
FASOR Retransmission Timeout and Congestion
Control Mechanism for CoAP

Ilpo Järvinen∗, Iivo Raitahila∗, Zhen Cao† and Markku Kojo∗

∗University of Helsinki †Huawei

Email: ilpo.jarvinen@helsinki.fi, iivo.raitahila@helsinki.fi, zhen.cao@huawei.com, markku.kojo@cs.helsinki.fi

Abstract—The Constrained Application Protocol (CoAP) has
been designed to be used on constrained devices such as In-
ternet of Things (IoT) devices. The existing congestion control
algorithms for CoAP have known shortcomings in addressing
congestion and retaining a good level of performance when
link errors occur. In this paper, we propose Fast-Slow RTO
(FASOR) mechanism that takes into account special needs in
wireless environments while still properly addressing congestion.
We run a series of experiments to confirm that FASOR is able
to successfully cope with challenging network conditions such as
bufferbloat, high level of congestion, and high link-error rates
unlike the default and CoCoA congestion control that have severe
problems with bufferbloated congestion.

I. INTRODUCTION

Congestion Control of TCP is the building block of the
global Internet, ensuring reliable end-to-end communication,
as well as peaceful operation of the network to avoid conges-
tion collapse [1]. Internet TCP congestion control has matured
after decades of experience learned from the network operation
and application evolution. Internet of Things (IoT), which is
expected to connect the next billions of devices together, con-
fronts a similar set of problems but with additional challenges.
Notably, the last-mile links are relatively prone to corruption,
and packet loss rates due to link errors are much higher on
them than on the well provisioned Internet links.

The Constrained Application Protocol (CoAP) [2] is the
standardized way to provide end-to-end communication for
IoT and it has been increasingly deployed. CoAP provides
reliability and congestion control in the form of confirmable
messages. However, the original specification in RFC 7252
provides only a very limited congestion control mechanism
based on binary exponential retransmission timer backoff.
CoAP Simple Congestion Control/Advanced (CoCoA) [3]
aims to offer some improvements in order to help CoAP
to recover from wireless losses more efficiently. However, a
recent study [4] reveals that both default CoAP and CoCoA
algorithms fail to properly control the congestion in a usual
deep-buffered link (also known as bufferbloat [5]), because
their Retransmission Timeout (RTO) mechanisms and backoff
logics are not able to cope with cases when queuing delay
bursts or is significantly above initial RTO.

With the above experience, we propose Fast-Slow RTO
(FASOR) [6], an alternative RTO computation algorithm and
backoff logic for congestion control. FASOR’s design tackles

two notable challenges of IoT congestion control with its novel
design.

1) Cope with ambiguous RTT samples [7]. When re-
transmissions occur, it is difficult to match the arriving ac-
knowledgement with the different copies of the outgoing
request. Neglecting all ambiguous samples as specified by
RFC 6298 [8] is a sacrifice of the opportunity to know the
underneath features of the path. Instead, FASOR separates
the RTO computation into two different categories, that is,
employing a Fast RTO computation for unambiguous samples
while introducing a Slow RTO to trace the ambiguous samples
to cope with deep bufferbloat and heavy congestion. In this
way, FASOR is able to reduce flow completion time under
link errors and avoid introducing extra delay.

2) Tradeoff between aggressive and conservative retrans-
missions logic. Aggressive backoff risks into too many
wasteful retransmission, while a conservative one wastes
the opportunity to perform a quick transfer. FASOR is
designed with a novel and self-adaptive retransmission
timer backoff logic, consisting of three transitive states
FAST/FAST SLOW FAST/SLOW FAST each with different
backoff logic adaptive to different network states. In this way,
FASOR is able to take a risk properly and avoid additional
power consumption caused by wasteful retransmissions.

We conduct an extensive evaluation of FASOR’s perfor-
mance under varying level of congestion, different buffer sizes,
and link-error rates. We confirm that FASOR is able to cope
with challenging network conditions. Slow RTO in FASOR
successfully handles even the most extreme bufferbloat sce-
nario, whereas the current CoCoA and Default CoAP conges-
tion controls do not handle the retransmission timer backoff in
a congestion safe manner. In addition to handling congestion
properly, FASOR is able to outperform Default CoAP and
CoCoA in link-error cases.

The rest of this paper is organized as follows. Section II
explains the current state of the CoAP congestion control
algorithms and Section III describes the proposed FASOR al-
gorithm. Sections IV and V explain the performance evaluation
environment and results. In Section VI we conclude this work.

II. BACKGROUND AND RELATED WORK

The Constrained Application Protocol (CoAP) [2] is aimed
for constrained devices that commonly do not exchange a large

amount of information at each time. Thus, small payloads
are common to occur. Larger payloads can be delivered by
splitting the payload into multiple blocks using the block-wise
option [9] with which a request for the next block is sent only
after the response to the previous one has been received.

The CoAP protocol has by default extremely basic conges-
tion control based on an initial retransmission timeout (RTO)
that is randomized between two and three seconds for the
original transmission of a message and a binary exponential
backoff of the RTO timer for retransmitted messages (we call
this congestion control “Default CoAP” in this paper). No RTT
estimation is performed by Default CoAP, meaning that each
new message exchange starts with the initial RTO value.

CoAP Simple Congestion Control/Advanced (CoCoA) [3]
specifies a more complex RTO calculation based on the TCP
RTO computation algorithm [8] but runs two RTT estimators:
a strong RTT estimator that uses the ACKs of the original
transmissions to measure unambiguous RTT samples and a
weak RTT estimator that uses the ACKs arriving after retrans-
missions, yielding ambiguous RTT samples. If the message
is retransmitted more than two times, CoCoA skips the weak
RTT estimator update. The strong RTT estimator is computed
just like the TCP RTO but for the weak RTT estimator the RTT
variation multiplier of the TCP RTO algorithm, the factor K,
is set to 1 instead of 4. The overall RTO is an exponentially
weighted moving average computed from the RTT estimator
that made the most recent contribution as follows.

RTO = 0.25 ∗ Eweak + 0.75 ∗ RTO (1)

RTO = 0.5 ∗ Estrong + 0.5 ∗ RTO (2)

In addition, CoCoA modifies the RTO backoff logic of
TCP by using a variable backoff factor instead of a fixed
backoff factor of 2 when the RTO timer expires. For each
retransmission, CoCoA multiplies the RTO timer by 3 when
RTO is below 1 s and by 1.5 when RTO is above 3 s. When
RTO is between 1 s and 3 s, the backoff factor is 2.

The congestion control of Default CoAP and CoCoA has
been evaluated in different settings. The evaluation results
indicate that CoCoA, in most cases, yields better performance
than Default CoAP in terms of throughput and recovery from
traffic bursts [10], [11] as well as in terms of latency [12].

A comparative performance study of the Default CoAP and
CoCoA shows that CoCoA has higher throughput, shorter
elapsed time, and a smaller number of retries compared to
Default CoAP [13].

On the other hand, CoCoA has been shown to be somewhat
more aggressive than Default CoAP at higher congestion
levels [14].

A recent study [4] of CoAP congestion control shows that
under a set of circumstances encompassing bufferbloat [5],
which may well occur in real networks, neither Default
CoAP nor CoCoA properly respond to congestion. At high
congestion levels with a bufferbloated bottleneck buffer this
even leads to congestion collapse [1] where unnecessary
retransmissions consume most of the network resources.

III. ALGORITHM

FASOR (specified in [6]) is composed of three key com-
ponents: Fast RTO computation, Slow RTO, and novel re-
transmission timer backoff logic. In addition, RTO values are
dithered and the RTO value is upper-bounded by 60 seconds.

The Fast RTO computation is based on the TCP RTO
computation [8] without minimum RTO bound. It is updated
only with unambiguous RTT samples and therefore tracks
closely the real RTT. The 1 second lower-bound for RTO is
removed because with TCP RTO is only a backup mechanism
for loss detection and lower latency for triggering loss recovery
is possible using Fast Retransmit and Fast Recovery [15],
whereas with CoAP RTO is the primary and only loss detec-
tion mechanism. Allowing lower RTO values than 1 second
may improve latency for the environments where RTT is
inherently less than 1 second. Initial RTO is set to two seconds
and on the first unambiguous RTT sample, RTO is initialized
with the newly acquired RTT sample like TCP does [8]. For
faster convergence with short exchanges, the RTT variation
initialization in FASOR uses a modified formula:

RTTV AR← R/(2K) (3)

where R is the RTT sample and K (RTT variation multiplier)
is 4.

Slow RTO is analogous to Karn’s algorithm that does not
reduce a backed off RTO until an unambiguous ACK has been
received for new data [7]. Slow RTO is measured from the
original transmission of a CoAP request till the arrival of the
ACK, regardless of the number of required retransmissions. In
addition, Slow RTO is multiplied by a factor to allow some
growth in load without making Slow RTO too aggressive (1.5
used in the measurements for this paper). Instead of keeping
the backed off RTO with the next message exchange, we use
Slow RTO as a key component for the FASOR backoff logic.

Because of a potentially high latency cost associated in
using Slow RTO as the backed off RTO, FASOR uses a novel
retransmission timer backoff logic to reduce the impact of
Slow RTO for the cases when RTOs occur due to reasons
unrelated to congestion. Hence, the retransmission backoff
logic is a compromise between the cases with link errors that
would benefit from always using the Fast RTO-based backoff
and the cases with heavy congestion that would benefit from
always using Slow RTO.

FAST

FAST_SLOW_FAST SLOW_FAST

No retransmissions,
unambiguous RTT sample

Retransmissions,
ambiguous RTT sample

Fig. 1: FASOR state diagram

Figure 1 shows the FASOR states and state transitions
for the FASOR backoff logic. It has three backoff states
that are from the least conservative to most conservative:
FAST, FAST SLOW FAST, and SLOW FAST. Each time
receiving an ACK, a FASOR sender decides in which state
it performs the subsequent message exchange. After receiving

ACK without retransmissions, the FASOR sender always stays
in or transits back to the FAST state. If an ACK is received
only after retransmitting, FASOR downgrades into a more
conservative state until it reaches the SLOW FAST state
where it stays as long as completing a message exchange
requires retransmissions.

In each state, starting from the original transmission of a
message, a different series of RTOs is used to back off RTO
when retransmitting. The RTO timer values used in the backoff
series of each state are as follows (Fast and Slow denote the
value of Fast RTO and Slow RTO, respectively):
• FAST: Fast, Fast·21, Fast·22, . . .
• FAST SLOW FAST: Fast, max(Slow, Fast·2), Fast·21,

Fast·22, . . .
• SLOW FAST: Slow, Fast, Fast·21, Fast·22, . . .
A FASOR sender starts in the FAST state and uses Fast

RTO to arm the timer. If retransmissions are needed in the
FAST state, the sender backs off Fast RTO until an ACK is
received and then transits to the FAST SLOW FAST state for
the next message exchange.

In the FAST SLOW FAST state, instead of using Slow
RTO immediately, FASOR first probes the network using Fast
RTO. If that probe is successful, FASOR does not need Slow
RTO at all and instead concludes that RTOs in the FAST
state likely did not occur due to heavy congestion but were
more likely due to reasons unrelated to congestion. Only
if the probe also results in an RTO, the second RTO in
the FAST SLOW FAST state is armed using Slow RTO. In
addition, once an ACK arrives, FASOR will also transit to
the SLOW FAST state where it uses Slow RTO immediately
for the original transmission of the next message. This is
intended to ensure that the sender can acquire an unambiguous
RTT sample for the next message exchange even in a heavily
bufferbloated environment.

The use of Slow RTO allows messages that the sender
has potentially unnecessarily retransmitted to drain from the
network. It also allows long enough time period to acquire
an unambiguous RTT sample for updating Fast RTO with
very high probability even if the network is heavily congested
with a bufferbloated real RTT that is inflated beyond the
current Fast RTO value. Hence, Slow RTO allows rapidly
converging towards a safe operating point because draining
duplicate copies from the network itself reduces the perceived
RTT. We believe FASOR achieves a good balance in handling
congestion and link errors. Even though FASOR uses an
ambiguous RTT sample for Slow RTO, it is actually on the
safe side because it never takes a too small ambiguous sample
but uses the worst-case as the measurement base.

In order to improve the RTO computation we introduce
a token version of the FASOR algorithm that supplements
the RTO computation logic by making all RTT samples
unambiguous. To distinguish whether an ACK arrives for the
original transmission of a message or for a retransmission of
it, an ordinal number of the message transmission is encoded
into the CoAP token that may be included in a message
exchange. We use one byte from the token space to encode

the transmission number. The other endpoint echoes the token
unmodified in the response as per the CoAP specification, thus
no modification to the other endpoint is required. However, a
token cannot be used with an Empty Acknowledgement (or
Reset) message because the CoAP protocol specification does
not allow adding a token to an Empty message. Therefore,
the token-enhanced version of FASOR is useful only for the
common case of a piggybacked CoAP response.

The client stores the timestamps of the original transmission
and of each retransmission. When a response to the outstand-
ing request arrives, the token value is inspected and the RTO
is computed using the unambiguous RTT measurement from
the timestamp of the corresponding transmission. This results
in accurate RTO computation with only a small overhead.

IV. TEST SETUP

A. Network

The system under study consists of multiple IoT devices that
communicate with a fixed host over an emulated constrained
link. Netem included in the Linux kernel is used for the net-
work emulation. The emulated network has the characteristics
of an asymmetric, wireless link with a data rate of 30 kbps
downstream and 60 kbps upstream, a one-way delay of 400
msecs downstream and 200 msecs upstream and an MTU of
296 bytes. The test environment is shown in Figure 2.

Three different values for the buffer size at the bottleneck
are used: 2500 bytes (approximately the bandwidth-delay
product of the link), 28200 bytes, and the ”infinite” buffer
of 1410000 bytes. The larger buffer values cause bufferbloat.
The delay for the rest of the path between the last-hop router
and fixed host is set to 10-20 msecs with random variation.

To emulate packet losses on the wireless link we use two
different average packet error rate profiles: medium and high.
We employ a two-state Markov model where a low-error state
and an error-burst state alternate in suitably short intervals.
During the error-burst states the error rate is 80% for high and
50% for medium. The average error rate of the low-error state
is 2% for high and 0% for medium. This results in the average
packet error rate being approximately 10% for medium and
18% for high link-error profile.

B. CoAP Congestion Control Variants

We use the libcoap [16] implementation of the CoAP pro-
tocol in the experiments. We compare the congestion control
algorithms Default CoAP [2] as implemented in libcoap,
CoCoA that we implemented as per the most recent Internet
draft (version 03) [3], and FASOR. In addition, we include
the congestion safe variant of CoCoA (CoCoA+FB1) that
addresses the congestion collapse problem with it [4].

Fig. 2: The test setup

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

2500B 28200B

F
lo

w
 c

o
m

p
le

ti
o
n
 t
im

e
 (

s
e
c
s
)

Buffer size

FASOR/continuous
FASOR+Token/continuous
CoCoA/continuous
Default CoAP
FASOR/random
FASOR+Token/random
CoCoA/random

Fig. 3: Flow completion time with 400 flows using different
congestion control algorithms

We introduced certain changes to CoAP congestion con-
trol: MAX RETRANSMIT is set to 20 and both EX-
CHANGE LIFETIME and MAX TRANSMIT WAIT are ad-
justed accordingly [2]. The motivation for the changes is to
prevent a situation where retransmission of a message would
be aborted after the fourth retransmission (the default) during
heavy congestion or frequent packet losses that may distort
the results due to uneven load between the test cases.

All CoAP congestion control variants use an initial RTO
of 2 seconds with dithering. FASOR implementation uses
a 60 seconds maximum RTO. CoCoA [3] is specified to
truncate the backed off RTO at 32 seconds. For Default
CoAP we use 60 seconds backoff limit because no maximum
value is defined and we want to avoid unnecessarily long
retransmission timeouts. In addition, we do not implement the
aging mechanism in CoCoA as it is intended to be applied
only after idle periods that are not present in our workload.

C. Work Load

Two types of workload flows are used: continuous and
random. For a continuous flow, a client exchanges CoAP
request-response pairs until 50 pairs have been successfully
exchanged. A random flow consist of a series of short-lived
CoAP clients each generating a random number (between 1
and 10) of CoAP request-response pairs until altogether 50
pairs have been successfully exchanged. After each short-lived
client terminates, the CoAP state is reset. This emulates a
situation where a single device exchanges only a few request-
response pairs with the server but is immediately followed by
another device. With Default CoAP the distinction between
continuous and random flows does not make any difference
as with it RTO values are not affected by the previous CoAP
messages.

The number of concurrent flows varies from 10 to 400. We
run the error-free test cases with 20 replications and the link-
error cases with 40 replications.

 0

 20

 40

 60

 80

 100

 120

2500B 28200B

#
 o

f
re

tr
a
n
s
m

is
s
io

n
s
 p

e
r

fl
o
w

 (
d
o
w

n
lin

k
)

Buffer size

FASOR/continuous
FASOR+Token/continuous
CoCoA/continuous
Default CoAP
FASOR/random
FASOR+Token/random
CoCoA/random

Fig. 4: Number of retransmissions per flow (over 400 flows)
using different congestion control algorithms

V. RESULTS

A. Error-free Link

Figure 3 shows the median, quartiles, and 10th/90th per-
centiles of the flow completion time (FCT) for 400 flows
with the different congestion control algorithms and buffer
sizes. The FCT is the time elapsed between sending the first
request of a flow to the arrival of the first copy of the ACK
for the last (50th) request. The median FCT for FASOR
with the continuous flows and 2500 bytes buffer is 5.86%
shorter than that of CoCoA and roughly the same as that
of Default CoAP. With the 2500 bytes buffer, the congestion
losses cause many RTOs. None of those retransmissions are
unnecessary. The number of retransmissions per flow is shown
in Figure 4 for the different cases. FASOR and Default CoAP
perform the least number of retransmissions having roughly
the same median for the number of retransmissions. A CoCoA
sender computes a weak RTO for many retransmitted CoAP
messages. Each weak RTO update increases the resulting
RTO value. However, larger RTO values do not result in a
decrease in the number of retransmissions in this case but
the CoCoA senders surprisingly perform more retransmissions
than the FASOR senders as more messages are dropped at
the bottleneck. Retransmissions occur more frequently with
CoCoA because the variable backoff factor mechanism uses
the factor of 1.5 when the retransmission timer value is
larger than 3 seconds. The larger number of retransmissions
compresses the median, inter-quartile range and also the 10th
percentile towards the 90th percentile implying slightly better
fairness between the flows but consumes network resources
and costs some energy in making those extra transmissions
that will not arrive at the receiver. FASOR+token is able to
acquire more RTT samples than FASOR lowering the RTO
and, similarly to CoCoA, performs more retransmissions.

With 2500 bytes buffer, the FCTs for the random flows
using CoCoA and FASOR are slightly longer than those of
the continuous flows because starting each new short-lived
client causes reinitialization of the congestion control related
variables, resulting in slightly longer RTOs to retransmit the

 0

 10

 20

 30

 40

 50

 60

 70

2500B 28200B Infinite

C
o
A

P
 r

o
u
n
d
-t

ri
p
 t
im

e
 (

s
e
c
s
)

Buffer size

FASOR/continuous
FASOR+Token/continuous
CoCoA/continuous
CoCoA+FB1/continuous
Default CoAP
FASOR/random
FASOR+Token/random
CoCoA/random
CoCoA+FB1/random

Fig. 5: CoAP round-trip time with 400 flows using different
congestion control algorithms

congestion losses. The median FCT for FASOR is 6.18%
shorter than that of CoCoA.

In general, FCTs increase as the buffer size is increased
because more CoAP messages fit into the buffer before the
buffer overflows. As a result, less message drops occur due
to congestion but the perceived CoAP RTT that is shown in
Figure 5 increases. The CoAP RTT is the time elapsed from
sending the original request to the first arriving ACK.

The median FCT for FASOR with continuous flows and
28200 bytes buffer is 2.81% shorter than that of CoCoA
and 33.73% shorter than that of Default CoAP. With Default
CoAP, the increase in buffer size causes the sender to perform
a notably growing number of unnecessary retransmissions.
Figure 6 shows the number of unnecessary retransmissions
per flow with larger buffer sizes. With 28200 bytes buffer
size, the median of unnecessary retransmissions per flow for
Default CoAP is 64 messages. The reason why Default CoAP
keeps making unnecessary retransmissions is twofold: Default
CoAP sender does not base its RTO on measured RTT and
it reverts the RTO back to the initial value (2-3 seconds)
for every new CoAP exchange, that is, the sender resets the
exponential backoff for every CoAP exchange starting again
with the initial RTO that was already found too short during
the previous exchange. Because of congestion, some of the
unnecessary retransmissions are dropped at the bottleneck
and only consume resources from the part of the end-to-end
path before the bottleneck. The majority of the unnecessary
retransmissions, however, make it past the bottleneck link
wasting the bottleneck link capacity, and thereby, delaying the
completion of the useful traffic.

For both FASOR and CoCoA, there is difference in the
number of unnecessary retransmissions between continuous
and random flows. As the prevailing RTT is more than the
initial RTO, each newly starting short-lived client of a random
flow performs some unnecessary retransmissions before it
is able to get an ACK. The unnecessary retransmissions
waste a portion of the link capacity causing the random
flows to perform worse than the continuous flows for which
the unnecessary retransmissions only occur at the beginning

 0

 50

 100

 150

 200

 250

 300

28200B Infinite

U
n
n
e
c
e
s
s
a
ry

 r
e
tr

a
n
s
m

is
s
io

n
s
 p

e
r

fl
o
w

Buffer size

FASOR/continuous
FASOR+Token/continuous
CoCoA/continuous
CoCoA+FB1/continuous
Default CoAP
FASOR/random
FASOR+Token/random
CoCoA/random
CoCoA+FB1/random

Fig. 6: Unnecessary retransmissions per flow (over 400 flows)
using different congestion control algorithms

of 50 CoAP exchanges. FASOR+token performs the least
number of unnecessary retransmissions because it is able
to acquire an RTT sample already from the first exchange
even if retransmissions occurred. Therefore, FASOR+token
can adjust its RTO better than FASOR and, in general, with
a larger weight than the CoCoA RTO calculation does. Less
unnecessary retransmissions allow FASOR+token to achieve
the shortest median FCT resulting in, for random flows, 2.63%
and 4.91% shorter median FCT than with FASOR and CoCoA,
respectively.

Figure 7 shows the FCT for 400 flows with the infinite
buffer size that introduces a challenging bufferbloat network
environment. Like with the 28200 bytes buffer, unnecessary
retransmissions occur but with the infinite buffer size any
unnecessary retransmission will always consume capacity of
the bottleneck link away from useful traffic. The median FCT
for FASOR with continuous flows is 14.07% shorter than that
of CoCoA. CoCoA is able to control its RTO but still makes
some unnecessary retransmissions at the beginning of the flow
before it is able to adjust its RTO to the correct level. With
continuous flows, the median of unnecessary retransmissions

 0

 500

 1000

 1500

 2000

 2500

 3000

Infinite

F
lo

w
 c

o
m

p
le

ti
o
n
 t
im

e
 (

s
e
c
s
)

Buffer size

FASOR/continuous
FASOR+Token/continuous
CoCoA/continuous
CoCoA+FB1/continuous
Default CoAP
FASOR/random
FASOR+Token/random
CoCoA/random
CoCoA+FB1/random

Fig. 7: Flow completion time for different congestion control
algorithms with 400 flows and infinite buffer size

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

2500B 28200B Infinite

F
lo

w
 c

o
m

p
le

ti
o
n
 t
im

e
 (

s
e
c
s
)

Buffer size

FASOR/continuous
FASOR+Token/continuous
CoCoA/continuous
Default CoAP
FASOR/random
FASOR+Token/random
CoCoA/random

Fig. 8: Flow completion time with 200 flows using different
congestion control algorithms

per flow for CoCoA is 9 messages.
FASOR is second only to FASOR+token for which the me-

dian FCT is 4.39% and 13.46% shorter than for FASOR with
continuous and random flows, respectively. With continuous
flows, the median for unnecessary retransmissions per flow is
6 and 2 messages for FASOR and FASOR+token, respectively.

The median of unnecessary retransmissions per flow for
Default CoAP is 196 messages with the infinite buffer size.
It means that nearly 80% of the bottleneck link capacity
is wasted with Default CoAP. This condition is known as
congestion collapse where the increased traffic results in a
decrease in the delivery of useful messages. With the infinite
buffer, no messages are lost due to congestion but end-to-end
delay increases dramatically due to excessive queuing delay
that is bloated by the unnecessary retransmissions awaiting in
the queue. As a result, the FCTs become very long, the median
for FASOR being 77.25% shorter than that of Default CoAP.

The random flow is very demanding for any congestion
control algorithm because only a very limited number of
CoAP messages are exchanged by each short-lived client.
Each newly starting short-lived client of a random flow makes
some number of unnecessary retransmissions due to the use
of the initial RTO before it is able to get the first ACK from
the network but then FASOR rapidly proceeds to stabilize
its RTO to a roughly correct value because of Slow RTO.
With the random flows, CoCoA fails to sample the RTT when
a new short-lived client starts. As a result, CoCoA uses its
initial RTO for almost all CoAP message exchanges similar to
Default CoAP making even more unnecessary retransmissions
than Default CoAP because of the variable backoff factor [4].
Therefore, the median FCT for FASOR with random flows is
71.98% shorter than that of CoCoA. The median of unneces-
sary retransmissions per flow for FASOR with random flows
is 33 messages which is 86.59% smaller than that of CoCoA.

When we apply the congestion safe variant of CoCoA
(CoCoA+FB1) [4], the CoAP RTT, number of unnecessary
retransmissions, and FCT with random flows decrease down

 0

 50

 100

 150

 200

 250

 300

 350

med 0/50% high 2/80%

F
lo

w
 c

o
m

p
le

ti
o
n
 t
im

e
 (

s
e
c
s
)

Link-error profile

Median FCT with error-free link
FASOR/continuous
FASOR+Token/continuous
CoCoA/continuous
CoCoA+FB1/continuous
Default CoAP
FASOR/random
FASOR+Token/random
CoCoA/random
CoCoA+FB1/random

Fig. 9: Flow completion time with 10 flows using different
congestion control algorithms and link-error profiles

to an acceptable level but remain at a somewhat higher level
than those of FASOR as can be seen in Figures 5, 6, and 7.

Figure 8 shows the FCT for 200 flows with different conges-
tion control algorithms and buffer sizes. With the 2500 bytes
buffer, FCT trends are similar to those with 400 flows. With
larger buffer sizes, the buffer is large enough to hold more
than one request from each flow. Therefore, FCTs become
extremely stable even though there are some unnecessary
retransmissions except with Default CoAP that experiences
a notable number of unnecessary retransmissions. With the
28200 bytes buffer size, FASOR achieves 3.73% and 8.27%
shorter median FCT than CoCoA with continuous and random
flows, respectively. With random flows, the median FCT for
FASOR+token is 12.58% shorter than that of FASOR because
of the improved RTT estimation. With the infinite buffer size,
the trends are similar as with the 28200 bytes buffer.

B. Error-prone Link

Figure 9 shows FCTs for 10 flows with the error-free,
medium and high link-error profiles. Congestion losses do not
occur in this test because there are only 10 flows and the buffer
size is 2500 bytes. Therefore, the median FCT with the error-
free link is effectively almost the same with all algorithms.
Link errors cause FCTs to increase compared to the results
acquired with the error-free link because a sender needs to wait
for an RTO to expire whenever a link-error related loss occurs.
This waiting makes accurate RTT estimation very important.

With the medium link-error profile, the median FCT for FA-
SOR with continuous flows is 6.58% and 24.15% shorter than
that of CoCoA and Default CoAP, respectively. FASOR+token
is able to lower the RTO faster than FASOR achieving 1.23%
shorter median FCT than FASOR. With random flows, FASOR
achieves 16.18% and 19.44% shorter median FCT than CoCoA
and Default CoAP, respectively.

The Expired RTOs with different link-error profiles are
shown in Figure 10 for the different congestion control al-
gorithms. The expired RTOs is calculated over the values of

 0

 2

 4

 6

 8

 10

 12

 14

med 0/50% high 2/80%

E
x
p
ir
e
d
 R

T
O

s
 (

s
e
c
s
)

Link-error profile

FASOR/continuous
FASOR+Token/continuous
CoCoA/continuous
CoCoA+FB1/continuous
Default CoAP
FASOR/random
FASOR+Token/random
CoCoA/random
CoCoA+FB1/random

Fig. 10: Expired RTOs with 10 flows using different conges-
tion control algorithms and link-error profiles

all RTOs that expired. With the medium link-error profile and
continuous flows both CoCoA and FASOR manage to reduce
the impact of the link errors because the RTO is armed often
enough with a shorter value than with Default CoAP.

With the high link-error profile, the network conditions
become challenging. The weak estimator in CoCoA collects
many weak RTT samples for retransmitted messages that were
dropped due to the link errors. This causes the median of
expired RTOs for CoCoA to become longer than that of
FASOR and with random flows even longer than that of
Default CoAP. As a result, FASOR achieves 17.82% and
18.52% shorter median FCTs than CoCoA with the continuous
and random flows, respectively. FASOR manages to restrain
the median of the expired RTOs below that of Default CoAP
although with the random flows there are only a few RTT
samples before a new short-lived client starts forcing FASOR
to start again from scratch. Armed with better RTT estimates,
the median FCT of FASOR compared to that of Default CoAP
is 31.25% and 22.34% shorter with the continuous and random
flows, respectively. FASOR+token further shortens the median
FCT by 3.86% with the random flows because it can take RTT
samples also when the sender retransmitted to cover the losses
due to the link errors.

It is worth noting that in these link-error cases both Default
CoAP and CoCoA gain unfair advantage over FASOR from
their too aggressive handling of retransmission timer backoff
reset that, in turn, causes performance issues for them in the
error-free cases with the infinite buffer size. With the con-
gestion safe CoCoA+FB1 variant, the FCT clearly increases
from that of CoCoA and spans over a larger range as can
be seen in Figure 9. With the high link-error profile, FASOR
compared to CoCoA+FB1 yields 37.5% and 35.69% shorter
median FCT with continuous and random flows, respectively.
The difference between CoCoA and CoCoA+FB1 shows what
is the inherent cost of the congestion safety feature necessary
for all traditional RTO based algorithms. FASOR, on the other
hand, is able to handle not only the bufferbloat scenarios well

but also manages to achieve shorter median FCTs than the
congestion unsafe variants in the link-error cases.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes FASOR, a novel RTO computing
algorithm and backoff logic for congestion control, for CoAP.
FASOR seeks to handle link-error related losses efficiently
while handling congestion safely. The experiments in this pa-
per show that FASOR achieves shorter flow completion times
with link errors compared with Default CoAP and CoCoA and
at the same time FASOR handles heavy congestion even in a
bufferbloated environment well in contrast to Default CoAP
and CoCoA that both fail to efficiently control congestion.

The current version of FASOR does not include special
logic for senders remaining idle that is typical for CoAP but
adding such logic might improve performance as more Slow
RTOs could be avoided. Similarly, the current hard coded Slow
RTO upper bound of 60 seconds may benefit from further
improvements and evaluation whether 60 seconds is, in fact,
long enough.

The benefits of FASOR seem obvious with typical CoAP
transfers but also other protocols such as TCP may benefit
from it. We leave testing FASOR for TCP as future work.

REFERENCES

[1] J. Nagle, “Congestion Control in IP/TCP Internetworks,” RFC 896, Jan.
1984.

[2] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application
Protocol (CoAP),” RFC 7252, Jun. 2014.

[3] C. Bormann, A. Betzler, C. Gomez, and I. Demirkol, “CoAP Simple
Congestion Control/Advanced,” Internet Draft, Feb. 2018, Work in
progress.

[4] I. Järvinen, I. Raitahila, Z. Cao, and M. Kojo, “Is CoAP Conges-
tion Safe?” in Proc. Applied Networking Research Workshop 2018
(ANRW’18), Jul. 2018.

[5] J. Gettys and K. Nichols, “Bufferbloat: Dark Buffers in the Internet,”
ACM Queue, vol. 9, no. 11, Nov. 2011.

[6] I. Järvinen, M. Kojo, I. Raitahila, and Z. Cao, “Fast-Slow Retransmission
and Congestion Control Algorithm for CoAP,” Internet Draft, Jun. 2018,
Work in progress.

[7] P. Karn and C. Partridge, “Improving Round-trip Time Estimates in
Reliable Transport Protocols,” in Proc. ACM Workshop on Frontiers in
Computer Communications Technology (SIGCOMM’87), Aug. 1987, pp.
2–7.

[8] V. Paxson, M. Allman, J. Chu, and M. Sargent, “Computing TCP’s
Retransmission Timer,” RFC 6298, Jun. 2011.

[9] C. Bormann and Z. Shelby, “Block-Wise Transfers in the Constrained
Application Protocol (CoAP),” RFC 7959, Aug. 2016.

[10] A. Betzler, C. Gomez, I. Demirkol, and J. Paradells, “CoAP Congestion
Control for the Internet of Things,” IEEE Communications Magazine,
vol. 54, no. 7, pp. 154–160, Jul. 2016.

[11] ——, “CoCoA+: An Advanced Congestion Control Mechanism for
CoAP,” Ad Hoc Networks, vol. 33, pp. 126–139, 2015.

[12] F. Zheng, B. Fu, and Z. Cao, “CoAP Latency Evaluation,” Internet Draft,
Jul. 2016, Work in progress.

[13] A. Betzler, C. Gomez, I. Demirkol, and M. Kovatsch, “Congestion
Control for CoAP Cloud Services,” in Proc. 2014 IEEE Emerging
Technology and Factory Automation (ETFA), Sep. 2014, pp. 1–6.

[14] I. Järvinen, L. Daniel, and M. Kojo, “Experimental Evaluation of
Alternative Congestion Control Algorithms for Constrained Application
Protocol (CoAP),” in Proc. 2015 IEEE 2nd World Forum on Internet of
Things (WF-IoT), Dec. 2015.

[15] M. Allman, V. Paxson, and E. Blanton, “TCP Congestion Control,” RFC
5681, Sep. 2009.

[16] “libcoap: C-Implementation of CoAP.” [Online]. Available: https:
//libcoap.net/

