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Predicting aboveground biomass in Arctic landscapes using very high 22 

spatial resolution satellite imagery and field sampling 23 

Remote sensing based biomass estimates in Arctic areas are usually produced 24 

using coarse spatial resolution satellite imagery, which is incapable of capturing 25 

the fragmented nature of tundra vegetation communities. We mapped 26 

aboveground biomass using field sampling and very high spatial resolution 27 

(VHSR) satellite images (QuickBird, WorldView-2 and WorldView-3) in four 28 

different Arctic tundra or peatland sites with low vegetation located in Russia, 29 

Canada, and Finland. We compared site-specific and cross-site empirical 30 

regressions. First, we classified species into plant functional types and estimated 31 

biomass using easy, non-destructive field measurements (cover, height). Second, 32 

we used the cover/height-based biomass as the response variable and used 33 

combinations of single bands and vegetation indices in predicting total biomass. 34 

We found that plant functional type biomass could be predicted reasonably well 35 

in most cases using cover and height as the explanatory variables (adjusted R2 36 

0.21–0.92), and there was considerable variation in the model fit when the total 37 

biomass was predicted with satellite spectra (adjusted R2 0.33–0.75). There were 38 

dissimilarities between cross-site and site-specific regression estimates in satellite 39 

spectra based regressions suggesting that the same regression should be used only 40 

in areas with similar kinds of vegetation. We discuss the considerable variation in 41 

biomass and plant functional type composition within and between different 42 

Arctic landscapes and how well this variation can be reproduced using VHSR 43 

satellite images. Overall, the usage of VHSR images creates new possibilities but 44 

to utilize them to full potential requires similarly more detailed in-situ data 45 

related to biomass inventories and other ecosystem change studies and modelling. 46 

1. Introduction 47 

Biomass is a key parameter for tracking plant productivity, which is central to the flow 48 

of energy and nutrients in an ecosystem (Epstein et al. 2012; van der Wal and Stien 49 

2014). In Arctic tundra and other northern landscapes with low-growth vegetation, 50 

knowledge of the biomass distribution is a prerequisite for understanding and mapping 51 

changes in key ecosystem parameters such as the carbon cycle and permafrost dynamics 52 
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(Chen, Li, et al. 2009; Epstein et al. 2012). Biomass patterns have been estimated for 53 

decades using satellite images which allow the mapping of vast areas with little field 54 

work (Laidler and Treitz 2003; Raynolds, Walker, and Maier 2006; Epstein et al. 2012; 55 

Buchhorn, Raynolds, and Walker 2016). 56 

In Arctic environments, satellite based estimates of biomass distribution have 57 

mostly been carried out using rather coarse spatial resolution images (Walker et al. 58 

2003; Heiskanen 2006; Raynolds, Walker, and Maier 2006; Epstein et al. 2012; 59 

Raynolds et al. 2012; Buchhorn et al. 2013; Doiron et al. 2013; Johansen and 60 

Tommervik 2014; Berner et al. 2018), such as Landsat (30 m pixel size) (Heiskanen 61 

2006; Johansen and Tommervik 2014; Berner et al. 2018), MODIS (250 m pixel size) 62 

(Westergaard-Nielsen et al. 2015), and AVHRR (>1 km pixel size) (Walker et al. 2003; 63 

Raynolds, Walker, and Maier 2006; Epstein et al. 2012; Raynolds et al. 2012; Buchhorn 64 

et al. 2013; Doiron et al. 2013). Although the images with coarse spatial resolution have 65 

high temporal resolution and they have proved to be suitable for circumpolar studies 66 

and detecting coarse-scale biomass patterns (coefficient of determination (R2) up to 67 

0.89) (Walker et al. 2003), they are incapable of representing the fragmented nature of 68 

tundra environment and fine-scale changes in vegetation and carbon dynamics (Laidler 69 

and Treitz 2003; Virtanen and Ek 2014; Siewert et al. 2015; Beamish et al. 2017). 70 

Very high spatial resolution (VHSR, spatial resolution 0.5–2.5 m) satellite 71 

images could offer a potential method to map landscape-scale biomass distribution in an 72 

ecologically sound pixel size (Laidler and Treitz 2003; Virtanen and Ek 2014). In 73 

addition, field data is usually collected in small plots, which are more comparable to the 74 

pixel size of VHSR than coarser resolution imagery. However, the use of VHSR images 75 

has been modest in biomass prediction (Fuchs et al. 2009; Atkinson and Treitz 2013; 76 

Collingwood et al. 2014; Greaves et al. 2016). In Canadian tundra landscapes, 77 
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reasonably high prediction capabilities (R2 of 0.55 to 0.79) have been obtained with 78 

VHSR images (Atkinson and Treitz 2013; Collingwood et al. 2014). When reflectance 79 

data are combined with other types of data, such as radar and topographical data (Chen, 80 

Blain, et al. 2009; Collingwood et al. 2014) or LiDAR (Greaves et al. 2016), higher 81 

explanatory power can be obtained. The use of VHSR satellite imagery, radar and 82 

LiDAR data is hampered by the low availability of such data in VHSR at the global 83 

scale (Sinha et al. 2015; Steele-Dunne et al. 2017), and logistical and practical issues 84 

limit data collection possibilities with remotely piloted aircraft systems in remote Arctic 85 

locations. Nevertheless, the use and availability of LiDAR, radar, and VHSR optical 86 

images is increasing and they present an interesting research frontier in Arctic 87 

vegetation studies. So far, to the best of our knowledge, there are no studies in which 88 

biomass has been estimated using VHSR data and compared in various tundra 89 

environments across the circumpolar Arctic, although there have been calls for biome-90 

wide observation methodologies (Walker et al. 2016). Therefore, there is a need to test 91 

whether cross-site biomass models that include data from divergent Arctic landscapes 92 

can be developed. 93 

To get field validation data for remote sensing studies, harvested biomass 94 

samples at a plot scale are needed (Hope, Kimball, and Stow 1993; Walker et al. 2003; 95 

Raynolds, Walker, and Maier 2006; Kushida et al. 2015; Greaves et al. 2016). 96 

Previously, it has been suggested that non-destructive methods, such as estimations of 97 

height, %-cover and volume of plant species or plant functional types (PFTs, which are 98 

groups of plants with functional similarity and similar growth form), are sufficient for 99 

estimating plot-scale biomass in landscapes with low-growth vegetation and allow the 100 

collection of larger validation sets (Chen, Li, et al. 2009; Axmanova et al. 2012; 101 

Suvanto, Le Roux, and Luoto 2014). Also in this case, models have been developed and 102 



5 

 

applied only in one specific location and studies that test whether one model can be 103 

applied in various tundra environments are lacking.  104 

Our objective was to predict biomass distribution by using VHSR satellite 105 

imagery in different Arctic tundra and peatland communities and evaluate whether the 106 

same predictive regressions can be applied across circumpolar Arctic sites. Therefore, in 107 

this study, we first estimated PFT-specific biomass using harvested biomass as the 108 

response variable and field-measured height and %-cover as predictors. Second, we 109 

estimated total biomass using modelled cover/height-based biomass as the response 110 

variable and single bands and vegetation indices of VHSR satellite images as predictors. 111 

At both steps, we compared different predictor combinations and transformations as 112 

well as site-specific and cross-site regressions. We concluded our study by discussing 113 

how general the regressions are for biomass prediction and how different PFTs 114 

contribute to biomass across circumpolar northern landscapes with low-growth 115 

vegetation. 116 

2. Materials and methods 117 

2.1.Study sites 118 

We included four different study sites which present a continuum from northern boreal 119 

to sub-Arctic and to Arctic landscapes: Sodankylä in Finland, northwestern (NW) 120 

Russia, Herschel in Canada and Tiksi in Russia (Figures 1 and 2, Table 1). All the study 121 

sites are characterized by low-growth vegetation, but having some variation in 122 

landscape patterns and vegetation communities, which make them a good combination 123 

for a circumpolar comparison and testing whether simple and general approach could be 124 

used for spatial modelling.  125 

[FIGURE 1 approximately here] 126 
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[FIGURE 2 approximately here] 127 

[TABLE 1 approximately here] 128 

The Sodankylä study site is an open north-boreal fen in northern Finland (Figure 129 

1). The vegetation pattern consists of strings with shrubs and birch trees, and lawns and 130 

flarks with Sphagnum and brown mosses and sedges (Figure 2a, see Appendix 1 in the 131 

supplemental material for the dominant species). For further site description see 132 

(Dinsmore et al. 2017). 133 

The study sites Khosedayu, Rogovaya 1 and 2, and Seida located in NW Russia 134 

within 150 km to each other near the Ural Mountains (Figure 1). Generally, the 135 

vegetation, geomorphology, climate and soil characteristics were similar in these four 136 

sites; therefore, they are analyzed together. The vegetation belongs to the ecotone of 137 

forest-tundra – tundra zones, and is a mosaic of peatlands, heaths with different kind of 138 

shrubs and willow thickets and meadows along streams (Figure 2b, Appendix 1 in the 139 

supplemental material, see also Hugelius et al. (2011) and Virtanen and Ek (2014)).  140 

The Canadian study site is located on Herschel Island, which has an area of 141 

approximately 100 km2 and is located a few kilometres off the Yukon Coast in the 142 

southern Beaufort Sea, Canada (Figure 1). Prominent geomorphic features are smooth 143 

hills, river channels, and numerous retrogressive thaw slumps. In the lowland tundra, 144 

there are several different herb rich plant community types but also other type of 145 

vegetation (Figure 2c, Appendix 1 in the supplemental material, see also (Myers-Smith 146 

et al. 2011) and (Obu et al. 2017)).  147 

The Tiksi study site is located near the coast of the Laptev Sea about 120 km 148 

southeast of the Lena River delta in Siberia, Russia (Figure 1). The site consists of 149 

relatively flat lowlands and gently sloping hillslopes with elevations at 200–300 m a.s.l. 150 

Sedge and moss dominated peatlands, tundra heaths with low shrubs, and rocky and 151 
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lichen covered surfaces alternate in the site (Figure 2d, Appendix 1 in the supplemental 152 

material, see also Grosswald et al. (1992), Juutinen et al. (2017) and Mikola et al. 153 

(2018)).  154 

2.2.Biomass field data 155 

We measured the biomass, %-cover and height of the following PFTs: (1) dwarf shrubs, 156 

(2) herbs, (3) graminoids, (4) dwarf birch (Betula nana), (5) Salix spp. and other tall 157 

shrubs (height ≤ 1.5 m), and (6) mosses (height not measured). Examples of the 158 

common species or genera included in each PFT for each study site are listed in 159 

Appendix 1 in the supplemental material. The PFT classification we used was a slight 160 

modification of the one presented by Chapin III et al. (1996), and was used earlier at 161 

one of the study sites (Hugelius et al. 2011). 162 

In each study site, we sampled 48 to 182 circular plots either randomly or using 163 

transects (Table 1, Appendix 3 in the supplemental material). When sampling, plots of 164 

each major vegetation type were included, and plots w were representative of the 165 

overall landscape in each study site. Sampling set-up differed between study sites, 166 

because data were collected during different field campaigns and projects over several 167 

years. Field plots were classified in the field into vegetation types which were defined in 168 

previous studies in each site (Smith et al. 1989; Virtanen and Ek 2014; Juutinen et al. 169 

2017; Obu et al. 2017). Each plot had a radius of 5 meters and contained 3 or 4 170 

rectangular subplots of sides 30–50 cm in length (depending on the study site). These 171 

subplots were located 1.0–2.5 m from the plot centroid at right angles to each other. We 172 

visually estimated the %-cover of each PFT and measured the mean height of each PFT 173 

using a ruler in each subplot. One of the subplots was harvested during the peak 174 

growing season to measure aboveground biomass. All vascular plant material was 175 

collected. For mosses, we collected a subsample of 5 cm x 5 cm with variable depths, 176 
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determined by the height of photosynthesizing part of the mosses. The harvested 177 

biomass was sorted by PFT, oven dried at 60°C for 24 hours, and weighed. In 178 

Sodankylä and NW Russia, i.e. sites with scattered trees (height > 1.5 m), tree biomass 179 

in 5 m radius circular plots was calculated on the basis of tree height, mean stem 180 

diameter at breast height and basal area by using allometric equations (Nyyssönen 1955; 181 

Varmola and Vuokila 1986; Alexeyev et al. 1995; Kauppi, Tomppo, and Ferm 1995; 182 

Shepashenko, Shvidenko, and Nilsson 1998; Starr, Hartman, and Kinnunen 1998; 183 

Korpela 2001) as specified in Appendix 2 in the supplemental material. 184 

2.3.Satellite imagery and its preprocessing 185 

From each study site, we used one cloud free QuickBird (2.4 m pixel size in 186 

multispectral bands), WorldView-2 (2 m pixel size in multispectral bands), or 187 

WorldView-3 (1.6 m pixel size in multispectral bands) VHSR satellite image (Digital 188 

Globe, Westminster, CO, USA) acquired at approximately peak biomass and at 189 

approximately the same time as the field work in the respective study sites (Table 1). 190 

Generally, the temporal availability of VHSR satellite images is quite low in the 191 

Arctic (Stow et al. 2004; Westergaard-Nielsen et al. 2013). Some of the images were 192 

taken some days earlier in the summer than the field work, but these were the best 193 

matching images at the time of image acquisition. In Tiksi and Seida, images were 194 

taken some years before the field work but phenologically in a relatively similar phase 195 

as the field work. This should not affect image interpretation due to small or lacking 196 

disturbance and slow vegetation growth in these study sites. This interpretation is based 197 

on our field observations, a MODIS trend analysis (Appendix 4 in the supplemental 198 

material) and global comparisons in which only small changes have been observed in 199 

these sites (Epstein et al. 2012; Myers-Smith et al. 2015). Nevertheless, the timing of 200 
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satellite images may produce some uncertainties in our analysis, and there might be 201 

small-scale dynamics which cannot be observed in the MODIS images. 202 

Satellite images were first atmospherically corrected and transformed to ground 203 

reflectance values using the dark object subtraction method (Chavez 1988; Song et al. 204 

2001). After atmospheric correction, images were orthorectified to match the field work 205 

data. The geometric error based on our visual interpretations was a maximum of a 206 

couple of meters. Due to lack of high precision GPS data or precisely georeferenced 207 

maps or images, it was not possible to calculate the exact accuracy of the images. 208 

However, the accuracy should be adequate, because we used 5 m radius circular plots 209 

(plot area 78.5 m2) when predicting biomass with satellite images. In each plot, there 210 

were between 13.6 (Quickbird) and 30.7 (WorldView-3) pixels. Satellite data values 211 

were averaged to obtain a mean value per circular plot.  212 

2.4.Data analysis overview 213 

We first estimated PFT-specific biomass using PFT %-cover and height measured in the 214 

field as explanatory variables in the regression (referred as biomass-cover/height 215 

regressions). Second, we used the predicted total biomass for each 5 m radius plot as the 216 

response variable when developing regressions to estimate total aboveground biomass 217 

distribution based on VHSR satellite images (referred as biomass-satellite spectra 218 

regressions). For all sites and both regression steps, we tested both site-specific 219 

regressions with data from one study site only and cross-site regressions in which data 220 

from all study sites were used. As tree biomass was calculated using existing allometric 221 

equations, biomass-cover/height regressions were not built for them, but they were 222 

included in the biomass-satellite spectra regressions. We carried out all biomass-223 

cover/height and biomass-satellite spectra estimations with ordinary least squares linear 224 

regressions. We acknowledge that there are also more sophisticated modelling 225 
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frameworks for biomass (Collingwood et al. 2014; Greaves et al. 2016) but our goal 226 

was to test simple regression equations that can be easily interpreted and applied at 227 

different sites. We performed data analyses in R 3.2.2. (R Core Team 2015), using the 228 

car (Fox and Weisberg 2011), caret (Kuhn et al. 2016) and MASS (Venables and Ripley 229 

2003) packages.  230 

2.5.Plant functional group specific regressions for biomass based on 231 

vegetation height and %-cover 232 

We predicted area-normalized PFT biomass for the subplots using the field measured 233 

%-cover and average height of the respective groups in the subplot as explaining 234 

factors. The data from harvested subplots were used to build the regressions. For all 235 

variables, we tested the transformations suited to our data distribution in order to 236 

achieve better normality for data and to find the best fitting regressions (McDonald 237 

2014). For biomass and height, we used the following transformations (1) no 238 

transformation, (2) square root, (3) natural logarithm + 1. For %-cover, we tried (1) no 239 

transformation and (2) arcsine transformation (asin(sqrt(%-cover/100))), as %-cover 240 

distribution varies between 0 and 1 (McDonald 2014). 241 

For each functional group, we tried all the possible parameter combinations with 242 

different transformations. We tested regressions with either one or both explanatory 243 

variables but did not include two explanatory variables in the same regression if their 244 

Pearson correlation was >0.7. We formed the empirical relationships separately for each 245 

study site and also carried out cross-site regressions. We evaluated the regressions based 246 

on their root mean square error (RMSE) and chose the regressions with the lowest 247 

RMSE value. Once the best regression was determined for each PFT, it was applied to 248 

all subplots. Some of the regression equations had a negative intercept and predicted 249 

negative biomass values for a small minority of the subplots. In these cases, the biomass 250 
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was set to 0 for the respective PFT in the subplot. Finally, we added up the biomass 251 

values of every PFT to calculate the total biomass per area of each subplot. For some 252 

functional groups at some sites (Salix spp. at Sodankylä and Betula nana on Herschel), 253 

species were present only in one or two harvested subplots. In other situations, we did 254 

not harvest biomass but measured PFT %-cover (mosses on Herschel). In these cases, 255 

we used the cross-site biomass-cover/height regression estimations for the respective 256 

functional groups when we summed up site-specific total biomass. 257 

2.6.Predicting total biomass using VHSR satellite images 258 

We built biomass-satellite spectra regressions to predict biomass using estimated 259 

cover/height-based total biomass as the response variable and individual spectral bands 260 

and spectral indices of VHSR satellite images as predictors (Table 2). We carried out 261 

three different types of regressions: site-specific cover/height predictions combined with 262 

satellite image data from one site, cross-site cover/height predictions combined with 263 

satellite image data from one site, and cross-site cover/height predictions with satellite 264 

image data from all study sites. 265 

[TABLE 2 APPROXIMATELY HERE] 266 

Estimated cover/height-based biomass was calculated as the mean of the 267 

predicted subplot biomass values in the respective 5 m radius plot. To evaluate the 268 

uncertainty in biomass-cover/height regressions, we also carried out alternative 269 

biomass-satellite spectra regressions, in which we used harvested subplot-scale biomass 270 

data as response variable. In these alternative calculations, used site-specific 271 

cover/height-based moss biomass estimate for Tiksi and Seida 2016 data and cross-site 272 

cover/height-based moss biomass estimate for Herschel as mosses were not 273 

systematically harvested in these datasets. For Sodankylä and NW Russia, we included 274 

tree biomass in all biomass-satellite spectra regressions.  275 



12 

 

Individual spectral bands consisted of blue, green, red, and near infrared (NIR) 276 

for the Quickbird images. For the WorldView images, the following bands were also 277 

included: coastal, yellow, red-edge, and NIR2. We calculated the mean value per band 278 

or index for the 5 m radius circle corresponding to each plot location. 279 

We transformed biomass values with a natural logarithm as this transformation 280 

has been used usually in tundra biomass studies, and it has been found in several studies 281 

that there is a logarithmic relationship between biomass and satellite spectra (Walker et 282 

al. 2003; Raynolds et al. 2012; Atkinson and Treitz 2013; Berner et al. 2018). Satellite 283 

image values were not transformed. In each regression, those predictors whose 284 

correlations were < 0.7 were chosen in the same model. All combinations were tested, 285 

and also regressions with only one vegetation index. Variables were selected on the 286 

basis of Akaike’s Information Criteria and 10-fold cross-validation. Finally, we 287 

compared the regressions built using different explanatory variable sets by comparing 288 

the RMSE values. 289 

3. Results 290 

3.1.Aboveground biomass of different tundra and peatland vegetation types 291 

The highest total biomass values were found at the NW Russian sites consisting of both 292 

mineral tundra and peatland. The southernmost site Sodankylä, a treeless fen, had lower 293 

total biomass values than NW Russia study sites. The most Arctic site, Tiksi had the 294 

lowest total biomass. The proportion of different PFTs varied among the study sites. At 295 

Sodankylä, a major proportion of the biomass consisted of mosses; at NW Russia, 296 

Betula nana and other shrubs had high biomass values; herbaceous biomass was higher 297 

on Herschel than at other study sites, whereas at Tiksi, graminoids contributed most to 298 

total biomass (when mosses were excluded) (Table 3). Similar trends could also be seen 299 
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in the average %-cover and height of PFTs, but there were variation in habitat type 300 

specific biomass at each study site (Appendix 5 in the supplemental material). At 301 

Sodankylä, there were trees in 32% (n = 16) of the 5 m radius plots with an average 302 

biomass of 117.2 g m-2, while at NW Russia trees were present in 6.8% (n = 25) of the 303 

plots with an average biomass of 903.0 g m-2.  304 

[TABLE 3 APPROXIMATELY HERE] 305 

3.2.Predicting biomass using easily measurable plant height and %-cover  306 

PFT-specific empirical regressions to predict biomass by %-cover and height of plants 307 

performed well in most of the cases, with the adjusted coefficient of determination 308 

(R2
adj) values varying between 0.21 and 0.92 (Table 4). Overall, the lowest R2

ajd values 309 

were obtained for mosses (R2
adj 0.21–0.38), but also in some vascular plant regressions 310 

RMSE values were relatively high. There was variation across study sites which PFT 311 

regressions had the lowest RMSE and highest R2
adj values. 312 

[TABLE 4 APPROXIMATELY HERE] 313 

Overall, the total predicted cover/height-based biomass values ranged between 0 314 

and 2000 g m-2 in the study plots (Figure 3). On average, the biomass was greatest and 315 

had the largest variation at NW Russia. Based on site-specific estimate and excluding 316 

trees, average total biomass was 423 g m-2 and standard deviation 321 g m-2. Sodankylä 317 

had relatively high average biomass (282 g m-2) and low standard deviation (115 g m-2), 318 

while Herschel (average 196 g m-2, standard deviation 102 g m-2) and Tiksi (163 g m-2, 319 

standard deviation 73 g m-2) had low average biomass values and low variation. 320 

[FIGURE 3 APPROXIMATELY HERE] 321 

Cross-site regressions performed quite differently between the study sites 322 

(Figures 3 and 4), by underestimating total biomass on Herschel (21% difference) and at 323 

NW Russia (2%), and overestimating at Sodankylä (10%) and at Tiksi (3%). At NW 324 
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Russia, PFT-specific average patterns between observed and predicted values were 325 

close to 1:1 line, whereas at other study sites, there were more evident underestimation 326 

or overestimation (Figure 4). NW Russia had the highest number of observations, which 327 

may have an undue influence on the regression. In individual subplots and in PFTs, 328 

disparities between cross-site and site-specific estimations were often significantly 329 

higher than differences between average total site biomass. 330 

[FIGURE 4 APPROXIMATELY HERE] 331 

3.3.Using VHSR imagery to estimate total aboveground biomass distribution 332 

In biomass-satellite spectra regressions, R2
adj values ranged between 0.33 and 0.75 333 

(Table 5). The best fits were obtained on Herschel and at Tiksi, whereas at Sodankylä 334 

the R2
adj values were seemingly low and at NW Russia RMSE values high. RMSE 335 

values in cross-site biomass-satellite spectra regression were larger than in site-specific 336 

biomass-satellite spectra regressions, with the RMSE value being especially high on 337 

Herschel (Table 6). Cross-site biomass-satellite spectra regression overestimated 338 

biomass values for Herschel, and underestimated for NW Russia and Tiksi (Figure 5, 339 

Table 6). At Sodankylä, there was overestimation in plot-specific predicted values and 340 

underestimation in the landscape (Table 6). Alternative biomass estimations having 341 

harvested data as the response variable had higher RMSE values than biomass 342 

estimations using cover/height-modelled biomass as the response variable. The 343 

differences in average biomass values between regressions using cover/height-based 344 

biomass estimate and harvested biomass were small at Sodankylä and Tiksi and a little 345 

higher at NW Russia and on Herschel (Table 6). Finally, there was fine-scale spatial 346 

variation in biomass distribution across the landscapes, and spatial pattern of biomass 347 

was divergent in different study sites (Figure 6). 348 

[TABLE 5 APPROXIMATELY HERE] 349 
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[TABLE 6 APPROXIMATELY HERE] 350 

[FIGURE 5 APPROXIMATELY HERE] 351 

[FIGURE 6 APPROXIMATELY HERE] 352 

4. Discussion 353 

Aboveground plant biomass in tundra environments can be predicted reasonably well at 354 

the plot scale with easily measurable field data (height, %-cover) (Table 4, Figure 4). 355 

This is also supported by the fact that biomass-satellite spectra regressions using 356 

cover/height modelled biomass as the response variable had lower RMSE and relatively 357 

similar average biomass estimate than biomass-satellite spectra regressions using 358 

harvested biomass as the response variable (Table 6). The finding suggests that it is 359 

more recommendable to measure plant cover and height in a larger area and estimate 360 

biomass based on these measurements than to use only small harvested biomass 361 

samples when carrying out biomass-satellite spectra models. 362 

Previously, it has been shown that both %-cover and height information are 363 

needed for the most accurate biomass predictions at the plot scale (Chen, Li, et al. 2009; 364 

Axmanova et al. 2012; Suvanto, Le Roux, and Luoto 2014). Our results show instead 365 

that in some sites and in some PFTs, the lowest RMSE values were obtained with %-366 

cover measurements only, but in most regressions for vascular plants, height 367 

measurements were needed for the best predictions (Table 4). Biomass-cover/height 368 

regressions had higher R2
adj values for vascular plants than for mosses. The poor 369 

regression performance of mosses compared to vascular plants could be related to small 370 

size of harvested moss samples, to moisture content of the mosses as changing moisture 371 

changes the volume, colour and productivity of mosses and to the heterogeneity of the 372 

growth forms of moss genera. Possibly separate regressions for different types of 373 

mosses, like liverworts, peat-mosses, and other mosses (possibly further divided into 374 
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sub-groups), should be used. In future studies, more samples in a more systematic way 375 

from different types of moss growth forms should be collected to allow better model 376 

development for moss biomass. 377 

There are differences in the explanatory potential of satellite image regressions 378 

across tundra or other northern landscapes with low-growth vegetation (Table 5). In a 379 

comparison between two sites at Nunavut, Canada, Atkinson and Treitz (2013) got 380 

higher R2 values for their southern site which had lower average biomass and lower 381 

biomass variation across plots. Also in our study, the sites with low average biomass 382 

and low variation (Herschel and Tiksi) had low RMSE and high R2
adj values, whereas 383 

sites with high average biomass (Sodankylä and sites in NW Russia) had higher RMSE 384 

and lower R2
adj values. These differences could be related to within-site characteristics 385 

and variation in vegetation. For instance, the relationship between NDVI (or other 386 

vegetation indices) and biomass has been strong in VHSR evaluations in the Canadian 387 

Arctic associated with clear NDVI gradients from non-vegetated surfaces with low 388 

NDVI values to vegetated areas with high NDVI values (Atkinson and Treitz 2013; 389 

Collingwood et al. 2014). Of our sites, Herschel and Tiksi had large areas with no 390 

vegetation and, on the other hand, high herbaceous biomass in other places. In turn, 391 

especially at the north boreal fen Sodankylä, the biomass and NDVI gradients were 392 

short, and the landscape was dominated by an almost continuous moss cover. Moreover, 393 

it has been shown that variation of biomass in wetter sites, such as Sodankylä in our 394 

case, is not always evident in reflectance patterns as soil moisture suppresses NIR 395 

reflectance (Buchhorn et al. 2013).  396 

It also is noteworthy that the PFT composition differs between the study sites, 397 

and this may affect the relationships between spectral reflectance and biomass. 398 

Vegetation indices such as NDVI and RATIO are connected to greenness as well as 399 
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cellular and volume scattering by vegetation (Birth and McVey 1968; Rouse et al. 400 

1973). It may be that in moss and shrub vegetation, which dominate in Sodankylä and 401 

among the sites in NW Russia, biomass and reflectance variables used in our analyses 402 

are not as tightly connected as in herbaceous vegetation, which has higher relative 403 

biomass in Herschel and Tiksi. In shrubs, the woody part has a large contribution to 404 

biomass, but they do not have as high reflectance values as leaves and other green parts 405 

found in herbaceous plants. In addition, the canopy structure is different in herbs and 406 

shrubs, which also affects reflectance. Furthermore, in the previous research, there have 407 

been problems in estimating moss biomass with the help of spectral reflectance (Bratsch 408 

et al. 2017). Especially Sphagnum have narrow absorption peaks in red and NIR, which 409 

hampers the value of vegetation indices in biomass estimation (Bubier, Rock, and Crill 410 

1997). The variation in PFTs confuse the universal relationships but are worth 411 

examining in future research. 412 

Examination of previous studies in sub-Arctic or Arctic environments suggests 413 

that coarse patterns in vegetation and biomass distribution are easier to detect than fine-414 

scale variations. Usually moderate to high R2
ajd values (>0.4) have been obtained in 415 

studies from plot to circumpolar scale (Hope, Kimball, and Stow 1993; Walker et al. 416 

2003; Riedel, Epstein, and Walker 2005; Heiskanen 2006; Fuchs et al. 2009; Kushida et 417 

al. 2009; Raynolds et al. 2012; Atkinson and Treitz 2013; Buchhorn et al. 2013; Doiron 418 

et al. 2013; Collingwood et al. 2014; Johansen and Tommervik 2014; Kushida et al. 419 

2015). The highest R2
ajd values (>0.7) between NDVI and biomass have been obtained 420 

in studies that use moderate to coarse resolution satellite datasets (Walker et al. 2003; 421 

Heiskanen 2006; Raynolds et al. 2012; Buchhorn et al. 2013; Johansen and Tommervik 422 

2014; Berner et al. 2018). In studies that use plot-scale NDVI measurements or VHSR 423 

imagery, the R2
ajd values have often been near 0.5 or even below it (Hope, Kimball, and 424 
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Stow 1993; Riedel, Epstein, and Walker 2005; Fuchs et al. 2009; Kushida et al. 2009; 425 

Atkinson and Treitz 2013; Kushida et al. 2015) but there are also some exceptions 426 

(Atkinson and Treitz 2013; Buchhorn et al. 2013; Collingwood et al. 2014). One reason 427 

behind this disparity might be that the variation in spectral reflectance patterns is more 428 

evident at coarser scales, which usually also include areas with no or little biomass and 429 

low NDVI values. Nevertheless, more research is needed to analyze how the biomass 430 

distribution varies from fine to coarse scale across the different land cover and 431 

vegetation types. 432 

We showed that cross-site regressions functioned relatively well in biomass-433 

cover/height regression, with the underestimation and overestimation being relatively 434 

small (Figures 3 and 4). Nevertheless, there were large potential biases and high RMSE 435 

values in cross-site biomass-satellite spectra regression predictions (Figure 5, Table 6). 436 

This was evident on Herschel, where there were 2–3-fold differences in the landscape-437 

scale average biomass when different regression combinations were used (Table 6). 438 

This finding is in line with the study by Atkinson and Treitz (2013), who, however, had 439 

only two sites at Nunavut, Canada for their comparison. The differences between sites 440 

suggest that satellite image based shrub tundra models work well in different shrub 441 

tundra landscapes such as NW Russian sites, but their value is limited in herbaceous 442 

environments such as Herschel, and it is tedious to find suitable cross-site models. 443 

Nevertheless, on Herschel, the combination of cross-site biomass-cover/height 444 

regression and site-specific biomass-satellite spectra regression yielded lower RMSE 445 

values than the combination of two site-specific regressions. This might be due to the 446 

fact that cross-site biomass-cover/height regressions were more realistic as they had a 447 

bigger sample size. Another possibility is, that although cross-site biomass-cover/height 448 

regressions slightly underestimated biomass values, modelled values were such that 449 
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they could be modelled with satellite spectra. Nevertheless, it might be that cross-site 450 

models are more robust to outliers due to larger sample size, and they can give better fit, 451 

if there is no large differences in the environmental characteristics of the study sites.  452 

The biomass-satellite spectra regressions that included multiple explanatory 453 

variables had better prediction capability than regressions with only one index as 454 

explanatory variable. Furthermore, in previous research, good explanatory power has 455 

been obtained using models that combine optical imagery and other types of remote 456 

sensing data both in the Arctic areas (Chen, Blain, et al. 2009; Collingwood et al. 2014; 457 

Greaves et al. 2016) and other landscapes with low-growth vegetation (Glenn et al. 458 

2016). In particular, features related to vegetation height, topography, moisture 459 

gradients, soil properties and geomorphology could improve biomass models (Chen, 460 

Blain, et al. 2009; Axmanova et al. 2012; Collingwood et al. 2014; Suvanto, Le Roux, 461 

and Luoto 2014; Glenn et al. 2016; Greaves et al. 2016). In a similar manner, in 462 

peatland landscapes such as Sodankylä, carbon exchange and other ecosystem 463 

properties are linked to microtopographical variation (Lees et al. 2018), which could be 464 

captured with VHSR digital elevation models. It may be that the benefit of other 465 

datatypes is greater in areas where the relationship between reflectance and biomass is 466 

weak. Therefore, future research should combine VHSR imagery with other VHSR data 467 

and test what kind of models and predictor variables should be used in each kind of 468 

landscape and if some predictor sets are locally optimal but not as useful in a larger 469 

area.  470 

Finally, our analysis did not include phenological dynamics nor did we analyze 471 

the optimal timing for satellite imagery in mapping biomass distribution. Biomass and 472 

other vegetation parameters change during the growing season; furthermore, the relative 473 

importance of different PFTs change as the growing season proceeds (Anderson et al. 474 
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2016; Wang et al. 2016; Juutinen et al. 2017). It has thus been shown that the seasonal 475 

phase of VHSR images affect the interpretation of vegetation parameters such as leaf-476 

area index (Juutinen et al. 2017). However, more work is needed on evaluating how the 477 

timing of satellite images affects success in mapping biomass distribution.  478 

5. Conclusions 479 

We estimated aboveground biomass in four different Arctic landscapes using field 480 

sampling based biomass-cover/height regressions and biomass-satellite spectra 481 

regressions. We tested both site-specific regressions and cross-site regressions across all 482 

the study sites, and showed that biomass-cover/height regressions perform well in most 483 

cases (R2
adj 0.21–0.92), and their performance varies in biomass-satellite spectra 484 

regressions (R2
adj 0.33–0.75). The cross-site regressions should be used with care in 485 

biomass-satellite spectra regressions, as they underestimated biomass in some study 486 

sites and overestimated them in other sites. However, in biomass-cover/height 487 

regressions there was no large differences in predicted biomass values when site-488 

specific regressions were compared with cross-site regressions. Moreover, due to larger 489 

sample size, cross-site regressions are more robust to outliers, and may yield better fit 490 

than site-specific regressions when they combine data from study sites which have 491 

similar vegetation and landscape characteristics. We showed that there is considerable 492 

variation in biomass distribution both within and between different Arctic landscapes, 493 

and the biomass and proportion of different PFTs vary between Arctic landscapes. 494 

Nevertheless, there is further need for model building and validation across different 495 

tundra environments, including landscape types which were not included in our study or 496 

still have limited field datasets. To summarize, the usage of VHSR images creates new 497 

possibilities to map the fine-scale spatial variability in biomass in landscapes with 498 

patchy vegetation cover for different kind of ecosystem and modelling purposes, but 499 
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some caution is needed when trying to develop models performing well in different 500 

environments.  501 
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 781 

Figure 1. Location of the study sites. Vegetation zones A–E are based on Walker et al. 782 

(2005) and forest tundra (F) on Olson et al. (2001). Sodankylä belongs to the northern 783 

boreal vegetation zone. 784 

 785 
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 786 

Figure 2. Study sites (a) Sodankylä, (b) Seida in Northwestern Russia, (c) Herschel 787 

Island, and (d) Tiksi. 788 



29 

 

 789 
Figure 3. Distribution of total aboveground biomass estimated for 5 m radius plots at each 790 

study site using cross-site and site-specific regressions. Note: Sodankylä and NW Russia 791 

estimates do not include tree biomass. Lines in the middle of the boxes show the median 792 

value and the lower and upper hinges are the first and third quartiles. The lower and upper 793 

whiskers extend to the smallest and largest values which are no further than 1.5 times the 794 

distance between the first and third quartiles. 795 
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 796 

Figure 4. Observed (y-axis) vs. predicted i.e. harvested (x-axis) biomass for harvested 797 

plots (symbols) for (a) dwarf shrubs, (b) Betula nana, (c) Salix spp., (d) herbs, (e) 798 

graminoids and (f) mosses. Cross-site regressions for different plant functional groups 799 

were applied and the 1:1 line is shown. For each study site, individual plots are marked 800 

with symbols and the 50% confidence interval with an ellipsoid. 801 
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 802 

Figure 5. Predicted biomass (x-axis) against observed biomass in the best fitting cross-803 

site biomass- satellite spectra regression. Observed biomass is the sum of the predicted 804 

values of the best fitting cross-site biomass-cover/height regressions for each PFT and 805 

tree biomass. For each study site, individual plots are marked with asterisks and a 50% 806 

confidence interval with an ellipsoid. Line represents a 1:1 line. To increase readability 807 

of the plot, three observations with > 3000 g m-2 observed biomass were removed from 808 

the plot. 809 

 810 
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 811 

Figure 6. RGB satellite images and biomass maps for Sodankylä (a, b), Seida in NW 812 

Russia (c, d), Herschel (e, f), and Tiksi (g, h). Biomass maps were produced with the 813 

best fitting site-specific regressions (see Table 5). Spatial resolution of the images is 814 

shown in Table 1 and biomass maps have same pixel size as the images. In the satellite 815 

images, the location of the field sampling plots are shown with star symbols. For 816 

Seida/NW Russia and Herschel, only part of the field sampling plots are shown, because 817 

the plots were collected from a larger area. Satellite images ©Digital Globe. 818 
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 819 

Table 1. Coordinates of the study sites, mean July temperature sensor and imagery 820 

information, and date of the field data collection. In the column “Sensor”, WV refers to 821 

WorldView and QB to QuickBird.   822 

Study site Location 

Mean July 

temperature 

(°C) 

Sensor 
Pixel 

size (m) 

Imagery 

date 
Fieldwork date 

Numbe

r of 

plots 

Sodankylä 
67° 22' N 26° 

39' E 
14.51 WV-2 2 

4 July 

2015 
15–20 July 2014 50 

Khosedayu2  
67° 3' N 59° 

25' E 
133 QB 2.4 

30 June 

2008 
19–25 July 2007 60 

Seida2 
67° 4' N 62° 

56' E 
133 QB 2.4 

6 July 

2007 

5 July–6 Aug 2007 1504 

24–27 July 2016 32 

Rogovaya 12  
67° 22' N 62° 

15' E 
133 QB 2.4 

4 July 

2007 
8–11 July 2007 62 

Rogovaya 22  
67° 17' N 62° 

6' E 
133 QB 2.4 

4 July 

2007 
13–17 July 2007 62 

Herschel 
69° 35' N 

138° 55' W 
95 WV-3 1.6 

8 Aug 

2015 
23 July–3 Aug 2015 48 

Tiksi 
71° 35' N 

128° 53' E 
76 QB 0.67 

15 July 

2005 
23–27 July 2014 91 

1(Finnish Meteorological Institute 2017) 823 
2Analyzed together with other northwestern (NW) Russia study sites (Khosedayu, Seida, Rogovaya 1 and 824 
2). 825 
3(Marushchak et al. 2013) 826 
4In addition, we used data from 34 extra subplots in biomass-cover/height regressions. 827 
5(Burn 2012) 828 
6(AARI 2017b) 829 
7Image was delivered as a pan-sharpened product, i.e. all multispectral bands had 0.6 m resolution. 830 
 831 

  832 
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Table 2. Calculated vegetation indices, their references, and equations. Variables in the 833 

table refer to the respective spectral bands of the images and NIR to near infrared. 834 

Normalized difference vegetation index 2 was calculated only for WorldView images as 835 

it includes the near infrared 2 (NIR2) band. 836 

Index Equation 

Normalized difference 

vegetation index (NDVI) 

(Rouse et al. 1973) 
NDVI =

((NIR) − (red))

((NIR) + (red))
 

Normalized difference 

vegetation index 2 (NDVI2) 

(Eckert 2012) 
NDVI2 =

((NIR2) − (red))

((NIR2) + (red))
 

 
Red-green index (RGI) 

(Coops et al. 2006) 
RGI =

((green) − (red))

((green + (red))
 

 
Simple ratio (RATIO) (Birth 

and McVey 1968) 
RATIO =

(red)

(NIR)
 

 
Enhanced vegetation index 

(EVI) (Liu and Huete 1995) 
EVI = 2.5 ×

((NIR) − (red))

((NIR) + 6 × (red) − 7.5 × (blue) + 1)
 

 
Enhanced vegetation index 2 

(EVI2) (Jiang et al. 2008) 
EVI2 = 2.5 ×

((NIR) − (red))

((NIR) + 2.4 × (red) + 1)
 

 
Soil-adjusted vegetation 

index (SAVI) (Huete 1988) 
SAVI =

((NIR) − (red))

((NIR) + (red) + 1)
× 1.5 

 
Modified SAVI (MSAVI2) 

(Qi et al. 1994) MSAVI2 =
(2 × (NIR) + 1 − √(2 × (NIR) + 1)2 − 8 × ((NIR) − (red)))

2
 

 
 837 

Table 3. Average ± standard deviation of biomass values for each plant functional type 838 

and study site based on field samples. The plant functional type with highest biomass at 839 

each site is shown in bold. Note: moss biomass for Herschel and Tiksi and tree biomass 840 

are not included in this table. 841 

Study site 
Biomass (g m-2) 

Dwarf 

shrubs B. nana Salix spp. Herbs 

Graminoid

s Mosses Total 

Sodankylä 27.9±33 16.5±51.9 0.5±8.4 5.4±8.7 30.3±11.8 
217.9±187.

6 298.4±210 

NW 

Russia 114.7±132.0 
157.3±329.

3 

46.4±270.

5 7.9±19.1 18.7±36.8 102.9±87.0 

439.3±431.

6 

Herschel 37.2±54.2 12.2±61.2 65.1±98.1 

28.8±40.

0 35.5±32.7 - 

178.8±116.

1 

Tiksi 15.1±32.6 10.4±22.3 16.9±24.2 8.8±16.7 28.2±30 - 79.4±46.9 

 842 

  843 
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Table 4. Equations for different biomass-cover/height regressions for predicting plant 844 

functional type biomass (bm). Adjusted coefficient of determination (R2
adj) values, 845 

average biomass in the training data (harvested data), root mean square error (RMSE) 846 

values, and p-values are also given. In the table, c refers to %-cover and h to height. 847 

Plant functional 

group Site Equation R2
adj. 

Average 

biomass 

(g m-2) 

RMSE 

(g m-2) 

p-value 

Dwarf shrubs Cross-site bm = -31.85+2.98xc+8.01xh 0.52 121.6 86.9 < 0.0001 

Sodankylä bm = -15.12+90.46xasin(c)+1.58xh 0.65 35.7 19.3 < 0.0001 

NW Russia bm = -186.89+265.36xasin(c)+61.06x√h 0.50 146.6 92.9 < 0.0001 

Herschel bm = -0.86+19.75xasin(c) 0.87 61.2 18.9 < 0.0001 

Tiksi bm = -46.83+136.72xasin(c)+26.56x√h 0.61 40.4 26.2 < 0.0001 

Betula nana Cross-site √bm = 1.05+0.22xc+ 0.22xh 0.79 226.7 212.4 < 0.0001 

Sodankylä √bm = -0.38+0.22xc+0.11xh 0.92 74.8 16.4 < 0.0001 

NW Russia √bm = -5.07+0.22xc+ 2.56x√h 0.79 256.9 224.7 < 0.0001 

Herschel n.a. - - - - 

Tiksi bm = 1.37+3.30xc 0.62 30.6 17.4 < 0.0001 

Salix spp. Cross-site √bm = 0.88+ 0.28xc+0.13xh 0.78 154.8 252.4 < 0.0001 

Sodankylä n.a. - - - - 

NW Russia √bm = -0.36+0.30xc+0.14xh 0.72 403.2 424.4 < 0.0001 

Herschel √bm = -0.09x0.40xc+0.15xh 0.83 77.3 30.2 < 0.0001 

Tiksi bm = 0.95+1.97xc 0.84 25.2 10.3 < 0.0001 

Herbs Cross-site bm = -8.46+94.21xasin(c)-3.24xln(h) 0.63 20.2 17.1 < 0.0001 

Sodankylä √bm = 0.41+0.10xc+0.05xh 0.83 9.3 4.1 < 0.0001 

NW Russia bm = -20.75+80.38xasin(c)+3.95xln(h) 0.63 22.2 16.2 < 0.0001 

Herschel bm = -0.02+1.78xc+0.85xln(h) 0.84 31.3 16.0 < 0.0001 

Tiksi bm = 1.15+86.58xasin(c)-6.67xln(h) 0.73 12.6 9.9 < 0.0001 

Graminoids Cross-site √bm = -2.06+6.53xasin(c)+1.08√h 0.64 27.9 23.8 < 0.0001 

Sodankylä bm = 20.62+0.46xc-0.29xh 0.24 30.3 9.9 0.0005 

NW Russia √bm = -2.48+7.04xasin(c)+1.07x√h 0.66 25.3 25.5 < 0.0001 

Herschel √bm = -4.58+12.48xasin(c)+2.36xln(h) 0.77 36.9 16.8 < 0.0001 

Tiksi bm = -5.71+1.23xc+0.89xh 0.89 31.6 9.8 < 0.0001 

Mosses Cross-site bm = -4.71+136.97xasin(c) 0.28 124.9 91.7 < 0.0001 

Sodankylä bm = -96.01+244.10xasin(c) 0.28 227.0 154.2 < 0.0001 

NW Russia bm = 20.72+100.37xasin(c) 0.21 110.1 75.5 < 0.0001 

Herschel n.a. - - - - 

Tiksi bm = -49.06+180.46xasin(c) 0.38 139.7 52.9 0.0022 
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Table 5. Regression equations, adjusted coefficient of determination (R2
adj) values, and 850 

p-values for biomass-satellite spectra regressions. For all sites, the results are shown for 851 

regressions with the lowest root mean square error value using both site-specific and 852 

cross-site height-cover based biomass estimations. In the table, bm refers to 853 

aboveground biomass. 854 

Site 

Cover/height-

based estimation Best regression R2
adj  

p-value 

Cross-site Cross-site ln(bm) = 3.84+31.19xSAVI+13.02xRED-23.54xNIR 0.47 

< 

0.0001 

Sodankylä 

Cross-site 

ln(bm = 5.73-12.03xRATIO+135.53xCOASTAL-

13.39xGREEN 0.33 

< 

0.0001 

Site-specific ln(bm) = 6.01-11.17xRATIO+77.93xCOASTAL 0.33 

< 

0.0001 

NW Russia 

Cross-site ln(bm) = 8.32-8.35xRATIO+2.75xRGI-1.86xNIR 0.51 

< 

0.0001 

Site-specific ln(bm) = 8.39-8.37xRATIO+2.91xRGI-2.01xNIR  0.51 

< 

0.0001 

Herschel 

Cross-site ln(bm) = 7.26-6.07xRATIO-5.03xRED-EDGE 0.75 

< 

0.0001 

Site-specific ln(bm) = 2.89+4.69xNDVI-4.43xRED-EDGE 0.68 

< 

0.0001 

Tiksi 

Cross-site ln(bm) = 9.50-17.0xRATIO+35.8xRED-8.71xNIR 0.63 

< 

0.0001 

Site-specific ln(bm) = 8.57-14.24xRATIO+25.76xRED-5.55xNIR 0.66 

< 

0.0001 

 855 
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Table 6. Average satellite spectra based biomass estimate in the study plots (Plot), root 857 

mean square error of the biomass-satellite spectra model (RMSE), and average biomass 858 

estimate in the overall landscape for each study site. In the “Regression combination” 859 

column, ss refers to site-specific and cs to cross-site model, with first acronym pointing 860 

to biomass-cover/height regression and second acronym to biomass-satellite spectra 861 

regression. Combinations subplot-ss and subplot-cs refer to alternative biomass-satellite 862 

spectra regressions that use harvested biomass instead of cover/height modelled 863 

biomass as the response variable. In cs-cs and subplot-cs combinations, regressions 864 

were carried out with data from all study sites, but RMSE is calculated based on study 865 

site specific training and fitted data. Water bodies were masked out of the images before 866 

calculating the average landscape biomass. 867 

Regression 

combination 

Sodankylä  NW Russia  Herschel  Tiksi 

Plot 

bioma

ss (g 

m -2) 

RMSE 

(g m -

2) 

Landsca

pe 

biomass  

(g m -2) 

 Plot 

bioma

ss (g 

m -2) 

RMSE 

(g m -

2) 

Landsca

pe 

biomass  

(g m -2) 

 Plot 

bioma

ss (g 

m -2) 

RMSE 

(g m -

2) 

Landsca

pe 

biomass  

(g m -2) 

 Plot 

bioma

ss (g 

m -2) 

RMSE 

(g m -

2) 

Landsca

pe 

biomass  

(g m -2) 

ss-ss 291.9 150.0 315.2  392.7 485.9 477.5  185.1 71.9 222.8  154.6 48.5 151.4 

cs-ss 317.9 171.8 341.4  388.3 480.8 469.3  156.2 43.9 191.4  158.8 54.3 154.1 

cs-cs 384.2 234.1 290.5  342.9 509.8 367.5  359.8 222.6 428.9  128.2 75.1 132.1 

subplot-ss 287.4 231.1 360.4  505.1 535.2 587.5  213.5 94.9 262.2  144.8 70.6 141.6 

subplot-cs 335.9 237.5 342.6  617.8 584.4 442.5  230.6 258.9 718.1  158.9 87.1 183.0 

 868 

 869 


