strains was started immediately after the 12 layers of the ice core 515a samples were melted. The strains were isolated by plating 100 µl of the melted sample on (I) ZoBell plates (1000 ml Southern Ocean water, 5 g peptone, 1 g yeast extract, 15 g agar; Helmke and Weyland 1995; Middelboe et al. 2003), (II) concentrated ZoBell plates (the Southern Ocean water was concentrated by boiling to half of the initial volume, otherwise similar to ZoBell), and (III) Modified Oxford (MOX) agar plates (750 ml seawater, 250 ml ultrapure water, 1 g KNO₄, 0.2 g yeast extract, 10 mg FePO₄, 2 g HEPES, 12 g agar). The plates were incubated at 4 °C and transported from R/V Polarstern to the home laboratory with temperature-controlled courier transportation at -2.6 °C to +6.1 °C (World Courier, AmerisourceBergen, Stamford, CT, USA). After 1 month of incubation in the dark at 4 °C, the various colony morphotypes were picked and colony-purified at three consecutive times. Colony purification and cultivation were done on modified ZoBell medium, Reef Crystal (RC) medium: 33 g Reef Crystals, Aquarium Systems Inc. Sarrebourg, France, 1000 ml ultrapure water, 5 g peptone, 1 g yeast extract). The agar concentration for the plates was 1.5% (w/v). The strains were

FEMS Microbiology Ecology

2 3	172	grown aerobically in RC medium at 4 °C for 7 days and stored at -80 °C,
4 5	173	supplemented with 15% (v/v) glycerol.
6 7	174	
8 9	175	Identification of the bacterial strains
10 11	176	The colony-purified strains were identified by 16S rRNA gene sequencing. The
12	177	genomic DNA was isolated with an UltraClean Microbial DNA Isolation Kit (MO
13 14	178	BIO Laboratories Inc., Carlsbad, CA, USA). The partial 16S rRNA genes were
15 16 17 18	179	amplified with PCR, using primers F27 (Sait et al. 2003) and R1406 (Lane et al.
	180	1985) or pA and pGr (Edwards et al. 1989). The Sanger sequencing was performed
19 20	181	at the DNA Sequencing and Genomics Unit, Institute of Biotechnology (University
21 22	182	of Helsinki), using primers pDr, pE, and pFr (Edwards et al. 1989). The taxonomic
23 24	183	identification of the strains was done with SILVA Incremental Aligner (SINA)
25 26	184	Alignment Service (version 1.2.11, 10.6.2016, Pruesse et al. 2012). The partial 16S
27 28	185	rRNA gene sequences of the isolated bacterial strains are deposited in the NCBI
29 30	186	GenBank database under accession numbers KY194799–KY194857 (Table 2).
31 22	187	
32 33	188	Phylogenetic analysis of the 16S rRNA sequences
34 35	189	For the phylogenetic tree, alignment was performed with SINA Alignment Service
36 37	190	(version 1.2.11, minimum identity: 0.8, Pruesse et al. 2012). Reference sequences
38 39	191	were selected, based on SINA sequence matching, and for the nontype-strain
40 41	192	sequence matches, their type-strain representatives were also added (EZBioCloud
42 43	193	Database (Yoon et al. 2017). The 16S rRNA sequence of Sulfolobus tokodaii
44 45	194	(AB022438) was used as an outgroup in the alignment. After the alignment, all
46 47	195	sequences were truncated according to the sequence length, and the bootstrapped
48 49	196	(1000) maximum-likelihood tree was constructed, using RAxML (version 8.2.0;
50 51	197	Stamatakis 2014), with the GTRGAMMA evolution model. The tree was
52	198	visualized with the Interactive Tree Of Life (iTOL) online tool (Letunic and Bork
53 54	199	2007).
55 56	200	
57 58		
59 60		ScholarOne Support 1-434/964-4100

Abundance of virus-like particles by flow cytometry The abundances of the VLPs were analyzed with flow cytometry from all the ice layers originating from the 10 stations (Table 1). Sample handling and measurements were done according to Brussaard et al. (2010), except that paraformaldehyde [1% (v/v) in phosphate-buffered saline (PBS), Alfa Aesar GmbH & Co KG, Karlsruhe, Germany] was used as a fixative. The samples were stained with SYBR Green I (Sigma-Aldrich Inc., Saint Louis, MO, USA) at room temperature. To measure the background, virus-sized particles were removed from the control samples by ultrafiltration (Amicon Ultra-15 concentrators, MWCO 100 000 Da; Merck Millipore, Billerica, MA, USA; 4000 g, 4 min, 4 °C), and the controls were processed in the same way as the actual samples. Earlier isolated and purified 1/4, 1/32, 1/40, 1/41, 1/44, 3/49 phage particles (Luhtanen *et al.* 2014) were used as controls to define the virus population, and Fluoresbrite 0.5-µm microspheres (Polysciences Inc., Warrington, PA, USA) were used as a size standard. Enumeration of the diluted samples (dilution factor 10; molecular biology grade TE buffer, AppliChem GmbH, Darmstadt, Germany) was carried out, using a CyFlow Cube 8 (Partec GmbH, Münster, Germany) flow cytometer equipped with a 488-nm laser. The data were analyzed, using FCS Express 4 software (De Novo Software, Glendale, CA, USA), and the numbers were corrected for dilution. The VBR was defined, using the bacterial abundance results published earlier (Eronen-Rasimus et al. 2017). **Isolation of viruses** For virus isolations, the melted layers of the station 500 core were pooled, as were the layers of core 515a. The melted ice was filtered through a 0.22-µm Durapore Membrane polyvinylidene difluoride (PVDF) filter (EMD Millipore Corporation, Billerica, MA, USA) to remove cellular organisms. The filtrates were concentrated 50 times, using Amicon Ultra-15 concentrators (MWCO 100 000 Da) and centrifugation (2000 g, 5 min, 4 °C). The concentrates were stored in 15% (v/v)

ScholarOne Support 1-434/964-4100

glycerol at -80 °C and transported in liquid nitrogen to the home laboratory. All isolated and colony-purified bacterial strains (Table 2, Figure 1) that were able to form a bacterial lawn were used to isolate viruses. Virus isolation and further cultivation were done with a plaque assay. For virus isolation, 10 µl and 100 µl of the concentrated sample with 200 µl of dense host bacterial suspension (grown for 7 days in RC medium at 4 °C) and 3 ml of melted RC top-layer agar [0.4% (w/v)]agar; 43 °C] were mixed and poured on RC plates. After 1–3 weeks of incubation at 4 °C, the plaques were individually picked and plaque-purified three consecutive times with the plaque assay. For the plaque assay, 100 µl of suitable virus dilution, 200 µl of host liquid culture, and 3 ml of RC top-layer agar were mixed and poured on RC plates, which were incubated for 5–7 days at 4 °C.

Production and purification of viruses

The virus lysates were prepared with the plaque assay as described above, using semiconfluent plates. The top-layer agar was collected and mixed with 2 ml of RC broth per plate. The suspension was incubated for 1 h at 4 °C with shaking, after which the cell debris and agar were removed (centrifugation: 10 000 g, 30 min, 4 °C). Virus precipitation from the lysates was optimized with various ammonium sulfate concentrations [50%, 60%, 70%, and 80% (w/v)], using either saturated solution or ammonium sulfate powder (Boulanger and Puvion 1973; Burgess 2009). Ammonium sulfate was mixed with or dissolved in the lysate for 1 h at 4 °C with shaking. The precipitated viruses were collected (centrifugation: 14 000 g, 60 min), washed with SM buffer (50 mM Tris-HCl pH 7.5, 100 mM NaCl, 8 mM MgSO₄; Borriss *et al.* 2003) with or without 0.01% (w/v) gelatin and dissolved in SM buffer on ice. The virus aggregates were removed (centrifugation 9300 g, 10 min, 4 °C), and the viruses in the supernatant were subjected to rate-zonal centrifugation (153 208 g, 30–70 min, 10 °C), using 10–30% (w/v) linear sucrose gradients in SM buffer (Anderson et al. 1966; Lawrence and Steward 2010). The gradients were fractionated (12 fractions), and the infectivity (plaque assay),

absorbance (260 nm), and the protein, nucleic acid, and lipid contents of the fractions were determined (see below). The virus particles in the light-scattering zones were collected with differential centrifugation (104 087 g, 3 h, 10 °C), and the particles were dissolved in SM buffer overnight on ice. Virus particle analyses The absorbance values (260 nm) of the 12 sucrose gradient fractions were measured with an Eppendorf BioPhotometer D30 (Eppendorf AG, Hamburg, Germany), using 30% (w/v) sucrose in SM buffer as a blank sample. The viral structural proteins were separated with SDS-PAGE (16% (w/v) acrylamide; Olkkonen and Bamford 1989). The SM buffer used in the protein analysis samples did not contain gelatin. The protein concentrations were determined with a Coomassie Blue-based method (Bradford 1976), using bovine serum albumin as a standard. For the SDS-PAGE, when appropriate, the samples were concentrated with 10% (v/v) trichloroacetic acid precipitation (30 min, on ice). The precipitate was collected (centrifugation: 16 200 g, 30 min, 4° C). The resolving gels were stained with Brilliant Blue R (Sigma-Aldrich) for proteins and, when appropriate, stained with Sudan Black B (Sigma-Aldrich) for lipids and the stacking gels with ethidium bromide for nucleic acids. For the lipid-staining control, purified PRD1 particles (Bamford and Bamford 1991) were used as a control. To test the sensitivity of the viruses to Triton X-100, viruses were incubated in 0.1% (v/v) and 0.01% Triton X-100 (in SM buffer) for 3 h and 24 h at 4 °C. SM buffer was used as a control. The infectivity of the viruses tested was determined with a plaque assay. The sensitivity of the host organisms to Triton X-100 was analyzed similarly, except that the number of colony-forming units was determined by plating. For TEM, the purified virus particles were negatively stained for 20 s,

 using 2% (w/v) uranyl acetate (pH 7), 3% (w/v) uranyl acetate (pH 4.5), or 1%

potassium phosphotungstate (pH 7). A JEOL JEM-1400 TEM (Electron

2 3	287	Microscopy Unit, Institute of Biotechnology, University of Helsinki) was used
4 5 6 7	288	with 80-kV tension for detailed investigation of the viruses.
	289	
8 9	290	Temperature ranges of host growth and virus infection
10 11	291	The growth of the original three host strains at different temperatures was
12 13 14 15 16 17	292	determined by plating 100 µl of diluted bacterial suspension on RC plates, which
	293	were incubated at 0, 4, 10, 15, or 20 °C for 60 days. The infection ability of the
	294	bacteriophages at different temperatures was tested with a plaque assay. The host
17 18	295	suspensions used for the plaque assay were incubated at 4 °C. The plates were
19 20	296	incubated at 0, 4, 10, or 15 °C for 20 days.
21 22	297	
23 24	298	Virus-prokaryote interactions
25 26 27 28	299	All the bacterial isolates that were able to grow as a lawn on a plate were tested for
	300	their sensitivity to the isolated viruses (Table 2, Figure 1). Ten microliters of
29 30	301	undiluted and 100-times diluted virus lysates were spotted on the host strain lawns.
31 32	302	RC medium was used as a negative control and the original virus-host pair as a
33	303	positive control. The plates were incubated at 4 °C for 7–14 days. All positive
34 35	304	results were verified with a plaque assay, using suitable dilutions of the virus. The
36 37	305	EOP was calculated according to the plaque count obtained with the target strain,
38 39	306	compared with that obtained with the isolation host strain.
40 41	307	
42 43		
44 45		
46 47		
48 49		
50 51		
52		
53 54		
55 56		
57 58		
59		10

2 3	308	Results
4 5	309	Sea-ice bacterial isolates
6 7	310	We isolated 59 bacterial strains from core 515a (Table 2). The majority of the
8 9	311	isolates (~59%) were classified as members of the genera Glaciecola or
10 11	312	Paraglaciecola (Figure 1). Only one strain, IceBac 363, was isolated from the
12 13	313	coldest top layer and belonged to the genus Halomonas. The remaining strains
13 14 15	314	were identified as members of the genera Octadecabacter (seven strains),
15 16	315	Polaribacter (seven strains), Marinobacter (three strains), Pseudoalteromonas
17	316	(three strains), Colwellia (two strains), or Paracoccus (one strain). All isolated
19 20	317	bacterial strains belonging to the same genus had identical or nearly identical
21 22	318	(identity 99.3–100%) partial 16S rRNA gene sequences (at minimum 1290 base
23 24	319	pairs, bp).
25 26	320	
27 28	321	Virus-like particle abundance and virus-to-bacteria ratios in sea ice
29 30	322	The mean VLP abundance was 1.1×10^6 ml ⁻¹ (range 1.9×10^5 – 4.9×10^6 ml ⁻¹) in the
31 32	323	bulk ice, with the highest numbers at stations 500 and 515 (0.7×10^6 – 4.9×10^6 ml ⁻¹ ;
33 34	324	Table 1). The mean VBR was 5.3 (range 0.7–13.4; Table 1). The highest VBR
35 26	325	values were at station 503 (9.5–13.4; Table 1) and the lowest at station 515 (0.7–
36 37	326	2.9; Table 1).
38 39	327	
40 41	328	Sea-ice bacteriophage isolates
42 43	329	Forty-eight out of the 59 bacterial strains were able to form a bacterial lawn on a
44 45	330	plate and were consequently used to screen phages (Table 2). Four phages were
46 47	331	obtained, cultivated, and purified in the laboratory (Table 3). The phages were
48 49	332	named after the isolation host genus, area of isolation, and the initials of notable
50 51	333	persons in this study (Krupovic et al. 2016). The names and their abbreviations are
52	334	Paraglaciecola Antarctic GD virus 1 (PANV1), Paraglaciecola Antarctic JLT
55 54	335	virus 2 (PANV2), Octadecabacter Antarctic BD virus 1 (OANV1), and
55 56 57	336	Octadecabacter Antarctic DB virus 2 (OANV2). Phages PANV1 and PANV2
58 59 60		ScholarOne Support 1-434/964-4100

FEMS Microbiology Ecology

originated from station 500 and were isolated for the same host (IceBac 372), which was classified as *Paraglaciecola psychrophila* (similarity 99.9%). PANV1 produced clear plaques 3-4 mm in diameter, whereas the PANV2 plaques of 3-5 mm in diameter had a clear center surrounded by a turbid halo. Phages OANV1 and OANV2 were isolated from core 515a for two different bacterial hosts, IceBac 419 and IceBac 430, respectively, both identified as Octadecabacter antarcticus. Both phages produced clear plaques, but the diameters were different (3–6 mm for OANV1, 6-8 mm for OANV2). The optimized phage lysate titers varied from $\sim 6 \times 10^9$ to $\sim 5 \times 10^{11}$ plaque-forming units (pfu) ml⁻¹, depending on the phage (Table 3). The infectivity of the lysates was retained for several months when stored at 4 °C. All three host strains originated from different layers in the ice core (Table 2).

Purification and characterization of the phages

To characterize the phages, virus purification methods were optimized, based on ammonium sulfate precipitation and rate-zonal ultracentrifugation, following the recovery and purity of the infectious viruses at each step. Using ammonium sulfate precipitation, 25–54% of the infectious viruses were recovered, depending on the virus (Table 4). Both the ammonium sulfate powder and the saturated solution resulted in similar yields. PANV1 and PANV2 were precipitated with 50% ammonium sulfate, whereas OANV1 and OANV2 needed 80%. The precipitated particles were further purified with rate-zonal ultracentrifugation, and significant amounts of various noninfectious protein impurity species were detected at the top of the sucrose gradient. For all viruses, a single visible infectious light-scattering zone was detected in the middle of the sucrose gradient (Figure 2). This zone contained several proteins of different sizes that were unique for each virus. PANV1 and OANV2 had one major protein type in sizes of ~55 and ~35 kDa, respectively, while PANV2 and OANV1 had two major protein types (~40 and ~12 kDa in PANV2; ~35 and ~15 kDa in OANV1). A peak in the absorbance was detected in the same light-scattering zone, as were the nucleic acids when visible.

2		
3	366	Lipids could not be detected from the gels after Sudan Black staining (not shown).
5	367	In addition, treatment of phages with the nonionic detergent Triton X-100 did not
6 7	368	affect their infectivity, suggesting that the virus particles did not contain a lipid
8 9	369	component. Specific infectivities ($\sim 2-9 \times 10^{12}$ pfu mg ⁻¹ protein) calculated for the
10 11	370	purified phages showed that all virus samples were highly infectious after
12 13	371	biochemical purification (Table 4). After the final concentration step with
14	372	differential centrifugation, the recoveries of infectious viruses varied from ~10% to
16	373	20% (Table 4).
17	374	
19 20	375	Transmission electron microscopy (TEM) of the purified particles (Figure 3)
21 22	376	showed that phage PANV1 had a rigid, contractile tail typical of myoviruses. Its
23 24	377	average tail length was ~58 nm and head diameter ~71 nm. PANV2 infecting the
25 26	378	same host had an ~89-nm noncontractile tail characteristic of the siphoviruses and
27 28	379	an ~52-nm head diameter (Table 3). OANV1 also had a typical siphovirus tail,
29 30	380	with an average length of ~83 nm and a head ~50 nm in diameter, whereas
31 22	381	OANV2 seemed to have a very short tail typical of podoviruses and a head ~53 nm
33	382	in diameter (Table 3).
34 35	383	
36 37	384	Temperature range tests for host growth and phage infection
38 39	385	All the bacterial host strains (IceBac 372, IceBac 419, and IceBac 430) were able
40 41	386	to form colonies at the temperatures from 0 °C to 15 °C, but not at 20 °C (Table 5),
42 43	387	and were therefore classified as psychrophiles (Morita 1975). The effect of
44 45	388	temperature on phage infection (plaque formation) was tested at temperatures
46 47	389	supporting the growth of the hosts. All the phages were able to infect their original
48 49	390	host only at 0 °C and 4 °C, but not at higher temperatures (Table 5). PANV1 and
50	391	PANV2 produced plaques at 0 °C and 4 °C in 6 days, but OANV1 and OANV2
52	392	produced plaques at 0 °C in 14 days and at 4 °C in 6 days.
53 54	393	
55 56	394	Phage-bacteria interactions
57 58		
59 60		ScholarOne Support 1-434/964-4100

1		
2 3	395	The sensitivity of all the 48 isolated bacterial strains (that were able to grow as a
4 5	396	bacterial lawn) to the isolated phages was tested (Table 2; Figure 1). In all, 17
6 7	397	strains (13 Paraglaciecola strains and 4 Octadecabacter strains) were sensitive to
8 9 10 11	398	at least one of the phages (Figure 1). Of 16 Paraglaciecola isolates, IceBac 372
	399	was sensitive to three phages: PANV1, PANV2, and OANV1. Ten other
12 13	400	Paraglaciecola strains were sensitive to both PANV1 and PANV2, but with
14 15	401	different plating efficiencies (EOPs), two strains were sensitive to either PANV1
15 16 17	402	or PANV2, but with low EOP, and three strains could not be infected. All seven
17	403	Octadecabacter strains had 100% identical 16S rRNA gene sequences (within
19 20	404	1289 bp, Figure 1). However, only four out of seven Octadecabacter strains were
21 22	405	sensitive to either OANV1 or OANV2 and showed different EOPs.
23 24	406	
25 26	407	Both the PANV1 and PANV2 phages were able to infect 12 different
27 28 29 30 31 32	408	Paraglaciecola strains with different EOPs. However, each of them infected only a
	409	certain strain (IceBac 417 or IceBac 420, respectively) that the other could not
	410	(Figure 1). In addition to its original host strain (IceBac 419, Octadecabacter),
33 34	411	OANV1 was able to infect two other Octadecabacter strains, but with lower EOP.
35	412	It also produced plaques with high EOP in the strain IceBac 372 (Paraglaciecola),
30 37	413	which was the isolation host for PANV1 and PANV2 (Figure 1). Consequently,
38 39	414	OANV1 was able to infect strains representing two classes: Gammaproteobacteria
40 41	415	(Paraglaciecola) and Alphaproteobacteria (Octadecabacter). In contrast, phage
42 43	416	OANV2 was able to infect only IceBac 430 (Octadecabacter; Figure 1).
44 45	417	
46 47		
48 49		
50		
51 52		
53 54		
55		
56 57		
58 59		17

Discussion

5		
6		

We isolated and purified four Antarctic sea-ice phages (PANV1, PANV2, OANV1, and OANV2) that could be maintained and cultivated under laboratory conditions. They were cold-active (capable of infection and production at \leq 4 °C: Wells and Deming 2006b), infecting bacterial strains belonging to the typical sea-ice bacterial genera Paraglaciecola or Octadecabacter. The viruses were specific for host recognition at the strain level, even though OANV1 was able to infect bacterial strains from two different classes. The highest VLP abundances were in the samples where bacteria were most abundant and active (Eronen-Rasimus et al. 2017).

24 429

430 Isolation of sea-ice bacteria and phages

We isolated 59 bacterial strains belonging to nine different genera from Antarctic winter-sea ice. The ice was melted with the direct-melting method, which has been shown to result in viable bacteria counts similar to those obtained by melting with seawater addition (Helmke and Weyland 1995), even if it may cause osmotic stress due to the rapid salinity changes. The isolated strains belonged to the following genera: Colwellia, Glaciecola, Halomonas, Marinobacter, Octadecabacter, Paracoccus, Paraglaciecola (formerly Glaciecola; Shivaiji and Reddy 2014), Polaribacter, and Pseudoalteromonas, all of which are common members in the sea-ice bacterial community (Bowman et al. 1997; Brinkmeyer et al. 2003; Deming and Collins 2017). The majority of these genera were also abundant in isolation ice core 515a, based on bacterial community composition analysis (see results in Eronen-Rasimus et al. 2017).

In addition, four unique phages were isolated from the sea ice with the directmelting and plaque assay methods, even though the viruses were exposed to a 43
°C temperature for a short time during the plaque assay. This has also been

FEMS Microbiology Ecology

successfully used previously (Borriss *et al.* 2003), and at least some of the coldadapted phages can apparently tolerate high temperatures for a short time. Wide
temperature tolerance can be beneficial to phage survival in natural environments
throughout the various seasons.

Presumably, virus reproduction is most effective when the number of susceptible hosts is high and active (Thingstad and Lignell 1997). The hosts of the bacteriophages OANV1 and OANV2 belonged to the genus Octadecabacter, which was abundant in phage isolation core 515a (Eronen-Rasimus et al. 2017). The genus *Paraglaciecola* (host of phages PANV1 and PANV2) could not be detected separately from the genus *Glaciecola* in the community analysis, likely due to the short sequence length used, but *Glaciecola* was present in both the 500 and 515a cores (Eronen-Rasimus et al. 2017). Our results together with those of Eronen-Rasimus et al. (2017) support the notion that bacteriophages of these predominant bacteria may be abundant in the viral community, resulting in increased opportunities of isolating them.

33 463

Phage-host interactions

We tested the sensitivity of 48 isolated bacterial strains, representing nine different
genera, to our phages. PANV1 and PANV2 were able to infect several closely
related *Paraglaciecola* strains with different EOPs, but not all the strains (Figure
1). This may have been the result of an arms race in which bacterial strains evolve
to inhibit phage infection, leading to diversification of bacterial strains (Thingstad *et al.* 2014). Since PANV1 and PANV2 infected different strains, this may have
resulted in two different phage-host coevolution lineages.

473 Phage OANV1 was able to infect bacterial strains from two different classes:

474 Alphaproteobacteria (*Octadecabacter*) and Gammaproteobacteria (*Paraglaciecola*,

Figure 1). Still, it was able to infect only three of the *Octadecabacter* strains with

identical 16S rRNA gene sequences. These phages can seemingly be strain-specific in their host recognition, even if they can infect bacteria across classes. Sea-ice phage isolates have very narrow host ranges (Borriss et al. 2003; Luhtanen et al. 2014), but based on the genomic data, cold-active phages may have broader host ranges than mesophiles (Colangelo-Lillis and Deming 2013). Myoviruses are often considered to have broader host ranges than siphoviruses and podoviruses (Suttle 2005). However, in this study, myovirus PANV1 and siphovirus PANV2 showed similar host ranges and were able to infect only closely related hosts, whereas siphovirus OANV1 was able to infect strains from two different classes. When phage host ranges are experimentally studied, the number of cultivable bacterial isolates limits the tests, and consequently the results cannot reveal the complete host range spectrum in the environment. However, our results indicate that with the strain specificity observed, the phages may be able to control the bacterial community composition, as proposed earlier based on observation in the environment (Maranger et al. 1994), theory (Thingstad et al. 2014), and experimentation (Middelboe et al. 2001). Since viruses need their hosts to replicate and produce progeny, their activity is directed to the active part of the bacterial community.

Purification and characterization of phages

The purification process was optimized for all phages separately. Purification analysis revealed that a significant amount of impurities and host-derived complexes were separated, allowing us to obtain a light-scattering zone comprising infectious, highly purified viruses (Figure 2). The individual protein patterns of the isolated phages (Figure 2) and the specific infectivities calculated (Table 4) showed that each isolated phage was different and that the purification of the virus particles was successful. Efficient purification made it possible to study individual phages in more detail. Detailed TEM observations verified that all the phages isolated were icosahedral tailed phages (Figure 3). Sudan Black staining of the

FEMS Microbiology Ecology

sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gel and Triton-X treatment of the virus particles indicated that the phages do not have a structural lipid component, which is in accordance with the virus morphologies observed. The virus capsid diameters (~50-71 nm; Table 3) are similar to those in the most abundant VLP size groups (50–70 nm or <110 nm) reported in Arctic and Antarctic sea ice (Maranger et al. 1994; Gowing et al. 2004). In three cases, the morphology of the virus tails was reliably identified, suggesting that PANV1 is a myovirus, whereas PANV2 and OANV1 are siphoviruses (Figure 3) resembling the dsDNA bacteriophages belonging to the order *Caudovirales*. However, the tail of bacteriophage OANV2 was considerably difficult to detect. We propose that OANV2 is a podophage with a short noncontractile tail. Icosahedral tailed viruses from the order *Caudovirales* were previously the most often isolated virus types from sea ice (Borriss et al. 2003; Luhtanen et al. 2014), although a filamentous virus from the order *Inoviridae* has also been isolated (Yu et al. 2015).

Temperature

The temperatures used here for isolation, cultivation, and tests (Table 5) for both bacteria and phages were warmer than the temperatures in the sea-ice brine (-1.7 °C down to -12.6 °C; Tison et al. 2017), due to methodological limitations. It is still evident that the bacteria and phages were cold-adapted, since the bacterial strains were able to grow at 0 °C, but not at 20 °C (Morita 1975), and the phages were capable of infecting and producing progeny at ≤ 4 °C (Wells and Deming 2006b; Table 5). In addition, psychrophilic bacteria from sea ice can be active even at -20 °C (Junge et al. 2004), and cold-active phages can be productive at temperatures from 8 °C to -6 °C (Wells and Deming 2006b) or even at -12 °C (Wells and Deming 2006c).

532 The phages seemed to retain their infectivity well at cold temperatures, since the 533 infectivity of the lysates was stable for several months at 4 °C and at -80 °C

2		
3 4	534	(supplemented with 15% glycerol), consistent with a previous study (Wells and
5	535	Deming 2006c). Virus plaques were formed only at temperatures about 10 degrees
6 7	536	lower than their host could tolerate, indicating that temperature controlled the
8 9	537	infections, as shown in previous studies on sea-ice phage-host isolates (Borriss et
10 11	538	al. 2003; Luhtanen et al. 2014) and other cold-adapted phage-host systems (Wells
12 13	539	and Deming 2006b). The virus-receptor molecules may only have been induced at
14 15	540	cold temperatures, as reported previously in Yersinia enterocolitica infections
16 17	541	(Leon-Velarde et al. 2016), indicating that the receptors may be associated with the
18	542	host's cryoprotection mechanisms. The structure of the phage-receptor molecules
20	543	could also have changed with rising temperatures, which can inhibit the infection,
21 22	544	or the bacterial resistance mechanisms could have been activated at higher
23 24	545	temperatures. The phage particles themselves remained infectious and were able to
25 26	546	tolerate the temperature of the warm top-layer agar (~43 °C) used for the plaque
27 28	547	assay.
29	E10	
30	540	
30 31 32	549	Abundance of virus-like particles and virus-to-bacteria ratios in Antarctic
30 31 32 33 34	549 550	Abundance of virus-like particles and virus-to-bacteria ratios in Antarctic winter-sea ice
30 31 32 33 34 35 26	549 550 551	Abundance of virus-like particles and virus-to-bacteria ratios in Antarctic winter-sea ice The VLP abundance in Antarctic winter-sea ice ranged from $\sim 10^5$ to 10^6 ml ⁻¹ in
30 31 32 33 34 35 36 37 22	549 550 551 552	Abundance of virus-like particles and virus-to-bacteria ratios in Antarctic winter-sea ice The VLP abundance in Antarctic winter-sea ice ranged from $\sim 10^5$ to 10^6 ml ⁻¹ in bulk ice (Table 1). The highest abundances were measured at stations 500 and 515
30 31 32 33 34 35 36 37 38 39	549 550 551 552 553	Abundance of virus-like particles and virus-to-bacteria ratios in Antarctic winter-sea ice The VLP abundance in Antarctic winter-sea ice ranged from $\sim 10^5$ to 10^6 ml ⁻¹ in bulk ice (Table 1). The highest abundances were measured at stations 500 and 515 (0.7×10 ⁶ -4.9×10 ⁶ ml ⁻¹ in bulk ice). The lower range of our dataset is comparable to
30 31 32 33 34 35 36 37 38 39 40 41	549 550 551 552 553 554	Abundance of virus-like particles and virus-to-bacteria ratios in Antarctic winter-sea ice The VLP abundance in Antarctic winter-sea ice ranged from $\sim 10^5$ to 10^6 ml ⁻¹ in bulk ice (Table 1). The highest abundances were measured at stations 500 and 515 (0.7×10^6 – 4.9×10^6 ml ⁻¹ in bulk ice). The lower range of our dataset is comparable to the values measured earlier from Antarctic winter-sea ice ($\sim 10^5$ ml ⁻¹ of bulk ice;
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 	549 550 551 552 553 554 555	Abundance of virus-like particles and virus-to-bacteria ratios in Antarctic winter-sea ice The VLP abundance in Antarctic winter-sea ice ranged from $\sim 10^5$ to 10^6 ml ⁻¹ in bulk ice (Table 1). The highest abundances were measured at stations 500 and 515 $(0.7 \times 10^6 - 4.9 \times 10^6$ ml ⁻¹ in bulk ice). The lower range of our dataset is comparable to the values measured earlier from Antarctic winter-sea ice ($\sim 10^5$ ml ⁻¹ of bulk ice; Paterson and Laybourn-Parry 2012), whereas the highest abundances were similar
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 	548 550 551 552 553 554 555 556	Abundance of virus-like particles and virus-to-bacteria ratios in Antarctic winter-sea ice The VLP abundance in Antarctic winter-sea ice ranged from $\sim 10^5$ to 10^6 ml ⁻¹ in bulk ice (Table 1). The highest abundances were measured at stations 500 and 515 $(0.7 \times 10^6 - 4.9 \times 10^6$ ml ⁻¹ in bulk ice). The lower range of our dataset is comparable to the values measured earlier from Antarctic winter-sea ice ($\sim 10^5$ ml ⁻¹ of bulk ice; Paterson and Laybourn-Parry 2012), whereas the highest abundances were similar to those in Arctic spring blooms and Antarctic late autumn and summer sea ice
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 	548 550 551 552 553 554 555 556 557	Abundance of virus-like particles and virus-to-bacteria ratios in Antarctic winter-sea ice The VLP abundance in Antarctic winter-sea ice ranged from $\sim 10^5$ to 10^6 ml ⁻¹ in bulk ice (Table 1). The highest abundances were measured at stations 500 and 515 $(0.7 \times 10^6 - 4.9 \times 10^6$ ml ⁻¹ in bulk ice). The lower range of our dataset is comparable to the values measured earlier from Antarctic winter-sea ice ($\sim 10^5$ ml ⁻¹ of bulk ice; Paterson and Laybourn-Parry 2012), whereas the highest abundances were similar to those in Arctic spring blooms and Antarctic late autumn and summer sea ice $(\sim 10^6 - 10^8$ ml ⁻¹ of bulk ice; Maranger <i>et al.</i> 1994; Gowing <i>et al.</i> 2002; 2004,
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 	549 550 551 552 553 554 555 556 557 558	Abundance of virus-like particles and virus-to-bacteria ratios in Antarctic winter-sea ice The VLP abundance in Antarctic winter-sea ice ranged from $\sim 10^5$ to 10^6 ml ⁻¹ in bulk ice (Table 1). The highest abundances were measured at stations 500 and 515 (0.7×10^6 – 4.9×10^6 ml ⁻¹ in bulk ice). The lower range of our dataset is comparable to the values measured earlier from Antarctic winter-sea ice ($\sim 10^5$ ml ⁻¹ of bulk ice; Paterson and Laybourn-Parry 2012), whereas the highest abundances were similar to those in Arctic spring blooms and Antarctic late autumn and summer sea ice ($\sim 10^6$ – 10^8 ml ⁻¹ of bulk ice; Maranger <i>et al.</i> 1994; Gowing <i>et al.</i> 2002; 2004, respectively). The high VLP concentrations at stations 500 and 515 may be
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 	549 550 551 552 553 554 555 556 557 558 559	Abundance of virus-like particles and virus-to-bacteria ratios in Antarctic winter-sea ice The VLP abundance in Antarctic winter-sea ice ranged from $\sim 10^5$ to 10^6 ml ⁻¹ in bulk ice (Table 1). The highest abundances were measured at stations 500 and 515 (0.7×10^6 - 4.9×10^6 ml ⁻¹ in bulk ice). The lower range of our dataset is comparable to the values measured earlier from Antarctic winter-sea ice ($\sim 10^5$ ml ⁻¹ of bulk ice; Paterson and Laybourn-Parry 2012), whereas the highest abundances were similar to those in Arctic spring blooms and Antarctic late autumn and summer sea ice ($\sim 10^6$ - 10^8 ml ⁻¹ of bulk ice; Maranger <i>et al.</i> 1994; Gowing <i>et al.</i> 2002; 2004, respectively). The high VLP concentrations at stations 500 and 515 may be explained by the high bacterial abundance (Eronen-Rasimus <i>et al.</i> 2017; Table 1)
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 52 	549 550 551 552 553 554 555 556 557 558 559 560	Abundance of virus-like particles and virus-to-bacteria ratios in Antarctic winter-sea ice The VLP abundance in Antarctic winter-sea ice ranged from $\sim 10^5$ to 10^6 ml ⁻¹ in bulk ice (Table 1). The highest abundances were measured at stations 500 and 515 $(0.7 \times 10^6 - 4.9 \times 10^6$ ml ⁻¹ in bulk ice). The lower range of our dataset is comparable to the values measured earlier from Antarctic winter-sea ice ($\sim 10^5$ ml ⁻¹ of bulk ice; Paterson and Laybourn-Parry 2012), whereas the highest abundances were similar to those in Arctic spring blooms and Antarctic late autumn and summer sea ice ($\sim 10^6 - 10^8$ ml ⁻¹ of bulk ice; Maranger <i>et al.</i> 1994; Gowing <i>et al.</i> 2002; 2004, respectively). The high VLP concentrations at stations 500 and 515 may be explained by the high bacterial abundance (Eronen-Rasimus <i>et al.</i> 2017; Table 1) and bacterial production (measured as thymidine incorporation; Eronen-Rasimus <i>et et al.</i>
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 57 	540 550 551 552 553 554 555 556 557 558 559 560 561	Abundance of virus-like particles and virus-to-bacteria ratios in Antarctic winter-sea ice The VLP abundance in Antarctic winter-sea ice ranged from $\sim 10^5$ to 10^6 ml ⁻¹ in bulk ice (Table 1). The highest abundances were measured at stations 500 and 515 (0.7×10^6 – 4.9×10^6 ml ⁻¹ in bulk ice). The lower range of our dataset is comparable to the values measured earlier from Antarctic winter-sea ice ($\sim 10^5$ ml ⁻¹ of bulk ice; Paterson and Laybourn-Parry 2012), whereas the highest abundances were similar to those in Arctic spring blooms and Antarctic late autumn and summer sea ice ($\sim 10^6$ – 10^8 ml ⁻¹ of bulk ice; Maranger <i>et al.</i> 1994; Gowing <i>et al.</i> 2002; 2004, respectively). The high VLP concentrations at stations 500 and 515 may be explained by the high bacterial abundance (Eronen-Rasimus <i>et al.</i> 2017; Table 1) and bacterial production (measured as thymidine incorporation; Eronen-Rasimus <i>et</i> <i>al.</i> 2017) observed, which were positively correlated with the high chl- <i>a</i>
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 	548 550 551 552 553 554 555 556 557 558 559 560 561 562	Abundance of virus-like particles and virus-to-bacteria ratios in Antarctic winter-sea ice The VLP abundance in Antarctic winter-sea ice ranged from $\sim 10^5$ to 10^6 ml ⁻¹ in bulk ice (Table 1). The highest abundances were measured at stations 500 and 515 ($0.7 \times 10^6 - 4.9 \times 10^6$ ml ⁻¹ in bulk ice). The lower range of our dataset is comparable to the values measured earlier from Antarctic winter-sea ice ($\sim 10^5$ ml ⁻¹ of bulk ice; Paterson and Laybourn-Parry 2012), whereas the highest abundances were similar to those in Arctic spring blooms and Antarctic late autumn and summer sea ice ($\sim 10^6 - 10^8$ ml ⁻¹ of bulk ice; Maranger <i>et al.</i> 1994; Gowing <i>et al.</i> 2002; 2004, respectively). The high VLP concentrations at stations 500 and 515 may be explained by the high bacterial abundance (Eronen-Rasimus <i>et al.</i> 2017; Table 1) and bacterial production (measured as thymidine incorporation; Eronen-Rasimus <i>et al.</i> 2017) observed, which were positively correlated with the high chl- <i>a</i> concentrations (up to 113.2 mg l ⁻¹ in bulk ice; Eronen-Rasimus <i>et al.</i> 2017; Tison

FEMS Microbiology Ecology

ו כ	
2	563
4 5	564
6 7	565
8 9	566
10 11	567
12 13	568
14 15	569
16	570
17	571
19 20	572
21 22	573
23 24	574
25 26	575
27 28	576
29 30	577
31 32	578
33 34	579
35	580
30 37	581
38 39	582
40 41	583
42 43	584
44 45	585
46 47	586
48 49	587
50 51	588
52	589
55 54	590
55 56	591
57 58	
59 60	

et al. 2017). Positive correlation of chl-*a* with bacterial and VLP abundances was
reported in Antarctic sea ice during spring and summer ice-algal blooms
(Maranger *et al.* 1994; Gowing *et al.* 2004). Our results suggest that if the chl-*a*concentrations and consequent bacterial abundance and activity are high, viruses
may be abundant and likely active in winter-sea ice. The high VLPs also indicate
that the viral winter-sea-ice community was surprisingly dynamic, considering the
season.

71 The VBR range of 0.7–13.4 (mean 5.3) corresponds to those measured previously in Antarctic winter-sea ice (1–20.8; Paterson and Laybourn-Parry 2012). The 72 highest VBRs (Table 1) were found at first-year ice-station 503 with low bacterial 73 abundance and activity (Table 1; see bacterial production in Eronen-Rasimus et al. 74 2017), while the lowest VBRs were detected at young second-year ice-station 515 75 (Table 1) with the highest bacterial production and abundance (Eronen-Rasimus et 76 al. 2017; Table 1). The high VBR in the low-activity community may have 77 resulted from induction of lysogenic viruses during freezing and preservation of 78 the virus particles in sea-ice brine, similarly to young ice in the Arctic (Collins and 79 Deming 2011). The decreasing VBR together with increasing VLP, bacterial 80 abundances, and bacterial activity were also detected during the algal spring bloom 81 (Maranger et al. 1994). The low VBR in the active community may have resulted 82 from change in the bacterial community composition, so that the majority of the 83 bacteria could have developed resistance against the phages. Alternatively, the host 84 bacterial activity may have been decreased, which could have lowered the viral 85 86 production, possibly because the phages may have lysogenized, i.e. become 87 prophages (Maranger et al. 1994).

In conclusion, four phage-host systems were isolated from both first- and secondyear winter-sea ice from the Weddell Sea, Antarctica. The phages seemed to be
bacterial strain-specific, but some were able to infect several related bacterial

strains and one from second-year ice even across classes. The phages were able to
retain their infectivity for lengthy periods under cold conditions and infected their
host bacteria only in the hosts' lower growth temperature ranges, suggesting that
they are cold-active. The VLP counts suggest that the viral community may also be
dynamic in winter-sea ice if their hosts are active.

14 598 **Funding**

This work was supported by the Walter and Andrée de Nottbeck Foundation
(AML, EER, JMR), Onni Talas Foundation (AML), the Academy Professor
(Academy of Finland) funding grants 283072 and 255342 (DHB) and the Belgian
Science Policy (Bigsouth project, SD/CA/05). BD is a research associate at the
F.R.S-FNRS.

27
28605Acknowledgements

The authors acknowledge the support and use of resources of Instruct, a Landmark ESFRI project. We thank the University of Helsinki and Academy of Finland (grant number 1306833) for support provided to EU ESFRI Instruct Centre for Virus and Macromolecular Complex Production (ICVIR) used in this study. We also acknowledge the Electron Microscopy Unit in the Institute of Biotechnology, University of Helsinki and the Finnish Environment Institute, Marine Research Centre and Finnish Marine Research Infrastructure (FINMARI) for providing the laboratory infrastructure. We also want to thank the Finnish Antarctic Research Program FINNARP (especially Mika Kalakoski and Eivor Lahtinen) for logistic and financial support with cargo and travel expenses, and the Alfred Wegener Institute for Polar and Marine Research, leading researcher Peter Lemke, the captain, crew, and the other participants in the AWECS expedition. We thank Sari Korhonen for skilled technical assistance in virus production and purification, Christiane Uhlig for providing the MOX medium plates, and Harri Kuosa and Daniel Delille for useful comments on the manuscript.

1		
2 3	621	
4 5	622	Conflict of Interest
6 7	623	The authors declare no conflict of interest.
8 9	624	
10 11 12	625	References
13	626	Anderson NG, Harris WW, Barber AA et al. Separation of subcellular components and
14	627	viruses by combined rate- and isopycnic-zonal centrifugation. J Natl Cancer Inst Monogr
16 17 18	628	1966; 21 :253–83.
19 20	629	Arrigo KR, Mock T, Lizotte MP. Primary producers and sea ice. In: Thomas DN,
21 22	630	Dieckmann GS (eds). Sea Ice. 2nd ed. Oxford: John Wiley & Sons, Ltd., 2010, 283–325.
23 24	631	Arrigo KR, Thomas DN. Large scale importance of sea ice biology in the Southern
25 26 27	632	Ocean. Antarct Sci 2004;16:471–86.
28 29 30 31	633	Bamford JK, Bamford DH. Large-scale purification of membrane-containing
	634	bacteriophage PRD1 and its subviral particles. <i>Virology</i> 1991;181:348–52.
32 33	635	Borriss M, Helmke E, Hanschke R et al. Isolation and characterization of marine
34 35 36	636	psychrophilic phage-host systems from Arctic sea ice. <i>Extremophiles</i> 2003;7:377–84.
37 38	637	Borriss M, Lombardot T, Glöckner FO et al. Genome and proteome characterization of
39 40	638	the psychrophilic <i>Flavobacterium</i> bacteriophage 11b. <i>Extremophiles</i> 2007; 11 :95–104.
41 42	639	Boulanger PA, Puvion F. Large-scale preparation of soluble adenovirus hexon, penton
43 44 45	640	and fiber antigens in highly purified form. Eur J Biochem 1973;39:37-42.
46 47	641	Bowman JP, McCammon SA, Brown MV et al. Diversity and association of
47 48 49	642	psychrophilic bacteria in Antarctic sea ice. <i>Appl Environ Microb</i> 1997; 63 :3068–78.
50 51	643	Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities
52 53 54 55 56 57	644	of protein utilizing the principle of protein-dye binding. <i>Anal Biochem</i> 1976; 72 :248–54.
58 59		24
60		ScholarOne Support 1-434/964-4100

1		
2 3	645	Brinkmeyer R, Knittel K, Jurgens J et al. Diversity and structure of bacterial
4 5 6	646	communities in Arctic versus Antarctic pack ice. <i>Appl Environ Microb</i> 2003;69:6610–9.
7	647	Brussaard CPD, Payet JP, Winter C et al. Quantification of Aquatic Viruses by Flow
8 9	648	Cytometry. In: Wilhelm S, Weinbauer M, Suttle C (eds.). Manual of Aquatic Viral
10 11 12	649	Ecology. The American society of limnology and Oceanography, Inc, 2010:102–109.
13 14	650	Burgess RR. Chapter 20 - Protein Precipitation Techniques. Method Enzymol. Vol 463.
15 16	651	1st ed. Elsevier Inc., 2009, 331-42.
17 18	652	Colangelo-Lillis JR, Deming JW. Genomic analysis of cold-active Colwelliaphage 9A
19 20 21	653	and psychrophilic phage-host interactions. <i>Extremophiles</i> 2013;17:99–114.
22 23	654	Collins RE, Deming JW. Abundant dissolved genetic material in Arctic sea ice Part II:
24 25	655	Viral dynamics during autumn freeze-up. <i>Polar Biol</i> 2011; 34 :1831–41.
26 27	656	Deming JW, Collins RE. Sea ice as a habitat for bacteria, archaea and viruses. In:
28 29 30	657	Thomas DN (ed.). Sea Ice. 3rd ed. Oxford: John Wiley & Sons, Ltd., 2017, 326-351.
31 32	658	Dieckmann GS, Hellmer H. The importance of sea ice: an overview. In: Thomas DN,
33 34	659	Dieckmann GS (eds). Sea Ice. 2nd ed. Oxford: John Wiley & Sons, Ltd., 2010, 1–22.
35 36	660	Edwards U, Rogall T, Blöcker H et al. Isolation and direct complete nucleotide
37 38	661	determination of entire genes. Characterization of a gene coding for 16S ribosomal
39 40 41	662	RNA. Nucleic Acids Res 1989;17:7843–53.
42 43	663	Eronen-Rasimus E, Luhtanen A-M, Rintala J-M et al. An active bacterial community
44	664	linked to high chl-a concentrations in Antarctic winter-pack ice and evidence for the
45 46	665	development of an anaerobic sea-ice bacterial community. ISME J 2017;63:3068. DOI:
47 48 49	666	10.1038/ismej.2017.96.
50 51	667	Forterre P, Soler N, Krupovic M et al. Fake virus particles generated by fluorescence
52 53 54 55 56 57	668	microscopy. Trends Microbiol 2013;21:1–5.
58 59		25
60		ScholarOne Support 1-434/964-4100

1		
2 3	669	Fuhrman JA. Marine viruses and their biogeochemical and ecological effects. Nature
4 5 6	670	1999; 399 :541–8.
0 7 8	671	Gowing MM, Garrison DL, Gibson AH et al. Bacterial and viral abundance in Ross Sea
8 9 10	672	summer pack ice communities. Mar Ecol Prog Ser 2004;279:3–12.
11 12	673	Gowing MM, Riggs BE, Garrison DL et al. Large viruses in Ross Sea late autumn pack
13 14	674	ice habitats. Mar Ecol Prog Ser 2002;241:1–11.
15 16	675	Helmke E, Weyland H. Bacteria in sea ice and underlying water of the eastern Weddell
17 18 19	676	Sea in midwinter. Mar Ecol Prog Ser 1995;117:269–87.
20 21	677	Huston AL, Krieger-Brockett BB, Deming JW. Remarkably low temperature optima for
22 23	678	extracellular enzyme activity from Arctic bacteria and sea ice. Environ Microbiol
24 25	679	2000; 2 :383–8.
26 27	680	Junge K, Eicken H, Deming JW. Bacterial Activity at -2 to -20 °C in Arctic Wintertime
28 29 30	681	Sea Ice. Appl Environ Microbiol 2004;70:550–7.
31 32	682	Krupovic M, Dutilh BE, Adriaenssens EM et al. Taxonomy of prokaryotic viruses:
33	683	update from the ICTV bacterial and archaeal viruses subcommittee. Arch Virol
34 35 36	684	2016; 161 :1095–9.
37	685	Lane DJ, Pace B, Olsen GJ et al. Rapid determination of 16S ribosomal RNA sequences
39 40	686	for phylogenetic analyses. Proc Natl Acad Sci 1985;82:6955–9.
41 42	687	Lannuzel D, De Jong J, Schoemann V et al. Development of a sampling and flow
43 44	688	injection analysis technique for iron determination in the sea ice environment. Anal Chim
45 46	689	Acta 2006; 556 :476–483.
47 48	690	Lawrence JE, Steward GF. Purification of Viruses by Centrifugation. In: Wilhelm S,
49 50	691	Weinbauer M, Suttle C (eds.). Manual of Aquatic Viral Ecology. The American society
51 52 53	692	of limnology and Oceanography, Inc, 2010:166-181.
54 55 56 57		
58 59 60		ScholarOne Support 1-434/964-4100

1		
2 3	693	Leon-Velarde CG, Happonen L, Pajunen M et al. Yersinia enterocolitica-specific
4 5	694	infection by bacteriophages TG1 and ϕ R1-RT is dependent on temperature-regulated
6 7	695	expression of the phage host receptor OmpF. <i>Appl Environ Microbiol</i> 2016; 82 :5340–53.
8 9 10	696	Leturnic I, Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree
11 12	697	display and annotation. <i>Bioinformatics</i> 2007; 23 :127–128.
13 14	698	Luhtanen A-M, Eronen-Rasimus E, Kaartokallio H et al. Isolation and characterization of
15 16 17	699	phage-host systems from the Baltic Sea ice. <i>Extremophiles</i> 2014;18:121–30.
17	700	Maranger R, Bird DF. Viral abundance in aquatic systems: a comparison between marine
19 20 21	701	and fresh waters. Mar Ecol Prog Ser 1995;121: 217–226.
22 23	702	Maranger R, Bird D, Juniper S. Viral and bacterial dynamics in Arctic sea ice during the
24 25	703	spring algal bloom near Resolute, N. W. T., Canada. Mar Ecol Prog Ser 1994;111:121-7.
26 27	704	Marchant H, Davidson A, Wright S et al. The distribution and abundance of viruses in
28 29 30	705	the Southern Ocean during spring. Antarct Sci 2000;12:414–7.
31	706	Meiners K, Krembs C, Gradinger R. Exopolymer particles: microbial hotspots of
32 33	707	enhanced bacterial activity in Arctic fast ice (Chukchi Sea). Aquat Microb Ecol
34 35	708	2008; 52 :195–207.
36 37		
38	709	Middelboe M, Hagström Å, Blackburn N et al. Effects of bacteriophages on the
39 40	710	population dynamics of four strains of pelagic marine bacteria. Microb Ecol
41 42	711	2001; 42 :395–406.
43 44	712	Middelboe M, Riemann L, Steward GF et al. Virus-induced transfer of organic carbon
45 46 47	713	between marine bacteria in a model community. Aquat Microb Ecol 2003; 33 :1–10.
48	714	Mock T, Thomas DN. Recent advances in sea-ice microbiology. Environ Microbiol
49 50 51	715	2005;7:605–19.
52 53 54 55 56 57 58	716	Morita RY. Psychrophilic bacteria. <i>Bacteriol Rev</i> 1975; 39 :144–67.
59 60		ScholarOne Support 1-434/964-4100

1 2		
2 3	717	Olkkonen VM, Bamford DH. Quantitation of the adsorption and penetration stages of
4 5 6	718	bacteriophage \$\$\$ infection. Virology 1989;171:229-238.
0 7 8	719	Paterson H, Laybourn-Parry J. Antarctic sea ice viral dynamics over an annual cycle.
9 10	720	<i>Polar Biol</i> 2012; 35 :491–7.
11 12	721	Proctor LM, Fuhrman JA. Viral mortality of marine bacteria and cyanobacteria. Nature
13 14	722	1990; 343 :60–2.
15 16	723	Pruesse E, Peplies J, Glockner FO. SINA: Accurate high-throughput multiple sequence
17 18 10	724	alignment of ribosomal RNA genes. Bioinformatics 2012;28:1823-9.
20 21	725	Rintala J-M, Piiparinen J, Blomster J et al. Fast direct melting of brackish sea-ice
22 23	726	samples results in biologically more accurate results than slow buffered melting. Polar
24 25	727	<i>Biol</i> 2014; 37 :1811–22.
26 27	728	Sait L, Galic M, Strugnell RA et al. Secretory Antibodies Do Not Affect the Composition
28 29	729	of the Bacterial Microbiota in the Terminal Ileum of 10-Week-Old Mice. Appl Environ
30 31	730	<i>Microbiol</i> 2003; 69 :2100–9.
32 33	731	Senčilo A, Luhtanen A-M, Saarijärvi M et al. Cold-active bacteriophages from the Baltic
34 35	732	Sea ice have diverse genomes and virus-host interactions. Environ Microbiol
36 37	733	2015;17:3628–41.
38 39 40	734	Shivaji S, Reddy GS. Phylogenetic analyses of the genus Glaciecola: emended
41	735	description of the genus Glaciecola, transfer of Glaciecola mesophila, G. agarilytica, G.
42 43	736	aquimarina, G. arctica, G. chathamensis, G. polaris and G. psychrophila to the genus
44 45	737	Paraglaciecola gen. nov. as Paraglaciecola mesophila comb. nov., P. agarilytica comb.
46 47	738	nov., P. aquimarina comb. nov., P. arctica comb. nov., P. chathamensis comb. nov., P.
48	739	polaris comb. nov. and P. psychrophila comb. nov., and description of Paraglaciecola
49 50	740	oceanifecundans sp. nov., isolated from the Southern Ocean. Inter J Syst Evol Micr
51 52	741	2014; 64 :3264–75.
53 54 55	742	Soler N, Krupovic M, Marguet E et al. Membrane vesicles in natural environments: a
56 57 58	743	major challenge in viral ecology. <i>ISME J</i> 2015; 9 :793–6.
58 59 60		28 ScholarOne Support 1-434/964-4100

1 2		
3	744	Stamatakis A. RaxML version 8: a tool for phylogenetic analysis and post-analysis of
4 5 6	745	large phylogenies. <i>Bioinformatics</i> 2014; 30 :1312–1313.
7 8	746	Suttle C. Viruses in the sea. Nature 2005;437:356-61.
9 10 11	747	Suttle CA. Marine viruses - major players in the global ecosystem. Nat Rev Micro
12 13	748	2007; 5 :801–12.
14 15	749	Thingstad T, Lignell R. Theoretical models for the control of bacterial growth rate,
16 17	750	abundance, diversity and carbon demand. Aquat Microb Ecol 1997;13:19-27.
18 19	751	Thingstad TF, Vage S, Storesund JE et al. A theoretical analysis of how strain-specific
20 21	752	viruses can control microbial species diversity. Proc Natl Acad Sci USA 2014;111:7813-
22 23 24	753	8.
25	754	Thomas DN, Dieckmann GS. Antarctic sea ice – a habitat for extremophiles. Science
20 27 28	755	2002; 295 :641–4.
29 30	756	Tison J-L, Schwegmann S, Dieckmann G et al. Biogeochemical impact of snow cover
31 32	757	and cyclonic intrusions on the winter Weddell Sea ice pack. J Geophys Res Oceans 2017.
33 34	758	DOI: 10.1002/2017jc013288.
35 36 37	759	Weinbauer MG. Ecology of prokaryotic viruses. <i>FEMS Microbiol Rev</i> 2004; 28 :127–81.
38 39	760	Wells L, Deming J. Modelled and measured dynamics of viruses in Arctic winter sea-ice
40 41	761	brines. Environ Microbiol 2006a;8:1115–21.
42	762	Wells LE, Deming JW. Characterization of a cold-active bacteriophage on two
44 45 46	763	psychrophilic marine hosts. Aquat Microb Ecol 2006b;45:15–29.
47 48	764	Wells LE, Deming JW. Effects of temperature, salinity and clay particles on inactivation
49 50	765	and decay of cold-active marine Bacteriophage 9A. Aquat Microb Ecol 2006c;45:31-9.
51 52	766	Wommack KE, Colwell RR. Virioplankton: Viruses in Aquatic Ecosystems. Microbiol
53 54 55 56 57	767	<i>Mol Biol R</i> 2000; 64 :69–114.
58 59		20
60		ScholarOne Support 1-434/964-4100

1		
2 3	768	Yoon SH, Ha S-M, Kwon S et al. Introducing EzBioCloud: a taxonomically united
4 5	769	database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol
6 7	770	<i>Microbiol</i> 2017; 67 :1613–1617.
8 9 10	771	Yu Z-C, Chen X-L, Shen Q-T et al. Filamentous phages prevalent in Pseudoalteromonas
11	772	spp. confer properties advantageous to host survival in Arctic sea ice. ISME J
12 13	773	2015; 9 :871–81.
14 15		
16		
17 18		
19 20		
21		
22		
24 25		
26 27		
28		
29 30		
31 32		
33 34		
35		
36 37		
38 39		
40 41		
42		
43 44		
45 46		
47 49		
48 49		
50 51		
52 53		
54 55		
55 56		
57 58		
59 60		30 ScholarOne Support 1-434/964-4100

421x620mm (600 x 600 DPI)

Figure 2 Purification of the phages by rate-zonal centrifugation in sucrose. (a) bacteriophage PANV1, (b) bacteriophage PANV2, (c) bacteriophage OANV1, (d) bacteriophage OANV2. (a–d) Top: position of the light-scattering zone (gray) in the sucrose gradient tubes. Middle: Absorbance (closed squares) and infectivity (open circles) of the 12 sucrose gradient fractions in which the top fraction is marked as 1. Bottom: Protein content of the 12 gradient fractions analyzed with SDS-PAGE and Coomassie Blue staining. The protein patterns of the final biochemically purified and concentrated phages are shown on the right. St = molecular mass marker; PRD1 = purified phage PRD1 used as a control. The dashed line marks the position of the upper edge of the light-scattering virus zone. pfu = plaque-forming unit.

279x373mm (300 x 300 DPI)

ScholarOne Support 1-434/964-4100

d

<u>10</u> 100 nm

Figure legends

Figure 1 Bootstrapped (1000) phylogenetic maximum-likelihood tree of the 16S rRNA gene sequences of the bacterial strains isolated from Antarctic sea ice. The bootstrap values (> 50%) are shown with black circles. The *Sulfolobus* tokodaii sequence (AB022438) was used as an outgroup in the alignment. The strains are colored at the genus level (see the color key), based on their classification with SILVA Incremental Aligner (SINA) (version 1.2.11, minimum identity: 0.8, Pruesse *et al.*, 2012). The sensitivities of the bacterial strains to isolated phages are shown as efficiency of plating (EOP; on right in gray scale). For the original host (marked by H), the EOP was set to a value of 1. The strains used as references or that do not form a lawn on solid growth media were not tested for EOP (marked with white). The scale bar indicates nucleotide substitutions per position. **Figure 2** Purification of the phages by rate-zonal centrifugation in sucrose. (a) bacteriophage PANV1, (b) bacteriophage PANV2, (c) bacteriophage OANV1, (d) bacteriophage OANV2. (a-d) Top: position of the light-scattering zone (gray) in the sucrose gradient tubes. **Middle:** Absorbance (closed squares) and infectivity (open circles) of the 12 sucrose gradient fractions in which the top fraction is marked as 1. Bottom: Protein content of the 12 gradient fractions analyzed with SDS-PAGE and Coomassie Blue staining. The protein patterns of the final biochemically purified and concentrated phages are shown on the right. St = molecular mass marker; PRD1 = purified phage PRD1 used as a control. The dashed line marks the position of the upper edge of the light-scattering virus zone. pfu = plaque-forming unit. **Figure 3** Transmission electron micrographs of the purified and negatively stained phages. (a) PANV1, (b) PANV2, (c) OANV1, and (d) OANV2.

Table 1. VLP and bacterial abundances and virus-to-bacteria ratios (VBRs) in the different layers of ice cores from all the
AWECS sampling stations.

Station	Date	Latitude	Longitude	Ice depth (cm) from air-ice interface		VLP x 10⁵/ml in bulk ice ^b	Bacteria x 10 ⁵ /ml in bulk ice ^{b,c}	VBR VLP/Bacteria
				Core I	Core II			
486 ^a	6/17/2013	-61.526	-0.086	0–6	_	1.90	0.56	3.4
488 ^a	6/18/2013	-62.928	-0.006	0–15	_	4.90	0.56	8.8
				15–20	-	2.60	0.81	3.2
				20–35	-	6.80	1.20	5.7
489 ^a	6/19/2013	-63.901	-0.031	0–15	_	6.50	1.20	5.4
				15–22	_	4.90	1.30	3.8
				22–37	-	5.80	0.85	6.8
493	6/21/2013	-66.44	0.122	0–15	0–15	13.00	3.40	3.8
	1			15–46	15–38	9.30	3.80	2.4
				46–61	38–53	9.30	1.80	5.2
	1			4				
496	6/24/2013	-67.466	-0.021	0–15	0–15	4.70	1.30	3.6
				15–45	15–57	3.90	2.70	1.4
				45–60	57–72	5.90	2.50	2.4
500	7/3/2013	-67.949	-6.658	0–15	0–15	16.00	2.60	6.2
				15–35	15–35	12.00	3.60	3.3
				35–55	35–52	46.00	4.00	11.5
				55–75	52-72	20.00	3.40	5.9
				75–90	72–87	9.70	2.70	3.6
503	7/8/2013	-67.187	-13.224	0–15	0–15	8.70	0.65	13.4
				15–25	15–25	7.50	0.79	9.5
				25–37	25–36	9.20	0.81	11.4
				37–47	36–46	10.00	0.80	12.5
				47–62	46–61	6.70	0.56	12.0
5 00	7/44/0040			0.45	0.45	0.00	0.54	7.0
506	7/11/2013	-67.19	-23.042	0-15	0-15	3.90	0.51	7.6
				15-34	15-30	5.50	0.80	6.9 ND
				34–49	30–45	ND	ND	ND
a 2								
515"	7/26/2013	-63.456	-51.308	0-15	-	6.90	3.60	1.9
				15-45	_	9.30	6.00	1.6
				45-75	—	21.00	/.30	2.9
	-			/5-104	-	40.00	24.00	1./
				104-134	-	49.00	42.00	1.2
				104-104	_	0.00	9.50	0.7
				104-179	_	0.90	12.00	0.7
547	7/20/2012	62.500	F4 442	0 15	0.15	5 70	0.60	0.5
517	1130/2013	-03.509	-51.112	15-30	15-30	4 60	0.00	5.3
				30-43	30-43	2 20	0.07	3.1
				43-58	43_58	2.20	1.30	1.8
				58_73		5.40	1.30	<u> </u>
L	1	L		50-15	50-15	5.00	1.40	7.1

^a Only one ice core sampled

^b Analysed from combined layers of the sibling cores I and II, when two cores were collected.

^c Bacterial abundances are also published in Eronen-Rasimus et al. (2017)

VLP = virus-like particle, AWECS = Antarctic Winter Ecosystem Climate Study, ND = not determined

1	
2	
4	
5	
6 7	
8	
9 10	
11	
12	
13 14	
15	
16 17	
18	
19	
20 21	
22	
23 24	
25	
26	
27 28	
29	
30 31	
32	
33 24	
34 35	
36	
37 38	
39	
40 41	
41	
43	
44 45	
46	
47 ⊿Ջ	
49	
50	
51 52	
53	
54 55	
56	
F7	

Isolation depth from air-ice interface (cm)	Isolation media ^a	Bacterial strain	Closest match genus [♭]	ldentity % at genus level	Accession number	Used for virus isolation
0-14	Z	IceBac 363	Halomonas	100.0	KY194856	1
14-28	Z	IceBac 364	Polaribacter	99.7	KY194850	1
14-28	Z	IceBac 365	Glaciecola	99.6	KY194821	1
14-28	Z	IceBac 367	Paraglaciecola	99.9	KY194799	1
14-28	Z	IceBac 368	Paraglaciecola	99.9	KY194805	1
14-28	Z	IceBac 369	Marinobacter	99.3	KY194841	
14-28	Z	IceBac 370	Marinobacter	99.3	KY194842	1
14-28	Z	IceBac 371	Glaciecola	99.6	KY194822	
14-28	Z	IceBac 372	Paraglaciecola (H)	99.9	KY194800	1
14-28	MOX	IceBac 373	Polaribacter	100.0	KY194848	1
14-28	MOX	IceBac 377	Glaciecola	99.6	KY194823	1
28-42	Z	IceBac 378	Glaciecola	99.6	KY194828	1
28-42	Z	IceBac 379	Glaciecola	99.6	KY194824	1
28-42	Z	IceBac 380	Glaciecola	99.6	KY194825	
28-42	Z	IceBac 381	Glaciecola	99.6	KY194829	1
28-42	Z	IceBac 382	Glaciecola	99.6	KY194831	1
28-42	Z	IceBac 383	Paraglaciecola	99.9	KY194801	1
28-42	MOX	IceBac 384	Polaribacter	100.0	KY194845	
42-56	Z	IceBac 385	Polaribacter	99.7	KY194844	
42-56	Z	IceBac 386	Glaciecola	99.6	KY194815	1
42-56	Z	IceBac 387	Glaciecola	99.5	KY194816	1
42-56	Z	IceBac 388	Glaciecola	99.6	KY194826	1
42-56	Z	IceBac 389	Glaciecola	99.6	KY194817	1
42-56	Z	IceBac 390	Glaciecola	99.6	KY194830	
42-56	Z	IceBac 391	Marinobacter	99.3	KY194843	
42-56	Z	IceBac 392	Paracoccus	99.9 🦊	KY194857	1
42-56	MOX	IceBac 394	Glaciecola	99.6	KY194832	1
56-70	Z	IceBac 396	Glaciecola	99.6	KY194827	
56-70	Z	IceBac 397	Glaciecola	99.6	KY194818	
56-70	Z	IceBac 398	Glaciecola	99.5	KY194820	
56-70	Z	IceBac 399	Glaciecola	99.4	KY194819	
56-70	Z	IceBac 400	Polaribacter	99.7	KY194849	1
56-70	Z	IceBac 401	Paraglaciecola	100.0	KY194802	1
56-70	Z	IceBac 402	Paraglaciecola	99.9	KY194806	1
70-84	С	IceBac 403	Colwellia	99.4	KY194851	1
70-84	Z	IceBac 404	Polaribacter	99.7	KY194846	1
70-84	Z	IceBac 405	Octadecabacter	100.0	KY194834	1
98-112	Z	IceBac 408	Polaribacter	99.7	KY194847	1
98-112	Z	IceBac 409	Glaciecola	99.6	KY194833	1

112-126	С	IceBac 410	Paraglaciecola	100.0	KY194813	
112-126	Z	IceBac 411	Paraglaciecola	100.0	KY194808	
112-126	Z	IceBac 412	Paraglaciecola	100.0	KY194803	
112-126	Z	IceBac 413	Octadecabacter	100.0	KY194835	<i></i>
112-126	Z	IceBac 414	Paraglaciecola	100.0	KY194804	~
126-140	С	IceBac 415	Pseudoalteromonas	100.0	KY194855	~
126-140	Z	IceBac 416	Paraglaciecola	99.9	KY194807	~
126-140	Z	IceBac 417	Paraglaciecola	100.0	KY194809	1
126-140	Z	IceBac 418	Octadecabacter	100.0	KY194836	~
126-140	Z	IceBac 419	Octadecabacter (H)	100.0	KY194837	~
140-154	Z	IceBac 420	Paraglaciecola	100.0	KY194810	~
140-154	Z	IceBac 421	Pseudoalteromonas	100.0	KY194853	~
140-154	Z	IceBac 422	Pseudoalteromonas	100.0	KY194854	~
140-154	Z	IceBac 423	Colwellia	99.4	KY194852	~
140-154	Z	IceBac 424	Octadecabacter	100.0	KY194838	~
140-154	MOX	IceBac 426	Paraglaciecola	100.0	KY194814	~
154-166	Z	IceBac 428	Paraglaciecola	99.9	KY194811	1
154-166	Z	IceBac 430	Octadecabacter (H)	100.0	KY194839	~
154-166	Z	IceBac 431	Octadecabacter	100.0	KY194840	v
154-166	MOX	IceBac 433	Paraglaciecola	100.0	KY194812	~

^a Z = Zobell media; MOX= MOX media; C = concentrated Zobell media.

^b Original isolation hosts of the viruses are marked by (H).

Table 3. Phages isolated in this study.

Phage	Sampling station	Isolation host	Genus of the host (closest match)	Lysate titer (pfu/ml)	Capsid head diameter (nm) ^a	Tail length (nm) ^b	Morphotype
Paraglaciecola Antarctic GD virus 1 (PANV1)	500	IceBac 372	Paraglaciecola	1.5 × 10 ¹⁰	71±7 (n=20)	58±22 (n=10)	myovirus
Paraglaciecola Antarctic JLT virus 2 (PANV2)	500	IceBac 372	Paraglaciecola	5.2 × 10 ¹¹	52±8 (n=29)	89±30 (n=10)	siphovirus
Octadecabacter Antarctic BD virus 1 (OANV1)	515	IceBac 419	Octadecabacter	1.2 × 10 ¹⁰	50±8 (n=20)	83±10 (n=10)	siphovirus
Octadecabacter Antarctic DB virus 2 (OANV2)	515	IceBac 430	Octadecabacter	5.8 × 10 ⁹	53±7 (n=20)	_	podovirus

For per Perieu

^a average diameter

^b average length

pfu = plaque-forming unit

Table 4. Recovery of infectious phages during biochemical purification afterammonium sulfate precipitation and rate zonal centrifugationin sucrose combined with concentration step by differential centrifugation.

		Total pfus ^a	Recovery of infectivity %	Specific infectivity pfu / mg protein	
PANV1	ANV1				
	Virus lysate	7.5 × 10 ¹²	100.0		
	50 % ammonium sulfate precipitate	4.1 × 10 ¹²	54.7		
	Concentrated virus ^b	1.5 × 10 ¹²	20.0	1.8 × 10 ¹²	
PANV2					
	Virus lysate	3.2 × 10 ¹⁴	100.0		
	50 % ammonium sulfate precipitate	9.6 × 10 ¹³	30.0		
	Concentrated virus ^b	6.2 × 10 ¹³	19.4	8.9 × 10 ¹²	
	Virus lysate	6.0 × 10 ¹²	100.0		
	80 % ammonium sulfate precipitate	1.5 × 10 ¹²	25.0		
	Concentrated virus ^b	5.7 × 10 ¹¹	9.5	3.8 × 10 ¹²	
-		0			
OANV2	NV2				
	Virus lysate	3.3×10^{12}	100.0		
	80 % ammonium sulfate precipitate	1.2 × 10 ¹²	35.7		
	Concentrated virus ^b	4.4 × 10 ¹¹	13.6	6.9 × 10 ¹²	

^a calculated per a liter of original lysate

^b after rate zonal centrifugation in sucrose and concentration by differential centrifugation pfu = plaque-forming unit

Host bacteria	al growth ^a				
	0 °	4 °	10°	15°	20°
IceBac 372	+	+	+	(+)	-
IceBac 419	+	+	+	+	-
IceBac 430	+	+	+	+	-
Infectivity of	the phages	a			
PANV1	+	+	-	-	ND
PANV2	+	+	-	-	ND
OANV1	+	+	-	-	ND
OANV2	+	+	-	-	ND

and the phages.

^a + = producing colonies/plaques; (+) = retarded growth; - = no colonies or plaques produced; ND = not determined.