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Abstract

We study a puzzle raised recently regarding the running coupling prescription used in the calculation of forward particle
production in proton-nucleus collisions at next-to-leading order: using a coordinate space prescription which is consis-
tent with the one used in the high energy evolution of the target leads to results which can be two orders of magnitude
larger than the ones obtained with a momentum space prescription. We show that this is an artefact of the Fourier trans-
form involved when passing between coordinate and momentum space and propose a new coordinate space prescription
which avoids this problem.
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1. Introduction

Forward particle production in high energy proton-proton or proton-nucleus collisions is an important
probe of the nuclear wavefunction at small x, where nonlinear effects such as gluon saturation are expected
to become sizable. In the past few years, the Color Glass Condensate (CGC) effective theory, which is
the natural framework to study such processes, was promoted to next-to-leading order (NLO) accuracy, as
required to improve the predictability of this formalism. This includes the NLO corrections both to the
Balitsky-Kovchegov (BK) evolution [1, 2] of gluon densities in a dense nuclear target and to the hard part
describing the coupling of a dilute projectile with this target. Unfortunately, the first numerical studies
implementing these corrections met with unphysical results such as instability of the NLO high energy
evolution [3] and negativity of the forward particle production cross-section [4]. In the latter case, the
problem appears in the range of semi-hard transverse momenta where the CGC formalism is supposed to
be applicable. As shown in [5], this issue is related to the way one separates the target evolution from the
impact factor. In [6], a reformulation of the cross-section was proposed, which leads to positive results
at all transverse momenta at fixed coupling as demonstrated explicitly in [7] (a similar observation was
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recently made in the calculation of the DIS structure functions at NLO [8]). However, the correct way of
implementing the running of the coupling is still an issue. Indeed, the BK equation is most naturally solved
in coordinate space, while the cross-section is written in momentum space. In [7] it was shown that a mixed
treatment, where different prescriptions for the coupling are used in the impact factor and when solving the
BK equation, can make the negativity issue appear again. On the other hand, it was found that the use of the
same coordinate space prescription in the whole calculation leads to another problem, with the NLO result
becoming orders of magnitude larger than the LO one at large transverse momenta. Our main goal here is
thus to understand the origin of this puzzle and to identify a running coupling prescription that can lead to
physical results.

2. Results

For simplicity, we focus here on the q → q channel and do not consider the fragmentation functions.
The LO quark multiplicity reads

dNLO

d2 k dη
=

xpq(xp)
(2π)2 S(k, Xg) , (1)

where k and η are the transverse momentum and rapidity of the produced quark respectively, xp = (k⊥eη)/
√

s,
Xg = (k⊥e−η)/

√
s, and q(x) is the quark distribution in the projectile proton. S is the Fourier transform of

the dipole correlator in the color field of the target,

S(k, X) =
∫

d2r e−ik·rS (r, X) , S (x, y; X) =
1

Nc

〈
tr
[
V(x)V†(y)

]〉
X
, (2)

and its evolution as a function of X obeys the Balitsky-Kovchegov equation. The LO multiplicity (1) receives
NLO corrections associated with the emission of a hard primary gluon which can be divided into two classes,
depending upon the overall color factor: Nc or CF [9, 10]. We first consider the Nc terms which were
identified in [5] as the origin of the negativity problem observed in [4]. The sum of the LO and Nc NLO
contributions reads, in the “unsubtracted” form [6],

dNLO+Nc

d2 k dη
=

xpq(xp)
(2π)2 S(k, X0) +

1
4π

∫ 1−Xg/X0

0
dξ

1 + ξ2

1 − ξ
×
[
Θ(ξ − xp)

xp

ξ
q
(

xp

ξ

)
J(k, ξ, X(ξ)) − xpq(xp)Jv(k, ξ, X(ξ))

]
, (3)

where X0 corresponds to the initial condition for the BK evolution of the target. The functions J and Jv

can be written as Fourier transforms of coordinate-space integrals:

J(k, ξ, X(ξ)) =
∫

d2r e−ik·rJ(r, ξ, X(ξ)) , Jv(k, ξ, X(ξ)) =
∫

d2r e−ik·rJv(r, ξ, X(ξ)) , (4)

where the expressions for J and Jv can be found in [11]. When the transverse momentum k⊥ of the produced
particle is significantly larger than the target’s saturation scale Qs, this k⊥ cannot be taken from the target
via multiple scattering and hence it must be balanced by the unobserved gluon. In coordinate space, this
means that the dominant contribution to the cross-section must come from the region x⊥ ∼ r⊥, where x is
the transverse coordinate of the primary gluon. This physical condition is satisfied if one considers a fixed
coupling or the momentum-space running coupling αs(k⊥), but not also for a running coupling, like αs(r⊥),
which depends upon the parent dipole size r⊥. To see this, consider the contribution from the complementary
region at x⊥ � r⊥, which on physical grounds is expected to be unimportant. This can be estimated as [11]

J(k, ξ) ∼
∫

d2r
ᾱs

2π2 e−ik·r
∫

r⊥

d2x
x2

[
S ((1 − ξ)x) − S (−ξx)S (x)

]
for x⊥ � r⊥ , (5)

and similarly for Jv. The combination of dipole S -matrices within the square brackets grows like x2⊥ for
small x⊥ ∼ r⊥, while it exponentially vanishes for larger x⊥ � 1/Qs. Accordingly the integral over x is
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ᾱs=0.2
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Fig. 1. Left: Ratio of the NLO multiplicity (including only the Nc terms) and the LO one for different prescriptions of the running
coupling. Right: Ratio of the total NLO quark multiplicity (including both the Nc and CF terms) and the LO one for three running
coupling prescriptions. For comparison, we also show the results for ᾱs(k⊥) when including only the Nc terms (same as the curve
“ᾱs(k⊥)” in the left panel). For both figures

√
s = 500 GeV, η = 3.2 and the evolution of the color dipoles is obtained by solving the

Balitsky-Kovchegov equation with the smallest dipole prescription using an MV [13] initial condition at X0 = 0.01.

dominated by large values x⊥ ∼ 1/Qs and thus it is independent of its lower limit r⊥ in the approximation
of interest. So long as the coupling ᾱs ≡ αsNc/π is independent of r⊥, the final Fourier transform yields a
vanishing result. On the contrary, if the coupling is chosen to depend upon the parent dipole size — as is the
case for the two running coupling prescriptions most commonly used when solving the BK equation: the
smallest dipole prescription and the Balitsky prescription [12] —, this dependence will lead to a large and
unphysical contribution from the region at x⊥ � r⊥, i.e. from soft (small p⊥) primary gluons.

Because of this, and the fact that the BK equation can be written using the same integrals J and Jv, one
could wonder why similar issues don’t appear when solving it with these prescriptions. The reason is that
the BK equation involves the difference between J and Jv, i.e.

J(k, ξ = 1) − Jv(k, ξ = 1) =
∫

d2r ᾱs(r⊥) e−ik·r
∫

d2x
(2π)2

r2

x2(x + r)2 [S (−x)S (r + x) − S (r)] . (6)

Thus the spurious contributions coming from the large daughter dipoles region cancel in this case.
Based on this, we expect that using the daughter dipole prescription in the impact factor should lead to

physical results: since ᾱs(x⊥) does not depend on r, the integral (5) still vanishes after taking the Fourier
transform when x⊥ � r⊥. On the other hand, in the contributing region x⊥ ∼ r⊥, one recovers the prescrip-
tion ᾱs(r⊥). To illustrate this we show in Fig. 1 (A) the results for the NLO/LO ratio obtained with different
prescriptions for the running coupling used in the impact factor. We observe that the results obtained with
the daughter dipole prescription are close to the ones obtained with a momentum space prescription ᾱs(k⊥)
or with a fixed coupling. With the daughter dipole prescription it becomes possible to use the same coupling
in the whole calculation, and, as in the case of a fixed coupling, there is no ambiguity between the “sub-
tracted” and “unsubtracted” [6] formulations of the cross-section. Note, however, that it is not very natural
to use the daughter dipole prescription when solving the BK equation since one generally expects that the
scale of the running coupling should be set by the hardest scale in the problem.

So far we considered only the NLO corrections to the cross-section proportional to Nc. Another source
of such corrections is proportional to CF . These terms are affected by the same large daughter dipoles prob-
lem as the Nc terms, but an additional complication appears here. Indeed, the CF terms contain collinear
divergences which have to be absorbed into the DGLAP evolution of the parton distribution functions and
fragmentation functions. Because this subtraction is performed in momentum space, it is not possible to
rewrite all the CF terms as double integrals over r and x. Therefore, we cannot use the daughter dipole pre-
scription for these terms. In addition, while with a fixed or momentum space running coupling the CF terms
vanish when ξ → 1, this is no longer the case when the coupling depends on transverse coordinates, and this
generates a spurious longitudinal logarithm. We thus consider that the most physical choice for these terms
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is the momentum space prescription ᾱs(k⊥). In Fig. 1 (B) we show the results we obtain when including
both the Nc and CF NLO corrections with fixed, momentum and coordinate space running coupling. For
comparison we also show the results obtained with the momentum space prescription including only the Nc

NLO terms. This allows us to see that the inclusion of the CF terms has a sizable effect and, being opposite
in sign compared to the Nc terms, they reduce the size of the NLO corrections to the cross-section.

3. Conclusions

In this work we have identified the origin of the troublesome results obtained with the coordinate space
running coupling prescription used in [7] in the calculation of forward particle production at next-to-leading
order. This problem is due to the fact that the Fourier transform and the choice of the running coupling
prescription do not commute, and that without a careful choice of this prescription some unphysical con-
tributions no longer cancel after the final Fourier transform. We proposed [11] to overcome this problem
by using the daughter dipole prescription for the Nc terms, as this preserves the required cancellations and
leads to very similar results compared to a momentum scale choice. However, the same choice cannot be
made for the CF terms due to the subtraction of the collinear divergences, and the choice ᾱs(k⊥) seems to be
mandatory for these terms.
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