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1. Introduction 

Knowing the accurate status of the Earth’s cryosphere and in particular of 
snow is important for climate research (Betts and Ball 1997, Déry and Brown 
2007, Flanner et al. 2011, Riihelä 2013, Tao et al. 2014, P. 2, P.3, P.6, P.7), 
numerical weather prediction (Brasnett 1998, Pullen et al. 2011, de Rosnay et 
al. 2014), hydrology (P.4) and other applications. The required data can be 
gathered by various means (Kuusisto 1984, Kitaev et al. 2002) but remote 
sensing methods do provide a better temporal and spatial coverage. Space-
borne microwave radiometers (Ulaby et al. 1981) are known to be well suited 
for the estimation of snow cover (Tiuri et al. 1984, Chang et al. 1987, Hal-
likainen and Jolma 1992, Choudhury et al. 1995, Pulliainen et al. 1999, Pulli-
ainen 2006, Saberi et al. 2017). Even though this fact has been evident for dec-
ades the lack of robust Climate Data Records (CDR) and Near Real Time 
(NRT) services of snow parameters has been a problem.   
 
In this dissertation this particular research problem has been answered by 
developing new and enhancing existing algorithms to reliably estimate Snow 
Clearance Date (SCD) (P. 1, P. 2) and Snow Water Equivalent (SWE) (P.3, 
P.4, P.5) on hemispherical (or regional) scale.  
 
The results of the research are the CDR’s of SCD (P. 2) and SWE (P.3, 
GlobSnow 2018 [ONLINE]). In addition, SWE is available as a NRT service 
(P.3, P.4 GlobSnow 2018 [ONLINE], SR-SWE 2018 [ONLINE], H SAF 2018 
[ONLINE]). In addition, the impact of the results for climate research is 
demonstrated in P.6 and P.7. The importance of P.7 originates from the fact 
that the obtained snow parameters can be used to estimate higher lever physi-
cal parameters such as CO2 balance (Aurela et al. 2004, Groendahl et al. 2007, 
Winchell et al. 2016). The application of SWE for hydrology is demonstrated in 
P. 4. 

 
The basis for spaceborne microwave radiometry was laid in the 70’s. The Nim-
bus 5 was launched in 1972. It had the ESMR instrument (Wilheit 1972) on 
board which only measured at 19 GHz by using horizontal polarization. In ad-
dition, radiometer instruments were on board Skylab space station (Eason 
1978). They were part of the Earth Resources Experiment Package (EREP) 
experiment and were not thus operational instruments. There were two radi-
ometry capable devices in the EREP: S193 and S194. The S193 was a micro-
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wave radiometer, scatterometer and altimeter. It operated only on the fre-
quency of 13.9 GHz. The S194 was a pure L-band radiometer operating on the 
frequency of 1.4 GHz and was thus best suited for the monitoring of soil mois-
ture (Eagleman and Lin 1976). These experiments, in particular the ESMR, 
proved the general potential of spaceborne microwave radiometry. A signifi-
cant technological advancement in the field was the SMMR (Scanning Multi-
channel Microwave Radiometer) instrument on board Nimbus-7 satellite 
(Gloersen and Hardis 1978). It was launched in October 1978 and was the first 
satellite to provide spaceborne radiometer data in an operative manner. Even 
though it only provided data every other day it still forms a crucial basis for 
this dissertation. The spatial resolution of these early and succeeding radiome-
ters has been rather coarse but, on the other hand, if the satellite is on a polar 
orbit it can map almost the whole Earth (especially in the northern latitudes) 
in 24 h. As a passive method radiometry does not depend on external illumina-
tion like sunlight and it is rather insensitive to weather phenomena. Also, the 
potential for remote sensing of snow was acknowledged even though the fre-
quencies used on these experiments were not optimal for this purpose.  
 
SMMR was the first fully operational spaceborne radiometer instrument. As 
the name suggests it had multiple channels or frequencies it measured. The 
most important frequencies for remote sensing of snow were 18 GHz and 37 
GHz. These frequencies made it possible to develop many remote sensing ap-
plications and boosted research significantly. This development raised interest 
in snow as a parameter (for example Tiuri et al. 1984). First global estimates of 
Snow Water Equivalent (SWE)1 were also provided during the lifetime of Nim-
bus-7 and SMMR (Chang et al. 1987). SMMR was functional and provided data 
for eight years and ended operations in August 1987.  
 
Fortunately, the success of SMMR was continued by new instruments. The US 
DMSP (Defense Meteorological Satellite Program) consists of multiple satel-
lites for weather monitoring. Since July 1987, the SSM/I radiometric instru-
ment has been producing data, first onboard the F-08 satellite (Armstrong et 
al. 1994). The SSM/I instrument has almost the same frequencies as SMMR 
and it provided crucial continuity in the availability of radiometer data. The 
SSM/I was on board satellites F-08, F-10, F-11, F-13, F-14 and F-15. Apparent-
ly SSM/I is still functional on F-15 but its data is unreliable at the moment. 
The evolution of SSM/I is an instrument called SSMIS (Armstrong et al. 1994), 
which has additional frequencies compared to SSM/I. The SSMIS instrument 
has been flown on board DSMP satellites F-16, F-17, F-18 and F-19. SSMIS 
data is available today even in Near Real Time (NRT). The SSMIS is an evolu-
tion version of SSM/I with additional frequencies for monitoring the atmos-
phere. The frequencies used for snow detection are the same as for SSM/I. 
Both SSMIS and SSM/I provide data every day, compared to SMMR.  

 
                                                           

1 Snow Water Equivalent can be thought as the depth of the resulting water layer if snow could be melted 
instantaneously. SWE is snow density times snow depth so the parameter describes both mass of snow 
and depth. 
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There are also other spaceborne radiometer systems that were previously or 
are currently active. The NASA Aqua satellite carries the AMSR-E instrument 
(Kawanishi et al. 2003). It is in many ways comparable to SSM/I. Aqua satel-
lite was launched in May 2002. While the spacecraft is still in operation, the 
AMSR-E instrument stopped working in October 2011. The successor of 
AMSR-E is AMSR2 (Imaoka et al. 2010), which is on board GCOM-W. The 
AMSR2 can be used for snow monitoring similar to SSMIS instruments, but 
from the time series continuity point of view SMMR-SSM/I-SSMIS is better 
suited for creating Climate Data Records (CDR). The Chinese Fengyung-3 se-
ries satellites have the MWRI instrument on board (Yang et al. 2011), which 
also has a suitable frequency range to estimate snow parameters. The ESA 
SMOS mission (Kerr et al. 2010) has an L-band radiometer, but because of the 
measuring frequency, its usefulness for snow detection is very limited. Howev-
er, it provides information on soil frost, which is an important cryospheric 
application (Rautiainen et al. 2016). 
 
Snow is an important physical parameter in terms of many geophysical pro-
cesses. The albedo of snow affects directly the radiation budget of the Earth’s 
atmosphere and thus it directly contributes to the global warming (Betts and 
Ball 1997, Déry and Brown 2007, Flanner et al. 2011, Riihelä 2013, Tao et al. 
2014). The amount of snow in terms of both Snow Extent (SE) (or Fractional 
Snow Cover FSC) and snow mass (SWE) is an important indicator of climate 
change. Snow parameters affect also numerical weather prediction (NWP) 
(Brasnett 1998, Pullen et al. 2011, de Rosnay et al. 2014). Winter time snow 
accumulation and spring time snow melt contribute to the water cycle in the 
atmosphere and water bodies. Forecasting river discharges is a typical con-
crete problem that snow parameters can contribute in hydrology (P. 4). It has 
been also shown (Aurela et al. 2004, Groendahl et al. 2007, Winchell et al. 
2016) that the snow clearance date is related to the release of greenhouse gases 
such as CO2.  
 

In situ-measurements of snow are an accurate method to provide data of SE 
and SWE (Kuusisto 1984). In Finland, for example, one can find a dense net-
work of SWE measurements. However, in the Finnish case the distributed 
SWE observations along snow courses are only carried out once a month. Typ-
ically, such kind of national observation networks do not exist and the availa-
bility of such data from other networks (such as those maintained by hydro-
power companies) are limited. Pointwise synoptic Snow Depth (SD) observa-
tions from the global WMO coordinated weather station network are available 
daily. If the pointwise measurement locations have a dense coverage of the 
area it is possible to interpolate the values to a larger region with reasonable 
accuracy. In the arctic region there are, however, very large areas without any 
in situ data measurements whatsoever. 
 
To provide reliable and continuous estimates of SE and SWE Earth Observa-
tion (EO) methods and remote sensing are typically a necessity. Optical in-
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struments can give reliable high resolution information on SE or FSC but they 
are dependent on the availability of solar illumination, which is a problem at 
the high latitudes during the mid-winter time (Frei et al. 2012, Metsämäki et 
al. 2012, Metsämäki et al. 2015). During spring-winter conditions optical sen-
sors provide proper information on global snow melt, even though some gaps 
exist in data products due to obscuring cloud cover (Frei et al. 2012, 
Metsämäki et al. 2015). However, a problem in optical satellite sensor derived 
CDRs is the limited availability of historical sensors and the cross calibration 
of differert sensors concerning the construction of long time-series of SE in-
formation (Zhou et al. 2013, Estilow et al. 2015). 
 
In practice, it is not possible to estimate SWE with optical instruments. Thus, 
microwave region is better suited for snow monitoring (Pulliainen et al. 1999, 
Foster et al. 2005, Frei et al. 2012).  Synthetic aperture radar (SAR) can be 
used to a degree to estimate SWE (Macelloni et al. 2014). However, there are 
problems with the reliability of SWE detection and even though the spatial 
resolution of radar image is high getting coverage over a large area within 24h 
is not easy. Microwave radiometers offer good detection of SWE (and SE) with 
full coverage over continental and hemispherical scale and for long time peri-
ods (P.2,  P.3, Pulliainen 2006). Estimating SWE from microwave data has its 
problems too. Complex topography, vegetation cover, water bodies and wet 
snow have an effect on the SWE retrieval. 
 
Snow melt or snow clearance day algorithms using microwave radiometer data 
have mostly been applied over ice or glaciers and not over arctic tundra or tai-
ga (Abdalati et al. 1995, Drobot et al. 2001, Smith et al. 1998, Hall et al. 2004). 
In this dissertation algorithms were specifically developed and tested for for-
ested areas. The result is a CDR of snow clearance day covering the Northern 
Hemisphere and spanning over 30 years (P. 2). The CDR is also validated us-
ing independent ground reference data. The best approach of SWE retrieval 
has turned out to be a data fusion of synoptic SD observations and spaceborne 
SWE estimates (Pulliainen 2006, P.3). In this dissertation the SWE algorithm 
introduced by Pulliainen (2006) has been further developed to be feasible for 
operational use and to construct a CDR of SWE covering the Northern Hemi-
sphere for over 30 years (P. 3). The SWE CDR is validated with independent 
ground reference data obtained for snow courses from northern Eurasia. In 
addition, the SWE algorithm has been improved to yield a higher spatial reso-
lution over Europe by applying a superresolution inversion approach (P. 4).  
 
The resulting data sets have been applied in addressing several research ques-
tions The CDR of SCD has been used as a reference to ECHAM5 global circula-
tion model predictions to assess the performance of the model in snow covered 
regions (P. 6). The results show that the ECHAM5 model snow predictions are 
in line with the satellite based SCD dataset. The snow melts first in the Baltic 
regions in March and last in Taymyr Peninsula (in June) and the northeastern 
parts of Russian Far East. There is a delayed snow melt in southeastern Siberia 
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and an early bias in the western and northern parts of northern Eurasia. In P.7 
the CDR is used as a proxy indicator to estimate the change of gross primary 
production (GPP) of CO2. The results indicate that the CO2 uptake has in-
creased in Jan-June by 8.4 gCm-2 (3.7%) per decade. The CDR is also a basic 
data set applicable to various other research purposes.   
 
The SWE CDR (P. 3) has been created as part of ESA DUE GlobSnow project 
that aimed to the provision of scientific basic data set for climate research pur-
poses (CDR on global snow cover). In addition, the work has resulted in the 
development and enhancement of operational snow monitoring services in 
EUMETSAT Satellite Application Facility for Hydrology (H SAF) (P. 4). The 
obtained SWE estimates have also been tested to be used as an input to hydro-
logical modeling indicating that the derived satellite data-derived SWE infor-
mation can be used to improve river discharge forecasts (P. 4). Thus, the main 
focus of this thesis has been in the creation of CDR’s of SWE and SCD. The 
secondary focus has been applying the algorithms in operational services. In 
addition, the use of the results in the context of climatology and hydrology has 
been demonstrated. 
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2. Review of algorithms to estimate 
Snow Clearance Day and Snow Water 
Equivalent from brightness tempera-
ture signatures 

Passive microwave radiometry is the most feasible remote sensing method to 
map snow parameters in hemispherical scale since most of the area can be 
covered within 24 hours. Essentially, all matter emits thermal radiation, which 
can be used to deduce physical properties of the source. There are several snow 
remote sensing products available but there are issues with, for example, tem-
poral and spatial coverage and complete or partial lack of validation. The work 
conducted in this dissertation addresses many of these issues. Long time series 
are based on SMMR, SSM/I or SSMI/S instrument data on board Nimbus-7 
and various DMSP-series satellites.   

2.1 Brightness temperature and radiative transfer theory 

All matter emits thermal radiation. Brightness of a black body is determined 
by Planck’s Law (Ulaby et al. 1981): 
 

,    (2.1-1) 

 
where B is brightness, h is Planck constant, f is frequency, c is speed of light, T 
is temperature and k is Boltzmann constant. 
 
In case of microwaves hf<<KT and equation can be simplified to (Ulaby et al. 
1981): 
 

,     (2.1-2) 

 
where λ is the wavelength.  This is called Rayleigh-Jeans law. Natural bodies 
are not black bodies but rather grey bodies. Then one can define emissivity 
(Ulaby et al. 1981): 
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,     (2.1-3) 

 
where BB is the brightness of grey body and B brightness of black body, corre-
spondingly TB is the brightness temperature and T is temperature. 
 
Emissivity on the other hand depends on viewing angle and permittivity of the 
medium, which further depends on frequency and other physical parameters. 
The only parameter measured by airborne or spaceborne radiometers is the 
intensity of the radiation. Because of the linearity of the Rayleigh-Jeans Law 
this is usually expressed as brightness temperature.  

 
Due to the athmosphere the brightness of the source is affected by the scatter-
ing and absorption. To deduce the true brightness of the source, one must use 
the radiative transfer equation (Ulaby et al. 1981): 
 

,  (2.1-4) 

 
where B is brightness, r is radius, τ optical depth, κe attenuation coefficient 
and J source function. The interpretation of the transfer equation is that at the 
distance r from the source the first term describes brightness in the source 
(r=0) that is attenuated exponentially. The second term contains losses and 
gains by absorption, scattering and emission in the path of radiation from 
source to distance r.  In practice, this means contributions from vegetation and 
atmosphere when snow covered terrain is considered as the target of remote 
sensing observations.  
 
In the case of snow previous research has shown that the most important fre-
quencies of satellite observations are 18 GHz and 37 GHz concerning the esti-
mation of SWE (Chang et al. 1987, Choudhury et al. 1995, Saberi et al. 2017). 
Since the volume scattering inside a snow pack due to snow grains increases 
with frequency, the difference in brightness temperature between these fre-
quencies increases with increasing snow mass (SWE), given that the snow 
grain size is constant (Chang et al. 1987). Hallikainen and Jolma (1992) have 
shown that the best correlation with increasing SWE can be obtained by using 
a channel difference of 18 GHz and 37 GHz vertical polarization in the case of 
satellite observations. 

 

2.2 Review of algorithms to estimate snow melt 

Frequencies in the ranges of 18 to 19 and 36 to 37 GHz and their channel dif-
ferences or so called cross-polarized gradient ratios form the basis of detecting 
snow melt in microwave domain. Abdalati et al. (1995) and Hall et al. (2004) 
used cross-polarized ratio: 
 

,     (2.2-1) 
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where v and h refer to vertical and horizontal polarizations and 19 and 37 to 
the frequencies of the received signals. 

 
On the other hand, Smith (1998) used only a channel difference of these fre-
quencies with horizontal polarization to map primarily the onset of sea ice 
melt. According to Smith, the rapid change of brightness temperatures is first 
related with the increase of the moisture in the snow pack on top of the ice 
layer. Thus the algorithm is, at least partially, applicable to the detection of 
snow melt. Drobot and Anderson (2001) applied a similar approach with verti-
cal polarization.  

 
Neural network algorithms (ANN) have not been widely applied to estimate 
the onset of snow melt. In P. 5 ANN’s were used to estimate SWE and SD. 
Simpson et al. 2001 used ANN with AVHRR data. Neural networks were also 
tested in P. 1 to retrieve snow melt information. 
 
Joshi et al. (2001) used channel differences over Greenland together with time 
series analysis to estimate the snow melt. The problem is that their work is 
based on the detection of snow over ice and thus it is not directly applicable to 
boreal forest zone. Mognard et al. (2003) used channel difference of horizontal 
polarization to calculate the time series of snow melt globally and their dataset 
covers 20 years. However, the dataset is not validated at all. 

 
Ramage and Isacks (2002) utilized the Diurnal Amplitude Variations (DAV) of 
37 GHz vertical polarization channel to estimate snow melt over glaciers in 
Alaska, USA and British Columbia, Canada. DAV is the difference between the 
brightness temperature signatures of usually early morning and late afternoon. 
This approach is convenient because it allows the retrieval of temporary snow 
melt occurences too. The main emphasis on the work in this thesis, however, 
has been estimating the snow clearance date only.  

 
The main shortcoming of earlier work is the lack of comprehensive validation. 
The scarcity of ground reference data is the first and foremost problem. In 
order to provide a reliable CDR, validation of the algorithm is a necessity. It is 
especially important, if one wishes to do hemispherical scale mapping 
(Mognard et al. 2003) for longer time periods spanning over decades (Abdalati 
et al. 1995, Hall et al. 2002 and 2004). Foster et al. (2005) have used weather 
observation and in situ radiometer data to validate satellite estimates in tun-
dra, but their work does not cover recent times. 
 
Most of the work carried out earlier (Abdalati et al. 1995, Hall et al. 2002, 
Drobot et al. 2001, Smith et al. 1998, Ramage and Isacks 2002) is applicable 
only over glaciers and thus cannot be used to estimate snow melt in hemi-
spherical scale.  
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The biggest challenge for snow melt estimation is the forested regions on Earth 
such as the Taiga belt. Either the algorithms do not work well over forest or the 
coverage is limited. Results of Smith et al. (1998) and Mognard et al. (2003) 
do include forested regions but, as mentioned before, have either methodolog-
ical shortcomings or lack comprehensive validation. 
 
One should also notice that many of the snow melt algorithms described detect 
the onset of snow melt instead of the snow clearance date, which has been the 
main focus in this dissertation. The snow clearance date has been more rele-
vant for the detection of greenhouse gasses (P.7). However, the algorithms 
developed in this dissertation (P. 2) can be modified to detect the onset of 
snow melt as well.  

2.3 Review of Snow Water Equivalent algorithms 

As mentioned earlier in 2.1, the most important frequencies for snow detection 
are 18 and 37 GHz.  Chang et al. (1987) proposed an algorithm where Snow 
Depth (or SWE) is directly proportional to the channel difference of 18 GHz 
and 37 GHz channels (horizontal polarization) based on simulation experi-
ments with a radiative transfer model. This is a simple and robust algorithm 
for SWE retrieval.  Even if the approach by Chang et al. (1987) and its devel-
opments (Choudhury et al. 1995, Kelly et al. 2003, Tedesco et al. 2010, Saberi 
et al. 2017) may perform well regionally, there are major problems in applying 
the approach to hemispheric scale. Validation of the SWE estimates with avail-
able in situ data has demonstrated this, see P.3.  This simple algorithm does 
not take into account special cases such as wet snow, regional variation such as 
vegetation and land use or grain size of snow. The approach by Chang et al. 
(1987) has been further enhanced by taking into account the forest cover frac-
tion (Foster et al. 2005). The current baseline of NASA SWE algorithm (Kelly 
et al. 2003, Tedesco et al. 2010) has a better handling of forested areas and it 
takes wet snow areas into account. All SWE algorithms have a tendency to un-
derestimate SWE under deep snow conditions and when snow is wet. Howev-
er, the effect is more pronounced with channel difference type of algorithms. 
 
Artificial neural networks are one possibility to try to map SWE from bright-
ness temperature (P. 5). Chang and Tsang (1992) used a neural network 
trained with a dense media multiple scattering model together with inversion 
to estimate SWE. The input data consisted of SSM/I brightness temperatures 
from the channels 19, 22 and 37 GHz. Their results gave SWE retrieval error 
ranging from 9% up to 57%. However, neural networks have not been widely 
applied to estimate SWE.  
 
Instead of using empirical approach, theoretical or semi-empirical radiative 
transfer models can be used for snow cover detection. They typically include 
the effect of atmosphere and vegetation. Microwave emission can be estimated 
using the model and thus obtain estimates of SWE through inversion (Pulli-
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ainen et al. 1999, Pulliainen 2006, Wiesmann and Matzler, 1999). Models are 
typically computationally expensive and also require additional input and aux-
iliary data to get estimates of SWE, accurate enough e.g. for the hydrological 
end-use (Durand et al. 2008). This restricts their use both on regional and 
hemispherical scale. 
  
One option to improve passive microwave retrieval algorithms is to use data 
assimilation. This has been investigated by Pulliainen (2006), where an assim-
ilation technique is presented using passive microwave data combined with a 
semi-empirical radiative transfer model together with a priori snow data from 
ground measurements with corresponding statistical uncertainties. When 
snowpack gets thicker there are systematic errors caused by the saturation of 
the observed brightness temperature (TB), which also affects the channel dif-
ference algorithms. The saturation is caused by the fact that after a certain 
threshold of snow depth the brightness temperature signal from the ground is 
attenuated and TB ground reference level changes. Data assimilation reduces 
these errors when SWE exceeds about 120 mm. Concerning SWE estimation 
error characteristics unbiased Root Mean Squared Error (RMSE) values be-
tween 15 to 40 mm can be achieved by comparing with in situ data (Pulliainen 
and Hallikainen 2001, Pulliainen 2006). 
 
The simplest way to estimate SWE is to interpolate local SWE observations for 
a larger area and thus get an estimate of the hemispherical or regional SWE. 
On the other hand, if the local observation network is sparse then in large are-
as the estimates are based on SD values maybe tens or even hundreds of kilo-
meters away. In practice, interpolation as a sole method is possible only in few 
regions, where the network is dense. In remote areas, the only realistic esti- 
mate can be obtained by using spaceborne SWE estimates.  
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3. Advances in snow monitoring -        
results and discussion 

 
This thesis focuses on advances in snow monitoring obtained by using space-
borne passive microwave remote sensing, that is space-borne microwave radi-
ometry. The developed and applied methods are tested and validated in re-
gions representing  boreal forests, tundra and steppe, thus making the meth-
ods valid for major parts of the northern hemisphere. In addition, the algo-
rithms have been used to generate CDRs spanning over three decades. The 
developed algorithms are applicable to operational services both in hemispher-
ical and regional scale, which is also demonstrated.   

3.1 Materials 

The radiometer data used in this work consists of brightness temperatures 
measured by SMMR (Knowles et al. 2002) on board Nimbus-7 and SSM/I and 
SSMIS data (Armstrong et al. 1994) on board various DMSP-series satellites. 
The data covers Northern Hemisphere spanning over 30 years.  
 
The SWE algorithm (Pulliainen et al. 1999, Pulliainen 2006, P. 3) uses synop-
tic SD data as input. These data are obtained from European Centre for Medi-
um-Range Weather Forecasts (ECMWF). For the operational implementation 
(P. 4) the data is acquired from Finnish Meteorological Institutes (FMI) near 
real time database.  

 
For the validation of SCD (P.2) and SWE the INTAS SCCONE (Kitaev et al. 
2002) material has been used. It consists of two datasets, SWE path measure-
ments and SD measurements with observation flags over Eurasia. The SWE 
path data was used in validating the spaceborne SWE estimates where as the 
SD measurement flags were used to to estimate the accuracy of SCD retrieval. 
In addition, for the validation of the SWE estimates also Finnish Environment 
Institutes (SYKE) SWE measurements (Kuusisto 1984) were used. Experi-
mental datasets (Derksen 2008, Derksen et al. 2009) in Canada were used to 
validate SWE for North America. 
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The land use data in P.3 was based on Global Land Cover 2000 (GLC 2003). 
Forest Cover Fraction was also calculated using GLC2000. For North America 
stem volume had a constant value, where as for Eurasia a variable stem vol-
ume based on Bartalev et al. 2004 was applied. The topography data was 
ETOPO5 (ETOPO5 1990 [ONLINE]). In P.4 the land use was based on ESA 
GlobCover 2009 data (Bontemps et al. 2011). The forest stem volume map was 
also changed and the details are described in P.4. The topography data was 
again based on ETOPO5.  
 
In P.3 the snow covered area masking is based on the wet snow algorithm by 
Hall et al. (2002) in the autumn and on the SCD dataset (P.2) in the spring. In 
P.4 the masking is done by using Interactive Multisensor Snow and Ice Map-
ping System (IMS) data (National Ice Center 2008).  

3.2 Snow melt off and dry snow mapping 

Snow melt by empirical channel difference algorithms 
 
Channel difference algorithms have been widely applied in order to detect 
snow melt from space-borne microwave radiometer data (Smith 1998, Drobot 
et al. 2001). The algorithms are based on the fact that for dry snow scattering 
dominates causing a spectral gradient in the observed microwave signatures, 
whereas for wet snow the absorption or reflection from the air-wet snow 
boundary dominates causing a change in spectral signatures. Such an algo-
rithm using discrete thresholds for wet snow detection is described and em-
ployed in P. 1: 
 
(T37v-T19v)> -21 K                (3.1-1) 
  
and 
 
(T37h-T19v)< -10 K.                (3.1-2) 
 
When conditions according to criteria (3.1-1) and (3.1-2) are valid for the in-
vestigated pixel, it is interpreted to represent melting snow conditions.   
 
Dry Snow mapping by empirical channel difference algorithms 

 
An empirical channel difference algorithm to detect dry snow cover was intro-
duced by Hall et al. (2002). First, the algorithm determines snow depth (SD) 
[cm] by 
 
SD=15.9(T19h-T37h),           (3.1-3) 
 
where T is brightness temperature and sub-indices denote the channels. If the 
conditions 
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SD > 80 cm and T37v < 250 K and T37h < 240 K         (3.1-4) 

 
are met the data is classified as dry snow. This threshold algorithm is applied 
to provide information on snow extent in P.2 and P.3. 

 
Self-organizing map based snow melt detection algorithm (P. 1) 
 
Self-organizing map (SOM) (Kohonen 1982) is a neural network consisting 
typically of a 2D layer of neurons. A neuron is a computational unit that has a 
weight vector specific to the neuron and an input vector that is common for 
every neuron. SOM has two phases of operation, the learning phase and the 
running phase of a trained network.  
 
The running phase is based on the competitive process. It means that for each 
neuron the Euclidean distance between input and weight vectors are deter-
mined and the neuron with the shortest distance is considered to be the win-
ning neuron or the neuron that is activated. The activated neuron is consid-
ered to represent the class of vectors to which the input vector belongs to.  

 
In the learning phase the neurons are first assigned with random weight vec-
tors. The input vector is fed to the neurons and the winning neuron is deter-
mined (like in the running phase). Then the weights of the neuron are adjusted 
according to the SOM algorithm (Kohonen 1982). The amount of adjustment is 
a function of time (the amount of adjustment grows smaller in time). In addi-
tion, the adjustment is not performed only for the winning neuron but to the 
adjacent neurons as well. The neighbourhood function is typically Gaussian 
and its width shrinks also in time. Once the weights converge the learning 
phase is finished.  
 
The input vector for SOM in this dissertation is T=[T19v T22v T37v T19h T37h].  The 
size of the SOM 2D lattice was chosen to be 3x3 so that the classification would 
not be too fine grained. First the SOM was trained with a set of brightness 
temperatures having a large areal and temporal coverage. Once the network 
was settled it was fed with brightness temperatures that correspond to cases 
where snow depth is less than 1 cm and the winning neuron was then deter-
mined as the neuron activated most often.  
 
 
Feedforward neural network based snow melt detection algorithm 
(P. 1) 
 
The feedforward network (Haykin 1999) typically consists of three or more 1D 
layers of neurons.  For the hidden layer the input is the input layer vector. The 
output of the hidden layer is then the input for the next layer. Like the SOM, 
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feedforward network has a learning and running phase. Unlike the SOM, this 
type of ANN learns only supervised.  
 
The input layer consists only of the input vector, where as the hidden and out-
put layers have computation neurons. For each hidden or output layer neuron 
there is a weight vector and input vector. A single neuron calculates the dot 
product of input and weight vectors. In addition, there can be additional terms 
such as bias term and an activation function for the output. In the running 
phase the input signal first propagates from input layer to hidden layer (or 
layers) and from there to the ouput layer. 
 
The learning phase of the network is supervised, which means that for each 
input vector there is a corresponding desired output. The input vector is pre-
sented to the network and the resulting output is calculated. Then the differ-
ence between the obtained output and desired ouput is calculated and the rela-
tive error is backpropagated to the neurons until to the input layer. The 
weights are adjusted accordingly. The relative amount of the adjustement de-
creases in time (as with the SOM) so that the network will reach a state of 
equilibrium. Then the learning is finished.  
 
In this work the network consists of only one hidden layer of 5 neurons and 
one output layer. The input vector T= [T19v T22v T37v T19h T37h] is the same as for 
the case of SOM. The activation function is sigmoidal. In the training phase the 
desired ouput has been set to 1 if SD is less than 1 cm and 0 otherwise for each 
corresponding brightness temperature vectors. Like in the case of the SOM the 
training data set consisted of brightness temperatures having a large areal and 
temporal coverage. Teaching data was also separate from the actual test data 
presented to the network.  
 
 
Snow melt detection based on time series analysis (P. 2). 
 
The melt detection algorithm using brightness temperature observation time 
series is based on the detection of changes similar to the threshold algorithms 
discussed above. The additional feature is that the changes are not detected 
from a single (vector of) multi-channel observation occurring at the time of 
interest, but from a history of observations. The developed algorithm is based 
on the analysis of channel difference D (T37V - T19v) with the parameter tN rang-
ing from 1 to 180 days (where 1 is the first day of the year):  
 

,   (3.1-5) 
 
where D(tN) is averaged in time with a window of length 8 (N=7, N is the day 
under investigation) and maximum and minimum values are determined: 
 

,
 
  (3.1-6) 
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   (3.1-7) 
 
Using maximum and minimum values a threshold is determined and if condi-
tion 

 
,   (3.1-8) 

 
were the  denotes the time average (with window length of 8 days) of 
D(tN) (tN ranging from 1 to 180 days). If the condition takes place the corre-
sponding time tDOY is considered to be the time of snow melt. Of multiple oc-
curences of tDOY only the latest one is recorded. Typically, the value of p is 0.9, 
(P. 2).  
 
Performance of snow melt detection using space-borne microwave 
radiometry 
 
The comparison of different algorithms was carried out by using the INTAS 
SCCONE ground reference dataset indicating the time of snow melt among 
other snow characteristics from in situ observations from the Former Soviet 
Union (Kitaev et al. 2002). Even though the ground reference consists of 
pointwise measurements and the radiometer data pixel is huge (625 km2), it 
was shown in P. 2 with FSC that the data are comparable.  The results show 
that the most accurate algorithm is the one based on time series analysis. 
Histograms of the obtained estimation error characteristics are presented in 
Figure 1 for the time series algorithm. Depending on the satellite instrument 
the mean difference in detecting snow clearance from the landscape is 0.6-1.1 
days and RMSE 22.2-22.5 days, respectively.  
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Figure 1. The accuracy of the time series snow clearance day detection algorithm (P. 

2) copyright IEEE 
 

The methodology using time series analysis was applied to SMMR and SSM/I 
radiometer observations resulting in a CDR of snow clearance day in Eurasia 
covering a period of over 30 years. Examples of the obtained snow clearance 
day estimates are  illustrated in Figure. 2.  
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Figure 2. Snow clearance day in Eurasia for years 1980, 1990, 2000 and 2007 (days since the 
31st of December of the previous year). (P.2) copyright IEEE 

Since the snow clearance dates are known for over 30 years it is possible to 
estimate the trend by using linear regression. In Figure 3. the coefficient of 
slope is presented for ground reference data and spaceborne derived 
estimates. The results show that according to ground reference data the snow 
melts earlier in some in situ locations and later on in others. On the other hand 
the satellite interpretation mostly shows earlier show melt, excluding some 
mountain regions and the Taimyr peninsula.  

 

 
Figure 3. Trend of snow clearance date using spaceborne derived results (up) and station 
data (down) (P.2). Copyright IEEE 
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The time series algorithm for snow clearance day was also used in the hemi-
spherical SWE product (see 3.2 below) as a mask to determine the snow-free 
areas during the spring melt period. Even though the algorithm was validated 
with reference data only from Eurasia, it was applied over North America too. 
The validity of this extension was tested as additional work for this disserta-
tion and the results are not published before. The results are shown in Figure 
4. Only areas with forest or tundra were chosen for this comparison and the 
land use was determined by using ESA GlobLand data, now part of Copernicus 
consortium (GlobLand [ONLINE]). Snow clearance date was determined from 
synoptic SD observations in the simplest manner. First one determines the last 
day when SD > 0 cm during the spring and sets the next day to be the snow 
clearance date.  

 

Figure 4. Direct comparison of snow clearance day estimates with weather staion ob-
served synoptic snow depth data: (left) for whole Northern Hemisphere, (center) for Eurasia 
and (right) for North America. Unpublished result.  

 

The results show that for Eurasia the estimates correspond to reference data 
well. In North America the algorithm works in general, but there are more cas-
es where the ground reference shows much earlier snow melt than the satellite 
derived product. However, this may be explained by the fact that weather sta-
tions in North America are situated more often at airports than in Eurasia, 
hence representing more often open areas than forested regions. 

 
The changes in timing of Snow Cleareance Day (SCD) have impact on both 
climate and ecological patterns. In particular, the SCD data set was used in 
P.7. as a proxy indicator for Spring Recovery (SR). The SR is defined as the 
time when CO2 uptake exceeds 15% of the summer time maximum. The justifi-
cation to use SCD as a proxy for SR is based on the fact that snow melt, soil 
thaw, onset of transpiration and photosynthesis take place in the same, or 
within a very short time frame.  
 
P.7 managed to establish the relation between SCD and SR using CO2 flux data 
from ground-based stations in Finland, Sweden, Canada and Russia (these 
stations measur the CO2 flux between the ecosystem and the atmosphere using 
an eddy covariance method). First, a linear relation between SCD and SR was 
established using the flux data measured in these locations. The obtained (av-
erage) linear relation is  
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.    (3.1-9) 

  
Once the relation is known in the measurement locations the SR can be esti-
mated for the Northern Boreal forest zone using satellite derived SCD data. 
Using the resulting proxy SR estimates the trend of advanced spring recovery 
of carbon uptake was determined in the evergreen boreal forests. Covering the 
years 1979-2014 the estimated trend of advanced spring recovery turned to be 
8.1 days (2.3 days per decade).  
 
One can determine the change of Gross Primary Production (GPP) or Net Eco-
system Production (NEP) of CO2 from the flux measurements in terms of the 
change of SR. Because SR is a proxy of SCD, also the change in GPP (or NEP) 
can be estimated using spaceborne derived data. The results show that the 
January-June sum of GPP has increased by 29 g·C·m-2 which is 8.4 g·C·m-2 
(3.7%) per decade. For comparison, the obtained climate-ecosystem model 
predicted figures are 15.5 g·C·m-2 (6.8%) per decade for Eurasia and 9.8 g·C·m-

2 (4.4%) for North America. Thus, the results obtained by using SCD as a proxy 
indicator for SR are in line with the model predicted figures. 
 
The significance of the obtained results is also that 1) spaceborne derived esti-
mates of physical (snow) parameters can be used as a proxy for higher level 
parameters. In addition, this approach 2) enables to extend the fixed location 
measurements both spatially and temporally. Possible shortcomings of the 
method appear in the areas where snow cover is ephemeral and the SCD esti-
mates are poor. However, the number of such pixels is low compared to the 
overall number of pixels. Some error can be caused due to the fact that the 
area of one radiometer instrument pixel is 625 km2 where as the flux meas-
urements are conducted in a lot smaller area (few hundreds of hectares). 

3.3 Snow Water Equivalent  

The Snow Water Equivalent  algorithm is based on assimilating ground based 
synoptic Snow Depth (SD) measurements with spaceborne brightness temper-
ature observations that are modelled as a function of SWE. HUT (Helsinki 
University of Technology) semi-empirical algorithm (Pulliainen et al. 1999) is 
used to model the brightness temperatures and Bayesian likelihood method is 
used to invert the model to obtain a SWE estimate.  
 
The HUT snow microwave emission model is a radiative transfer-based semi-
empirical model, which estimates the emission of a homogeneous snowpack as 
a function of SWE, effective grain size and snow density (Pulliainen et al. 
1999). The effects of soil surface, vegetation and atmosphere are considered by 
using empirical and semi-empirical formulas.  
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The SWE algorithm is based on fusing ground based Snow Depth (SD) obser-
vations from synoptic weather stations with spaceborne observations of 
brightness temperatures that are linked to SWE by an analytical model and 
with statistical error considerations. In step 1) the SD estimates are kriging 
interpolated over the grid. In step 2) the effective grain size and error are esti-
mated for the SD measurement locations using the HUT model. Once the es-
timates are obtained the values are interpolated over the grid in step 3). Final-
ly in step 4) the SWE estimate is obtained by using data fields from steps 1)-3) 
together with auxiliary data as an input. A cost function is minimized consider-
ing the observed brightness temperatures and the estimated statistics of the 
parameters.  

 
The kriging interpolated SD field from step 1) forms the basis of the SWE es-
timate. The main sources of error in this step originate from the inaccuracies 
of the synoptic SD measurements. Occasionally some stations e.g. report too 
high values of SD and if the station location is somewhere where the network 
of stations is sparse the reported value can have an effect on a very large area. 
(P.3). A second source of error is the constant snow density of 0.24 g/cm3. 
This is a good average value (Sturm et al. 2010) but in reality the snow density 
varies. Thus, SD observations may shift SWE estimates towards underesti-
mates, if the snow density is in reality higher than 0.24 g/cm3, or vice versa. 
 
In step 4) the snow grain size is treated as an optimization parameter con-
strained by the statistics derived from steps 2-3). I case of sparse synoptic sta-
tion network, this approach causes a decrease in accuracy when the distance to 
station increases. However, the obtained spatially and temporally varying 
snow grain size estimate reduces the problems caused by the strong sensitivity 
of space-borne observed brightness temperature to snow grain size.  In the 
assimilation step 4) the error of kriging interpolation is also used to estimate 
the sensitivity of the brightness temperature to SWE. This is used as a criteria 
to determine how much weight is put on the ground based and spaceborne 
derived SWE field, which also improves the performance of SWE retrieval. In 
P.3 it is shown that the accuracy of SWE retrieval is improved in 60% of the 
cases when assimilated SWE is compared to the SD interpolated field only, 
Pulliainen (2006).  
 
 The effect of auxiliary parameters such as vegetation is minor compared to the 
main factors affecting the accuracy of the algorithm. In P. 4 the forest stem 
volume map was improved compared to the map in P.3 but without a signifi-
cant effect on the SWE retrieval error. However, non published results show 
that the improved vegetation data might improve the retrieval error especially 
in the case of thick snowpack.  
 
In Figure 5. an example of the SWE algorithm (P. 3) is presented. One can see 
how the SWE situation evolves in spring 2003. The snow extent is already al-
most maximum during January and in February the biggest changes are in the 
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snow mass given by SWE. In March the amount of snow has grown especially 
in Northern America. In April one can see the effect of spring time snow melt, 
especially in the extent of snow.  

 

 

Figure 5. Example of Snow Water Equivalent (SWE) development over Northern 
hemisphere on 2003 (P.3). 

 

The SWE results are validated against ground reference data consisting of IN-
TASS SCCONE snow course SWE measurements in Russia covering 1979-
2001, Figure 6. On the x-axis is the ground reference SWE, and the GlobSnow 
SWE estimate is on the y-axis. The image is divided into 5 mm x 5 mm cells 
and the value of each cell shows the number of value pairs falling into that cat-
egory.  
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Figure 6. Density-scatterplot of ground reference SWE vs. GlobSNow SWE estimate 

(P.3). 
 

Figure 6. shows, that the correlation between the ground reference SWE and 
SWE estimate is good up till the value of 150 mm, where the estimates tend to 
saturate. On the other hand, one can deduct from the image that the majority 
of Eurasian observations are well under that limit. The ground reference data 
consists of snow courses that typically have a length of several kilometres. The 
snow courses were chosen over pointwise measurements in order to better 
represent the large radiometer pixel (625 km2). 
 
Super resolution SWE estimation approach 
 
P.4 investigated the development of SWE estimation method for a denser spa-
tial grid by applying super resolution techniques within the assimilation 
scheme. In practice, this was performed by considering land cover information 
required as a priori information to brightness temperature model using a con-
volution window (moving average). Concurrently the same convolution win-
dow was applied to represent the brightness temperature in the same (over-
sampled) grid with a size of about 5 km x 5 km. 
 
In Figure 7 an example of the SR-SWE estimate for the Pan European area is 
presented (P. 4) in the same way as in Figure 5 for the coarser grid covering 
the entire Northern Hemisphere from the latitude of 35 . In the uppermost 
image SWE is shown for November 2012, in the center imagefor January 2013 
and in the bottom for March 2013, respectively.  
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Figure 7. SWE development in Europe 2003 according to SR-SWE product (P.5). 

copyright IEEE 
 

Figure 8. presents (P. 4) the comparison of the resolution of (25 km) 
GlobSnow SWE, GlobSnow SWE interpolated to the 5 km grid and SR-SWE 5-
km-resolution. The results show that for the investigated coastal target area 
the radiometer native resolution of 25 km is rather coarse. The directly inter-
polated resolution has a better appearance, but effectively it does not show 
more details, whereas the SR-SWE super resolution approach has increased 
sub-pixel details compared to the native radiometer resolution.  



Advances in snow monitoring -        results and discussion 

38 

 

 
Figure 8. Example of resolution enchanment in SR-SWE product. Upper left: The ar-

ea of interest. Upper right: 25 km SWE product shown in the grid of 5 km x 5 km by using 
the nearest neighbor interpolation. Lower left: the 25 km SWE product interpolated to 5 km 
grid using bilinear interpolation. Lower right: the SR-SWE product (P. 5). copyright IEEE 

 

Experiments to assimilate Snow Water Equivalent estimates to hy-
drological modelling 

 
Figure 9. presents a river discharge forecast for Ounasjoki basin using Hydro-
logical Operations and Prediction System (HOPS) model (P. 4). HOPS is a 
hydrological model based on the Sacramento Soil Moisture Accounting Model 
(Burnash 1995). To take into account the potential evapotranspiration it uses a 
model based on Hamon's approach (Oudin et al. 2004). HOPS also contains 
in-house developed temperature index snow model, distributed routing model 
accounting for overland and channel flow retention and attenuation (P.4). In 
Figure 9. a simulation runregularized with SR-SWE product and the actual 
observed river discharge is shown. The results show that the regularization of 
the HOPS model with SR-SWE data may improve the river discharge forecast-
ing accuracy. 
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Figure 9. River discharge in Ounasjoki basin in 2013. Forecasted discharge using 
HOPS model, forecasted discharge with SWE data fusion and observed discharge(P.5). 
Coypright IEEE. 

 
Monitoring of the Earth’s cryosphere 
 

The cryosphere (including snow as a parameter) is a very valuable climate 
change indicator yet not widely publicly acknowledged as such. The Global 
Cryosphere Watch (GCW) of World Meteorological Organization (WMO) is an 
international mechanism that supports all key cryospheric in-situ and remote 
sensing observations (Key et al. 2015). GCW was established in 2011 by The 
Sixteenth World Meteorological Congress in Geneva. The purpose of GCW is to 
provide reliable information and observations on cryosphere and it’s changes 
in a continuous basis.  

 
According to GCW (Key et al. 2015) the amount of snow and timing of snow 
melt are of utmost importance for the characterization of run off. About 75% of 
the water supply in Western United States (Stewart et al. 2004) comes from 
melting snow. The importance of melt water is also big in Asia. Snow as a pa-
rameter has a big impact on transportation (aviation, trains, and vehicles), 
recreational activities, weather prediction and catastrophic events such as ava-
lanches and rapid flooding. Changing snow cover has an effect on the albedo 
and through that to the release of greenhouse gases such as CO2 and CH4. 

 
The GCW has paid attention to the fact that for snow there are a multitude of 
existing products and new ones being developed. The GCW emphasizes that 
there should be a key indicator for each geophysical parameter and thus en-
courages the scientific community to perform product intercomparison to rec-
ognize the assets and shortcomings of each of them. The intercomparison work 
is ongoing in the research community. For example, the preliminary results 
from ESA Satellite Snow Product Intercomparison and Evaluation Exercise 
(SnowPEx) (Metsämäki et al. 2016, Luojus et al. 2016) show that there is a 
great variety in terms of SE and SWE in the different products.  

 
The SWE NRT product developed in this dissertation (P. 3) is disseminated in 
the original radiometer data grid, which is the EASE grid. The EASE grid is an 
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equal area grid, which means that even though the form of the pixel depends 
on latitude and longitude the area covered is constant having the value of 625 
km2. Since SWE describes the water layer depth of snow per unit area one can 
calculate easily the total snow mass from the daily SWE product. The SWE 
NRT data is provided for GCW in the form of SWE tracker (Key et al. 2015). 
This is seen as a unique product compared to the other snow indicators of 
GCW. One must note that mountainous regions are masked out. 

 
The tracker displays the average snow mass for the Northern Hemisphere cov-
ering years 1982-2012. In addition, the limits for the standard deviation (±σ) 
are shown. The development during the current snow season is shown in red 
color and the last observation is marked with a black circle symbol. (Global 
Cryosphere Watch [ONLINE]). 

 
The tracker thus gives an immediate insight whether the winter season under 
scrutiny has a total snow mass above, near or below the climatological average. 
The advantage is that this SWE indicator covers the Northern Hemisphere and 
thus better reflects the large-scale status of snow cover and is not affected 
much by local extremes. Mountainous regions are masked out but again, they 
cover a lot smaller area compared to (relatively) flat terrain. 

3.4 Discussion 

 
Both onset of snow melt and SWE have been estimated in the previous studies 
as described in chapter 2. However, the main scope in this research has been 
to enhance the detection of these parameters especially for theboreal forest 
zone. Most of the previously existing snow clearance day (Abdalati et al. 1995, 
Drobot et al. 2001, Smith et al. 1998, Mognard et al. 2003, Hall et al. 2004) 
and SWE products (Kelly et al. 2003, Tedesco et al. 2010) work well only on 
tundra or over ice. It is also noteworthy that many of the datasets made availa-
ble before have a limited spatial or temporal coverage (Joshi et al. 2001, Foster 
et al. 2005). One of the major results in this work is thus the CDRs of snow 
covering the Northern Hemisphere for over three decades. Other datasets 
available for continental or global scale snow mass (SWE) mapping do not 
provide as good performance, due to the applied stand-alone satellite data 
retrieval methods (Kelly et al. 2003, Tedesco et al. 2010, Luojus et al. 2016). In 
addition, the SWE products are made available as services (GlobSnow 2018 
[ONLINE], SR-SWE 2018 [ONLINE], H SAF 2018 [ONLINE]). One can obtain 
the daily SWE situation for both the whole Northern Hemisphere and Pan Eu-
ropean region respectively.  
 
The CDRs provide valuable data especially for the needs of climate research 
(P. 6).  Snow clearance is known to be related to spring recovery of photosyn-
thesis. Thus it can be used as a proxy indicator for CO2 processes highly rele-
vant for the carbon balance (P. 7). SWE mapping gives a direct measure of 
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snow mass over the Northern Hemisphere. Typically three decades of observa-
tional data is a minimum length for trend analyses in climate research. Such 
dataset is provided here for snow melt and snow mass (SWE). It is possible to 
use the CDRs to estimate a trend of both snow clearance date and snow mass. 
The CDRs can also give valuable information for the parametrization of cli-
mate models.  
 
Knowledge on SWE is also important for the Numerical Weather Prediction 
(NWP) (Brasnett 1998, Pullen et al. 2011, de Rosnay et al. 2014). Since the 
SWE data has been made available on a daily basis as NRT services, it has the 
potential to be used as operational input to NWP models. However, some diffi-
culties arise because the synoptic SD is already a part of the data assimilation 
and often it is preferable that such a process is performed inside the NWP al-
gorithm. The thesis also demonstrates how the produced daily SWE infor-
mation improves the hydrological river discharge forecasts (P. 4).  
 
The obtained results (Fig.3) show that the snow melts now earlier than it did 
three decades ago. Additionally, the trend of snow mass is declining. These 
results are a part of a puzzle that confirms the effects of climate change at high 
latitudes. Discussion in public is almost exclusively concentrated on rising air 
temperature or declining ice sheet. It is demonstrated here that the same ap-
plies to snow mass and snow extent by using the developed methodologies. 
Snow is an important parameter concerning the radiation budget of the Earth. 
When both the snow melt takes place earlier and the total snow mass reduces 
it is a significant signal of climate change and also a possible source of positive 
feedback mechanism.  

 
The results (P. 7) also demonstrate that the retrieved snow parameters can act 
as a proxy to higher level parameters such as SR and GPP. This can be a pow-
erful tool to extend the spatial and temporal coverage of ground-based CO2 
flux measurements. In addition, the obtained results of the change in SR and 
GPP in northern boreal forests show the feasibility of the method and also 
make an important contribution to the climate change research. 
 
It was shown in this work than in general the snow clearance day agrees with 
climate model simulation using ECHAM5 (P. 6). On the other hand, there are 
differences in regions such northern Eurasia, Taimyr Peninsula and Northern 
Europe. In these cases, ECHAM5 estimates the snow melt to take place too 
early. This behavior is also confirmed by ground reference data although the 
ground reference data somewhat differs from the satellite-based estimates as 
well. Further analysis shows that snow parameters in ECHAM5 are affected by 
many modelled physical processes such as large-scale circulation, temperature 
(snowfall in winter), computation of snow properties on ground, treatment of 
suface albedo, and the surface energy budget. In addition, the modelling of 
snow in ECHAM5 is rather simple.  
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The SCD dataset (P. 2) can be improved further by adding a quality flag to the 
date estimate. The time series algorithm currently produces an estimate even 
in suboptimal situations (shallow snowpack, wet snowpack). The algorithm 
now detects only SCD, where as the date of onset of snowmelt could have im-
portance. For the analysis done in P.7 the parameter SCD is most suitable but 
for the climate model (P. 6) additional information might be beneficial. Also, a 
comparison of radiometer based SCD estimates with optical FSC (Metsämäki 
et al. 2012) derived SCD is ongoing. 
 
The nominal spatial resolution of available brightness temperature data has 
been about 25 km until recently. An enhanced dataset of brightness tempera-
tures (Brozik et al. 2016) has been recently made available for download. This 
dataset contains brightness temperature fields that have been resampled with 
advanced methods. If the SCD and SWE CDR’s are recreated using these data, 
the resulting CDR’s would have about 5 km spatial resolution in hemispherical 
scale. In addition, the SR-SWE (P.4) approach could still be applied at least in 
regional scale to achieve very detailed SWE maps. 
 
The SR-SWE (P.4) algorithm utilizes a forest stem volume map derived from a 
forest transmissivity map. These data could be applied also in hemispherical 
scale to get more accurate SWE retrievals. Preliminary results also show that if 
the forest component (Kruopis et al. 1999) of the HUT model (Pulliainen et al. 
1999) is upgraded to use the approach by Cohen et al. (2015) the SWE retrieval 
results improve especially with deep snowpacks.  
 
The work done in ESA SnowPEx project (Luojus et al. 2016) shows that the 
hemispherical SWE or snow mass estimate varies greatly depending on the 
type of the SWE dataset (whether it is based on model data, reanalysis of me-
teorological data, pure satellite product or data-assimilation product P.3). The 
SWE CDR described in P. 3 now determines SE using dry snow algorithm 
(Hall et al. 2002) together with SCD algorithm (P.2). The estimated total snow 
mass might be different if another SE estimate is used. This could be im-
portant if a consensus value based on multiple data sources is required. The 
meteorological community would like to have (Pullen et al. 2011) the -
spaceborne based component of the SWE (P. 3) without the synoptic SD’s and 
the assimilation step. Thus, it might make sense to disseminate several SWE 
CDR’s in the future and let the user select what suits their purpose best.   
 
In the future the goal is to provide a comprehensive dataset and service that 
describe multiple parameters of the cryosphere. In addition to snow, the da-
taset could contain soil freeze and thaw (Kerr et al. 2010, Rautiainen et al. 
2016) and other parameters. 
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4. Conclusions 

 
In this dissertation algorithms have been developed to detect snow melt date 
and snow water equivalent both in hemispherical and regional scales. The 
main emphasis has been on developing algorithms over Northern Boreal For-
ests. Both parameters have been provided as CDRs over Northern Hemisphere 
spanning over three decades.  In addition, SWE products are made available as 
NRT services (GlobSnow 2018 [ONLINE], SR-SWE 2018 [ONLINE], H SAF 
2018 [ONLINE]). 
 
It has also been demonstrated in this dissertation that snow melts earlier over 
Northern Hemisphere than it did three decades ago. Also, the snow mass has 
decreased during the same period. This is additional evidence for climate 
change. The importance is that in the public discussion the main emphasis is 
on temperature change and the decrease of ice sheets. Now similar evidence is 
provided for snow parameters of cryosphere. Snow clearance date is directly 
related to the CO2 balance in the atmosphere. The dataset thus has potential to 
be a proxy indicator for greenhouse gases.  
 
The CDRs also contribute to the development of climate models which is 
demonstrated in the publications. Using the knowledge of snow parameters in 
the last decades it is possible to compare the results with those provided by 
models. This in turn opens possibilities to enhance the models and thus obtain 
more accurate predictions how the climate will evolve.  
 
Detecting SWE has also big practical importance. Hydropower plants need to 
know the river discharge to optimize production. In this dissertation SWE data 
has been used together with hydrological models. The results show that the 
river discharge forecasts are improved with the SWE data.  
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