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1. Disease characteristics

1.1 Name of the disease (synonyms)

Inherited optic neuropathies can be caused by mitochondrial
DNA (mtDNA) variants as in Leber hereditary optic neu-
ropathy (Table 1) or by variants in nuclear-encoded genes
(Table 2).

1.2 OMIM# of the Disease

Please refer to Tables 1 and 2.

1.3 Name of the analysed genes or DNA/
chromosome segments

1.3.1 Core genes (irrespective of being tested by Sanger
sequencing or next-generation sequencing)

Core disease-causing genes have been listed in Tables 1
and 2 and marked with b symbol.

1.3.2 Additional genes (if tested by next-generation
sequencing, including whole-exome/genome sequencing
and panel sequencing)

Additional disease-causing genes have been listed in
Tables 1 and 2.

1.4 Mutational spectrum

Inherited optic neuropathies are a clinically heterogeneous
group of disorders that can be caused by variants in both
the nuclear and mitochondrial genomes. MtDNA variants
(Table 1) show strict maternal inheritance whereas nuclear
variants can be inherited in dominant, recessive or X-linked
patterns of inheritance (Table 2). Rarely, de novo variants
have also been reported.

The two most common inherited optic neuropathies are
autosomal dominant optic atrophy (DOA) secondary to
variants in the OPA1 gene (OMIM 165,500) and LHON
(OMIM 535,000). LHON is caused by mtDNA variants
and three so-called primary variants, m.3460G>A,
m.11778G > A, and m.14484T > C, account for ~90% of
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all cases. These variants change amino acid sequence in
NADH-ubiquinone oxidoreductase protein (EC:1.6.5.3)
(www.uniprot.org). The mtDNA variant is heteroplasmic
in 10–15% of LHON carriers. Optic atrophy has also
been reported as a variable clinical feature in patients
with other classical mitochondrial syndromes, for example,
maternally inherited Leigh syndrome (MILS); myoclonic
epilepsy associated with ragged-red fibres (MERRF); the

syndrome of neuropathy, ataxia, and retinitis pigmentosa
(NARP); mitochondrial myopathy, encephalopathy, lactic
acidosis and stroke-like episodes (MELAS); mitochondrial
neurogastrointestinal encephalopathy (MNGIE); chronic
progressive external ophthalmoplegia (CPEO); and the
Kearns–Sayre syndrome (KSS) [1, 2].

The list of nuclear-encoded genes that are known to
cause optic atrophy is rapidly expanding. For some genes,
for example, OPA1 and WFS1, optic atrophy is a defining
phenotypic manifestation, whereas for others, it is a
minor clinical feature observed in only some carriers.
Greater access to molecular genetic testing has expanded
the phenotype associated with specific disease-causing
genes and we have used a broad classification based
on whether the patient exhibits isolated or syndromic
optic atrophy (Table 2). The disease-causing variants for
DOA can be found in LOVD database at https://databases.
lovd.nl/shared/individuals/OPA1 (Accessed 28 February
2018). A database for LHON mtDNA variants is publicly
available through MITOMAP at https://www.mitomap.org/
foswiki/bin/view/MITOMAP/MutationsLHON (Accessed
28 February 2018). A clinical utility card has previously
been published for Wolfram syndrome [3].

1.5 Analytical validation

In a suspected case of LHON, targeted screening of the
three common mtDNA variants (m.3460G>A, m.11778G >
A, and m.14484T > C) by bi-directional fluorescent
Sanger sequencing is the routine practice. If negative,
sequencing of the complex I subunit genes (MTND1,
MTND2, MTND3, MTND4, MTND4L, MTND5 and
MTND6) or sequencing of entire mitochondrial genome
can be considered if there is a high index of clinical
suspicion and the facilities are available [4]. If indicated,
pyrosequencing or next-generation sequencing (NGS)
can be used to estimate the level of heteroplasmy [5].

The screening method for patients with an inherited
optic atrophy that is not thought to have a mitochondrial
genetic basis will vary depending on the facilities available
locally. Bi-directional fluorescent Sanger sequencing of
coding exons, including intron-exon boundaries of a parti-
cular gene remains the most widely used method, especially
in a patient with a clear-cut phenotype. This can be com-
plemented with multiplex ligation-dependent probe ampli-
fication (MLPA) dosage analysis to detect copy number
variants. With the advent of NGS technology, clinical exome
panels are now being increasingly offered by diagnostic
laboratories, allowing for a large number of optic atrophy
genes to be screened faster and more cost effectively.
Analyses of known positive and negative control samples
are required for validation of any diagnostic genetic test

Table 1 Mitochondrial DNA (mtDNA) variants identified in patients
with LHON

Name of the
disease

OMIM#
of the
disease

Variant Associated
gene(s)

OMIM# of
associated
gene(s)

Leber hereditary
optic neuropathy
(LHON)

535,000 m.11778G>Aa

m.11696G>A
m.11253T>C

MTND4b 516,003

m.14484T>Ca

m.14325T>C
m.14568C>T
m.14459G>Ac

m.14729G>A
m.14482C>Gc

m.14482C>Ac

m.14495A>Gc

m.14498C>T
m.14568C>Tc

m.14596A>T

MTND6b 516,006

m.3460G>Aa

m.3376G>A
m.3635G>Ac

m.3697G>A
m.3700G>Ac

m.3733G>Ac

m.4025C>T
m.4160T>Cc

m.4171C>Ac

MTND1b 516,000

m.4640C>A
m.5244G>A

MTND2 516,001

m.10237T>C MTND3 516,002

m.10663T>Cc MTND4L 516,004

m.12811T>C
m.12848C>T
m.13637A>G
m.13730G>A

MTND5 516,005

m.9101T>C MTATP6 516,060

m.9804G>A MTCO3 516,050

m.14831G>A MTCYB 516,020

Variants were assigned according to the human mitochondrial genome
reference sequence NC_012920.1

The remaining putative LHON variants have been found in singleton
cases or in a single family, and additional evidence is required before
pathogenicity can be irrefutably ascribed
aThe three most common mtDNA variants that cause LHON have been
highlighted in bold
bCore genes
cThese mtDNA variants affecting function. They have been identified
in ≥2 independent LHON pedigrees and show segregation with
affected disease status
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procedure. Diagnostic testing must be carried out within a
laboratory environment working to standards compliant with
the ISO 15189. Causative variants found with NGS should
be verified using Sanger sequencing or other methods, for
further details, see the Eurogentest Guideline (https://www.
genetests.org).

1.6 Estimated frequency of the disease
(Incidence at birth (‘birth prevalence’) or
population prevalence)

Inherited optic neuropathies have an estimated prevalence
of 1 in 10,000 in the general population [6]. The prevalence
of LHON (OMIM 535,000) varied between 1 in 31,000
and 1 in 54,000 in different population-based epidemiolo-
gical surveys in the Northern Europe [1, 2, 7, 8]. The
incidence has recently been reported at 1 in 1,000,000 in
the Japanese population [9]. The prevalence of OPA1
variants has been estimated at 1 in 25,000 in the United
Kingdom compared with a higher figure of 1 in 10,000
in Denmark, which could be due to a founder effect
[6, 10, 11].

1.7 Diagnostic setting

Yes No

A. (Differential) diagnostics ⊠ ☐

B. Predictive testing ⊠ ☐

C. Risk assessment in relatives ⊠ ☐

D. Prenatal ⊠ ☐

2. Test characteristics

Genotype or
disease

A: true
positives

C: false
negative

Present Absent B: false
positives

D: true
negative

Test Pos. A B Sensitivity:
Specificity:

A/(A+ C)
D/(D+ B)

Neg. C D Pos. predict.
value:
Neg. predict.
value:

A/(A+ B)
D/(C+D)

2.1 Analytical sensitivity

(proportion of positive tests if the genotype is present)

2.1.1 If tested by conventional Sanger sequencing

Less than 100%
The proportion is likely to be <100% [12]. Loss of

sensitivity may be due to the location of primers in
sequences containing single nucleotide variants (SNVs) or
rare variants, which results in the preferential amplification
of one allele (allele dropout). In addition, direct Sanger
sequencing is likely to fail to detect copy number loss/gains.
A supplementary deletion/duplication diagnostic test should
be performed for genes with a known proportion of large
genomic deletions/duplications.

For homoplasmic mtDNA variants, analytical sensitivity
of real-time PCR, RFLP analysis and Sanger sequencing of
the three common LHON variants approach 100%. Het-
eroplasmy, which is present in 10–15% of LHON carriers,
does not influence the sensitivity of molecular genetic
testing for LHON because affected individuals generally
have >70% of the mutated mtDNA in leucocytes, which
is easily detected by these standard techniques [13].

2.1.2 If tested by next-generation sequencing

Less than 100%
Analytical sensitivity of the NGS panels for single

nucleotide variant detection is estimated to be 97.9%
[12]. Loss of sensitivity may be due to incomplete
coverage of regions of interest, including low complexity
regions and GC-rich regions intractable to PCR enrich-
ment. A diagnostic test for large-scale genomic rearran-
gements, such as duplications and deletions, should
be incorporated into the analysis pipeline to help
improve analytical sensitivity.

2.2 Analytical specificity

(proportion of negative tests if the genotype is not present)

2.2.1 If tested by conventional Sanger sequencing

Nearly 100%.
False positives may, at the most, arise due to mis-

interpretation of rare polymorphic variants.

2.2.2 If tested by next-generation sequencing

Nearly 100%.
False positives may, at the most, arise due to mis-

interpretation of rare polymorphic variants. However,
the use of the ACMG (American College of Medical
Genetics) standards and guidelines for the interpretation
of sequence variants may reduce the risk of false positive
test results.
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2.3 Clinical sensitivity

(proportion of positive tests if the disease is present)
The clinical sensitivity can be dependent on variable fac-

tors, such as age or family history. In such cases a general
statement should be given, even if a quantification can only
be made case by case.

2.3.1 If tested by conventional Sanger sequencing

LHON ~90%.
LHON is characterised by bilateral, painless, subacute,

and central vision loss. The visual prognosis is poor
and the majority of patients are registered legally blind
[14]. Nevertheless, childhood onset LHON has a more
variable pattern of visual loss and a relatively better
visual prognosis [15]. LHON has a distinct phenotype
and if the diagnostic work-up has excluded acquired
causes of a bilateral optic neuropathy, the clinical sensi-
tivity of genetic testing for the three common mtDNA
LHON variants (m.3460G > A, m.11778G > A, and
m.14484T > C) is likely to be ~90%. Additional mtDNA
sequencing will further improve the clinical sensitivity.

DOA 65–75%.
For patients with a clinical diagnosis of DOA and a

positive family history, the clinical sensitivity of OPA1
screening is reported to be 65–75% [16, 17]. In more het-
erogeneous cohorts of patients with a suspected inherited
optic neuropathy, clinical sensitivities are reduced to 8.6–30%
for OPA1 screening and <1.4% for OPA3 screening, influ-
enced by factors such as age, family history, and the presence
of additional clinical deficits besides optic atrophy [16–18].

2.3.2 If tested by next-generation sequencing

No published data. Although extensive data are as yet
unavailable, NGS gene panel testing for clinically con-
firmed cases of LHON and DOA is expected to have clin-
ical sensitivity at least equivalent to that of direct Sanger
sequencing. Furthermore, it is expected that NGS panel
testing will improve clinical sensitivity in more hetero-
geneous patient cohorts with suspected inherited optic
atrophy due to its ability to capture a greater number of
candidate genes in a single test and to identify potentially
pathogenic variants in rarer disease-causing genes.

2.4 Clinical specificity (proportion of negative tests
if the disease is not present)

The clinical specificity can be dependent on variable
factors, such as age or family history. In such cases a
general statement should be given, even if a quantification
can only be made case by case.

2.4.1 If tested by conventional Sanger sequencing

As LHON is characterised by incomplete penetrance and
the prevalence of the pathogenic mtDNA variants has
been estimated at 1 in 200 in the general population, these
factors can lower the clinical specificity [19]. The clinical
specificity for nuclear-encoded optic atrophy genes will
be influenced by the prevalence of mutant alleles in the
population, disease penetrance and the age of onset of
clinical features [19].

2.4.2 If tested by next-generation sequencing

See 2.4.1

2.5 Positive clinical predictive value (life time risk
to develop the disease if the test is positive)

LHON is characterised by incomplete penetrance and a
predominance for male LHON carriers to lose vision. The
penetrance varies widely, both within and between families,
but on average, ~50% of male carriers and ~10% of female
carriers experience visual loss with a peak age of onset
in the third decade of life. The majority of OPA1 variant
carriers show evidence of clinical or subclinical optic
nerve involvement. There is limited published data on the
positive clinical predictive value for other nuclear-encoded
optic atrophy genes.

2.6 Negative clinical predictive value (Probability
not to develop the disease if the test is negative)

Assume an increased risk based on family history for a non-
affected person. Allelic and locus heterogeneity may need
to be considered.

Index case in that family had been tested:
If a non-affected relative is negative for the disease-

causing variant identified in the index case, there is no
increased risk, except for that related to the prevalence
of other disease-causing genes or loci in the general
population.

Index case in that family had not been tested:
Not known.

3. Clinical utility

3.1 (Differential) diagnostics: the tested person
is clinically affected

(To be answered if in 1.9 “A” was marked)
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3.1.1 Can a diagnosis be made other than through a
genetic test?

No ☐ (continue with 3.1.4)

Yes ⊠
clinically ⊠
imaging ⊠
endoscopy ☐

biochemistry ☐

electrophysiology ⊠
other (please describe):

3.1.2 Describe the burden of alternative diagnostic
methods to the patient

Irrespective of the availability or decision to proceed with
genetic testing, a patient with a suspected diagnosis of an
inherited optic neuropathy will undergo a comprehensive
neuro-ophthalmological evaluation, including determination
of any relevant family history and appropriate ocular
investigations such as optical coherence tomography (OCT)
imaging [20–23] and visual electrophysiology if relevant
[1, 24, 25]. MRI neuroimaging is also indicated to exclude
lesions of the anterior visual pathways as the underlying cause
of the optic neuropathy.

3.1.3 How is the cost effectiveness of alternative diagnostic
methods to be judged?

A diagnosis of an inherited optic neuropathy can usually
be made based on the clinical and ophthalmological
findings, following exclusion of other possible acquired
causes of an optic neuropathy. However, confirmatory
molecular genetic testing is advisable as a positive result
can have important implications for genetic counselling,
family planning, and possible treatment options.

3.1.4 Will disease management be influenced by the result
of a genetic test?

No ☐

Yes ⊠
Therapy (please
describe)

There are limited treatment
options for inherited optic neuro-
pathies. A subgroup of patients
with LHON can benefit partially

Table (continued)

from early treatment with
idebenone, which has been
approved by the European
Medicine Agency under
exceptional circumstances [26].
Experimental trials of neuropro-
tective drugs and gene therapy
strategies are currently ongoing
[27–32].

Prognosis (please
describe)

LHON has a relatively poor
visual prognosis. The m.14484T>C
mtDNA variant carries the
highest likelihood of spontaneous
visual recovery. The risk of
visual loss for a LHON carrier is
influenced by age and sex, but
it is not possible to accurately
predict risk at the individual
level. There is a wide variability
in disease severity for nuclear-
encoded genes that cause optic
atrophy. Data on genotype-
phenotype correlations is also
limited, especially for relatively
rare genes and syndromic
manifestations.

Management
(please describe)

The management of patients with
inherited optic neuropathies
remains largely supportive [33].
Extraocular complications in
patients with syndromic optic
atrophy, such as diabetes
mellitus, peripheral neuropathy,
epilepsy and deafness, should
be managed as part of a multi-
disciplinary team to prevent or
minimise additional comorbidities.
Visual rehabilitation plays an
important role in improving the
patient’s quality of life. Supportive
measures for those with sight
impairment include involvement
of social services.

3.2 Predictive setting: the tested person is clinically
unaffected but carries an increased risk based on
family history

(To be answered if in 1.8 “B” was marked)
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3.2.1 Will the result of a genetic test influence lifestyle
and prevention?

If the test result is positive (please describe)
Idebenone been found to be beneficial in a subgroup of

patients with visual loss from LHON treated in the acute
stage of the disease. Smoking and to a lesser extent,
excessive drinking, have been linked with an increased risk
of visual loss among LHON carriers and appropriate life-
style as well as family planning advice should therefore be
provided as part of genetic counselling [1, 26, 34]. There is
currently no available disease-modifying treatment for optic
atrophy caused by nuclear-encoded genes.

If the test result is negative (please describe)
If the test results are negative, the diagnosis should be

re-evaluated and other causes of optic neuropathy should
be considered. Negative results may influence choice of
career and inform family planning.

3.2.2 Which options in view of lifestyle and prevention does
a person at-risk have if no genetic test has been done
(please describe)?

Overall, inherited optic neuropathies carry a poor visual
prognosis. A confirmed diagnosis is therefore recommended
to allow for appropriate counselling with regards to edu-
cational support, career choices and family planning.

3.3 Genetic risk assessment in family members of a
diseased person

(To be answered if in 1.9 “C” was marked)

3.3.1 Does the result of a genetic test resolve the genetic
situation in that family?

Yes. A confirmed molecular diagnosis can help define the
genetic risk. MtDNA variants are strictly maternally trans-
mitted. The risk of transmission for nuclear-encoded genes
will be dictated by the mode of inheritance for a particular
mutant allele.

3.3.2 Can a genetic test in the index patient save
genetic or other tests in family members?

Yes. A homoplasmic mtDNA variant is expected to be
present in all maternally-related family members. If the
mtDNA variant is heteroplasmic, there can be rapid shifts in
heteroplasmy level due to the mitochondrial bottleneck
effect and carrier testing is recommended, especially in the
context of family planning and reproductive choices [35].
With regards to nuclear-encoded genes, carrier testing may
be indicated if the variant is thought to have arisen de novo

or in possible cases of non-paternity. If the genetic result for
the index patient is negative, molecular testing for other
family members is not required.

3.3.3 Does a positive genetic test result in the index patient
enable a predictive test in a family member?

Yes.

3.4 Prenatal diagnosis

(To be answered if in 1.9 “D” was marked)

3.4.1 Does a positive genetic test result in the index
patient enable a prenatal diagnosis?

Yes. Due to the complex factors that influence the risk
of disease and transmission, reproductive choices and
prenatal counselling should be provided by a qualified
health professional as part of a multidisciplinary team.
Please refer to ref. [36] for a comprehensive review of
this area of practice.

4. If applicable, further consequences
of testing

Please assume that the result of a genetic test has no
immediate medical consequences. Is there any evidence that
a genetic test is nevertheless useful for the patient or his/her
relatives? (Please describe)

Reaching a confirmed molecular genetic diagnosis for a
patient with a clinical diagnosis of an inherited optic neu-
ropathy can allow for more informed discussions about the
mode of inheritance, recurrence risk and disease prognosis.
A positive genetic test result will also exclude other possible
causes of optic neuropathy.
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