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Abstract 

A rare homozygous BCS1Lc.A232G (Ser78Gly, p.S78G) mutation in infants causes GRACILE 

syndrome, which is a severe mitochondrial respiratory chain complex III (CIII) disorder resulting in 

multiple organ dysfunction and early lethality. Pathogenesis mechanisms have been studied using 

our viable Bcs1lp.S78G knock-in mouse model. The mouse model replicates most clinical phenotypes, 

such as growth restriction, hepatopathy, and tubulopathy. Like patients, the survival of homozygous 

mice is reduced (to 35-45 days, P35-P45 in the C57BL/6JBomTac background), mainly because of 

severe hypoglycemia. Aiming to improve the glycemic balance we performed an intervention with a 

high sugar (60% dextrose) diet. This diet did not improve energy metabolism and resulted in 

slightly decreased survival despite apparent normalization of some plasma metabolites.  

For subsequent studies, we bred the Bcs1lc.A232G mutation into a C57BL/6JCrl background, in which 

the survival was five-fold longer (approximately 200 days). Moreover, the extended survival 

brought novel phenotypes, such as encephalopathy and late-onset cardiomyopathy. In this genetic 

background, we investigated the effect of ketogenic diet on disease progression. The ketogenic diet 

had a beneficial impact on liver disease, but it had adverse effects upon long-term feeding, resulting 

in shortened survival. In the third study, we introduced an alternative oxidase (AOX) transgene into 

the Bcs1lp.S78G mice to improve respiratory chain function. The ubiquitous expression of AOX, 

which should bypass electron transfer and relieve CIII blockade, prevented lethal cardiomyopathy 

and renal-tubular atrophy, and delayed focal astrogliosis in the somatosensory cortex of the brain. 

The beneficial effects of AOX extended the median survival of the homozygotes to median P590.  

The main conclusions from these studies are that the Bcs1lp.S78G mice in a C57BL/6JCrl background 

present with both the known early-onset manifestations of GRACILE syndrome and some later-

onset manifestations found in other CIII deficiencies. The dietary interventions had limited benefits, 

probably because of a severe course of the disease. In contrast, bypassing the blocked electron flow 

using AOX had a robust beneficial effect, mainly in tissues or cells with high ATP demand such as 

the heart and renal proximal tubular cells. 
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1 Introduction 

Mitochondrial disorders are common inborn errors of metabolism and vary widely in their 

presenting age and symptoms. The genetic cause may be an inherited or acquired mutation(s) either 

in the nuclear DNA (nDNA) or mitochondrial DNA (mtDNA). The products of more than  

1000 genes encoded in nDNA and 37 genes in mtDNA play a role in both biogenesis and functions 

of mitochondria, including mitochondrial respiration by the respiratory chain (RC) complexes. 

Furthermore, a specific mutation in either genome can cause mitochondrial dysfunction which 

results in a wide range of diseases and pathological conditions.  

With the current developments in clinical diagnostics, including advanced molecular genetics, it is 

often possible to identify the causative mutation(s) of disease. However, effective treatments are 

currently not available for mitochondrial disorders, despite several promising drugs that affect 

various energy-metabolism pathways in RC deficiency. To develop effective therapeutic strategies, 

detailed knowledge of disease mechanisms is necessary.  

This thesis work is based on the need to understand disease mechanisms in GRACILE syndrome, 

which is by far the most severe RC complex III (CIII) disorder (Fellman et al. 1998). Its cause is a 

homozygous c.A232G mutation in nuclear DNA gene encoding BCS1L, which is an assembly 

factor for CIII. This mutation changes a single amino acid (serine 78 to glycine) in the protein 

(Visapää et al. 2002), which in turn affects CIII assembly. The resulting typical phenotype consists 

of severe fetal Growth Restriction, Aminoaciduria, due to Fanconi type proximal tubulopathy, 

Cholestasis, Iron accumulation, Lactic acidosis, and Early death during infancy, the base for the 

acronym (Fellman et al. 1998, Visapää et al. 2002). The particular genotype-phenotype consistency 

in infants (Fellman et al. 2008) motivated Professor Fellman’s group to generate a mouse model by 

introducing the patient mutation into the mouse genome (Levéen et al. 2011). It resulted in the first 

viable mouse model for CIII deficiency, mimicking the human disease, but with an initial symptom-

free postnatal period. Breeding the mutation into the C57BL/6JCrl background at the University of 

Helsinki resulted in longer survival and additional phenotypes. We used both mouse strains for 

investigations in this thesis with the aim to describe mechanisms and assess the efficacy of 

therapeutic interventions. 
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2 Review of the literature  

2.1 The origin and structure of mitochondria 

Mitochondria are double membrane-bound organelles that generate ATP using aerobic respiration 

and also participate in the signaling pathways for cell cycle, differentiation, and death  

(McBride et al. 2006). The current widely-accepted theory about the origin of the mitochondrion is 

the endosymbiont theory. It posits that an archaeon engulfed an alpha-proteobacterium in building a 

symbiotic relationship, resulting in a primitive eukaryotic cell (Martin et al. 2015). Unlike other 

organelles, mitochondria function through proteins encoded both in the nucleus and mitochondrial 

DNA (mtDNA). Mammalian mitochondria have double-stranded circular mtDNA consisting of  

15-17 kbp with a heavy strand (guanine-rich) containing 28 genes and a light strand (cytosine-rich) 

with 9 genes. Of these 37 genes, 22 encode transfer RNA, 2 encode ribosomal RNA, and 13 encode 

polypeptides, which are subunits of mitochondrial respiratory complexes (Taanman 1999).  

The mtDNA is present in the internal space called the matrix that is abundant with enzymes, 

peptides, and proteins, which play a role in the metabolic processes such as pyruvate and fatty acid 

oxidation, and tricarboxylic acid (TCA) cycle. The matrix is enclosed by two phospholipid bilayers. 

They is an inner mitochondrial membrane (IMM) and an outer mitochondrial membrane (OMM), 

separated by an inter-membrane space (IMS). The OMM maintains the integrity of the 

mitochondrion structure and separates inner contents from the cytosol. The OMM contains various 

enzymes involved in metabolic processes (e.g., fatty acid elongation) (Howard 1970) and 

membrane transport. Transportation of large proteins occurs directly by translocase proteins, and 

small molecules such as ions and ATP (<5 kDa) pass through the channels and transporters  

(i.e., porin) (Endo & Kohda 2002). The IMM folding forms the cristae that provide space for the 

IMM-located enzymes and proteins to enhance RC complex activity (Bartolák-Suki et al. 2017). 

2.1.1 Mitochondria in ATP generation 

One of the many important functions of mitochondria is ATP synthesis, mainly by the IMM-located 

ATP synthase (complex V, CV). The CV requires a proton gradient generated by electron transfer 

through RC complexes. The RC complexes are NADH dehydrogenase (complex I, CI), succinate 

dehydrogenase (complex II, CII), cytochrome c reductase (complex III, CIII), and cytochrome c 

oxidase (complex IV, CIV). These RC complexes exist either in free form or are combined to form 

so-called supercomplexes (SC) such as CI/III2/IV, CI/III2, and CIII2/IVn (Schägger 2001). They are 

involved in the proton pumping into the IMS and maintain the gradient (Guo et al. 2018) (Figure 1).  
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Figure 1. Schematic structure of the mitochondrion and the respiratory chain complexes in 
the IMM. IMM, inner mitochondrial membrane; IMS, intermembrane space; OMM, outer 
mitochondrial membrane; CI, complex I; CII, Complex II; CIII, Complex III; CIV, Complex IV; 
CV, ATP synthase; UQ, ubiquinol. Red arrows indicate proton translocation, while black arrows 
indicate the direction of electron transfer. Individual RC complex structures in this figure are 
redrawn based on the image provided for the KEGG project by Kanehisa Laboratories. 

 

Complex I oxidizes NADH, which is a product of pyruvate oxidation and TCA cycle. CI releases 

four protons into the IMS and transfers two electrons to reduce ubiquinone (Q), also known as 

coenzyme Q10. CI consists of 45 subunits, among them seven (ND1–ND6 and ND4L) are mtDNA-

encoded proteins forming the major part of the membrane domain (Hirst et al. 2003; Mimaki et al. 

2012), which is involved in proton translocation and ubiquinone binding (Hoogenraad et al. 2002; 

Hirst et al. 2003). The additional 38 subunits are nDNA-encoded proteins, of which seven subunits 

(NDUFV-2, NDUFS1-3, and NDUFS7-8) form the core that oxidizes NADH and initiates electron 

transfer (Vogel et al. 2007; Lazarou et al. 2009). The remaining 31 subunits contribute to the 

structural stability and biogenesis of CI (Friedrich & Böttcher 2004; Mimaki et al. 2012). Complex 

II is not bound to any other complexes and consists of four nDNA-encoded core subunits,  

(SDH-A-D). It dehydrogenates succinate to fumarate, part of the TCA cycle, and transfers electrons 

to Q without proton transfer to the IMS (Cecchini 2003; Ylikallio & Suomalainen 2012).  



13 
 

Complex III consists of 10 subunits, of which cytochrome b is mtDNA-encoded, and the rest are 

nDNA-encoded. CIII receives electrons from ubiquinol (QH2) and, transfers them to reduce two 

molecules of cytochrome c, with concomitant translocation of four protons into the IMS 

(Fernandez-Vizarra & Zeviani 2018). Complex IV contains 13 subunits. Three mtDNA-encoded 

proteins are large core subunits (COX1-3) responsible for electron transfer. The other ten nDNA-

encoded subunits stabilize the complex and regulate the biogenesis. CIV re-oxidizes cytochrome c 

and releases two protons into the IMS and converts oxygen molecules into water  

(Fernández-Vizarra et al. 2009).  

In summary, the RC complexes carry out mitochondrial respiration to meet the ATP demand of the 

cell. Impairment of RC complexes disrupts the electron transport chain (ETC) and proton 

translocation, which in turn impairs mitochondrial ATP synthesis (Shi et al. 2008; Xiao et al. 2014). 

Furthermore, ETC disruption can have an indirect impact on metabolic pathways such as glycolysis, 

fatty acid oxidation and the TCA cycle (Zieliński et al. 2016). As the TCA cycle is driven by  

acetyl-CoA from either glycolysis or fatty-acid oxidation to produce NADH and FADH2 for CI and 

CII activity, respectively, impairment of the ETC can inhibit the TCA cycle. 

2.2 CIII assembly and function 

Cryo-EM analysis (Guo et al. 2018) shows CIII in IMM as a tightly packed dimer. Its assembly 

begins with the synthesis of the mtDNA-encoded cytochrome b (CYTB), followed by incorporation 

of nDNA-encoded subunits. The translation factors UQCC1 and UQCC2 bind to CYTB and help to 

stabilize the complex structure during insertion into the IMM. There, bL heme binds to CYTB 

followed by UQCC3, which releases UQCC1 and UQCC2 from their binding. Sequential 

incorporation of bH heme and cytochrome c1 (CYC1) forms the pre-CIII2 dimer into which Rieske 

iron-sulfur protein (RISP) and QCR10 get inserted (Fernandez-Vizarra & Zeviani 2018). The RISP 

precursor is synthesized in the cytosol and translocates through TOM and TIM23 into the 

mitochondrial matrix (Wasilewski et al. 2017). There, a matrix-processing peptidase cleaves part of 

the mitochondrial-transfer sequence (MTS) from the RISP molecule. A LYR-motif-containing 

chaperone (MZM1L/LYRM7) binds to it and recruits the Fe-S transfer complex to form a  

2Fe-2S cluster (Maio et al. 2014; Maio et al. 2017). Thereafter, BCS1L translocates RISP across 

the IMM and incorporates it into the pre-CIII2 (Cruciat et al. 1999; Wagener et al. 2011). 

 TTC19 (Ghezzi et al. 2011) which binds to CIII2 was recently shown to facilitate the removal of 

the remaining MTS from RISP to activate CIII catalytic function (Fernandez-Vizarra & Zeviani 

2018).  
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In the fully assembled CIII2, CYTB, cytochrome c1 (CYC1), and RISP are involved in electron 

transfer by the Q cycle (Figure 2a). CYTB has two Q binding sites (quinone oxidation Qo, and 

quinone reduction Qi sites) and two b-type hemes (bL and bH) (Fernandez-Vizarra & Zeviani 

2018). Electron transfer is initiated from the binding of QH2 and Q at Qo and Qi sites of CYTB, 

respectively. In the Qo site, oxidation of QH2 releases one electron to RISP and subsequently 

another electron to the bL heme of CYTB, accompanied by protonation of His182 of RISP, and 

Glu272 of CYTB (Figure 2b) (Palsdottir et al. 2003). The head domain of RISP releases the proton 

from His182 to IMS and transfers an electron to CYC1. CYC1 transfers the electron further to 

cytochrome c (CYTC), after which CYTC dissociates from CIII2. The proton from Glu272 of 

CYTB is released to IMS through bL heme with the help of a water molecule. Simultaneously, an 

electron from bL heme is transferred via bH heme of CYTB further to Qi site to reduce Q. A single 

electron will partially reduce Q to semiquinone (Figure 2b) (Palsdottir et al. 2003; Crofts et al. 

2017). For complete reduction, the semiquinone acquires another electron which can be generated 

by another cycle of QH2 oxidization at the Qo site. The complete reduction of Q in Qi takes  

2 protons from the matrix. This second cycle of electron transfer reduces the second CYTC and 

releases two more protons into IMS (Crofts et al. 2017).  

 

Figure 2. Crystal structure of yeast cytochrome bc1 complex subunits. a) The tertiary structure 
of CIII subunits (Cytb-cytochrome b, Cyt c1-cytochrome C1, and RISP- Rieske Fe-S protein) and 
their heme clusters. b) Direction of proton and electron transfer in CIII subunits. The structure was 
obtained from the protein data bank (PDB.ID:1KYO). 

a                                               b

H+

e-
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2.3 Respiratory chain dysfunction  

Mutations in genes encoding RC subunits lead to RC deficiencies. CI deficiency occurs in patients 

with homozygous or compound heterozygous mutations in genes encoding functional subunits 

(Lazarou et al. 2009), supernumerary subunits, (NDUFS4, S6, NDUFA1-2, and  

NDUFA10-12) (van den Heuvel et al. 1998; Kirby et al. 2004; Fernandez-Moreira et al. 2007; 

Berger et al. 2008; Hoefs et al. 2008; Hoefs et al. 2011), and assembly factors (NDUFAF1-5). 

The clinical manifestations of CI deficiency are diverse, from cardiomyopathy to Leigh syndrome 

(LS), which is a severe neurometabolic disorder with early lethality (Mimaki et al. 2012). Mutations 

in CII subunits (SDHA-D) and assembly factors (SDHAF1-2) cause LS (Hes et al. 2010) and 

paragangliomas (Solis et al. 2009; Hoekstra & Bayley 2013). Mutations affecting CIII are rare and 

mostly in the CYTB gene (Barel et al. 2008) or assembly factors such as TTC19 (Ghezzi et al. 2011; 

Mordaunt et al. 2015) and BCS1L. The number of BCS1L mutations discovered in patients is more 

than 20, and they cause a wide range of clinical phenotypes (Table 1). Mutations in nDNA-encoded 

subunits of CIV, assembly factors (COX10, COX15, and Surf1) (Zhu et al. 1998; Antonicka et al. 

2003a and 2003b), translator activating factor (TACO1) (Weraarpachai et al. 2009), and 

FAST kinase domain-containing protein (FASTKD2) (Ghezzi et al. 2008) can cause a wider 

spectrum of mitochondrial disorders, including LS or Leigh-like diseases, cardiomyopathy, and 

liver failure.  

2.3.1 Reactive oxygen species production in mitochondria 

Reactive oxygen species (ROS) are partially reduced oxygen molecules, such as superoxide, 

hydroxyl radical, and singlet oxygen. In mitochondria, electrons can leak from CI and CIII to 

oxygen, which turns into superoxide (O2
-). Superoxide dismutase (SOD) metabolizes superoxides 

further into hydrogen peroxide (H2O2) (Jastroch et al. 2010). Mitochondrial ROS production 

generally depends on the proton motive force, the ratio of NADH/NAD+ and QH2/Q, as well as the 

oxygen concentration (Murphy 2009). Therefore, defective RC function can increase electron leak, 

which results in increased ROS production.  

ROS are involved in the signaling of cell proliferation or apoptosis, depending on their level 

(Schieber & Chandel 2014). A mild increase in ROS regulates cysteine residues and kinases such as 

Akt, ERK1/2, PKA/PKC, JNK, and p38MAPK (Son et al. 2011; Antico Arciuch et al. 2012), which 

can induce the cell anti-apoptotic and proliferation pathways. In contrast, high levels of ROS 

induces cytochrome c release to the cytosol (Ames 1983), which triggers the caspase cascade for 

apoptosis (Ozben 2007). 
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2.4 BCS1L assembly factor 

BCS1L, a member of the AAA-ATPases superfamily, consists of 419 amino acids. The protein 3D 

structure has not been solved, but sequence analysis shows three major domains: The N-terminal 

domain (first 126aa) containing the signal for the mitochondrial targeting and protein sorting, 

followed by a specific domain for activity and stability (Nouet et al. 2009), and the final C-terminal 

domain (last ~200aa) with two motifs. These two motifs play a role in the substrate binding, 

unfolding, and translocation (Cruciat et al. 1999; Wagener et al. 2011). BCS1L has features of 

AAA-ATPases, which form an oligomeric ring (hexadecamer) structure with a central pore. 

According to studies in yeast, the AAA-domain of the corresponding protein, Bcs1, interacts with 

RISP in the matrix and translocate RISP through its central pore to assemble with pre-CIII2. 

The translocation occurs with ATP hydrolysis (Wagener & Neupert 2012). 

2.4.1 Mutations in BCS1L  

More than twenty recessive disease-causing BCS1L mutations have been reported. They are either 

as compound heterozygous or homozygous resulting in various clinical phenotypes. The most 

severe phenotype is the neonatal GRACILE syndrome in the Finnish population 

(Fellman et al. 1998; Fellman et al. 2008). Patients with GRACILE-like diseases are also found 

with ancestors from Turkey (Serdaroğlu et al. 2016; Kasapkara et al. 2014; Lonlay et al. 2001), 

New Zealand (Lynn et al. 2012), and Spain (Lonlay et al. 2001; Meunier et al. 2013). The majority 

of mutations in the BCS1L cause encephalopathy, hepatic failure, and proximal tubulopathy. Some 

mutations cause muscle weakness and optic atrophy (Meunier et al. 2013) or Björnstad syndrome 

(Table 1). Björnstad syndrome is the least severe phenotype, presenting in newborn infants as 

congenital neurosensory deafness and brittle hair, but compatible with otherwise normal life into 

adulthood (Hinson et al. 2007; Falco et al. 2017). 

2.5 GRACILE syndrome  

A population bottleneck in Finland in the 16th century caused a founder effect in the surviving 

population and resulted in an accumulation of more than 40 recessively inherited mutations,  

so-called Finnish disease heritage (Norio 2003), One of these mutations located in  

BCS1L (c.A232G, Ser78Gly) causes the GRACILE syndrome. The mutated protein has decreased 

capacity to incorporate RISP into CIII2 and thereby leads to CIII dysfunction. The lethal phenotype 

presents typically with severe fetal growth restriction, fulminant lactic acidosis during the first day 

of life, hepatopathy with cholestasis, proximal tubulopathy with typical aminoaciduria, iron 

overload with iron accumulation in liver and spleen (Fellman et al. 1998). Symptomatic treatments 
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including a high amount of bicarbonate had only a short-lasting effect. So far more than 40 severe 

cases with Finnish ancestors have been reported, and the majority of the infants survived less than 

one month (Fellman et al. 1998; Fellman 2002). 

Table 1. Human BCS1L mutations, the resulting amino acid changes, and clinical phenotypes 

Mutation  
Amino acid 

Change 
Clinical phenotypes Reference 

Homozygous mutation 

c.148 A>G T50A 
Psychomotor retardation, dysmorphic features, failure to 
thrive, hypotonia, lactic acidosis, mild sensorineural 
hearing loss, and hepatic dysfunction 

(Blázquez et al. 2009) 

c.232A>G  S78G Growth restriction, aminoaciduria, cholestasis, iron 
overload, lactic acidosis, and early death 

(Fellman 1998, 2002, 
Kotarsky 2010) 

c.296C>T P99L 
Acidosis, hepatic failure, and neurologic symptoms, 
consistent with a Leigh syndrome 
GRACILE- like a disease 

(Kasapkara et al. 2014; 
De Meirleir et al. 2003; 
Serdaroğlu et al. 2016) 

c.385G>A G129R Muscle weakness and optic atrophy. (Tuppen et al. 2010;  
Al-Owain et al. 2013) 

c.830G>A S277N Neonatal tubulopathy, hepatic failure, and 
encephalopathy (de Lonlay et al. 2001) 

c.901T>A Y301N Björnstad syndrome (Siddiqi et al. 2013) 
 
Compound heterozygous mutation 

c.133C>T 
c.166C>T 

R45C 
R56X 

Lactic acidosis, severe failure to thrive, liver 
dysfunction, renal tubulopathy, iron overload in 
aggregated macrophages, neurological symptoms, 
nystagmus, microcephaly, and hypertonia.  

(Visapää et al. 2002; 
Lynn et al. 2012; Ramos-
Arroyo et al. 2009)  

c.399delA 
c.306A > T 

E133DTer25 
G102= 

Encephalopathy, lactic academia, muscular hypotonia, 
psychomotor defect. (Tegelberg et al. 2017) 

c.548G>A 
c.547C>T 
c.550C>T 

R183H,  
R183C 
R184C 

Encephalopathy, lactic acidosis, psychomotor delay, 
hypotonia, seizures, failure to thrive, and brittle hair 
Björnstad syndrome 

(Hinson et al. 2007) 

c.464G>C 
c.1057G>A 

R155P 
V353M Leigh syndrome (Gil-Borlado et al. 2009) 

c.550C>T 
c.103G>C 

R184C 
G35R 

Encephalopathy, lactic acidosis, psychomotor delay, 
hypotonia, seizures, failure to thrive, and brittle hair (Hinson et al. 2007) 

c.217C >T 
c.1102T>A 

R73C 
F368I 

Encephalopathy, lactic acidosis, psychomotor delay, 
hypotonia, seizures, failure to thrive, and brittle hair 

(Fernandez-Vizarra et al. 
2007) 

c.316G>? 
c.904C>G 
c.871C>T 
c.341G>T 
c.917G>A 

I106Ter 
Q302E 
R291Ter 
R114W  
R306H 

Björnstad syndrome (Zhang et al. 2015) 
(Siddiqi et al. 2013) 

c.431G>A 
c.232A>G  

R144Q 
S78G Neurological symptoms (Fellman 2002) 

c.980T>C 
c.166C>T 

V327A 
R565X Neurological symptoms (Visapää et al. 2002) 
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2.5.1 The mouse model carrying the GRACILE syndrome mutation 

Based on the genotype-phenotype consistency in GRACILE syndrome, Fellman’s group set out to 

develop a mouse model carrying the patient mutation to study disease mechanisms. 

The homozygotes of this knock-in Bcs1lc.A232G mouse model are viable and born healthy, but 

develop growth restriction with hepatopathy and tubulopathy after weaning (Levéen et al. 2011). 

The mutation decreases the amount of BCS1L in liver mitochondria both at pre- and post-weaning 

age, (Levéen et al. 2011). At two weeks of age (P14), the homozygous liver still has a normal RISP 

level in CIII and SC (Davoudi et al. 2014) and a healthy metabolic profile with slightly decreased 

AMP (Kotarsky et al. 2012). After three weeks of age (P21), homozygous mice rapidly developed 

growth failure, lactic acidosis, hepatopathy (with glycogen depletion, steatosis, fibrosis), and 

tubulopathy (Levéen et al. 2011). At the deterioration stage, visceral organs such as liver and 

kidney (Davoudi et al. 2014) had low CIII activity and decreased mitochondrial respiration 

(Levéen et al. 2011). The mice typically survived one month, but about 5% of mice in a mixed 

background to between P70-165 (Levéen et al. 2011). In a congenic background 

(C57BL/6JBomTac) the survival is consistently P35-40 days (Davoudi et al. 2016). 

2.6 Therapeutic strategies for respiratory chain dysfunction 

Therapeutic strategies to improve mitochondrial function include dietary supplementations and 

pharmacological interventions (Nightingale et al. 2016), as well as gene therapy aiming at 

expressing the wild-type protein (Wallace et al. 2010). 

As a symptomatic treatment, supplementation with various pharmacological substances including 

vitamin combinations such as thiamine, riboflavin (Udhayabanu et al. 2017), vitamin C, and 

vitamin E (Parikh et al. 2009; Avula et al. 2014) have been tested with little effect. In some specific 

cases, metabolic modifiers such as coenzyme Q10 (ubiquinone) (Neergheen et al. 2017), 

N-acetylcysteine (Viscomi et al. 2010), L-carnitine (Mermigkis et al. 2013), L-arginine, and 

citrulline (Koga et al. 2005) have been beneficial. L-arginine and citrulline are a suggested 

therapeutic option for mitochondrial encephalopathy with lactic acidosis (MELAS)-related stroke-

like episodes (Koga et al. 2005). Dichloroacetate (DCA) is an option to treat lactic acidosis, which 

is a common problem in mitochondrial disorders. However, DCA can lead to irreversible peripheral 

neuropathy (El-Hattab et al. 2017). Though treatment with these compounds showed some 

beneficial effects, their efficacy is minimal. 

Several studies have tested novel therapeutic strategies in experimental models of various 

mitochondrial diseases. In Drosophila and mouse models, N-acetylcysteine (Wright et al. 2015) and 
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rapamycin (Wang et al. 2016) have been beneficial. Peroxisome proliferator-activated receptor γ 

coactivator 1α (PGC-1α) showed neuroprotective effects by increasing mitochondrial biogenesis 

and function (Dabrowska et al. 2015). Thus, activating PGC-1α is a potential treatment approach 

for mitochondrial dysfunction due to its role in mitochondrial biogenesis. PGC-1α activation 

requires either phosphorylation by AMP-dependent kinase (AMPK) or deacetylation by Sirtuin 1 

(SIRT1) (Puigserver & Spiegelman 2003). Upregulation of AMPK and Sirt1 is possible by AICAR 

and NAD+ precursors (i.e., nicotinamide riboside, NR) respectively. The administration of AICAR, 

NR or PARP inhibitors induced mitochondrial biogenesis in myopathy mouse models 

(Viscomi et al. 2011; Cerutti et al. 2014; Khan et al. 2014). Kennedy et al. reported that ketogenic 

diet (KD) induces the PGC-1α expression via AMP-activated protein kinase (AMPK) signaling 

(Kennedy et al. 2007). KD ameliorated mitochondrial dysfunction and disease progression in 

pyruvate dehydrogenase deficiency, Med30 mutation, and CI deficiency models (Kim & Rho 2008; 

Boison 2017; Clanton et al. 2017).  

Several studies during the past ten years have shown that it is possible to bypass a RC blockage 

using xenogenes such as NADH reductase (Ndi1) or alternative oxidase (AOX). These proteins are 

non-proton-pumping enzymes derived from yeast or lower animals. These enzymes have been 

beneficial in experimental models of RC dysfunction. Ndi1 can bypass a CI defect  

(Perales-Clemente et al. 2008; Sanz et al. 2010), and AOX can bypass CIII and CIV defects  

(Dassa et al. 2009; Fernandez-Ayala et al. 2009). Both proteins can re-establish the electron flow 

and decrease the accumulation of reduced ubiquinone and ROS production. Introduction of adeno-

associated viruses (AAVs) expressing the wild-type form of the mutated gene is theoretically the 

most efficient therapy (Di Meo et al. 2012; Torres-Torronteras et al. 2014) but has technical 

challenges including poor targeting to the affected organ (Mingozzi & High 2011).  

2.7 Alternative oxidases (AOXs) 

Alternative oxidases (AOXs) are membrane-associated proteins (Figure 3a) located on the matrix 

side of IMM. AOX is found in plants (Bahr & Bonner 1973), as well as in some fungi 

(Veiga et al. 2003) and protists (Suzuki et al. 2004; Hellemond et al. 2007). Furthermore, AOX has 

also been discovered in 28 lower animal species representing nine different phyla such as Porifera, 

Placozoa, Cnidaria, Mollusca, Annelida, Nematoda, Echinodermata, Hemichordata and Chordata 

(McDonald & Vanlerberghe 2004 and 2006). However, there is no evidence of AOX in vertebrates 

or arthropods (McDonald et al. 2009). AOX transfers electrons from QH2 to molecular oxygen and 

releases heat, without coupling to proton translocation. Thus, AOX does not contribute to the proton 

gradient and ATP production. 
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AOX functions as a homodimer formed by two monomers bound by an oxidized and covalently 

linked disulfide bond. AOX has a di-iron carboxylate active site formed by four glutamates 

(Glu123, 162, 213, and 266) (Figure 3b) and two histidines (His165, 269). Shiba et al. reported that 

a tyrosine residue (Tyr220) plays a role in the catalytic activity (Shiba et al. 2013). All these 

residues are universally conserved (McDonald & Vanlerberghe 2004). In animal phyla, AOX  

(i.e., Ciona intestinalis AOX) lacks the N-terminal regulatory cysteine (Rhoads et al. 1998; 

McDonald et al. 2009). Generally, AOX remains inactive until the cytochrome-linked RC 

complexes (CIII and CIV) become impaired, resulting in an over-reduced quinone pool 

(accumulation of QH2) (Vanlerberghe 2013). In plants, accumulation of NADH and pyruvate 

activate AOX. Their di-sulphide bond reduction by NADH and stabilization by pyruvate result in an 

active and non-covalently linked AOX homodimer (Vanlerberghe et al. 1995). AOX can maintain 

mitochondrial respiration, decrease ROS by normalizing quinone pool redox status, as well as 

induce anti-oxidant defenses (Maxwell et al. 1999; Amirsadeghi et al. 2006; Cvetkovska and 

Vanlerberghe 2012). 

 

 
Figure 3. The structure of alternative oxidase (AOX) from Trypanosoma brucei. a) Helix 
bundle of AOX monomer, and b) di-iron carboxylate active site of AOX formed by four glutamate 
residues. The structure was obtained from the protein data bank (PDB.ID:3VV9). 

 

2.7.1 Experimental models with AOX transgene expression 

Ciona intestinalis is an Ascidian (sea squirt) that belongs to the subphylum Urochordata or 

Tunicata. Ciona expresses AOX in several different cell types during all developmental stages 

(McDonald & Vanlerberghe 2004). A CiAOX transgene was first successfully expressed in human 



21 
 

cells (HEK293T) in 2006 (Hakkaart et al. 2006). The cells had a normal growth rate, morphology, 

respiration, and RC complex functions. Inhibition of respiration using either antimycin A or cyanide 

showed that AOX rescued respiration and alleviated superoxide overproduction in these cells. This 

study suggested that the redox status of the ETC regulates the activity of CiAOX in the presence of 

pyruvate (Hakkaart et al. 2006). Other studies of CiAOX expression in COX15 or COX10 

(Antonicka et al. 2003a and 2003b; Dassa et al. 2009) deficient human cells, showed partially 

rescued respiration, alleviated glucose and pyruvate dependency, and ameliorated growth defect in 

glucose-restricted condition. Moreover, AOX aided COX15-deficient cells to overcome oxidative-

stress-induced apoptosis caused by antimycin or H2O2 (Dassa et al. 2009).  

Whole-body expression of AOX in Drosophila melanogaster decreased ROS production under 

defective cytochrome c pathway (Sanz et al. 2010; Kemppainen et al. 2014). It also revealed that 

mitochondrial ROS production in flies does not directly regulate lifespan (Sanz et al. 2010). 

Moreover, ubiquitous or nervous system-specific expression of AOX decreased ROS in the dj-1β 

mutant flies, which is a Drosophila model of Parkinson’s disease (Kemppainen et al. 2014). 

Another study showed that AOX prevented the loss of dopaminergic neurons in Drosophila 

(Humphrey et al. 2012).  

A mouse line carrying a single copy of CiAOX in the Rosa26 locus, which expresses AOX in all 

tissues, was recently characterized (Szibor et al. 2016). AOX expression affected neither RC 

complexes nor SC formation. AOX was active only under cytochrome-linked complex inhibition by 

antimycin A or cyanide in these mice. Activated AOX reduced mitochondrial ROS caused by 

succinate oxidation, and restored upstream respiration. The Rosa26AOX mice showed no phenotypic 

changes in extensive phenotyping at the German Mouse Clinic  (Szibor et al. 2016). These studies 

with CiAOX in various systems such as human cells, fly, and mouse suggest that AOX can function 

as electron bypasser for cytochrome-linked electron blockade and can ameliorate or prevent tissue 

pathology.  
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3 Objectives 

The overall objective was to examine the disease mechanism in Bcs1l mutant mice and to 

investigate interventions to ameliorate their disease progression.   

 

Specific Aims 

1. To investigate the effect of dietary interventions on disease progression and metabolism in 

Bcs1lp.S78G mice.  

2. To examine the effect of AOX-mediated CIII bypass on disease manifestations in Bcs1lp.S78G 

mice.  

3. To gain insight into the mechanisms of the tissue-specific manifestations of CIII deficiency. 
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4 Materials and methods 

4.1 Animal strains and husbandry 

For the high-carbohydrate study, we used homozygous Bcs1lc.A232G (Bcs1lp.S78G) mutant mice in the 

C57BL/6JBomTac background (reported as C57BL/6NCrlLtcf in earlier publications) in Lund 

University (I). For the KD and AOX studies, we used the C57BL/6JCrl background in animal 

facilities at the University of Helsinki (II, III) after embryo transfer from Lund. The mice were 

backcrossed for several generations to C57BL/6JCrl before the studies. The mice were housed in 

open cages at Lund facility and in individually ventilated cages at Helsinki facility. The cages were 

maintained on 12 h light/dark cycle at 22-23°C. A standard rodent diet (Teklad Global 18% Rodent 

Diet, Harlan) was used for mice maintenance. Food pellets were provided inside the cage to ensure 

availability of food to the sick mice. 

For the AOX study, we crossed the heterozygous Bcs1lp.S78G mutant mice in the C57BL/6JCrl 

background with AOX transgenic mice in the C57BL/6JOlaHsd background (Szibor et al. 2016) to 

produce Bcs1lp.S78G mice carrying the AOX transgene (double heterozygotes). Crossing the double 

heterozygotes with Bcs1lp.S78G heterozygous mice produced Bcs1lc.A232G homozygotes expressing 

AOX (Bcs1lp.S78G; Rosa26AOX, labeled as GROX). The plain homozygotes (Bcs1lp.S78G) are labeled 

GRAC, the mice carrying the AOX transgene only as AOX, and wild-type mice as WT (III) for this 

study.  

4.2 Genotyping 

DNA isolated either from a piece of tail or an ear punch was used for genotyping Bcs1l  

(Levéen et al. 2011) and AOX transgene (Szibor et al. 2016) as described in articles (I, II,&III). 

4.3 Dietary interventions  

Breeding pairs or litters were randomized to the experimental or control diet. We used a standard 

rodent diet (Teklad Global 18% Rodent Diet, Harlan) as a control diet. As experimental diets, we 

used A 60% dextrose diet (TD05256, Harlan) (I) and a ketogenic diet (TD.96355, Harlan) (II). 

The experimental diets were introduced into the cages before weaning to familiarize the pups to the 

diet (I&II).  

4.4 Monitoring deterioration of the Bcs1lp.S78G mice 

An in-house behavioral scoring method was developed based on common mouse behavioral 

assessment and the characteristic features of Bcs1l mutant mice. It exhibits the sickness of the 

Bcs1lp.S78G mice, which helps to determine the sacrificing point and avoid spontaneous death. 
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Sickness percentage, relative to the littermate controls, was calculated from the behavioral score 

and weight loss. The scoring and calculation methods were described in the article I and used for all 

the studies (I, II, &III) in my thesis. 

4.5 Blood sampling from living mice  

For blood sampling from live mice, the mice were lightly anesthetized with isoflurane (792632 

Sigma-Aldrich), and the tail artery vain was punctured with a needle to obtain a blood drop for 

glucose, lactate and ketone measurements.  

4.6 Plasma and tissue collection 

The mice sacrification was performed either by cervical dislocation or terminal anesthesia with 

pentobarbital. Blood was collected into Li-heparin vials (Vacuette 454089, Greiner Bio-One 

International Gmbh) by cardiac puncture after opening the thoracic cavity. Plasma was isolated and 

stored as described in (I). Organs were snap frozen in liquid nitrogen or fixed in 10% formalin for 

24-72 hours, followed by storage in 70% ethanol for histology studies.  

4.7 Phenotyping at German Mouse Clinic (GMC) 

Mice (n=10 per genotype per sex) were shipped to the GMC at the age of seven weeks and 

maintained under the GMC housing conditions (www.mouseclinic.de) and according to German 

laws until sacrification at week 21. The phenotypic screening was performed between ages  

P56-P112. The experiments conducted at GMC are listed (Table 2), and their protocols are available 

on the GMC website (www.mouseclinic.de). 

4.8 Other experimental methods  

The primary assessments performed in Lund and Helsinki are listed below (Table 3). Their detailed 

protocols are provided in the respective articles. 

4.9 Statistics 

Details on the statistical methods for each study are reported in respective articles (I, II, &III). For 

the unpublished data reported in this thesis, one-way ANOVA followed by Tukey’s test was 

performed for group comparisons. Significant differences between the groups in figures are 

indicated as follows *p<0.05; **p<0.01; ***p<0.001. GraphPad Prism 7 software  

(GraphPad Software Inc, USA) was used to generate the graphs and statistical analysis. Statistical 

tests used for the data are described in the figure legends.   
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4.10 Ethical considerations 

All the experiments were carried out under the guidelines of the Federation of Laboratory Animal 

Science Associations (FELASA) with the approval of respective regional animal research ethics 

committees. The ARRIVE (Animal Research: Reporting of In-Vivo Experiments) recommendations 

and 3Rs (Replacement, Refinement, and Reduction) regulations were followed. The permission for 

HCD study was acquired from the animal research ethics committee of Lund region, Sweden 

(permission M245-11, 19 October 2011), and for KD and AOX gene therapy studies from the 

ethical committee of the State Provincial Office of Southern Finland (permit numbers ESAVI-2010-

07284/Ym-23, and ESAVI/6142/04.10.07/2014). Power and experimental size were calculated 

separately for each study and details are given in respective articles.   

 

Table 2. General methods used at GMC for phenotyping  

GMC Module  Parameter set 
Female age 
range 
(days) 

Male age 
range 
(days) 

Responsible Researchers 

     

Behavior  Open Field  59-64 52-56 Dr. Sabine M.Hölter 

Dr. Lillian Garrett 

Dr. Annemarie Zimprich 

Dr. Wolfgang Wurst 

  Acoustic startle and PPI  73-78 66-70 

Neurology  SHIRPA  66-71 59-63 Dr. Lore Becker 

”   Rotarod  66-70 

Metabolism  Calorimetry TSE  80-85 73-77 Dr. Jan Rozman 

Clinical Chemistry  Simplified IPGTT  94-99 87-91 Dr. Birgit Rathkolb 

”  

” 

” 

  Clinical chemistry   115-120 108-112 

  Blood insulin concentration  115-120  

  Hematology  108-112 

Dysmorphology 

 

 X-Ray  101-106 94-98 Dr. Robert Brommage 

Dr. Helmut Fuchs 

Prof. Dr. Martin Hrabe de 
Angelis 

Nociceptive  Hotplate  101-106 94-98 Dr. Lore Becker 

Eyes  Eye size  108-113 94-98 Dr. Oana Veronica 
Amerie 

Prof. Dr. Jochen Graw 

” 

  Optical coherence tomography  108-113 101-105 

  Scheimpflug analysis  108-113 101-105 

  Virtual drum  108-113 101-105 

SHIRPA: SmithKline Beecham, Harwell, Imperial College, Royal London Hospital, phenotype assessment; TSE-TSE 
system; IPGTT-Intra peritoneal glucose tolerance test;  
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Table 3. The list of experiments performed in our studies. 

Experiments HCD KD AOX 

Phenotyping    

     DEXA   III 

     CLAMS   III 

     Echocardiography   III 

     Blood pressure   III 

Clinical chemistry     

     Plasma   III 

     Urine   III 

Histology    

     Immunohistochemistry   III 

     H&E staining I  II III 

     PAS staining I II  

     ORO staining  II III 

     Fibrosis staining    II III 

     Brain immunochemistry   III 

     Lipid peroxidation assay   III 

Protein analyses    

     Western blotting   III 

     Blue native PAGE I  III 

Mitochondrial assessment    

     Electron microscopy  II III 

     CIII activity   III 

     Respirometry I  III 

     Mitochondrial H2O2 emission   III 

Metabolomics    

     Plasma metabolomics I II  

     Tissue metabolomics   III 

Transcriptomics   III 

 
HCD-high carbohydrate diet; KD-ketogenic diet; AOX-alternative oxidase; DEXA- dual-energy x-ray absorptiometry; 
CLAMS- CLAMS Comprehensive Lab Animal Monitoring System; H&E-hematoxylin and eosin;  PAS-periodic acid–
Schiff;  Oro-Oil Red O. 
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5 Results 

5.1 Plasma metabolome in Bcs1lp.S78G mice with and without dextrose supplementation (I) 

Earlier studies of Bcs1lp.S78G mice have focused on the metabolism and CIII assembly and function 

in liver tissue (Levéen et al. 2011; Kotarsky et al. 2012; Davoudi et al. 2014). In this study, we 

assessed the metabolite changes in plasma, through which the metabolic crosstalk between organs 

occurs. Plasma metabolomics in Bcs1lp.S78G mice revealed increased protein catabolism, defective 

beta-oxidation, and metabolic response to oxidative stress. Our interpretations suggest that the 

glucose-alanine cycle and protein catabolism were high due to the hypoglycemic condition in 

Bcs1lp.S78G mice. Furthermore, we found changes in kidney disease-associated plasma metabolites 

such as phenylalanine, ornithine, and asymmetric-dimethyl arginine. The high-carbohydrate  

(60% dextrose) diet (HCD) on Bcs1lp.S78G mice did not relieve the hypoglycemia, loss of hepatic 

glycogen, micro-vesicular fat accumulation, or decreased mitochondrial respiration. Unexpectedly, 

the HCD slightly decreased survival, despite partially normalizing some plasma metabolites related 

to amino acid metabolism, urea cycle, and neurotransmitter intermediates. 

5.2 Effect of ketogenic diet (KD) in adult Bcs1lp.S78G mice (II and unpublished) 

For the KD feeding study, we used the Bcs1lp.S78G mutants of C57BL/6JCrl background, in which 

the homozygotes survive up to 200 days, probably because they escape the lethal hypoglycemia in 

the juvenile stage. Aiming to bypass glucose metabolism, we fed KD to two mouse groups from 

weaning on. We sacrificed the mice for end-point analyses at P45 (young age) or P95 (adult age) 

and investigated the effect of the diet on hepatopathy (II). The data on adult mice (over P60) are 

summarized as follows. Bcs1lp.S78G mice at P95 had lower blood glucose and increased lactate per 

glucose ratio. The liver enzymes alanine transferase and alkaline phosphatase were high in plasma 

(II, Table 1). Hepatic histology at P95 revealed prominent fibrosis, increased fat, decreased 

glycogen, and increased apoptotic cells (II, Fig 2, Supplementary Fig.2). We found changes in 

plasma metabolites related to protein catabolism, urea cycle, bile acids, and acylcarnitines  

(II, SupFig10B,11B.). Hepatic mitochondria of Bcs1lp.S78G mice were significantly smaller in size 

and had a low number of thickened cristae (II, Fig3). Our findings confirmed the persistence of 

liver dysfunction in adult Bcs1lp.S78G mice. However, the hepatopathy was not severe enough to be 

the cause for the deterioration. 

KD did not affect the growth of Bcs1lp.S78G mice, but robustly induced ketosis. Their liver 

histopathology at P95 showed amelioration of ductular reactions, portal inflammation, fibrosis, and 

apoptosis. It indicated that the effect of KD on hepatopathy was persistent also at adult age  
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(II, Fig1A-D). Moreover, KD rescued mitochondrial morphology (II, Fig3), and partially rescued 

alkaline phosphatase and urea cycle intermediates (arginine, and ornithine) in plasma. Furthermore, 

decreased carnitine and short-chain acylcarnitine levels in plasma of KD-fed Bcs1lp.S78G mice 

indicated altered fatty-acid metabolism (II, SupFig10B,11B.). However, KD-fed Bcs1lp.S78G mice 

deteriorated earlier than the mice on standard/control diet (CD).   

We investigated the KD effect on survival of Bcs1lp.S78G mice using another mouse panel. One 

group of mutant mice (n=4/genotype) were fed on KD until deterioration, and for another group 

(n=3/genotype) we replaced KD at P50 with the CD. On CD, the mutant mice survived to median 

163 days, whereas those on KD started to deteriorate earlier with a median survival of 102 days 

(Figure 4a). The sickness curves, generated based on the combination of sickness score and weight 

loss, suggested intolerance of Bcs1lp.S78G mice to KD over time (Figure 4b). Diet change did not 

affect blood glucose but had a significant impact on blood ketone body and lactate per glucose ratio 

(Figure 4c-e).  

 
Figure 4. Sickness score and survival of Bcs1lp.S78G mice on KD. a) Survival (p=0.0177, Log-
rank, Mantel-Cox Test), b) sickness as determined from behavioral scoring and weight loss, c) 
blood glucose, d) β-hydroxybutyrate, and e) lactate per glucose ratio. KD>CD indicates a shift of 
KD to CD after P50. Bar graphs plotted with mean±SD. One way ANOVA followed by Tukey's 
test for group comparisons. *p<0.05; **p<0.01; ***p<0.001. 
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5.3 Bcs1lp.S78G mice expressing AOX (GROX mice) (III and unpublished)  

5.3.1 AOX extended the survival of Bcs1lp.S78G mice with little effect on growth, whole-body 

metabolism and behavior (III and unpublished) 

To assess the effect of AOX-mediated CIII bypass on disease progression, we bred wild-type and 

Bcs1l mutant mice with and without AOX transgene (labeled in figures, wild-type as WT, AOX+/- as 

AOX, Bcs1lp.S78G as GRAC, and Bcs1lp.S78G; AOX+/- as GROX). We found that AOX expression 

drastically increased the median survival of the Bcs1lp.S78G mice (in GROX mice) from P210 to 

P590 days (III, Fig1B). 

A striking early phenotype of GRACILE syndrome patients and Bcs1lp.S78G mice is their growth 

restriction (Fellman et al. 1998; Visapää et al. 2002; Levéen et al. 2011). GMC performed 

extensive phenotyping of young Bcs1lp.S78G mice (P56-120) and showed decreased body weight, 

lean weight, fat mass, and bone mineral density in the GRAC mice. Interestingly, AOX expression 

did not cause a drastic improvement in body weight (III, Fig1D-G). Behavioral phenotyping 

(between P52-64) showed that the Bcs1lp.S78G mice were less active in the open field test  

(Figure 5a-c). Decreased respiratory exchange rate (in females) and heat production (III, Fig1H, I) 

suggest decreased whole-body energy metabolism. AOX expression in Bcs1lp.S78G mice (GROX) 

had no effect on activity or energy metabolism.  

 
Figure 5. Motor activity in GRAC mice. (a) Total distance traveled by mice in the open field, (b) 
average speed of the mice passing through the center, (c) rearing activity. Bar graphs plotted with 
mean±SD. One-way ANOVA followed by Tukey's test for group comparisons. *p<0.05; **p<0.01; 
***p<0.001.  

 
Hematological analysis of GRAC mice revealed smaller platelet volume and less red blood cell 

distribution width (RDW)(Table 4). Glucose tolerance test showed no change of tolerance (after 30 

or last 90 min of glucose injection), despite low basal glucose level (Table 5 and Table 6). 

Additionally, blood chemistry revealed only marginal alterations in blood electrolytes such as 

calcium, sodium, and slightly increased iron concentration, but significant changes in the liver 
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enzymes such as alkaline phosphatase (ALP), aspartate aminotransferase (ASAT), alanine 

aminotransferase (ALAT), and lactate dehydrogenase (LDH) (Table 5 and Table 6). AOX 

expression (in GROX) did not alter hematology or blood composition. However, it did decrease the 

elevated liver enzymes in females at P108-120.  

 

Table 4. The hematology of male mice (P101 - P121). 

WT AOX GRAC GROX 

Hematocrit  51.9 ± 2.1 51.8 ± 1.7 49.3 ± 2.5 50.5 ± 1.4 

Hemoglobin 16.6 ± 0.6 16.6 ± 0.8 16.0 ± 0.9 16.3 ± 0.6 

MCHCont 15.7 ± 0.5 15.6 ± 0.4 15.7 ± 0.4 16.1 ± 0.4 

MCHC 32.0 ± 1.0 32.1 ± 0.8 32.5 ± 0.8 32.3 ± 0.8 

MCV 49.1 ± 1.5 48.4 ± 1.0 48.3 ± 0.7 50.1 ± 0.7 

Mean platelets volume 6.3 ± 0.1 6.2 ± 0.1 5.9 ± 0.1* 6.1 ± 0.2 

PDW 5.5 ± 0.1 5.4 ± 0.2 5.1 ± 0.1 5.3 ± 0.2 

Platelet large cell ratio 2.7 ± 0.5 2.3 ± 0.6 1.5 ± 0.3 2.0 ± 0.6 

Platelet count  981.6 ± 164.6 1072.7 ± 122.3*** 1049.6 ± 82.1*** 1064.1 ± 70.3 

Red blood cell count 10.6 ± 0.4 10.7 ± 0.3 10.2 ± 0.5 10.1 ± 0.3 

RDW 14.3 ± 0.3 14.2 ± 0.5 12.7 ± 0.4* 12.9 ± 0.3 

White blood cell count  10.0 ± 2.2 10.7 ± 2.6 11.1 ± 1.5 12.1 ± 3.0 

MCHCont: Calculated mean corpuscular hemoglobin content of erythrocytes; MCHC: Calculated mean corpuscular 
hemoglobin concentration of erythrocytes; MCV: Mean corpuscular volume; PDW: Calculated distribution width of 
platelets; RDW: Red cell distribution width (coefficient of variation). Data represented as mean±SD. One-way 
ANOVA followed by Tukey’s test for group comparisons.  *, p<0.05; **, p<0.01; ***, p<0.001. 
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5.3.2 AOX preserved CIII activity and prevented late-onset cardiomyopathy (III) 

We found that the cause of death of Bcs1lp.S78G mice at P200 was most likely a dilated 

cardiomyopathy. Echocardiography revealed that the cardiac function began to decline after P150 

(III, FigEV1). Histopathology of Bcs1lp.S78G heart at end stage (P200) showed increased fibrosis 

and oxidative stress (4-hydroxynonenal staining) (III, Fig2C-D, and 8E-F). Moreover, heart 

mitochondria were morphologically abnormal, with smaller size and fewer and thicker cristae  

(III, Fig3B-F). 

We sacrificed another mouse group at P150 (at the pre-symptomatic age to cardiomyopathy) to 

analyze the early transcriptional and metabolite alterations, and to assess mitochondrial function 

(III). We found that heart mitochondria in Bcs1lp.S78G mice (GRAC) had significantly lower CIII 

activity (approx. 34% of WT) and respiration (approx. 17% of WT) (III, Fig6). Moreover, 

transcriptomics analysis revealed changes in energy and nitric oxide metabolism (III, Fig5, FigS2, 

and Fig8A). Remarkably, AOX expression in Bcs1lp.S78G mice (GROX) partially rescued cardiac 

mitochondrial CIII activity (approx. to 50% of WT), fully normalized the respiration (100% of 

WT), and, surprisingly, increased the amount of RISP in CIII dimers (III, Fig6). Furthermore, AOX 

expression preserved mitochondrial morphology and tissue histology. We found that AOX 

expression in the Bcs1lp.S78G heart normalized the transcriptional changes related to beta-oxidation, 

amino-acid metabolism, TCA cycle, NO metabolism, and sarcoplasmic-reticulum Ca2+ ion channels 

to WT level. These changes likely contributed to the prevention of lethal cardiomyopathy. 

5.3.3 AOX prevented renal tubular atrophy but not hepatopathy (III) 

Although Bcs1lp.S78G mice (GRAC) survived until P200, their liver fibrosis did not progress to 

cirrhosis. In contrast, the progressive degeneration in proximal tubules of the kidneys resulted in 

severe renal atrophy (III, Fig2A-B) and affected urine filtration parameters (III, FigS1). In both the 

liver and kidney of Bcs1lp.S78G mice, we found a defect in CIII activity and alteration in 

mitochondrial morphology (III). Transcriptomic analysis at post-symptomatic age (P150) showed 

altered cell proliferation, fibrosis, and energy metabolism. Interestingly, we found increased 

glutathione metabolism only in the liver (III, Fig.5). AOX expression did not affect the progressing 

hepatopathy at P200. In contrast, AOX expression rescued kidney mitochondrial morphology; 

decreased proximal tubular cell apoptosis and permanently prevented renal tubular atrophy (III). 

 5.3.4 Effect of AOX on the central and sensory nervous systems (III and unpublished) 

The brain of Bcs1lp.S78G mice (GRAC) showed no signs of severe neurodegeneration but did exhibit 

a mild increase in astrogliosis in the barrel field of the primary somatosensory cortex (S1BF), as 

3  3
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reported earlier (Tegelberg et al. 2017). AOX expression in Bcs1lp.S78G mice robustly delayed the 

focal astrogliosis (III, Fig3A). 

Detailed phenotyping at GMC revealed that Bcs1lp.S78G mice had no changes in locomotor activity 

or latency on Rotarod drum. These data suggest no defect in neuromuscular function (Figure 6a,b). 

However, decreased prepulse inhibition suggested a defect in acoustic startle reactivity and in 

hearing sensitivity (Figure 6c). Furthermore, the retardation of Bcs1lp.S78G males (GRAC) for second 

heat stimulation in hot plate assay indicated a defect in the neurosensory system (Figure 6d).  

 
Figure 6. Neuronal responses in GRAC and GROX mice. (a) Locomotor activity, (b) latency to 
fall from Rotarod drum, (c) response to prepulse inhibition, and (d) latency to response for second 
heat stimulation on hot plate assay. Bar graphs plotted with mean±SD. One-way ANOVA followed 
by Tukey's test for group comparisons. *p<0.05; **p<0.01; ***p<0.001.  

 

Laser interference biometry on Bcs1lp.S78G mice (GRAC) indicated reduced axial eye lengths 

(distance between cornea and retina) (Figure 7a), reduced lens thickness (Figure 7b) and small 

anterior chamber (Figure 7c) which correlated with small body size. Optical coherence tomography 

(OCT) investigation showed that the posterior part of the eye was healthy with normally developed 

fundus and blood vessels (Figure 7d, e), but a mild change in corneal and retinal thicknesses  

(Figure 7f-i). However, the vision test revealed that Bcs1lp.S78G mice (GRAC) had weaker responses 

than wild-type to the moving stripe pattern of the virtual drum (Figure 7j). AOX expression on 
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Bcs1lp.S78G mice improved the eye-axial length and alleviated the lens thickness abnormality  

(Figure 7a, b). Additionally, AOX expression induced a mild amelioration in vision responses to the 

moving stripe pattern of the virtual drum in males (Figure 7j). 

 

 
Figure 7. Assessment of vision in GRAC and GROX mice. (a-i) Optical coherence tomography 
measurements of (a) axial length, (b) lens thickness, (c) anterior chamber depth, (d) number of 
vessels in fundus, (e) image of posterior part of the eye, thickness of (f) cornea and (g) retina, (h) 
mean density of the left eye’s lens and (i) representative image of lens, and (j) visual response to the 
moving stripe pattern of the virtual drum. Bar graphs plotted with mean±SD. One-way ANOVA 
followed by Tukey's test for group comparisons. *p<0.05; **p<0.01; ***p<0.001 
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5.3.5 Subtle effect of AOX on the cardiac transcriptome in wild-type mice (III and 

unpublished)  

A previous published (Szibor et al. 2016) characterization of the AOX transgenic mice reported no 

overt phenotypic changes. We confirmed that AOX expression in WT mice (pure AOX mice) 

caused no behavioral or whole body metabolic effects. The AOX mice were also histologically 

identical to WT controls. However, we found slight but significant differences (p<0.05, |FC|<1.5) in 

the heart transcriptome of AOX mice with 767 altered genes or transcripts, compared to wild-type 

mice. Most of the genes are annotated (525 genes) and some are uncharacterized genes (242 are 

without name and function). Moreover, the vast majority of these annotated genes had no available 

data on Gene-Ontology enrichment analysis. Interestingly, we found 23 genes associated with 

mitochondrial functions (Figure 8) such as the TCA cycle or respiration, transmembrane 

transportation, DNA repair mechanism, and mitochondrial morphology/migration. 

 

  
Figure 8. The effect of AOX on heart transcriptome in wild-type mice at P150. 
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6 Discussion 

6.1 Novel manifestations in Bcs1lp.S78G mice 

During this project, we found in the Bcs1lp.S78G mice (in the C57BL/6JCrl background) several 

novel phenotypes, which have neither been reported in GRACILE patients nor in the earlier mouse 

studies using another genetic background. The GRACILE syndrome patients present with early 

hepatopathy and kidney tubulopathy, but no apparent cardiac abnormality during their short lifespan 

(Fellman et al. 1998; Visapää et al. 2002). Early lethality in infancy likely explains the lack of the 

later-onset phenotypes such as encephalopathy, hearing loss, defective visual senses, and 

cardiomyopathy. However, patients with other BCS1L gene mutations can present with 

encephalopathy (Lonlay et al. 2001; Moran et al. 2010; Fernandez-Vizarra et al. 2007; Tegelberg et 

al. 2017). Björnstad syndrome, also the result of other mutations in BCS1L, manifests with 

sensorineural hearing loss and twisted hair (Hinson et al. 2007; Falco et al. 2017). Also, a patient 

with homozygous BCS1Lp.T70P mutation developed hearing loss (Blázquez et al. 2009). Adult 

patients with the homozygous BCS1Lp.G129R mutation presented with visual problems and bilateral 

optic atrophy (Tuppen et al. 2010). Thus, it seems that Bcs1lp.S78G mice in the C57BL/6JCrl 

background develop most of the phenotypes reported in patients with BCS1L mutations, but also in 

patients with MT-CYB mutations (cardiomyopathy) (Hagen et al. 2013).  

In homozygotes of the C57BL/6JCrl background at P150, we found that CIII activity was less than 

50% of the WT in all affected tissues: heart (34%), kidney (45%), and liver (34%). Moreover, 

Levéen et al. also reported progressive CIII dysfunction in several tissues of Bcs1lp.S78G mice.  

The liver had 50% CIII activity of the WT at disease onset and linear decrease to as low as 20% at 

end-stage disease (P30). At P30, the cardiac CIII activity in Bcs1lp.S78G mice was about 50% of 

normal with no signs of cardiomyopathy, but kidney CIII activity was 40%, and the mice 

manifested tubulopathy (Levéen et al. 2011). Therefore, our findings related to CIII activity are in 

line with the notion that the onset of manifestations requires decreased CIII activity to below 50%.  

6.2 Dietary interventions 

Hypoglycemia is a significant metabolic manifestation of the GRACILE syndrome. Bcs1lp.S78G mice 

in the C57BL/6JBomTac background (I) deteriorate at an early age due to the starvation-like 

conditions and severe hypoglycemia (Levéen et al. 2011). Providing high carbohydrate (60% 

dextrose) diet (HCD) did not improve the glycemic condition. Our results support the conclusion 

from a previous study (Du et al. 2010) that glucose is a metabolically challenging substrate when 

OXPHOS is defective. Increased dietary glucose partially normalized plasma metabolites related to 
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amino acids metabolism and the urea cycle. However, this was insufficient to improve the health of 

the mice. Despite the minor effect of the high-dextrose diet, the plasma metabolomics provided 

novel insight into the metabolic disease of the Bcs1lp.S78G mice. 

Ketogenic diet may stimulate fatty acid oxidation and thereby partially relieve dependence on 

glucose oxidation and PPAR pathway (Kang et al. 2007). Our study (II) showed that KD 

ameliorated hepatopathy and improved mitochondrial structure and function in hepatocytes. 

Other studies have shown the beneficial effects of KD in patients with epilepsy  

(Kang et al. 2007) and mouse models of pyruvate dehydrogenase deficiency (Sofou et al. 2017) 

and mitochondrial myopathy (Ahola-Erkkilä et al. 2010). However, the decreased survival of 

Bcs1lp.S78G mice on KD indicated that the CIII deficiency also caused intolerance to a fat-based 

diet. As we did not assess the effect of KD on other organs, we cannot address the exact cause of 

premature death. The short-term KD feeding (P20 to P50) did not decrease the life-span of 

mutant mice (Figure 4). Increased blood lactate per glucose ratio at adult age and reduced 

survival upon long-term KD feeding indicated adverse effect. Our study suggested that KD may 

have a therapeutic effect on hepatopathy. However, it may cause an adverse effect that prevents 

its use in patients. 

6.3 Transgenic AOX-mediated CIII bypass 

AOX expression dramatically extended the survival of Bcs1lp.S78G mice (GROX) and was beneficial 

mainly for the heart and partially for the kidney. AOX expression rescued mitochondrial structure 

and tissue histology only in heart and kidney tubular cells, suggesting that AOX functioned most 

prominently in high energy-demanding cells. In cardiomyocytes, decreased nitric oxide metabolism 

and improved gene expression of sarcoplasmic reticulum (SR) Ca2+ channels seem to be the 

essential pathways associated with the cardiac functional rescue. In the Bcs1lp.S78G (GRAC) heart, 

transcriptomic alterations in NOS1 and NOS3 suggested the possibility for higher reactive nitrogen 

species (RNS). Other studies have reported the involvement of NOS1 and NOS3 in mitochondrial 

stress in dilated cardiomyopathy (Crespo et al. 2008; Matsa et al. 2013). 

Moreover, acute or long-term regulation of both ROS and RNS play an essential role in controlling 

Ca2+ flux in chronic heart failure (Searles 2002). The cardiac contraction occurs by Ca2+ release and 

uptake in the sarcoplasmic reticulum (SR) through channels such as ryanodine receptor (RyR) 

(Ogawa 1994) and SR Ca2+-ATPase (SERCA/ i.e., ATPA2A)-phospholamban (PLN) complex 

(Frank et al. 2003) respectively. A significant decrease in Ryr2, Atp2a2, and Pln genes in the 

Bcs1lp.S78G (GRAC) heart may have caused a defect in the SR-Ca2+ release and uptake mechanism. 
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Several studies have reported SR Ca2+-ATPase reduction and myocardial Ca2+ handling in dilated 

cardiomyopathy (Gupta et al. 1997; Gregory et al. 2006; Li et al. 2012).  However, it is unclear 

whether increased NOS expression in the Bcs1lp.S78G (GRAC) heart was a cause or an effect in 

relation to the altered SR Ca2+ channels expression. Further examination of NO metabolism and 

signaling in the mutant mice may elucidate this.  

Royo et al. demonstrated in plants that NO and AOX function are linked (Royo et al. 2015). AOX-

mediated respiration in plants (Millar & Day 1996) and in Trypanosoma (Chaudhuri et al. 2006) 

was tolerant to NO stress. Some studies have reported that NO regulates AOX activation, which 

functions as an antioxidant and anti-nitrosative in plants to protect from viral infection  

(Gupta et al. 2012). Thus, the AOX-mediated rescue of NO metabolism in Bcs1lp.S78G heart raises 

the intriguing possibility that an association between AOX and NO exists in these mice as well. 

AOX expression in the Bcs1lp.S78G (GROX) kidney rescued tubular cell mitochondrial morphology 

without normalizing the CI and CII linked respiration in the presence of ADP (state III). Moreover, 

the transcriptomic analysis in the kidney revealed upregulation of cell cycle pathways that indicate 

regeneration or induced cell proliferation. A recent report on the effect of AOX expression on 

muscle-specific COX15 knockout mice also showed that AOX did not normalize mitochondrial 

state III respiration. Instead, AOX had an adverse effect on the myopathy phenotype by reducing 

ROS production and impairing regenerative capacity (Dogan et al. 2018). In contrast, we found that 

AOX expression in the kidney of Bcs1lp.S78G mice (GROX) significantly decreased mitochondrial 

stress (implicated by the rescued mitochondrial structure) and apoptosis but did not affect the 

regeneration or proliferation of renal tubular cells.  
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7. Conclusions 

The studies included in this thesis have further elucidated disease mechanisms and provide novel 

insight into possible treatment strategies for CIII deficiency. Mitochondrial disorders present with 

tissue-specific manifestations, but also with unexpected subtle symptoms. By comparing the 

standardized phenotyping, histological findings, metabolism, transcriptome and mitochondrial 

function in the tissues of Bcs1l mutant mice, we achieved a better understanding of GRACILE 

syndrome pathogenesis. Our main conclusions are: 1) Bcs1lp.S78G mice in C57BL/6JCrl background 

survive to P200 and develop novel late-onset phenotypes including kidney atrophy and dilated 

cardiomyopathy. 2) Dietary interventions have a limited effect on the severe visceral manifestations 

of Bcs1lp.S78G mice. 3) AOX-mediated CIII bypass efficiently prevents or alleviates manifestations 

of CIII deficiency. 4) AOX was mainly beneficial in tissues/cells with high ATP demand, such as 

the heart and proximal tubular cells.   
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8 Future prospects 

Recent whole-genome sequencing of the short-lived Bcs1lp.S78G mice, (C57BL/6JBomTac colony), 

revealed a spontaneous variant in mtDNA. The variant emerged more than ten years ago in the in-

house C57BL/6JBomTac colony. We have now verified that the combination of this mtDNA 

variant and the Bcs1lp.S78G mutation resulted in short survival (approx.P35-40)  

(Purhonen et al. under revision). Further characterization regarding the effects of this particular 

mtDNA variant alone and in combination with the Bcs1lp.S78G mutation in the C57BL/6JCrl 

background is ongoing. 

An interesting mechanistic finding from the AOX study was that AOX-mediated respiration might 

be tolerant of nitric oxide (NO) stress. NO is associated with heart failure and neuronal 

degeneration. Further examination of the AOX effect on NO stress might clarify the rescue 

mechanisms and thereby increase knowledge about the possible use of AOX in other mitochondrial 

diseases. However, transgenic AOX expression is not possible in patients nowadays, But further 

studies to develop viral delivery of transgene are ongoing.  

Drosophila is widely used for genetic studies also with mitochondrial disorders  

(Sardiello et al. 2003; Jacobs et al. 2004; Tripoli et al. 2005; Anderson et al. 2008; Angeles et al. 

2014). Drosophila Bcs1l ortholog is 60% identical to human. We have generated a DmBcs1lp.L78X 

mutant fly line using the CRISPR/Cas9 technology. We have also found that a broad Bcs1l knock-

down using RNAi causes pupal lethality and that a homozygous Bcs1lp.L78X mutation causes second-

instar larval lethality (Rajendran et al. unpublished data). These fly strains could be used for cost-

effective pharmacological screening as well as mechanistic studies, the results of which can then be 

verified in the Bcs1lp.S78G mice. 
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Tiivistelmä 

GRACILE-oireyhtymä on suomalaiseen tautiperimään kuuluva vaikea vastasyntyneiden 

mitokondriosairaus, jonka aiheuttaa homotsygoottinen pistemutaatio (c.A232G, p.Ser78Gly) 

BCS1L-geenissä. GRACILE-oireyhtymässä mitokondrioiden hengitysketjun  kompleksi III (CIII) 

on viallinen, mikä johtaa vaikeaan aineenvaihdunnan häiriöön, maksa- ja munuaissairauteen ja 

varhaiseen kuolemaan. Sairauden syntymekanismien ja hoitomahdollisuuksien tutkimuksessa on 

osoittautunut erittäin hyödylliseksi hiirimalli, jossa potilaiden pistemutaatio on viety hiiren 

genomiin. Hiirimallissa toistuvat useimmat potilaiden oireet, kuten kasvuhäiriö, alhainen 

verensokeri ja maksa- ja munuaissairaus. Homotsygoottiset hiiret (Bcs1lp.S78G) kuolevat 

C57BL/6JBomTac-kannassa vain 30-40 päivän ikäisinä, todennäköisesti hypoglykemiaan. Sen 

vuoksi tutkimme tässä väitöskirjassa sokeripitoisen ruoan (60 % glukoosia) vaikutusta hiirten 

verensokeriin ja elinikään. Sokerilisä johti kuitenkin jopa hiukan lyhempään elinikään  huolimatta 

siitä, että se näytti korjaavan joidenkin aineenvaiduntatuotteiden pitoisuuksia plasmassa. 

Seuraavissa osatöissä huomasimme, että C57BL/6JCrl-kannassa hiiret elivät viisi kertaa pidempään 

(noin 200 päivää) kuin aikaisemmin Lundin yliopistossa käytetyssä kannassa, ja niille kehittyi uusia 

myöhään alkavia oireita kuten vaikea sydänlihassairaus ja aivomuutoksia. Tässä kannassa tutkimme 

ensin rasvapitoisen (ketogeenisen) ruokavalion vaikutusta maksasairauden etenemiseen. 

Ketogeenisella ruokavaliolla oli selvä myönteinen vaikutus maksasairaukseen ensimmäisten kolmen 

kuukauden aikana, mutta pitkäkestoinen ruokinta aiheutti haittavaikutuksia. Kolmannessa 

osatutkimuksessa risteytimme Bcs1l-mutaatiota kantavia hiiriä vaihtoehtoista oksidaasia (AOX) 

ilmentävän siirtogeenisen hiirilinjan kanssa. AOX voi parantaa hengitysketjun alkuosan toimintaa 

ohjaamalla esimerkiksi CIII:n toimintahäiriön vuoksi pysähtynyttä elektronien kulkua koentsyymi 

Q:lta suoraan hapelle. AOX:n esti kokonaan sydänlihassairauden ja munuaissurkastuman 

kehittymisen Bcs1lp.S78G-hiirille ja hidasti aivomuutosten etenemistä. Sydänsairauden estymisen 

johdosta AOX-siirtogeeniä kantavien mutanttihiirten keskimääräinen elinikä piteni 210 päivästä 

590:een. Väitöskirjatutkimusten tärkeimpiä johtopäätöksiä ovat, että C57BL/6JCrl-kannassa 

Bcs1lp.S78G-hiirillä ilmenee sekä GRACILE-oireyhtymälle tyypillisiä alkuvaiheen oireita, kuten 

kasvuhäiriö ja maksasairaus, että myöhemmin kehittyviä uusia oireita, kuten sydänlihassairaus, joita 

esiintyy muissa CIII-puutossairauksissa. Ruokavaliohoidoilla oli edullista vaikutusta 

maksasairauteen, mutta muutoin vaikutukset olivat vähäisiä tässä vaikean mitokondriosairauden 

mallissa. Sitä vastoin hengitysketjun pysähtyneen elektronivirtauksen palauttaminen AOX-

entsyymin avulla oli ennennäkemättömän tehokas keino hidastaa tai jopa estää pysyvästi vakavia 

oireita, ja vaikutus oli selvin kudoksissa tai soluissa, joilla on suuri energiankulutus, kuten 

sydämessä ja munuaisten tubuluksissa.   
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ஆராyசிய�} �¯tக� 

எ}§ைடய ஆரா�vசியான¢ tரைஸ� எ}§� ெகா�ய மர© ேநாய�னா� பாதிtக~பyட 

ைமyேடாகாzyƬயாவ�} ெசய�பாyைட ேம�ப�{த சƬயான வழி«ைறகைள கzடறிவேத ஆ��.  

ஒ¯ மரப  ப�ைழ BCS1Lc.A232G, ப�ற|த �ழ|ைதகள�� tரைஸ� எ}§� ெகா�ய ேநாைய ஏ�ப�{¢கிற¢. 

இ|த மர© ேநா� ைமyேடாகாzyƬயாவ�} �வாச-சuகிலி �¸ம� III-இ� ேகாளா² ஏ�ப�{¢வதி} ¬ல� 

பல உ²~©tகைள ெசயலிழtக ெச�¢ �ழ|ைதகள�� சி� ப¯வ{திேலேய மரண{ைத­� வ�ைளவ�tகிற¢. 

ேநா�tகாண மரப  ப�ைழைடய எலி மாதிƬகைள பய}ப�{தி இ|த ேநாய�} வ�ைளºகைள 

கzடறி|ேதா�. இ|த எலிக� மன�தன�� காண~ப�� அேத ேநா� வ�ைளºகளான வளƫvசி கy�~பா�, 

க�ƪர� �ைறபா�, ம�²� சி²ந�ரக ¤z-�ழா� �ைறபா� ேபா}றவ�ைற வளƫ{¢tெகா�கிறன.  

இ|த ேநாயான¢ மன�தƫகள�ட� வ�ைளவ�~ப¢ ேபாலேவ எலிய�´� வா� நாைள �ைறtகிற¢ (35-45 

நாyக�). «தலி�, இ{தைகய ஆர�பகால மரண{தி�� க�ைமயான இர{தv சƫtகைரt �ைறபாேட 

«த}ைம காரணமாக கzடறிய~பyடதா�, சƫtகைரய�} சமநிைலைய ேம�ப�{¢வத�காக எலிக¶t� 

அதிக சƫtகைர உைடய (ெடt�yேரா�) உணைவ ஊyடமள�{¢ ஆ�º ெச�ேதா�. இ|த உணº 

இர{த{தி� சில வளƫvசிைத~ெபா¯yகள�� மா�ற� ஏ�ப�{தியைத தவ�ர ஆ�ற� வளƫசிைத மா�ற{ைத 

ேம�ப�{தவ��ைல. இ|ேநா�காரண�யான மரப  ப�ைழைய ம�ேறா¯ மர© ப�}©ல{தி� C57BL/6JCrl உ�ள 

எலிக¶t�� அறி«க~ப�{தியேபா¢, எலிகள�} வா�நா� «|தய எலி மாதிƬையtகாy�´� ஐ|¢ 

மடuகாக ந�y�{த¢. இ|த வா�நா� ந�y�~© எலிகள�ைடேய ¬ைளt�ைறபா� ம�²� இ¯தய{ 

தைசேநா� ேபா}ற ©திய �ைறபா�கைள ெவள�tெகாணƫ|த¢. ேநா� வளƫvசிைய கy�~ப�{¢� 

ேநாtக{¢ட}, கீyேடாெஜ} எ}ற அதிக ெகா¸~© ெகாzட உணைவ எலிக¶t� ஊyடமள�{¢ ஆ�º 

ெச�ததி�, கீyேடாெஜ} உணº க�ƪர� �ைறபாyைட சிறிதளº கy�~ப�{தியைதt கzடறி|ேதா�. 

ஆனா� ந�zட கால கீyேடாெஜ} ஊyட� எலிகள�} வா� தர{ைத­� ம�²� நாyகைள­� �ைற{த¢.  

ம�ேறா¯ ஆ�வ��, �வாசv சuகிலி ெசய�பாyைட ேம�ப�{த, மர© ப�ைழ­ைடய எலிக¶t� ��தலாக 

ஒ¯ மா�² ஆtஸிேட� எ}§� பƬமா�ற மரப ைவ அறி«க~ப�{திேனா�. இத} ©ரதமான¢ �¸ம� 

III-} �ைறபாyைட தவ�ƫ{¢ எலtyரா} பƬமா�ற{ைத ேம�ப�{தt��ய¢. இ|த மா�²-ஆtஸிேட� 

©ரத� ேநா�வா�~பyட எலிகள�� இ¯தய{தைசேநா� ம�²� சி²ந�ரக ¤z-�ழா� நலிº ேபா}றவ�ைற 

«�றி´மாக தவ�ƫ{தேதா�, ¬ைளய�} சாமyேடாெச}சƬ படல{தி� அ�yேராைஸy அ tகள�} 

�வ�~ைப தாமதி{த¢. ேம´�, இ|த ©ரத� எலிகள�} வா� நாைள சராசƬயாக 590 நாyகளாக ந�y�{த¢. 

என¢ ஆ�ºகள�} «tகிய த�ƫமானuக� ப�} வ¯வனைவயா��. Bcs1lp.S78G மரப  ப�ைழ ஏ�ப�{த~பyட 

எலிக� �¸ம� III �ைறபாy�னா� மன�தன�� ஏ�ப�� அைன{¢ வ�ைளºகைள­� ெகாz��ள¢. 

ேம´�, எலிகள�} க�ைமயான வளƫvசி கy�~பாy�} ேம� எ|தவைகயான உணº மா�ற«� ெபƬதான 

தாtக{ைத ஏ�ப�{தவ��ைல. மா�²-ஆtஸிெட� ©ரதமான¢ இதய ம�²� சி²ந�ரக ¤z ய�ƫ-�ழா� 

ெச�க� ேபா}ற உயƫ ஏ�ப� ேதைவ­ைடய தி�tக� அ�ல¢ ெச�கள�� பய§�ளதாக அைமகிற¢,  
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