Ecological Indicators 101 (2019) 117-125

| ECOLOGICAL
INDICATORS

Contents lists available at ScienceDirect

Ecological Indicators

journal homepage: www.elsevier.com/locate/ecolind

Evaluating complex relationships between ecological indicators and R

environmental factors in the Baltic Sea: A machine learning approach

a,b,;:;

Annukka Lehikoinen™™", Jens Olsson®, Lena Bergstrom®, Ulf Bergstrom®, Andreas Bryhn?,
Ronny Fredriksson®, Laura Uusitalo®

2 Swedish University of Agricultural Sciences, Department of Aquatic Resources, Institute of Coastal Research Skolgatan 6, 74242 Oregrund, Sweden
b University of Helsinki, Ecosystems and Environment Research Programme, Kotka Maritime Research Centre, Keskuskatu 10, 48100 Kotka, Finland
¢ Finnish Environment Institute (SYKE), Programme for Environmental Information. Latokartanonkaari 11, 00790 Helsinki, Finland

ARTICLE INFO ABSTRACT

The state of marine ecosystems is increasingly evaluated using indicators. The indicator assessment results need
to be understood in the context of the whole ecosystem in order to understand the key factors determining the
status of these environmental components. Data available from the system’s different components are, however,
often heterogeneous: they may represent different spatial and temporal scales, and different parameters can be
measured with different accuracy. This makes it difficult to evaluate the relationship between these variables
and status of the environment using indicators. We studied whether probabilistic, machine learning-based
classifiers could provide for assessing the relationships between multiple environmental factors and ecological
indicators. This paper demonstrates the use of Bayesian network classifiers (Tree-augmented Naive Bayes
classifier, TAN as the specific case example), used together with structural learning from data and Entropy
Minimization Discretization (IEMD) algorithm to study environment-indicator relationships within coastal fish
communities in the Baltic Sea. By using two Baltic-wide indicators of coastal fish community status and a
heterogeneous set of potentially influential natural and anthropogenic variables, we explore and discuss the
potential of the approach. Given pre-defined cutting points for the indicators, such as the classification
thresholds of the indicator, the method enables identifying relevant variables and estimating their relative
importance. This information could be used in environmental management to demonstrate at which threshold
value the state of an indicator is likely to respond to a pressure or a combination of pressures. In contrast to many
other multivariate statistical methodologies, the presented approach can handle missing data as well as data of
varying types, from fully quantitative to presence-absence, in the same analysis.
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1. Introduction

In order to restore and preserve the functioning of marine ecosys-
tems and their biological diversity, we need to understand the effects of
multiple natural and anthropogenic factors acting on the environment
simultaneously. The state of marine waters is increasingly evaluated
using indicators (Large et al., 2013; Kupschus et al., 2016; Teixeira
et al., 2016; Tam et al., 2017), but the understanding of the relation-
ships between these indicators and their associated environmental
conditions, while deemed relevant (Rice and Rochet, 2005; Birk et al.,
2012; Hattam et al., 2015), is often weak. In addition, the effects of
numerous natural factors and anthropogenic pressures acting in concert
are rarely addressed (Large et al., 2013; Uusitalo et al., 2016), despite

the well-known prevalence of their interactive effects in biological
systems (Large et al., 2013).

Studies evaluating the relationships between indicators and en-
vironmental factors often face analytical challenges related to addres-
sing complex interactions among the factors in the environment. In
addition, the possibility for analysis is typically constrained by the
quality and precision of available data, as well as by shortages in data.
Probabilistic machine learning approaches represent a potential solu-
tion, as they enable integration of data of different types and quality in
an analytically coherent manner, and are able to deal with missing data
points (Uusitalo, 2007; Barber, 2012).

In this study, we explore the potential of machine learning in the
above described indicator-environment context. A set of potentially
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influential natural and anthropogenic variables are tested as predictors
of two ecological status indicators currently in use in the Baltic Sea
area: the abundance of coastal key fish species (HELCOM, 2018a) and the
abundance of coastal fish key functional groups (HELCOM, 2018b), in-
cluded in Baltic Sea regional status assessment (HELCOM, 2018c). The
first is represented by the abundance of European perch (Perca fluvia-
tilis) in the central and northern Baltic Sea, whereas the second is
composed of two parts; the abundance of piscivores and the abundance
of cyprinids (Cyprinidae), the latter being in focus of our case study.

Having a central role in the coastal food web in the Baltic Sea
(Ostman et al., 2016), coastal fish communities (defined as the fish
communities found in near-shore shallow waters, usually in waters
shallower than 20m) are currently included as one key element in
national and regional assessments of the environmental and ecological
status of the Baltic Sea, relating to the follow-up of the goals of the
Baltic Sea Action Plan (BSAP, HELCOM 2007) as well as in the im-
plementation of the EU Marine Strategy Framework Directive (MSFD,
EC 2008). A wide range of environmental factors are known to impact
these indicators, such as climate, trophic interactions and changes in
water and habitat quality, which all vary on temporal and spatial scales
(Bergstrom et al.,, 2016; Ostman et al., 2017; HELCOM, 2018a,b).
However, as for many other indicators used to assess the environmental
status in the Baltic Sea, the contribution of multiple anthropogenic and
natural drivers for the response of coastal fish indicators is not clear
(HELCOM, 2018d). The issue is further complicated by the fact that
data regarding these multiple factors are heterogeneous and often in-
compatible, some factors being quantitative and others semi-quantita-
tive, categorical or qualitative.

We evaluated the performance of five different Bayesian network
classifiers (Friedman et al., 1997) together with machine learning al-
gorithms for finding optimal discretization and structure of the model
to predict the state of the example indicators. The tested classifiers were
the PC-algorithm (Spirtes et al., 2000), the Greedy search-and-score
algorithm using both Akaike (Akaike, 1973) and the Bayesian in-
formation criterion (Schwarz, 1978), Naive Bayes classifier (NB, Hand
and Yu, 2001), and Tree-augmented Naive Bayes (TAN, Friedman et al.,
1997; Zheng and Webb, 2010). With the used data and evaluation
criteria TAN outperformed the others, and its results are presented in
this paper in detail.

This paper describes a protocol for using semi-supervised classifi-
cation methods to increase understanding about the multiple pressures
affecting an ecological indicator or some other response variable. We
demonstrate the usefulness of the method in the environmental in-
dicator context through analyzing simultaneously the contributions of
both quantitative and semi-quantitative variables and finding mean-
ingful threshold values for these variables without relying on linearity
assumptions. At the end of the paper, we discuss the lessons learned, as
well as the pros and cons of the approach.

2. Materials and methods
2.1. Data

The data originated from 41 fish monitoring areas in the northern
Baltic Sea (Fig. Al; Table A1), 39 of them located along the east coast of
Sweden and two in the Aland Islands and the Archipelago Sea areas of
Finland. The areas cover substantial environmental gradients in salinity
(2.2-7.5), nutrient concentrations (4-38 mg total phosphorus m~ 2 and
224-842mg total nitrogen m_3), and water temperature (summer
temperatures 12-19 °C). They represent a mix of densely populated
areas directly impacted by human activities, and reference areas with
limited local anthropogenic impact (Bergstrom et al., 2016). The
number of years monitored differed between the areas, from one to
twelve years during the period 2002-2013 (Table 1, Table A1).

We used the area-specific average abundance of perch larger than
11 cm to represent the indicator Abundance of coastal key fish species
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(referred to as the Perch indicator hereafter), and the average abundance
of cyprinids larger than 11 cm to represent the indicator Abundance of
coastal fish key functional groups (referred to as the Cyprinids indicator
hereafter) (HELCOM, 2018a,b). Data on 17 natural and anthropogenic
variables in total, potentially affecting the abundance of fish were
gathered from various sources, representing different aspects of water
quality and hydrography, the availability of essential habitats, habitat
degradation and natural mortality (Table 1). The ranges of the data are
shown in Tables A2 and A3.

2.2. Analyses

Classification means predicting the class-level outcome of some
variable of interest (in this case: whether an indicator attains a value
above or below classification threshold for good environmental status)
given information about the other variables (Friedman et al., 1997;
Zheng and Webb, 2010). Bayesian network classifiers use the available
data to build conditional probability distributions for the explanatory
variables (usually and hereafter referred to as features; in our case study
being the environmental variables) and the target variable that we want
to predict (the class variable hereafter; i.e. the fish indicator variables in
our case study). Using the Bayes rule, these probabilities can then be
used to update the probability of the class variable given that the values
of some or all of the features are known (e.g. Barber, 2012). All the
analytical steps presented below were performed using the Bayesian
network software Hugin (Educational 8.3) (Madsen et al., 2005).

2.2.1. Model framing and discretization of the variables

The indicator result is discrete, and most of the classification algo-
rithms operate natively on discrete variables. Therefore, the data were
discretized into multinomial values, each covering a distinct subrange
of the original range of the continuous values. The discretization,
however, simplifies the distribution and therefore necessarily causes
loss of information (Uusitalo, 2007). In addition, the position of the
class boundaries (i.e. cut points) affects the conditional distributions in
the model and may have a strong effect on the results (Farnaz et al.,
2017). To evaluate the influence of the boundary definition on the
present models, multiple data files were created by discretizing the
class variable in different ways. For each class variable (Perch and Cy-
prinids indicators), four data files were developed in which the data were
divided equally into two to five classes (i.e. bins) (Fig. 1; these ap-
proaches are hereafter described as ED2-5). In addition, data files to
study the conditions potentially leading to extremely high or extremely
low indicator values were learned for the Perch indicator (Fig. 1; called
ExtLow and ExtHigh hereafter). These cut points were defined by the
domain experts. For the Cyprinids indicator, only the ExtHigh dis-
cretization was applicable due to the relatively high frequency of close
to zero observations in the data (thus, an extreme low level could not be
identified; see Fig. 1).

After the discretization of class variables following the above
scheme, the features were discretized to minimize the information loss
using the Information Entropy Minimization Discretization (IEMD) al-
gorithm (Fayyad and Irani, 1993). IEMD discretizes the features so that
their entropy given the discretization of the class variable is minimized,
hence maximizing the predictive power of each feature. The cut point of
the discretization learned by the IEMD processor thus indicates a point
where some statistically meaningful change in the co-variation of the
feature and class variables occur, given the discretization of the class
variable. A feature was excluded from the model variant if the IEMD
processor did not find any cut points for the discretization, as this im-
plied that the variable was non-informative for predicting the state of
the class variable.

2.2.2. Model selection
For all the alternative discretization approaches, we evaluated the
performance of four different structural learning algorithms for
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Fig. 1. Distribution of the (a) perch and (b) cyprinid indicator data used in this study (catch-per-unit-effort (CPUE) used as the measure of fish abundance) and the
discrete class boundaries for the tested discretization cases.

Bayesian network classifiers in finding a model structure that 1) pre-
dicts the indicator result most accurately and 2) somewhat logically
represents the known interrelations among the variables in the studied
coastal ecosystems. The first criterion was evaluated using a set of
performance metrics described below (Section 2.2.2), the results of the
algorithm-wise comparisons being provided in the appendix (Tables A4
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and A5). The evaluation of the second criterion was expert-driven, done
by manual pairwise testing of the behavior of each variable when the
state of the other variables were manipulated, checking that the di-
rection of the well-known correlations are represented correctly by the
model.
The tested algorithms were the constraint-based PC-algorithm



A. Lehikoinen et al.

(original version developed by Spirtes et al. (2000)), the score-based
Greedy search-and-score algorithm, using both Akaike (Akaike, 1973)
and the Bayesian information criterion (Schwarz, 1978) and Tree-
augmented Naive Bayes (TAN, Friedman et al., 1997; Zheng and Webb,
2010). For comparison, the simplistic and fixed Naive Bayes-structure
was tested, too (Hand and Yu, 2001). The TAN algorithm was selected
in this case for further analyses as it most often produced the best
models in terms of the two criteria used. In the algorithm comparisons,
the highest weight was given to the ED2 model of Perch indicator and
ED3 model of Cyprinids indicator as they represent the real classifica-
tion types of these indicators, the high abundance of perch (low — high-
classification) and moderate abundance of cyprinids (low — moderate —
high-classification) indicating the good ecological status.

The selected TAN classifier is an extension of Naive Bayes (NB)
classifier that has proven to perform well in various classification tasks
(Hand and Yu, 2001; Zhang, 2004; Kuncheva, 2006; Ashari et al.,
2013). While NB models assume that all of the features are dependent
on the class variable only, and independent from each other, TAN al-
lows a restricted amount of links between the features. These links are
restricted so that (1) they must follow the basic Bayesian network
principle and not form a directed loop, and (2) no more than one ad-
ditional incoming link is allowed for each feature (Zheng and Webb,
2010). It has to be kept in mind that the aim of the machine-learned
statistical classifiers is not to realistically present all the connections
and correlations between the variables in the data, but to predict the
value of the indicator as accurately as possible given the available in-
formation. Due to the limited amount of data available, complicated
models are prone to overfitting the parameters to the available data.
TAN model allows taking into account the strongest interactions be-
tween the explaining variables, while avoiding the risk of overfitting. In
this study these links were derived from data using the Chow-Liu al-
gorithm (Chow and Liu, 1968), the resulting probability distributions of
the model being learned from data using the expectation maximization
(EM) algorithm (Dempster et al., 1977; Lauritzen, 1995).

2.2.3. Model performance and functioning

The performance of Bayesian classifiers can be assessed in different
ways (Korb and Nicholson, 2010). Usually, three different metrics are
used for this purpose; two different error rates and additionally a
multiclass extension of the Area Under Curve (AUC; e.g. Landgrebe and
Duin, 2006). All of these metrics measure how well the model predicts
the state of the class, but each metric addresses a specific aspect of the
performance of the model. The error rate (ER) is the proportion of in-
correct predictions in the model, where smaller values indicate a
stronger prediction (James et al., 2013). In this study, error rates were
calculated in two ways; by teaching the model with the full data and
evaluating how many of the data points it would predict correctly
(ER1), and by a leave-one-out cross-validation (ER2). The latter was run
by teaching the model with all data but one and predicting this data
point, repeated for every data point (n = 186).

AUC was used to summarize information contained in the Receiver
Operation Characteristics (ROC) curve, which illustrates the perfor-
mance of the model by plotting the true positive prediction rate against
the false positive prediction rate. A perfect model has AUC value of 1,
whereas a model with AUC 0.5 predicts correctly in 50% of cases,
which corresponds to random guessing, thus meaning the model has no
predictive power (Murphy, 2012; Flach, 2012; James et al., 2013). If
the error rates of two models are similar but AUC values differ, the
model with higher AUC performs better over all the operating points
(Landgrebe and Duin, 2006).

Finally, the behavior patterns of the models were examined using an
entropy reduction -based sensitivity analysis. The mutual information
of two variables, i.e. to what extent information about one variable
helps to predict the value of another, can be measured through the
reduction of entropy in the distribution of the second variable when the
first one is known. A discrete distribution has maximum entropy when

Ecological Indicators 101 (2019) 117-125

its distribution is uniform, i.e. when each discrete category is equally
likely (Murphy, 2012). An entropy reduction in the distribution of the
class variable means that the uncertainty of the prediction is decreased.
If the probability distribution of the class variable changes strongly
when the value of the feature changes, the class variable is sensitive to
this feature; for example, if the indicator value changes strongly when
the water temperature is observed, the indicator is sensitive to water
temperature and water temperature thus has high informative sig-
nificance when the indicator is predicted.

One way to obtain accurate information about the functioning of the
produced Bayesian network model and to study the dependencies in the
data, is to use the model for different types of reasoning tasks (Korb and
Nicholson, 2010). In practice the effects of updated information about
some variable(s) on the probability distributions of the other variables
are analyzed case specifically. This way the model can also be used for
prediction tasks, if aimed to. In Section 3.4. a demonstrative example of
the diagnostic use of one of the resulted TANSs is provided.

3. Results
3.1. Model framing

The features (i.e. the explanatory environmental factors) included
and excluded in the differently discretized data files and the corre-
sponding model variants are presented in Table 2. The resulting dis-
cretization is presented for each specific model and feature in Tables A2
and A3. For the ED models, the number of features included tends to
decrease as the number of bins in the class variable increased.

For the Perch indicator, the ED2 model consisted of nine features out
of the 16 tested, while the ED5 model only included two (Table 2). A
similar pattern of decrease occurred in the ED models of the Cyprinids
indicator, but less pronounced. The numbers of features varied from 13
in the ED2 model to ten in the ED4 and the ED5 models (out of 16). Two
features were included in all the ED models for the Perch indicator;
predation by cormorants (Corm) and concentration of total phosphorus
(Ptot) (Table 1; Table 2). For the Cyprinids indicator, eight of the features
were included in all the ED models (Table 2).

The ExtLow model of the Perch indicator included only three fea-
tures, two of which (salinity, Sal) and water transparency during
monitoring, TrF) were not included in any other model (Table 1;
Table 2). In the ExtHigh model variant of this indicator, no cut points
were found for any of the features in the discretization phase, and the
model was hence discarded. The ExtHigh model of the Cyprinids in-
dicator included six features, one of which (distance to open sea, SDist)
was not included in any other model of the indicator.

In addition to the number of features included, some clear differ-
ences between the indicator models could be observed in the feature
selection. For example, predation of cormorants (Corm) as found to be
informative for discretization in all ED models of the Perch indicator,
was not represented in any of the models of the Cyprinids indicator.
Density of jetties (Jet) and sea water exchange (SWE) were included in
almost all models of the Cyprinids indicator, but in none of the Perch
indicator models.

3.2. Discretization of the features

Model-specific cut points of the different features are presented in
Tables A2 and A3. Interesting feature-specific patterns could be iden-
tified. For some features, identical or very similar cut points were found
repeatedly across models. For both the Perch and Cyprinids indicator
models, the cut point for mean depth of sampling area (MD) was con-
sistently found around nine meters (Table A2; Table A3). The two cut
points of total phosphorus concentration (Ptot) in the Perch indicator
models were always found around 16 *+ 1mg/m®and 26 + 1mg/m°>.
In three of the Cyprinids indicator models, the cut point 5.3 mg/m> was
identified. The cut points for salinity (Sal) were always found around
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Environmental variables (features) included in different discretization cases of the Perch and Cyprinids indicators (class variables) after feature discretization by the
IEMD processor. The average informative significance of the feature for the indicator in TAN models is presented. The value presented is the reduction of the entropy
(%) of the indicator’s distribution, if only the feature in question is observed. The total number of features included in each model is shown on the last row (N feat.).

For full names of the variables, see Table 1. “na” = “not applicable” (HabPe was used for perch only and HabAv for the cyprinids only.)

Perch Cyprinids

ED2 ED3 ED4 ED5 ExtLow ExtHigh ED2 ED3 ED4 ED5 ExtHigh
Chla - - - - - - 11 4 - - 26
Corm 8 4 3 4 - - - - - - -
HabAv na na na na na na 20 13 16 13 -
HabPe 16 - - - - na na na na na
HabsSt 2 7 - - - - - - 4 41
Jet - - - - - - 14 13 5 6 -
Lat 11 2 - - - - 8 5 4 1 -
MD <0.1 11 - - - - 5 9 16 13 -
Ntot 3 - - - - - 12 - 7 - 29
Ptot 15 6 - - 20 5 4 4 -
Sal - - - - 16 - 2 1 1 4 -
SDist 11 1 - - 16 - - - - - 59
SWE - - - - - - 12 2 7 9 35
Temp - - - - - - 6 - - - -
TempF - - - - - - 9 7 11 - -
TrF - - - - 10 - 15 14 13 10 32
WExp <0.1 - - - - - 6 13 - 8
N feat. 9 6 3 2 3 13 11 10 10

3 *+ 0.5 with the Cyprinids indicator, and that of summer temperature
(Temp) between 16.5 and 17.0 °C.

In some cases the IEMD algorithm only separated extremely low or
high values from the rest of the data points. For example, predation by
cormorants (Corm) in the Perch indicator models and availability of
stickleback habitats (HabSt) for both Perch and Cyprinids indicators were
typically discretized into two bins, one including very low values and
one with all the other data (Table A2; Table A3). In the ExtLow model
of the Perch indicator, extremely high salinities (Sal > 7.2) and low
water transparencies (TrF < 1.4m) were found informative when
predicting low values of the indicator.

3.3. Performance and functioning of the TAN models

For both indicators, the extreme TAN models (ExtLow for Perch
indicator and ExtHigh for Cyprinids indicator) had the overall highest
performance in terms of error rates (ER1 and ER2, Table 3). In general,
the error rates were smaller with lower number of bins in the class
variable (indicator). The outcomes are likely a result of the probability
of correct prediction being higher when the number of bins is lower and
their ranges, correspondingly, wider. The AUC metric indicated the best
performance for models of the Perch indicator with fewer classes. The
models of the Cyprinids indicator performed approximately equally ac-
cording to the AUC metric (Table 3).

The ER1 error metric was equal to or smaller than the ER2 values in
all cases, as ER1 predicts based on data that have already been used in

Table 3

Performance metrics of the alternative TAN-models for the Perch and Cyprinids
indicators. For the explanation of the metrics used, see chapter 2.2.2. na = not
applicable.

Perch Cyprinids

ER1 ER2 AUC ER1 ER2 AUC
ED2 24.19 25.27 0.85 26.88 26.88 0.85
ED3 45.70 46.77 0.85 35.48 35.48 0.84
ED4 52.69 59.14 0.75 44.62 44.62 0.90
ED5 68.28 74.19 0.64 51.61 52.69 0.85
ExtLow 12.90 12.90 0.79 na na na
ExtHigh na na na 5.38 5.38 0.87
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the model parameterization phase, while ER2 predicts “new” data that
the model has not yet observed. Also the difference between ER1 and
ER2 decreased with the number of bins in the class variable (Table 3).
For the ExtLow model of the Perch indicator, no difference was observed
between ER1 and ER2. For the Cyprinids indicator, there was generally
no differences between ER1 and ER2, except for a small difference in
the ED5 model.

Table 2 shows the entropy reduction of the class variables (in-
dicators) per feature and model variant, averaged over all the alter-
native states of the feature, and when no other features are observed.
Many of the features that were included in the IEMD phase, when
modelled together, showed low informative significance for the class
variable. Nevertheless, the availability of coastal fish habitats (HabAv)
was among the most informative features in all the ED models of the
Cyprinids indicator, the same applying to total phosphorus concentration
(Ptot) in almost all of the Perch indicator models. In the extreme models
of both indicators, all the included variables showed high informative
significance, especially in the ExtHigh model of the Cyprinids indicator.

3.4. Example: Studying interactions among variables with a Bayesian
network classifier

One way to use the Bayesian network classifiers resulting from the
presented approach for diagnostic purposes is demonstrated here and in
Fig. 2a—d. For this, we use the ExtHigh TAN model of the Cyprinids
indicator to study dependencies between the variables. Fig. 2a shows the
model in the state, where no observations on any variables are made.
Fig. 2b represents the situation where the value of the class variable
Cyprinids indicator (Cypr) is observed as “extremely high” (CPUE 30-50,
see Fig. 1b) — a state typically associated with a high trophic (eutrophic)
state. The probability of observing this state is 10.5%. The probability
distributions of the features are updated accordingly. Distance to open
sea (SDist) is expected to be in the higher class (51448-55399 m) with
69.9% probability, for example. Fig. 2c shows how the probabilities
update when total nitrogen concentration (Ntot) is observed in its lower
class (probability of occurrence being 82.7%). This observation de-
creases the probability of Cypr being in the “extremely high” class from
10.5% (Fig. 2a) to 3.3% (Fig. 2c). When Ntot is observed in its higher
class (Fig. 2d), the uncertainty about the value of Cypr is much higher,
as the probability mass is more evenly distributed among the possible
outcomes.



A. Lehikoinen et al.

Chi-a
A Ji=4.13, 02=9.04
74.96 0.64-4.615
25.04 4.615- 12,61
Ntot = HabSt
11=346.05, 02=18315.63 y=18.4, 02=181.76
82.66 223.79- 36118 1951 0-2.35
17.34 361.18 - 841.68 80.49 2.35-42.8
\
~ Cypr
Y=17.64, 02=130.27
8953 0-30
SWE
10.48 30-50.38
=84.2, 02=233.4 é SDIST
wr
TR RS 11=28390.17, 02=243190814.31
79.36 82.195-99.67 92.68 1379.4-51448.3
7.32 51448.3-55398.6
TiF
=434, 02=3.66
2434 0.6-2.85
75.66 2.85-7.5
c Chl-a
11=3.39, 02=5.79
87.33 0.64-4.615
1267 4.615- 1261
Ntot = HabSt
11=292.49, 02=1573 11=20.41, 02=164.22
223.79-361.18 10.11 0-2.35
0.00 361.18- 841,68 89.89 2.35-42.8
e
~ Cypr
| u=15.84, 2=94.12
96.66 0-30
SWE
3.34 30-50.38
11=89.63, 02=72.78 = . SOIST
T TR 11=26613.09, 02=212718094.96
6.00 82.195- 99.67 $9.26 1379.4 - 51446.3
0.74 51448.3-55398.6

TiF
p=4.61, 02=3.21

Ecological Indicators 101 (2019) 117-125

Chl-a

W=7.68, 02=9.4

15.51 0.64 - 4.615
84.49 4.615-12.61

Ntot

p=520.07, 02=33104.19

26.34 223.79-361.18
73.66 361.18-841.68

S

Habst

=3.62, 02=62.31
88,58 0-2.35
1142 2.35-42.8

Cypr

p=40.19, 02=34.61

SWE

0.00 0-30

p=63.08, 02=297.91

4— 30-50.38

SDIST

85.45 34.48-82.195
14.55 82.195-99.67

p=45280.87, 02=217514099.59

30.15 1379.4-51448.3

69.85 51448.3 - 55398.6

TiF
p=2.13, 02=1.83

88.18 0.6-2.85
11.82 2.85-7.5

Chl-a
D =7.65, 02=9.5

16.01 0.64-4.615
83.99 4.615-12.61

Ntot 1 Habst
[=601.43, 02=19240.02 11=8.8, 02=153.9
0.00 223.79- 361.18 64.35 0-2.35
361.18 - 841.68 35.65 2.35-42.8
\
Cypr
1=26.21, 02=213.74
55,50 0-30
SWE
44.50 30-50.38
11=58.34, 02=189.73 — SDIST
500,00 344563155 =36862.64, 02=301634393.98
2.46E-24 §2.195 - 99.67 61.31 1379.4-51448.3
38.69 51448.3 - 55398.6
TiF
1=3.04, 02=3.75
62.03 0.6-2.85
37.97 2.85-7.5

Fig. 2. Given updated information about the state of the Cyprinids indicator (B) or nitrogen concentration (C and D), the ExtHigh TAN model is used for reasoning
about the likely state of the rest of the variables. The states with red bars are set to be known (P = 100%). Each observation in the model updates the probability
distributions of the other variables according to the probabilistic dependencies learned from the data. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

4. Discussion

We tested whether machine learning based semi-supervised tech-
niques could be useful for assessing the relationships between multiple
environmental factors and ecological indicators. Such improved un-
derstanding could help societies in planning management strategies
that most likely lead to reaching and maintaining good status of the
ecosystem. The applied examples show that the method tested can be
helpful in assessing the factors potentially influencing the status of the
indicators, and what the relevant threshold values of these variables
could be. This information could in turn be used in environmental
management to demonstrate at which threshold value the state of an
indicator is likely to respond to a pressure or a combination of pres-
sures. In contrast to many multivariate statistical methodologies, the
Bayesian classifiers can handle missing data and data of varying types,
from fully quantitative to presence-absence, in the same analysis (e.g.
Barber, 2012).

The example cases of this study highlight some interesting char-
acteristics of the approach. The outcome of the analyses, starting from
the model framing and structure, is strongly dependent on the number
and location of the cut points chosen for the class variable. High de-
pendency of the outcome on the discretization has been identified also
in earlier studies, and even seen as a disadvantage proving the lack of
robustness of the approach (Nojavan et al., 2017). The present analyses
do, however, indicate that the level of this dependency is case specific
(e.g. differences between the two example indicators), providing more
information about the robustness of a particular case than the approach
itself. Additionally, the fact that the outcome depends on the dis-
cretization can be extremely useful, as it can help in finding out the
environmental factors (features) that are most relevant for the
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particular interesting cut points of the indicator (class variable). This is
demonstrated in the current study through the analysis of the equally
discretized versus the extremely high and low discretized indicator
variables (Table 2). This analysis shows that some features are not
significant for the equally discretized variable, but become relevant
contributors for reaching the extremely high or extremely low values.

These findings, however, highlight how the discretization of the
class variable should strictly reflect the formulation of the research
question to which the model is intended to answer. In cases where clear
pre-defined cut points of the class variable cannot be identified prior to
the analysis, we recommend conducting several analyses using a re-
levant set of alternative versions of discretization. In all, the outcomes
should be routinely interpreted with domain experts having deep un-
derstanding about the underlying environmental system (see also
Fernandes et al., 2012). If the results are not logical in the sense that
they do not follow a clear pattern and/or follow ecological theory, they
must be treated with caution. Deviating patterns may nevertheless be
used to improve current theories and create hypothesis for further
testing.

Different steps of the presented machine learning approach pro-
vided different types of relevant information about the environmental
factors potentially explaining the states of the fish community in-
dicators. The search for informative discretization of the environmental
factors over the alternatively discretized Perch and Cyprinid indicators
helped us to identify the environmental factors having significant
covariation with the indicator, given its cut points of interest. The
number and location of the cut points identified for the environmental
factors provide additional information about the resolution of the
covariance and the change points in the data, respectively. When ap-
plied with varying discretization of an indicator and over different
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indicators, the approach might also be valuable for finding potentially
universal and robust ecological change points across ecosystem com-
ponents and species in a system.

When a Bayesian network classifier is learned from data, the out-
come represents the joint distribution over the whole set of variables
(e.g. Korb and Nicholson, 2010). The resulting model represents the
joint covariance of the variables, thus providing information about their
likely co-occurrence, which can be studied for example as presented in
Section 3.4. The entropy reduction analysis (as presented in Table 2)
can be used to study the mutual informative significance of the features
(here environmental factors), when their joint covariation with the
class variable (indicator) and with each other are acknowledged. As
demonstrated by the results, features might sometimes have significant
covariation with the class variable alone, thus being picked and dis-
cretized by the IEMD, but might still not be very informative predictors
after the model is learned. It is worth noting, however, that the entropy
changes resulting from observing different states of the feature may be
opposing; one state reducing and another increasing the entropy, and
this may in some cases be the reason behind the low average entropy
reduction. Thus we conclude that by studying the informative sig-
nificance of the features over differently discretized models, it might be
possible to identify features that are most robust predictors of the class
variable. The average entropy reduction as the measure does not tell the
whole story, however, and to reach full understanding on the in-
formative value of a feature, the direction and strength of the entropy
change produced by observing each state of the feature need to be
tested separately.

The predictive performance of the models (Table 3) indicates how
strongly the state of the fish stocks (as shown by the indicators) depends
on the explanatory environmental factors included in the model. If we
then know the values of the explanatory environmental factors that are
of remarkable influence for the indicator value in the model, it might be
possible to predict the indicator value in data-poor cases as shown in
Fig. 2C and D. Such information may be very useful in supporting
judgement of the status for areas that are poorly supported by direct
measurements of the indicator. If the predictive performance of the
model is shown to be high and the status of the indicator is predicted
with high probability based on the known environmental conditions in
the area, the sampling effort can be spared with only small risk of error.
It is noteworthy, though, that when a purely data-based statistical
model is used for evaluating a specific case (a sub-domain of the model;
a certain combination of location, salinity and nutrient status, for ex-
ample), the data pool underlying the obtained probability distributions
decreases. This is something to be monitored during the analysis, as in
an extreme case, the prediction may be based on only anecdotal evi-
dence.

In the presented case example our major aim was to evaluate the
interdependencies between the environmental variables and indicator
variables based on a pre-defined data set, available for environmental
managers in the area. If the intention is to extrapolate the approach in
time or space, e.g. to predict the likely status of an indicator for new
areas, the predictive capacity naturally depends on whether the ob-
served dependencies hold in this new environment or not, i.e. whether
the system is sufficiently similar to the one where the data originates
from. If they do not seem to hold, the whole model teaching process,
including the variable discretization, should be done based on data
from a system with higher level of similarity.

In our test dataset, the robustness of the results across the different
model variants varied markedly between the two indicators. In the
Perch indicator models, there were substantial differences across the
alternative models with differently discretized class variable with re-
spect to which features were informative for predicting the indicator
value (Table 2). The number of features picked by the discretization
algorithm was also lower when the number of bins in the indicator was
higher, reflecting that for this indicator most of the environmental
variables were informative only on a rough scale. As a contrast, the
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Cyprinids indicator models were in general more similar across dis-
cretization alternatives, suggesting a higher robustness of this indicator
in relation to the pressure variables.

The most important results regarding the datasets evaluated in this
study can be summarized as follows: the Cyprinids indicator data can be
more accurately and robustly predicted based on the environmental
factors included in our study. This is shown by the weaker growth of the
error rates along the increasing number of bins in the class variable, and
by the higher AUC values compared to the Perch indicator (Table 3).
Also the nearly non-existent differences between ER1 and ER2 indicate
that the Cyprinids indicator models are likely to perform well also when
predicting the state “out of the box”.

Based on this study, we believe that the presented approach can
provide useful insights to the single and joint dependencies present in
environmental datasets, acknowledging the related uncertainty, some-
thing that is often overlooked in ecological studies despite that they are
crucial for implementing meaningful and cost-efficient management
actions. It can potentially improve our understanding of cases, where
several environmental factors are simultaneously acting on some target
variable of interest. The general analysis protocol is provided in the
support material (Table A6 and Fig. A2).
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Appendix A. Supplementary data

In the Appendix more information about the data used in the ana-
lyses is provided, including information about the fish monitoring areas
and discretization (cut points) of the variables in different models. In
addition the performance metrics comparison for different classifiers
tested (in addition to TAN) and general analysis protocol are provided.
Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ecolind.2018.12.053.
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