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“Forty-two,” said Deep Thought, with infinite majesty and calm. 

“Forty-two!” yelled Loonquawl. “Is that all you've got to show for seven and a half million years' work?”  

“I checked it very thoroughly,” said the computer, “and that quite definitely is the answer.” 

  
Douglas Adams, The Hitchhiker's Guide to the Galaxy 
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Abstract 

Anxiety disorders manifest themselves as a prolonged or exaggerated response to a threatening 

situation, which can be either real or perceived. Their high prevalence (14%) places them as one 

of the most common mental disorders within the European Union. This conveys an important 

message about the necessity of finding new clinically relevant drug targets leading to the 

development of novel personalized treatment practices. To facilitate this process, efforts should 

be focused on gaining a deeper understanding of the complex molecular, biochemical, and 

system-level mechanisms behind the neurobiology of stress, and the role of stress as one of the 

main etiological factors in anxiety-related psychiatric disorders. The phenotypic heterogeneity 

of human populations and high variability of external environmental factors, along with limited 

access to brain tissue samples, presents some of the main challenges to studying anxiety 

disorders in humans. As these aspects can be controlled for in animals, animal models are often 

used to administer specific stressors in a uniform manner and to obtain brain tissue at a precisely 

chosen time point. Thereby, within the scope of this thesis, we take advantage of the fact that 

anxiety is an evolutionarily conserved response and address the integration of both human and 

mouse data obtained from a variety of approaches, including genomic, transcriptomic, and 

proteomic methods. 

First, to identify genetic loci predisposing to a specific phobia, the fear of heights, we conducted 

a genome-wide parametric and non-parametric linkage scan, followed by joint linkage and 

association analysis in a small population isolate with reduced genetic and environmental 

heterogeneity. Our results implicated three regions with suggestive evidence for linkage, 

including region 8q24.2-q24.3 (LOD = 2.09), which encompasses 49 genes, containing several 

candidate genes for psychiatric disorders.  

Second, we identified molecules and biological pathways affected by chronic social defeat stress 

(CSDS), a mouse model of chronic psychosocial stress, in the following three brain regions: 

medial prefrontal cortex (PFCM), ventral hippocampus (HIPV), and bed nucleus of the stria 

terminalis (BNST). We used two inbred mouse strains with different basal anxiety levels, the 

innately non-anxious C57BL/6NCrl (B6) and innately anxious DBA/2NCrl (D2). Following analysis 

of RNA sequencing results, we discovered that differentially expressed (DE) oligodendrocyte-

related genes were over-represented in gene set enrichment analysis (GSEA) of all studied brain 

regions. As oligodendrocytes are known for their function in axon myelination, we followed the 
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results from transcriptomic analyses with transmission electron microscopy (TEM) and 

established that B6 stress-susceptible mice had thicker myelin in BNST axons compared to 

controls.  

Third, using the CSDS model, we further investigated the role of the BNST through additional 

studies of gene regulatory networks (GRN) of mRNAs and miRNAs and protein-protein 

interaction networks. Subsequently, we followed with an integration analysis of the results from 

both transcriptomic (mRNA sequencing, as well as AGO2-immunoprecipitation miRNA and 

mRNA sequencing) and proteomic (liquid chromatography–tandem mass spectrometry) 

experiments. Furthermore, to translate our results to human anxiety disorders, we performed 

transcriptome profiling in blood cells of CSDS-subjected mice and compared it with gene 

expression patterns from blood cells of panic disorder patients who underwent exposure-

induced panic attacks. We then followed with integrative gene set enrichment analysis of mouse 

and human data, which showed systemic genetic background-specific enrichment of 

mitochondria-related gene sets. Importantly, our results showed downregulation of the 

oxidative phosphorylation pathway in the CSDS-subjected D2 strain and panic disorder patients 

after a panic attack. 

To conclude, our results suggest (1) brain-region and mouse strain-specific differences in 

myelination in susceptibility and resilience to stress and (2) dysregulation of mitochondrial 

pathways associated with anxiety-related behavior in both mice and humans. Taken together, 

our results provide further insight into the complex genetic architecture of anxiety disorders and 

support the suitability of cross-species approaches to studying biological mechanisms underlying 

anxiety disorders. 

 
Keywords: anxiety disorders, chronic social defeat stress (CSDS), panic disorder, acrophobia, 

linkage analysis, gene expression, protein abundance, multi-omics studies 
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Abbreviations  

129 129S2/SvPasCrl 

5HT Serotonin 

ABCA1 ATP-binding cassette transporter 

ACC Anterior cingulate cortex 

ACTH Adrenocorticotropin hormone 

AMYG Amygdala 

ATM Ataxia-telangiectasia mutated 
serine/threonine kinase 

ATP Adenosine triphosphate 

AVP Arginine-vasopressin 

B6 C57BL/6NCrl  

BALB  BALB/cAnNCrl 

BNST Bed nucleus of the stria terminalis 

BRCA1 Breast cancer, DNA repair 
associated 

cAMP Cyclic adenosine monophosphate 

CDK5 Cell division protein kinase 5 

CG Guanine-cytosine content 

CHECK2 Checkpoint kinase 2 

cM Centimorgan 

Con (C) Control 

CRH Corticotropin releasing factor 

Crhr2 Corticotropin releasing hormone 
receptor 2 

CSDS Chronic social defeat stress 

D2 DBA/2NCrl 

DA Dopamine 

DARPP-32 Dopamine-and cAMP-regulated 
phosphoprotein 

DE Differentially expressed 

DMTF1 Cyclin D binding Myb-like 
transcription factor 1 

DNA Deoxyribonucleic acid 

DSM Diagnostic and Statistical Manual 

EPM Elevated plus maze 

ESR1 Estrogen receptor 1 alpha 

EZM Elevated zero maze 

FC Fold change 

FOXP3 Forkhead box P3  

FST Forced swim test 

GABA γ- aminobutyric acid  

GAD Generalized anxiety disorder 

GO Gene ontology 

GSEA Gene set enrichment analysis 

GWAS Genome-wide association studies 

HIP Hippocampus 

HIPA Anterior hippocampus 

HIPV Ventral hippocampus 

HPA Hypothalamic-pituitary-adrenal 

ICD International statistical 
classification of diseases and 
related health problems 

IGF2 Insulin-like growth factor 1 

INS Insular cortex 

IPA Ingenuity pathway analysis 

IRS1 Insulin receptor substrate 1 

JAG1 Jagged1 

L/D Light-dark box 

LC-MS/MS Liquid chromatography-tandem 
mass spectrometry 

LD Linkage disequilibrium  

LOD Logarithm of odds 

MAPK1 Mitogen-activated protein kinase 
1 

Mb Megabase 

MC Medium concentrate 

miRNA MicroRNA 

mRNA Messenger RNA 

Mt Mitochondrial 

mtDNA Mitochondrial DNA 

mTOR Mammalian target of rapamycin 

NACC Nucleus accumbens 

NAD Nicotinamide adenine 
dinucleotide 
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nDNA Nuclear linear DNA 

NE Norepinephrine 

NGS Next-generation sequencing 

NIPP1 Nuclear inhibitor of protein 
phosphatase-1 

No. Number 

NPY Neuropeptide Y 

OCD Obsessive-compulsive disorder 

OF Open field 

OFCM Orbital frontal cortex 

OLG Oligodendrocyte 

OPC Oligodendrocyte progenitor cell 

P P-value 

PACAP Pituitary adenylate-cyclase 
activating polypeptide 

PAG Periaqueductal grey 

PAR Parietal cortex 

PCC Pearson correlation coefficient 

PCR Polymerase chain reaction 

PD Panic disorder 

PFC Prefrontal cortex 

PFCDM Dorsal medial prefrontal cortex 

PFCL Lateral prefrontal cortex 

PFCM Medial prefrontal cortex 

PFCVM Ventral medial prefrontal cortex 

PFDR  P-value corrected for multiple 
testing 

PGC Peroxisome proliferator-activated 
receptor gamma coactivator 1-
alpha, see also PPARGC1A 

PPARGC1A Peroxisome proliferator-activated 
receptor gamma coactivator 1-
alpha, see also PGC 

PTSD Post-traumatic stress disorder 

RDoc Research Domain Criteria 

Res (R) Resilient 

RFLPI Restriction fragment length 
polymorphisms identification 

RICTOR Rapamycin-insensitive companion 
of mTOR 

RNA Ribonucleic acid 

RNA-seq RNA sequencing 

rRNA Ribosomal RNA 

SA Social avoidance 

SAD Social anxiety disorder 

SNP Single-nucleotide polymorphism 

SSTR2 Somatostatin receptor 2 

STR Dorsal striatum 

STRs Short tandem repeats 

Sus (S) Susceptible 

SV Structural variation 

TCA Tricarboxylic acid 

TEM Transmission electron microscope 

TOP2A Topoisomerase II alpha 

tRNA transfer RNA 

vHPC Ventral hippocampus 

VOXPHOS Oxidative phosphorylation genes

The list includes abbreviations appearing in the text more than twice. 
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1    Introduction 

Anxiety disorders, including generalized anxiety disorder (GAD), social anxiety disorder (SAD), 

panic disorder (PD), and specific phobias, are the most common family of neuropsychiatric 

disorders (Shackman and Fox, 2016) and affect one in seven Europeans annually (Wittchen et 

al., 2011; Craske et al., 2017). They describe the state of disproportional or maladaptive anxiety 

or fear (or both) (American Psychiatric Association, 2013) in response to or in anticipation of a 

potential threat, either real or perceived (LeDoux, 2015). Although a distinction between anxiety 

and fear is present both in clinical and preclinical literature and states that while we are anxious 

in an anticipation of potential threat, we fear a specific immediate danger, the two are 

frequently used interchangeably, often defining one in the terms of other (Perusini and 

Fanselow, 2015). For example, in the Diagnostic and Statistical Manual of Mental Disorders 

(DSM-5) (American Psychiatric Association, 2013), a specific phobia is described as a persistent 

fear of clearly discernible, circumscribed objects or situations, while exposure to the phobic 

stimulus is said to invariably provoke an immediate anxiety response. The ambiguity further 

persists in clinical classification of preclinical laboratory models (Bouton, 2002). Somatically, 

threats, whether anticipated (anxiety) or present (fear), imagined or real, trigger a behavioral 

reaction known as freeze-fight-flight response caused by an activation of the sympathetic 

nervous system (LeDoux, 2015; Roelofs, 2017). A model by Michael Fanselow proposed to assess 

these elements (freeze, fight and flight) of defensive behavior in relation to the momentary 

imminence of threat and further depicted anxiety and fear as a part of a continuum (Fig. 1a). 

This instrumental idea is known as the predatory (threat) imminence theory (Perusini and 

Fanselow, 2015). In the modern world, although we do not have much to fear from predators, 

we still are prey to the daily stress of life. 

Anxiety and fear are both symptoms of an individual experience of stress, which is commonly 

viewed as the brain’s response to a challenging or demanding situation. Some elements of the 

stress response, such as individual variability, timing, predictability, and controllability (Hartley 

et al., 2014; Lucas et al., 2014; Maier et al., 2015) of the stressor (Fig. 1b), are determinant of 

the shift from a  healthy to a stressed brain and the development, as well as maintenance, of the 

pathological anxiety and fear (Sousa, 2016). The interplay of these elements, which can be 

conventionally classified as either genetic or environmental risk factors (Sapolsky, 2015), is what 

leads to anxiety disorder. 
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The modest genetic heritability of anxiety disorders (up to 40%) (Hettema et al., 2001; Erhardt 

and Spoormaker, 2013), the high variability of environmental influence (Provencal and Binder, 

2015), and the complexity of their clinical phenotypes (Peltonen et al., 2000) constitute some of 

the major challenges hindering the investigation of molecular and cellular mechanisms behind 

these disorders. Consequently, many researchers have resorted to studying disorders of 

pathological fear and anxiety in human genetic isolates with reduced genetic and environmental 

heterogeneity (Peltonen et al., 2000) and animal models, thus allowing for control over both 

genetic and environmental risk factors (Laine et al., 2017). Further integration of these studies 

is possible as the molecular and anatomical response to stress in animals is evolutionarily 

conserved (Soliman et al., 2010; Sokolowska and Hovatta, 2013). Such cross-species studies, 

especially involving high-throughput unbiased -omics approaches, may reveal specific biological 

mechanisms underlying anxiety disorders and aid in the identification of much-needed targets 

for future therapeutic intervention (Sokolowska and Hovatta, 2013).  

The recent shift from conventional molecular biology approaches into the rapidly advancing field 

of comprehensive high-throughput -omics technologies (Hasin et al., 2017), including RNA 

sequencing (Wang et al., 2009) and liquid chromatography-tandem mass spectrometry 

(Shushan, 2010; Filiou et al., 2011; Martins-de-Souza, 2014), enable us to simultaneously survey 

thousands of molecules (e.g., gene transcripts and proteins) (Fig. 1c). However, as many cellular 

mechanisms are determined by networks of connections across several -omics layers, 

integrative multi-omics approaches offer the insight into the flow of information that captures 

the dynamic nature of disease-related alterations (Yugi et al., 2016; Hasin et al., 2017).  

The main aim of this study was to identify the genes and proteins associated with anxiety 

disorders and establish the main biological pathways underlying stress-induced anxiety with the 

assistance of integrated cross-species multi-omics analyses. The following review of the 

literature describes the comparison of human and mouse genetic variation and their 

implications in studying fear and anxiety disorders using cross-species approaches. The high-

throughput -omics approaches performed in this work are briefly described followed by an 

overview of the psychopathology of anxiety disorders, with a special emphasis on PD and specific 

phobias and the role of animal models in studying the underlying specific biological mechanisms.  
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2    Review of the literature 

2.1    Comparison of mouse and human genomes, transcriptomes, and   

          proteomes   

As the name suggests, all eukaryotic organisms store their genetic information in the base 

sequence of linear double-stranded deoxyribonucleic acid (DNA), separated in an internal 

compartment of the cell (the nucleus) and organized into chromosomes. In addition to nuclear 

linear DNA (nDNA), almost all eukaryotes carry mitochondria, the powerhouse of the cell 

(Karnkowska et al., 2016). Mitochondria have their own genome consisting of mitochondrial 

DNA (mtDNA) organized in the form of a circular molecule (Alberts, 2015). Like all other animal 

species, humans and mice are created by eukaryotic cells. Their genomes, which diverged an 

estimated 65–110 million years ago, are very similar, not only in structure but also in the 

sequence of their nuclear and mitochondrial DNA (Emes et al., 2004). The extensive similarity 

between the human genome and the genomes of many model organisms utilized in preclinical 

studies (such as mice) is a cornerstone of modern biology.  

 

2.1.1    Similarities and differences between mouse and human genomes 

The human genome consists of 22 autosomal chromosomes and two sex-determining 

chromosomes, X and Y. In general, an individual with two X chromosomes is a female and an 

individual with one X and one Y chromosome is a male (Jung et al., 2017).  Although sex in the 

mouse is determined in the same manner (X and Y chromosomes), the mouse genome contains 

only 19 autosomes. Additionally, in both organisms, while the autosomal and sex chromosomes 

are inherited from both parents, ordinarily mtDNA comes solely from the mother (Sato and Sato, 

2013).  

The human and mouse sequencing projects (Lander et al., 2001; Venter et al., 2001; Mouse 

Genome Sequencing et al., 2002) performed almost two decades ago, and the subsequent 

comparative analyses of both genomes, created one of the most powerful approaches to link 

the laboratory notebooks of preclinical and clinical researchers and advance the knowledge of 

mammalian biology and human disease (Mouse Genome Sequencing et al., 2002). We now know 

that both genomes are of similar length, namely 3 billion base pairs (bp) (Table 1) (The Genome 

Reference Consortium, assemblies CRCh38.p12 and CRCm38.p6) (The Genome Reference 
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Consortium, 2017). There are approximately 20 000 protein-coding genes in both mice and 

humans, with the majority of them shared between the two species (International Human 

Genome Sequencing, 2004; Yue et al., 2014). While an equal number of non-coding 

evolutionarily conserved genes representing regions of functional importance is also present in 

humans and mice (Dermitzakis et al., 2005), the role of a portion of the remaining sequence is 

largely unknown and currently under investigation (Rands et al., 2014; Roadmap Epigenomics 

Consortium et al., 2015). Furthermore, along with nDNAs, mouse and human mtDNAs have also 

shown high levels of homology, both in the structure as well as the overall sequence (Bibb et al., 

1981) (Table 1). 

 

2.1.2    Mouse and human brain transcriptomes  

The DNA in both mouse and human genomes is copied into RNA in a process called transcription. 

If the part of the transcribed DNA contains information on a protein-encoding gene, the 

transcription produces messenger RNA (mRNA) (Alberts, 2015). This process is known as gene 

expression. In contrast, transcription of a non-coding RNA (ncRNA), such as ribosomal RNA 

(rRNA), transfer RNA (tRNA), long ncRNA, and microRNA (miRNA) (Lee et al., 2004), produces an 

RNA molecule that is not subsequently translated into protein. MicroRNAs constitute a family of 

non-coding RNAs found in viruses, plants, and animals (Bartel, 2004; Pfeffer et al., 2004) whose 

role is to regulate gene expression by translational repression, mRNA cleavage, or both (Lee et 

al., 2004). The expression pattern of mRNAs and miRNAs is both tissue and time dependent 

(Sonawane et al., 2017). Additionally, all RNAs vary in their inherent half-lives (the time during 

which their level decreases by half). In most non-dividing cells, the half-life of most mRNAs 

ranges from 30 minutes to several hours, while the average miRNA decays approximately 10 

times slower (Gantier et al., 2011).  

Comparative analyses of regional and cellular gene expression in healthy mice and humans 

revealed a significant level of similarity between them (correlation coefficient [r] = 0.75 - 0.86, 

depending on the brain region). The similarity was especially high for evolutionarily conserved 

genes, as they have shown parallel patterns of region-specific expression across both organisms 

(Strand et al., 2007). Furthermore, recent studies of miRNA expression revealed a high level of 

conservation at the transcriptome level, even between distantly related species (Warnefors et 

al., 2014). 
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2.1.3    Mouse and human brain proteomes 

Translation is the second major step in gene expression. During translation the mRNA is read 

according to the genetic code template and a protein is formed. On average, only 30% to 40% of 

variance in protein abundance can be explained by mRNA expression due to, between others, 

protein degradation mechanisms and post-transcriptional and post-translational processing 

(Vogel and Marcotte, 2012; Sharma et al., 2015).  

Although little is known about the similarities and differences in mouse and human protein 

expression, the most recent integrative analyses of mouse and human brain protein abundance 

have shown a significant positive correlation in a brain region-specific pattern of protein 

expression (Carlyle et al., 2017).  

 
 
2.2    The genetic basis of complex disorders 

2.2.1    Genetic variation and effect size  

In April 2003, more than 15 years ago, scientists announced that they had finalized the Human 

Genome Project; the sequence of a first hypothetical (i.e., coming from several individuals) 

(Kolata, 2013) reference genome was thus known (National Human Genome Research Institute, 

2003). However, the idea behind the project was much larger than what was achieved. The 

researchers aimed to develop a cost-effective resource that would allow us to access the DNA 

sequence of any two individuals and establish what makes them different (Schwarze et al., 

2018). This became possible with the introduction of modern sequencing technologies (see also 

Introduction and section 2.3.3), known as massively parallel sequencing, high-throughput, or 

next-generation sequencing (NGS). We now know that genomes of any two individuals are 

estimated to be 99.5% identical (Levy et al., 2007), which means that they differ in approximately 

15 million bases. These differences in a specific region of the DNA sequence are known as 

sequence variants, while different versions of the same variant are called alleles (Manolio et al., 

2009; MacArthur et al., 2014). Humans, similar to mice, have two alleles at each genetic locus (a 

fixed position on a chromosome), with one allele typically inherited from the mother and the 

other from the father. In addition to the variation in sequence (e.g., in a single nucleotide, or 

single-nucleotide polymorphism [SNP] or in short tandem repeats [STRs], such as microsatellites; 

see also section 2.3.2), the DNA sequence can also vary in structure. Structural variation (SV) is 
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defined as a genetic variation of a DNA region, 1 kb or larger, with different types of 

rearrangements (Ye et al., 2018).  

Although most genetic variation is benign (i.e., it does not negatively affect our health), some 

variants are pathogenic (i.e., associated with a disease). It is important to note that not all 

variants are created equal. The magnitude of the effect of a pathogenic genetic variant on 

phenotype is called effect size (Hindorff et al., 2011). Furthermore, genetic variants differ in their 

frequency in the human population. Low-frequency variants are present in 1% to 5% of the 

population while rare variants account for less than 1%. Very rare variants with large effect sizes 

(Fig. 2, upper left corner) are most frequently known to cause monogenic diseases (see section 

2.2.2) and are often identified in family-based genome-wide linkage studies (see section 2.3.2). 

On the other hand, common genetic variants with small effect sizes (Fig. 2, lower right corner) 

are thought to be the cause behind many complex disorders and are investigated with the 

assistance of genome-wide association studies (GWAS).    

 

 

     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Models of genetic etiology behind monogenic and complex diseases. Risk variance is grouped 
according to allele frequencies (y axis) and their effect sizes (x axis). Based on idea from McCarthy et al.  
(2008) and Manolio et al. (2009). 
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2.2.2    Monogenic traits and disorders  

Monogenic traits and diseases, also called Mendelian traits and diseases, are caused by 

alterations in a single gene. If such an alteration is present in both copies of the gene, one from 

each parent, the disease is known as recessive. If it is present only in one copy, it is dominant. 

Furthermore, monogenic diseases can be either autosomal, linked to a sex chromosome (X or 

Y), or mitochondrial. While Y-linked monogenic diseases can be passed only from father to son 

(Mau Kai et al., 2008), generally mitochondrial monogenic diseases can be passed to sons and 

daughters only by their mothers (Koopman et al., 2012) (see section 2.1.1). Many neurological 

diseases, or conditions with neurological features, are caused by defects in single genes. 

Examples of such diseases are Huntington’s disease, neurofibromatosis, and homocystinuria 

(Larner, 2008). 

 

2.2.3    Complex traits and disorders 

Far more common than monogenic disorders are complex (multifactorial) diseases. Unlike 

Mendelian diseases, multifactorial diseases are not caused by a single gene but by an interplay 

of multiple genes and various environmental factors (see also Introduction). Furthermore, 

although complex diseases are largely heritable, they do not obey the Mendelian patterns of 

inheritance (see section 2.2.2). Instead, the complexity of the human genome and human 

physiology is suggested to be caused by a number of specific phenomena (e.g., non-Mendelian 

familial aggregation, gene-gene interactions, polygenes, genetic modifiers, and locus 

heterogeneity) (Buchanan et al., 2006). Most commonly, the rules of polygenic inheritance state 

that multiple genetic factors, each contributing to the continuous trait and segregating in 

families according to Mendel’s law, are proposed to describe the inheritance of complex disease 

(Fisher, 1918; Buchanan et al., 2006).  

Although the clinical disease phenotypes of complex diseases, including many neuropsychiatric 

diseases (American Psychiatric Association, 2013), are most often discrete, nature almost always 

operates based on continuums (Gleick, 2008). The liability-threshold model assumes that each 

human has a continuous liability comprised of latent genetic variants and environmental factors. 

Thus, if the liability threshold is exceeded, the individual will acquire the binary trait (i.e., the 

disease). This makes it difficult to determine the risk and inheritance of developing a complex 

disorder and passing it to the offspring (Benchek and Morris, 2013). Another more recent 
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approach launched by the National Institute of Mental Health, called the Research Domain 

Criteria (RDoC), proposes to classify complex (mental) diseases based on their continuous 

variables (i.e., dimensions of detectable behavior and neurological measures) (Iacono, 2016). 

Neuropsychiatric disorders, such as anxiety disorders and autism spectrum disorders, are 

presumed to be complex in nature (Veenstra-Vanderweele et al., 2004; Smoller et al., 2009).         

 

2.3    Molecular biology approaches to studying complex traits 

To discover the genetic variants within genes contributing to the studied disorder, it is necessary 

to localize the genomic loci harboring them. The primary principle of this process, known as 

genetic mapping, is to identify the association between a recognized polymorphic variant (i.e., a 

genetic marker) with a known chromosomal location and the phenotype (i.e., disease or lack 

thereof) (Kheirallah et al., 2016). Two different types of analyses with different underlying 

assumptions (see section 2.3.2) are employed to study this correlation (see Fig. 5), namely 

linkage and association analyses (Ott, 1999; Hiekkalinna, 2012).    

 

2.3.1    Genotyping and sequencing of genetic markers 

Genetic variants, used both in linkage and association analyses, can be identified with both 

genotyping and sequencing (see also section 2.2.1). While sequencing determines the exact 

sequence of a chosen DNA fragment or the whole genome, genotyping examines specific pre-

selected genetic variants. To explain the difference between those techniques, an analogy to a 

book is frequently used, in which genotyping is represented by searching for a few words 

scattered across several pages, while sequencing is compared to analyzing whole paragraphs or 

chapters. Genotyping can be performed with a variety of biological assays, such as polymerase 

chain reaction (PCR), restriction fragment length polymorphisms identification (RFLPI), and 

hybridization reactions with a DNA microarray composed of various probes containing SNPs. The 

advantages and disadvantages of both massively parallel sequencing and microarrays are 

extensively discussed in the literature. For example, while microarrays focus mostly on relatively 

common variants (see Fig. 2), they are also less prone to design bias (Bumgarner, 2013).  
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2.3.2    Linkage analysis and linkage disequilibrium 

Linkage analysis 

Linkage analysis takes advantage of genetic linkage. This is a physical phenomenon where large 

fragments of a DNA sequence located closely together on a chromosome are inherited intact 

during meiosis, only sporadically disrupted by crossovers. A chromosomal crossover is an 

exchange of a part of two homologous chromosomes resulting in recombinant chromosomes 

(Hiekkalinna, 2012) (Fig. 3a).  

 

 

 

 

 

 

 

 

 

Figure 3. Chromosomal crossover in meiosis. (a) Aligned homologous chromosomes, one derived from 
each parent, each of them with three loci (ABC and abc). (b) Chromosome duplication. (c) Crossing-over 
between the chromosomes creates variation (d) resulting in recombinant chromosomes (Abc and abC). 
Figure adapted from Hiekkalinna (2012). 
 

The probability that two loci are transmitted together in meiosis is linked to the genetic distance 

between them (i.e., two loci located on opposite ends of a chromosome are less likely to be 

transmitted together) (Sham, 1998). The recombination fraction (θ), which in humans ranges 

from 0 to 0.5, is the probability of recombination in a given meiosis. A recombination fraction of 

θ = 0.5 means that the two loci are unlinked or non-syntenic (e.g., located on different 

chromosomes). The objective of linkage analysis is to estimate the recombination fraction and 

subsequently test the null hypothesis that θ = 0.5. In other words, the analysis aims to identify a 

genetic marker that co-segregates with the gene of interest, and therefore, the disease 

phenotype (Fig. 4 and Fig. 5) (Wright et al., 1983). This information is the foundation of the 

linkage test statistic, the-logarithm-of-odds (LOD) score. Traditionally, a LOD score above three 

corresponds to a pointwise P-value (P) equal to 0.0001 and is considered significant. However, 

in genome-wide linkage scans, when the marker map is infinitely dense (i.e., covers the whole 
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genome) a more appropriate LOD score of 3.3 has been shown to correspond to a PFDR (P-value 

corrected for multiple testing) of 0.05 (Lander and Kruglyak, 1995).  

Linkage analysis can be subdivided into parametric and nonparametric analyses. While 

parametric analysis requires the estimation of allele frequency and penetrance (see Fig. 2), 

nonparametric analysis does not (Ott et al., 2015). Additionally, both can be further subdivided 

into two-point analysis (also known as single-point analysis) and multipoint analysis, examining 

the linkage of a putative disease locus to a single or multiple marker loci at a time, respectively 

(Szymczak et al., 2014).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Comparison of linkage analysis and linkage disequilibrium analysis (LD). Linkage analysis can 
be performed only in families, as the relationship status (solid lines) between two individuals is required 
for the analysis. LD uses a case-control design, where the relationship between the individuals is 
unknown. Figure adapted from Hiekkalinna (2012).   
 

Linkage disequilibrium (LD) 

When a new change in the DNA base sequence is introduced, it is only found in one of the 

inherited chromosomes (haplotype). With the passage of time, as the allele segregates through 

the population, the length of the haplotype decreases due to recombination (Terwilliger and 

Goring, 2000). Eventually, only variants located in direct proximity to the mutation are still 

inherited together (Fig. 4). Two measures are used to quantify linkage disequilibrium (LD). The 
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first one is Lewontin’s D’ (Lewontin, 1964), which is calculated by dividing the gametic LD 

coefficient (the difference between the observed frequency of a two-locus haplotype) and its 

expected frequency assuming random segregation of the alleles. The absolute value of 

Lewontin’s D’ ranges from 0 to 1, where D’ = 1 describes complete LD. The second measurement, 

the squared correlation coefficient (r2), calculates how well the alleles of either locus can be 

predicted from the other (Gabriel et al., 2002). It ranges from 0 to 1, with 1 obtained in the case 

of no recombination between the loci and equal allele frequencies.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. The objective behind linkage analysis and linkage disequilibrium analysis. In addition to the 
linkage, LD, or both described in the text, the power of the study depends on detectance, namely the 
predictive value of the observed phenotype on the unobserved disease locus genotype. Figure adapted 
from Hiekkalinna (2012) and Terwilliger and Göring (2000).   
 

2.3.3    From genomic to transcriptomic and proteomic analyses 

In molecular biology, omics refers to a global and comprehensive assessment, or a qualitative 

characterization and quantification of a set of molecules (e.g., genes, miRNAs, and proteins). 

Genomics, the study of the entire genomes (see Fig. 1 and section 2.3.1), was the first -omics 

discipline to be established (Hasin et al., 2017).  
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The technological advances in the field of genomics (e.g., the development of cost-efficient, 

high-throughput sequencing methodologies) (see section 2.2.1) has largely driven the progress 

in other omics disciplines, such as transcriptomics, which focuses on the genome-wide 

examination of different RNA types, such as mRNA and miRNA (Hasin et al., 2017). With the 

entrance of next-generation sequencing, it was revealed that although only a small part of the 

genome encodes proteins, as much as 80% of it is transcribed (ENCODE Project Consortium, 

2012). However, the most important contribution in the field of transcriptomics was made with 

the discovery of different subclasses of non-coding RNA (Uszczynska-Ratajczak et al., 2018), 

including miRNAs, which are implicated in many neuropsychiatric disorders (Hunsberger et al., 

2009; Issler and Chen, 2015). miRNAs are single-stranded RNA molecules of approximately 21 to 

26 nucleotide length that regulate gene expression through inhibition of target mRNAs and by 

subsequently initiating mRNA target degradation (Fig. 6, see also section 2.1.1) (Valencia-

Sanchez et al., 2006). Nevertheless, changes in miRNA expression levels are not directly 

indicative of their immediate activity (i.e., degradation of mRNA). They are active and associate 

with their target mRNAs only at the moment of incorporation of miRNA into the RNA-induced 

silencing complex (RISC) in the presence of a catalytic protein, Argonaute 2 (AGO2) (Volk et al., 

2014; Catalanotto et al., 2016). Therefore, to detect active miRNAs and their mRNA targets, the 

AGO2 protein can be immunoprecipitated with the miRNA-mRNA pairs attached before 

sequencing them. In -omics studies, the integration of information on mRNA and miRNA 

expression is possible with the help of bioinformatic tools (Chen et al., 2018).  

Proteomics, or the study of the proteome, is employed to quantify abundance, interaction, and 

modification of peptides. The field of proteomics has been revolutionized by advances in 

methods based on the analytical technique mass spectrometry (MS), which have been recently 

adapted for high-throughput analyses that enable simultaneous assessment of thousands of 

proteins within cells or body fluids (Hasin et al., 2017). MS measures the mass-to-charge ratio of 

ionized chemical species (Glish and Vachet, 2003).     

 

2.3.4    Differential gene expression and protein abundance profiling analyses 

In the fields of quantitative transcriptomics and proteomics, statistical analyses of gene 

expression and protein abundance (also sometimes referred to as protein expression) are 

performed to measure the changes in levels between different experimental groups. For 
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example, Student’s t-test (Tsai et al., 2003) is performed to measure the change in read counts 

of a certain gene between two samples and to determine if the observed difference is greater 

than expected by chance. Most commonly, genes or proteins are considered differentially 

expressed (DE) if the obtained P-value is smaller than 0.05. Due to a large number of genes and 

proteins in typical RNA sequencing and liquid chromatography tandem mass spectrometry (LC-

MS/MS) experiments, correction for multiple testing is usually applied (Diz et al., 2011; Li et al., 

2012). In addition to the P-value, fold change (FC), calculated as a change in quantity between 

the two experimental groups, is defined. In the field of genomics and proteomics, FC log ratios 

are often used for analysis and visualization (Zhou et al., 2018).    

Many pathway analysis methods, a phrase used here in a broad sense (Khatri et al., 2012), aimed 

at interpreting the gene and protein expression data have been developed in recent years. The 

most common ones are knowledge-based (i.e., aimed at describing the data in the context of 

known biological processes, components, or structures) and differ in their statistical approaches. 

The methods used in this work are further described in section 4.5.  
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2.4    Psychopathology of anxiety disorders 

2.4.1    Clinical features of common anxiety disorders 

When anxiety and fear become maladaptive, or excessive in duration, intensity, or frequency 

and cause considerable disability and distress, they become anxiety disorders (Table 2).  

 

Table 2. The difference between everyday and pathological anxiety. Based on LeDoux (2015) and 
https://adaa.org/understanding-anxiety.  
 

 

 

Pathological fear and anxiety are subclassified based on their disorder-specific features including 

the anxiety and/or fear-associated behavior, as well as the course and the onset of the disorder. 

A well-known classification of anxiety disorders is based on the Diagnostic and Statistical Manual 

(DSM) of the American Psychiatric Association (American Psychiatric Association, 2013). The 

current DSM (DSM-5) recognizes the following anxiety disorders: separation anxiety disorder, 

selective mutism, specific phobia, social anxiety disorder (SAD, until recently known as social 

phobia), PD, agoraphobia, and GAD. The diagnostic criteria for the most common anxiety 

disorders are described in Table 3. Another standard set of criteria used to classify anxiety 

disorders is known as International Statistical Classification of Diseases and Related Health 

problems (ICD). The current version of ICD (ICD-10) groups anxiety disorders under neurotic, 

stress-related, and somatoform disorders.   

 

 

 

 

Everyday anxiety Anxiety disorders

Worry about paying bills, finding a job, or other 
important life events

Constant and unsubstantiated worry causing significant 
distress and interfering with daily life

Embarrassment or self-consciousness in an 
uncomfortable situation or socially awkward moment 

Avoiding social situations for fear of being judged, 
embarrassed, or humiliated

A case of sweating or heart palpitations before an 
important exam, presentation, public performance or 
other significant event

Seeming out-of-the-blue panic attacks and the 
preoccupation with the fear of having another one

Worry about an actual dangerous object, place or 
situation

Irrational worry about and avoidance of an object, place 
or situation that poses little or no threat of danger
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Table 3. Diagnostic criteria for most common anxiety disorders according to DSM-5. See pages 28-30.   
Adapted from American Psychiatric Association (2013).  
 

 

Panic Disorder
A. Recurrent unexpected panic attacks. A panic attack is an abrupt surge of intense fear or intense discomfort that reaches a 
peak within minutes, and during which time four (or more) of the following symptoms occur;

Note: The abrupt surge can occur from a calm state or an anxious state.
1. Palpitations, pounding heart, or accelerated heart rate.
2. Sweating.
3. Trembling or shaking.
4. Sensations of shortness of breath or smothering.
5. Feelings of choking.
6. Chest pain or discomfort.
7. Nausea or abdominal distress.
8. Feeling dizzy, unsteady, light-headed, or faint.
9. Chills or heat sensations.
10. Paresthesia (numbness or tingling sensations).
11. Derealization (feelings of unreality) or depersonalization (being detached from oneself).
12. Fear of losing control or “going crazy.”
13. Fear of dying.
Note: Culture-specific symptoms (e.g., tinnitus, neck soreness, headache, uncontrollable screaming or crying) may be seen. 
Such symptoms should not count as one of the four required symptoms.

B. At least one of the attacks has been followed by 1 month (or more) of one or both of the following:
1. Persistent concern or worry about additional panic attacks or their consequences (e.g., losing control, having a heart 
attack, “going crazy”).
2. A significant maladaptive change in behavior related to the attacks (e.g., behaviors designed to avoid having panic 
attacks, such as avoidance of exercise or unfamiliar situations).

C. The disturbance is not attributable to the physiological effects of a substance (e.g., a drug of abuse, a medication) or 
another medical condition (e.g., hyperthyroidism, cardiopulmonary disorders).
D. The disturbance is not better explained by another mental disorder (e.g., the panic attacks do not occur only in response to 

feared social situations, as in social anxiety disorder; in response to circumscribed phobic objects or situations, as in specific 

phobia; in response to obsessions, as in obsessive-compulsive disorder: in response to reminders of traumatic events, as in 

posttraumatic stress disorder: or in response to separation from attachment figures, as in separation anxiety disorder).

Generalized Anxiety Disorder
A. Excessive anxiety and worry (apprehensive expectation), occurring more days than not for at least 6 months, about a
number of events or activities (such as work or school performance).
B. The individual finds it difficult to control the worry.
C. The anxiety and worry are associated with three (or more) of the following six symptoms (with at least some symptoms
having been present for more days than not for the past 6 months):
Note: Only one item is required in children.

1. Restlessness or feeling keyed up or on edge.
2. Being easily fatigued.
3. Difficulty concentrating or mind going blank.
4. Irritability.
5. Muscle tension.
6. Sleep disturbance (difficulty falling or staying asleep, or restless, unsatisfying sleep).

D. The anxiety, worry, or physical symptoms cause clinically significant distress or impairment in social, occupational, or other
important areas of functioning.
E. The disturbance is not attributable to the physiological effects of a substance (e.g., a drug of abuse, a medication) or another 
medical condition (e.g., hyperthyroidism).
F. The disturbance is not better explained by another mental disorder (e.g., anxiety or worry about having panic attacks in
panic disorder, negative evaluation in social anxiety disorder [social phobia], contamination or other obsessions in obsessive-
compulsive disorder, separation from attachment figures in separation anxiety disorder, reminders of traumatic events in
posttraumatic stress disorder, gaining weight in anorexia nervosa, physical complaints in somatic symptom disorder,
perceived appearance flaws in body dysmorphic disorder, having a serious illness in illness anxiety disorder, or the content of
delusional beliefs in schizophrenia or delusional disorder).
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Agoraphobia
A. Marked fear or anxiety about two (or more) of the following five situations:

1. Using public transportation (e.g., automobiles, buses, trains, ships, planes).
2. Being in open spaces (e.g., parking lots, marketplaces, bridges).
3. Being in enclosed places (e.g., shops, theaters, cinemas).
4. Standing in line or being in a crowd.
5. Being outside of the home alone.

B. The individual fears or avoids these situations because of thoughts that escape might be difficult or help might not be
available in the event of developing panic-like symptoms or other incapacitating or embarrassing symptoms (e.g., fear of
falling in the elderly; fear of incontinence).
C. The agoraphobic situations almost always provoke fear or anxiety.
D. The agoraphobic situations are actively avoided, require the presence of a companion, or are endured with intense fear 
E. The fear or anxiety is out of proportion to the actual danger posed by the agoraphobic situations and to the 
F. The fear, anxiety, or avoidance is persistent, typically lasting for 6 months or more.
G. The fear, anxiety, or avoidance causes clinically significant distress or impairment in social, occupational, or other
important areas of functioning.
H. If another medical condition (e.g., inflammatory bowel disease, Parkinson’s disease) is present, the fear, anxiety, or
avoidance is clearly excessive.
I. The fear, anxiety, or avoidance is not better explained by the symptoms of another mental disorder—for example, the
symptoms are not confined to specific phobia, situational type; do not involve only social situations (as in social anxiety
disorder); and are not related exclusively to obsessions (as in obsessive-compulsive disorder), perceived defects or flaws in
physical appearance (as in body dysmorphic disorder), reminders of traumatic events (as in posttraumatic stress disorder),
or fear of separation (as in separation anxiety disorder).
Note: Agoraphobia is diagnosed irrespective of the presence of panic disorder. If an individual's presentation meets
criteria for panic disorder and agoraphobia, both diagnoses should be assigned.

Social Phobia
A. Marked fear or anxiety about one or more social situations in which the individual is exposed to possible scrutiny by
others. Examples include social interactions (e.g., having a conversation, meeting unfamiliar people), being observed (e.g.,
eating or drinking), and performing in front of others (e.g., giving a speech). Note: In children, the anxiety must occur in
peer settings and not just during interactions with adults.
B. The individual fears that he or she will act in a way or show anxiety symptoms that will be negatively evaluated (i.e., will
be humiliating or embarrassing: will lead to rejection or offend others).
C. The social situations almost always provoke fear or anxiety. 

Note: In children, the fear or anxiety may be expressed by crying, tantrums, freezing, clinging, shrinking, or failing to 
speak in social situations.

D. The social situations are avoided or endured with intense fear or anxiety.
E. The fear or anxiety is out of proportion to the actual threat posed by the social situation and to the sociocultural 
F. The fear, anxiety, or avoidance is persistent, typically lasting for 6 months or more.
G. The fear, anxiety, or avoidance causes clinically significant distress or impairment in social, occupational, or other
important areas of functioning.
H. The fear, anxiety, or avoidance is not attributable to the physiological effects of a substance (e.g., a drug of abuse, a
medication) or another medical condition.
I. The fear, anxiety, or avoidance is not better explained by the symptoms of another mental disorder, such as panic
disorder, body dysmorphic disorder, or autism spectrum disorder.
J. If another medical condition (e.g., Parkinson’s disease, obesity, disfigurement from burns or injury) is present, the fear,
anxiety, or avoidance is clearly unrelated or is excessive.
Specify if :

Performance only: If the fear is restricted to speaking or performing in public.



 
 

29 
 

 
 
 
2.4.2    Clinical and genetic epidemiology of anxiety disorders  

Prevalence  

The prevalence of a disease is a statistical concept referring to the number of individuals 

suffering from the disease in a particular population at a given time. (Bandelow and Michaelis, 

2015). The data on prevalence of a disease might provide valuable information to health services 

and researchers conducting clinical and preclinical studies and impact future allocation of 

economic resources.   

The reported prevalence of anxiety disorders shows large variability across studies due to 

differences in diagnostic criteria and instruments, response rates, and sample sizes of the 

epidemiological surveys (Somers et al., 2006; Bandelow and Michaelis, 2015). While the 

estimated lifetime prevalence for all anxiety disorders varies from 13% to 14% (Wittchen and 

Jacobi, 2005; Wittchen et al., 2011) to 34% (Kessler et al., 2012), it has been shown that anxiety 

disorders are the most common type of mental health disorder (Kessler et al., 2012). Among 

them, specific phobia is the most prevalent, with an estimated lifetime rate of between 8% 

(Wittchen and Jacobi, 2005) and 14% (Kessler et al., 2012). The second and third most common 

subtypes of anxiety disorders are SAD and generalized anxiety disorder, respectively (Table 4). 

The large variation in prevalence between the Wittchen and Jacobi (2005), Wittchen et al. 

(2011), and Kessler et al. (2012) studies are most likely a result of differences in data selection 

and statistical methodologies. Importantly, while the first two studies used meta-analytic 

Specific Phobia
A. Marked fear or anxiety about a specific object or situation (e.g., flying, heights, animals, receiving an injection, seeing
blood).

Note: In children, the fear or anxiety may be expressed by crying, tantrums, freezing, or clinging.
B. The phobic object or situation almost always provokes immediate fear or anxiety.
C. The phobic object or situation is actively avoided or endured with intense fear or anxiety.
D. The fear or anxiety is out of proportion to the actual danger posed by the specific object or situation and to the sociocultural
context.
E. The fear, anxiety, or avoidance is persistent, typically lasting for 6 months or more.
F. The fear, anxiety, or avoidance causes clinically significant distress or impairment in social, occupational, or other important
areas of functioning.
G. The disturbance is not better explained by the symptoms of another mental disorder, including fear, anxiety, and avoidance
of situations associated with panic-like symptoms or other incapacitating symptoms (as in agoraphobia): objects or situations
related to obsessions (as in obsessive-compulsive disorder); reminders of traumatic events (as in posttraumatic stress
disorder); separation from home or attachment figures (as in separation anxiety disorder); or social situations (as in social
anxiety disorder).
Coding note: When more than one phobic stimulus is present, code all ICD-10-CM codes that apply (e.g., for fear of snakes and 
flying, F40.218 specific phobia, animal, and F40.248 specific phobia, situational).
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techniques to review and appraise 27 population-based European studies, the third one is an 

original study based on a face-to-face household survey of adults conducted in the USA.  

In addition to the studies described above, numerous other epidemiological surveys and meta-

analyses have been conducted (Hettema et al., 2001; Pirkola et al., 2005; Somers et al., 2006; 

Alonso et al., 2007; Kessler et al., 2009; Smoller et al., 2009). 

 

Table 4. Lifetime and 12-month prevalence rates of anxiety disorders in various epidemiological 
surveys. Estimates based on Kessler et al. (2012), Wittchen et al. (2011) and Wittchen and Jacobi (2005).  
 

 
 

a The studies were conducted before the introduction of DSM-5, when obsessive-compulsive disorder 
(OCD) and post-traumatic stress disorders (PTSD) were still a part of the anxiety disorders category.  
P: Prevalence. 
 
 
Comorbidity  

Comorbidity is the presence of one or more additional diseases. Anxiety disorders show a high 

degree of overlap not only with each other, but also with other mental disorders (Pirkola et al., 

2005). The highest correlation within anxiety disorders was observed between SAD and 

agoraphobia and agoraphobia and PD (r = 0.68 and r = 0.62, respectively). The highest overlap 

with other psychiatric disorders was measured between generalized anxiety disorder and major 

depression (r = 0.62) (Kessler et al., 2005). Additionally, numerous studies have shown that 40% 

to 70% of people suffering from major depressive disorder simultaneously meet the criteria for 

one or more anxiety disorders (Kessler et al., 2007; Lamers et al., 2011; Wu and Fang, 2014). 

However, it is important to note that the detected correlation is most probably higher than that 

found in a representative population, as individuals suffering from two or more concomitant 

disorders are usually more likely to seek treatment. This phenomenon is known as Berkson’s 

Paradox (Merikangas and Kalaydjian, 2007).      

 

 

Wittchen and Jacobi study (2005) Wittchen et al. study (2011)

12-month P (%) 12-month P (%) 12-month P (%) Lifetime P (%)

Panic disorder 1.8 (0.7 – 3.1) 1.8 3.1 5.2

General anxiety disorder 1.7 (0.8 – 2.2)  1.7 – 3.4 2.9 6.2

Social anxiety disorder  2.3 (1.1 – 4.8) 2.3 8.0 13.0

Agoraphobia 1.3 (0.7 – 2.0) 2.0 1.7 2.6

Specific phobia  6.4 (3.4 – 7.6) 6.4 10.1 13.8

All anxiety disordersa 11.1-13.0 14.0 21.3 33.7

Anxiety disorder
Kessler et al. study (2012)
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Heritability and genetic factors 

Heritability (h2) is a term describing how well the additive genetic variation accounts for the 

differences in given individual’s trait. For example, a h2 = 0.4 means that 40% of the variability in 

the studied trait in a population is due to genetic differences among people (Tenesa and Haley, 

2013). The heritability estimates for anxiety disorders obtained through twin studies is between 

30% and 50% (Hettema et al., 2001; Shimada-Sugimoto et al., 2015).  

As reported in several genetic association studies, multiple putative susceptibility genes are 

thought to contribute to anxiety disorders. Those genes include 5-HT1A and 5-HT2A (5-

hydroxytryptamine serotonin receptor 1A and 2A) (Rothe et al., 2004; Choi et al., 2010; Albert 

et al., 2014), MAO-A (monoamine oxidase A) (Deckert et al., 1999; Tadic et al., 2003; Ziegler et 

al., 2016), COMT (catechol-O-methyltransferase) (Rothe et al., 2006; Pooley et al., 2007; Lee and 

Prescott, 2014), ADORA2A (adenosine A2a receptor) (Deckert et al., 1998; Lam et al., 2005; 

Hohoff et al., 2010), and CRHR1 (corticotropin releasing hormone receptor 1) (Reul and 

Holsboer, 2002; Schartner et al., 2017; Savarese and Lasek, 2018). Many of the listed genes, 

some of which are a part of common biological pathways, have been shown to interact with 

environmental factors (see below) and contribute to an overall risk score in complex genetic 

models of anxiety disorders (Domschke and Maron, 2013). Furthermore, the information on 

variants within some of those genes can be further utilized in clinical practice to partially predict 

a patient’s response to anxiolytic drugs (Tiwari et al., 2009).     

 

Gender differences 

On average, the prevalence rates of anxiety disorders are about 1.7 to 2.0 times higher in 

females than in males. Genetic and neurobiological factors, along with psychosocial contributors 

(see Stressful life events below) are thought to contribute to the observed differences between 

genders. Table 5 shows the 12-month (Wittchen and Jacobi, 2005) and lifetime (Kessler et al., 

2012) prevalence women-to-men ratios for all anxiety disorders. 

 

Age of onset 

While the median age of onset (i.e., age at which an individual first develops a disorder) for 

anxiety disorders is 11 years (Goodwin et al., 2005; Kessler et al., 2005), their different subclasses 

show significant variability. For example, the median age of onset for specific phobia and 

generalized anxiety disorder are 7 and 31 years, respectively. Furthermore, epidemiological 
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studies of anxiety disorders suggest their chronic nature (i.e., many patients suffer from the 

disorders throughout life) (Kessler et al., 2009; Kessler et al., 2012).      

 

Table 5. Prevalence rates for anxiety disorders in women vs men. The numbers represent women-to-
men ratios. Table adapted from Bandelow (2015).  
 

 
 

a The studies were conducted before the introduction of DSM-5, when obsessive-compulsive disorder 
(OCD) and post-traumatic stress disorders were still a part of the anxiety disorders category.  
 

Stressful life events  

The risk of onset and relapse of anxiety disorders is also associated with environmental factors, 

such as stressful life events (Pirkola et al., 2005; Moffitt et al., 2007; Francis et al., 2012). Over 

50 years ago, Holmes and Rahe (1967) developed the initial stress scale that assessed the 

incidence of 43 life events that were positive, adverse, or ambiguous to the respondent’s life 

(Holmes and Rahe, 1967; Miloyan et al., 2018). Since then, adverse (i.e., stressful) life events 

have been established as a well-known risk for mental disorders, particularly during childhood, 

which is a sensitive developmental period (Brydges et al., 2014). A study by Pirkola et al. (2005) 

has shown that of the 60% of adults who reported at least five childhood adversities (e.g., being 

bullied at school), as much as 10% suffered from anxiety disorders. Interestingly, more 

adversities had a stronger association with anxiety disorders in females than in males, with the 

exception of being bullied at school.   

 

2.4.3    Neurobiological basis of anxiety disorders 

Brain regions involved in anxiety disorders 

Due to their essential role in survival of mammals, the brain mechanisms underlying the 

processing of defensive responses to threats (see Fig. 1a), in both normal and pathological fear 

Wittchen and Jacobi study (2005) Kessler et al. study (2012)

12-month P (%) Lifetime P (%)

Panic disorder 1.8 2.1

General anxiety disorder 2.1 1.7

Social anxiety disorder 2.0 1.2

Agoraphobia 3.1 1.6

Specific phobia 2.4 1.8

All anxiety disordersa 2.1 1.5

Anxiety disorder
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and anxiety, are similar between humans and mice (see section 2.4.5). Some of the core brain 

structures involved in this process, historically referred to as the limbic system, include the 

hippocampus (HIP), amygdala (AMYG), and cingulate gyrus. These three phylogenetically ancient 

structures, present in all mammals, were the core of the limbic system theory proposed by Paul 

MacLean (1949). The theory stated that our reptilian ancestors were ruled by instincts and 

reflexes generated within these three structures and that the emotions they produced were only 

weakly regulated by the neocortex (MacLean, 1949; Roxo et al., 2011). Although we now know 

that the evolutionary preconceptions of the limbic brain theory are largely untrue (Grupe and 

Nitschke, 2013; LeDoux, 2015), the idea behind it is still frequently discussed in scientific articles 

and lay conversations.   

The circuits currently thought to be responsible in normal and pathological anxiety include the 

AMYG, nucleus accumbens (NACC), bed nucleus of the stria terminalis (BNST), HIP, 

periaqueductal grey (PAG), and many areas within the prefrontal cortex (PFC). These areas, and 

the connections between them, are altered in people suffering from anxiety disorders (Fig. 6). 

The medial prefrontal cortex (PFCM), anterior hippocampus (HIPA, equivalent to ventral HIP, HIPV, 

in rodents), and the BNST are of particular interest to many researchers. While the PFCM is 

involved in visceral response to emotions and reward processing, HIPA is associated with 

sustained anxiety and required for avoidance behavior (Berkowitz et al., 2007; Oler et al., 2010). 

The direct monosynaptic projection from the HIPV to the PFCM is thought to be a crucial 

component of a circuit responsible for innate forms of anxiety-like behavior in mice (Padilla-

Coreano et al., 2016). The BNST is a sexually dimorphic brain region and a central element of the 

circuit responsible for sustained fear states (Fig 6). It processes information related to response 

to threats from a vast connectivity network, including PFCM and HIP (Lebow and Chen, 2016). All 

brain regions involved in regulation of normal and pathological anxiety communicate through 

neurotransmitters and neuropeptides, which transmit impulses from one neuron to another via 

the synapse. Neurotransmitters and neuropeptides differ in size, with the first group being 

relatively smaller (Purves, 2018). The four main neurotransmitters implicated in anxiety 

disorders are γ-aminobutyric acid (GABA) (Nuss, 2015), serotonin (5HT) (Gordon and Hen, 2004), 

norepinephrine (NE) (Montoya et al., 2016), and dopamine (DA) (Russo and Nestler, 2013). The 

main neuropeptides are corticotropin releasing factor (CRH), arginine-vasopressin (AVP), 

neuropeptide Y (NPY), pituitary adenylate-cyclase activating polypeptide (PACAP), neuropeptide 

S (NPS), and oxytocin (Donner et al., 2010; Gottschalk and Domschke, 2018). Neurotransmitters 
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and neuropeptides are frequently co-released within the central nervous system where they 

play a central role in regulating stress and emotion circuitry (e.g., by increasing attention and 

vigilance). Furthermore, they also mediate the peripheral response to stress via increased blood 

pressure and heart rate and visceral organ activation (Landgraf, 2005; Garakani et al., 2009).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Brain regions involved in anxiety disorders. Six main processes altered in the brains of people 
suffering from anxiety disorders, as proposed by Grupe and Nitschke (2013). ACC: anterior cingulate 
cortex, AMYG: amygdala, BNST: bed nucleus of the stria terminalis, INS: insular cortex, HIP: hippocampus, 
NACC: Nucleus Accumbens, PAG: periaqueductal grey, PAR: parietal cortex, PFCDM: dorsal medial 
prefrontal cortex, PFCL: lateral prefrontal cortex, PFCVM: ventral medial prefrontal cortex, OFCM: orbital 
frontal cortex, STR: dorsal striatum. Figure adapted from LeDoux (2015) and Grupe and Nitschke (2013). 
 
Hypothalamic-pituitary-adrenal (HPA) axis  

The brain circuits involved in normal and pathological anxiety (Fig. 6) overlap and interact with 

that of the stress response (Fig. 1a). Perhaps the best-known aspect of the stress response in 

mammals is the activation of the hypothalamic-pituitary-adrenal (HPA) axis. This complex 



 
 

35 
 

process involves a feedback loop including the hypothalamus, anterior pituitary, and the adrenal 

gland and inputs from multiple other brain regions implicated in anxiety (e.g., BNST) (Lebow and 

Chen, 2016) and the HIP (Stephens and Wand, 2012).  

During the activation of the HPA axis, the hypothalamus secretes two hormones, AVP and CRH, 

into the blood vessels, known as hypophysial portal blood, leading to activation of the pituitary 

gland, which releases adrenocorticotropin hormone (ACTH). ACTH is then transported in the 

blood to the adrenal cortex, where it binds to the receptors of adrenocortical cells, stimulating 

the production and release of glucocorticoids, including the stress hormone, cortisol. In mice, a 

similar hormone, known as corticosterone, is released. Glucocorticoids are important for energy 

metabolism and for immune and inflammatory responses. The loop is completed by negative 

feedback to the pituitary gland, hypothalamus, and other brain regions (Fig. 7) (Tsigos and 

Chrousos, 2002; Faravelli et al., 2012). Dysregulation of the HPA axis (i.e., either hyper- or 

hyposensitivity) has been shown to be important in different anxiety disorders (Varghese and 

Brown, 2001; Tanoue et al., 2004). 

    

 
 
 
 
 
 
 
 
 
 
Figure 7. Hypothalamic-pituitary-adrenal (HPA) axis. CRH: corticotropin releasing factor, AVP: arginine-
vasopressin, ACTH: adrenocorticotropin hormone. Based on information from Tanoue et al. (2004) and 
Faravelli et al. (2012). 
 
 
2.4.4    Behavioral animal models of anxiety disorders 

An animal model is a non-human animal employed to investigate the biological bases of human 

diseases and disorders or basic mechanisms involved in human behavior. Animal models of 

anxiety disorders take advantage of the fact that anxiety is an evolutionarily conserved response 

(see section 2.4.3) and enable us to circumvent some of the challenges connected to studying 

stress and pathological anxiety in humans (see Introduction). It is important to note that 
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although response to stress has largely been shown to involve the same brain circuits and to 

evoke similar behavioral responses in both mice and humans (e.g., increase in vigilance and 

blood pressure, hypoactivity and/or freezing, and hypophagia), their anthropomorphic 

projection to human traits may sometimes lead to overinterpretation (Cryan and Holmes, 2005). 

For example, we often describe mice that avoid well-lit areas (see Light-dark box test in Table 7) 

as being anxious rather than expressing anxiety-like behavior (Lezak et al., 2017).  

Different types of approaches have been established for animal models, including 

pharmacological, genetic, and behavioral models (Steimer, 2011; Campos et al., 2013). The vast 

number of behavioral paradigms that have been developed to induce (Table 6) and measure 

(Table 7) anxiety-like behavior in rodents differs in their predictive (animal performance in the 

test predicts performance in the condition it is being modeled after), face (phenomenological 

similarity), and construct (theoretical rationale) validities. Although both acute and chronic 

stress-inducing paradigms exist, the latter paradigms are more suitable to study anxiety from 

the perspective of several validities (Cryan and Holmes, 2005; Nestler and Hyman, 2010). In 

particular, the CSDS model, a model of chronic psychosocial stress (see section 2.4.2 subsection 

Stressful life events), has been successfully used to produce a significant amount of knowledge 

on the biological basis of anxiety-like behavior (Krishnan et al., 2007; Kovalenko et al., 2014; Volk 

et al., 2014; Volk et al., 2016; Laine et al., 2017). The CSDS model involves repeated daily 

interactions of an experimental animal with a conspecific aggressor, without the possibility of 

escaping the situation (see section 4.3) (Golden et al. 2011). Lastly, with the recent introduction 

of RDoc (see section 2.2.3), which focuses on symptoms of disorders rather than the disorders 

themselves, more animal models concentrate on the observation of simple behavioral and 

physiological measures that can be straightforwardly extrapolated to humans (Lezak et al., 2017; 

Toyoda, 2017).   

 

Table 6. Overview of the most common models to induce anxiety-like behavior in mice. See Materials 
and methods for extended description of the chronic social defeat (CSDS) paradigm. Adapted from 
Toyoda (2017).  
 

 

Stress type Behavioral model Reference(s)
Chronic social defeat stress (CSDS) Golden et al., 2011    
Subchronic social defeat Goto et al., 2014
Unpredictable chronic stress (UCS) Mineur et al., 2006; Monteiro et al., 2015
Chronic restraint stress (CRS) Kvetnansky and Mikulaj, 1970

Chronic and emotional Witness stress Sial et al., 2016

Chronic, physical and 
emotional
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Table 7. Overview of the most common tests to assess anxiety-like behavior in mice. See Materials and 
methods for extended description of the social avoidance (SA) test. FST is most often considered a model 
of despair, not anxiety-like behavior. However, it can also be used to induce acute physical and emotional 
stress (Porsolt et al., 1977; Allsop et al., 2014). Adapted from Allsop et al. (2014), Golden et al. (2011), 
Kumar et al., (2013) and Blanchard, Griebel and Blanchard (2001).  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Behavioral test Brief description

Elevated plus maze (EPM)
An elevated, plus-shaped apparatus composed of 2 enclosed arms 
opposed by 2 open arms (Pellow et al., 1985)

Elevated zero maze (EZM)
An elevated, circular runway that alternates open, brightly lit areas with 
enclosed, dark areas (Shepherd et al., 1994)

Open field (OF)
Novel, relatively lit square or circular arena divided into peripheral and 
central units (Hall and Ballachey, 1932)

Light-dark box (L/D)
Box with 2 different compartments: protected (dark) and unprotected (lit) 
(Lorenzini et al., 1984)

Social avoidance (SA)

An animal is placed in the center of an open arena and allowed to explore 
it during two sessions, with and without an unfamiliar aggressor placed in 
perforated container; time in the interaction zone (IZ) around the 
container is measured (Golden et al., 2011) 

Novelty suppressed feeding (NSF)
Food-deprived animals are exposed to a box with a sawdust-covered 
floor, a central platform holding a single pellet of chow or liquid, and 
focused lighting (Dulawa and Hen, 2005; Deacon, 2011)

Forced swim test (FST)
An animal is placed in a container filled with water from which it cannot 
escape. Time to immobility is measured (Kumar et al., 2013)
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3    Aims of the study 

  

The aim of this thesis was to improve the understanding of the molecular etiology behind 

vulnerability and resiliency to pathological anxiety in mammals. 

 

The following specific objectives were addressed in the studies of this thesis: 
 

1. To identify genetic loci that predispose to a specific phobia, fear of heights, in an isolated 

Finnish population with a reduced genetic heterogeneity using a microsatellite marker 

panel (study I). 

 

2. To identify converging gene regulatory networks (GRN) of mRNAs and miRNAs and 

protein-protein interaction networks in the bed nucleus of the stria terminalis (BNST) 

affected by exposure to chronic social defeat stress (CSDS), a well-established mouse 

model of chronic psychosocial stress. To examine major biological pathways and 

molecules associated with the anxiety-related phenotype through comparative analyses 

of BNST and whole-blood transcriptome of CSDS-exposed mice and blood cell gene 

expression profiling of samples from panic disorder (PD) patients  after exposure-induced 

panic attacks (study II).  

 

3. To establish common biological pathways affected by CSDS in the BNST and two other 

brain regions, the medial prefrontal cortex (PFCM) and ventral hippocampus (HIPV), 

through comprehensive transcriptome analysis (study III).   
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4    Materials and methods 

All methods presented in this work are described in detail in the original publications (studies I 

and III) or the manuscript (study II). A brief description of the study samples and an overview of 

all methods used by the author (Tables 8-11) are presented below. Additionally, an overview of 

all data sets used in studies II and III is shown in Figure 8. Only the main methods, essential to 

the understanding of the results and discussion, are further explained in the following sections. 

 

4.1    Ethics statements (studies I, II, and III) 

All animal procedures were approved by the Regional State Administration Agency for Southern 

Finland (ESAVI-3801-041003-2011 and ESAVI/2766/04.10.07/2014) and performed in 

accordance with directive 2010/63/EU of the European Parliament and of the Council and the 

Finnish Act on the Protection of Animals Used for Science or Educational Purposes (497/2013). 

All human procedures were approved by the ethical review board of the National Institute for 

Health and Welfare (THL), formerly the National Public Health Institute of Finland (KTL) (study 

II), or the Ethics Committee of the Ludwig Maximilian University of Munich, Germany (study I) 

and are in accordance with the Declaration of Helsinki.  

 

4.2    Study samples (studies I, II, and III) 

The following three main samples were used as a part of this work: two human samples including 

individuals suffering from acrophobia (the fear of heights, study I) and panic disorder (study II) 

and one animal sample of mice from four inbred strains subjected to CSDS, a mouse model of 

chronic psychosocial stress (studies II and III). The samples are briefly described in the following 

section and their use is detailed in Tables 8 to 11 and in Figure 9.  

 

Human acrophobia study sample (study I) 

The sample included 57 mostly large multigenerational pedigrees with multiple affected 

individuals and at least one parent born in a Finnish genetic isolate. This sample consisted of 642 

people, 42 of which are affected with pure acrophobia (6.5%) and 75 with acrophobia with 

comorbid schizophrenia (11.7%). All pedigrees are part of a Finnish severe mental disorders’ 

family collection of the National Institute for Health and Welfare (Varilo et al., 1996; Hovatta et 
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al., 1999; Arajarvi et al., 2006; Wedenoja et al., 2008; Paunio et al., 2009). Blood samples were 

collected and analyzed for 575 autosomal microsatellite markers across the genome. For 

information about sample collection and genotyping, which was not a part of this study, please 

refer to Arajärvi et al. (2006) and the original publication.  

 

Human Panic Disorder (PD) study sample (study II) 

The sample was composed of 21 non-medicated PD patients, including 6 males (age 29.33 ± 8.48 

years) and 15 females (age 32.60 ± 9.61 years) recruited in the anxiety disorder outpatient unit 

at the Max Planck Institute of Psychiatry, Munich, Germany. PD with (n = 18; 85.7%) or without 

(n = 3; 14.3%) comorbid agoraphobia was given as the primary diagnosis, while mild secondary 

depression was allowed (n = 2; 9.5%). As a part of behavioral therapy, patients underwent 

exposure therapy, which depended on the feared situation (e.g., subway, supermarket, tower) 

and specific concern (e.g., fainting, asphyxiation, losing control). Blood samples were collected 

at three timepoints: baseline, 1-hour post-exposure and 24-hour post-exposure.  Blood cell RNA 

was extracted and gene expression was performed using Illumina HumanHT-12 v4 Expression 

BeadChips (Illumina, CA, USA). 

 

Mice chronic social defeat study sample (studies II and III) 

Male 5-week-old mice from two (study II) or four (study III) inbred mouse strains (see below) 

and 13 to 26-week-old outbred Clr-CD1 (CD-1) mice (Charles River Laboratories, Sulzfeld, 

Germany) were housed in a pathogen-free, humidity- (50 ± 15%) and temperature-controlled 

(22 ± 2 °C) animal facility at the University of Helsinki on a 12-hour light-dark cycle (lights on at 

6 A.M. to 6 P.M.) and with ad libitum access to Teklad 2916 rodent chow (Envigo, Huntingdon, 

United Kingdom) and water. Before the beginning of the behavioral experiments, all inbred mice 

were acclimatized for 10 days in group housing. CD-1 mice were acclimatized for 7 days in single 

individually ventilated cages (IVC) (Tecniplast, Buguggiate, Italy) prior to CD-1 aggressor 

screening (see Table 8). Behavioral experiments were conducted on four inbred strains 

129S2/SvPasCrl (129), BALB/cAnNCrl (BALB) DBA/2NCrl (D2) and C57BL/6NCrl (B6), of which the 

two latter strains were only included in study III.   
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4.3    Behavioral experiments in mice (studies II and III) 

 
Chronic social defeat stress (CSDS)  

B6, D2, 129, and BALB male mice were subjected to 10 days of CSDS (Fig. 8) (Berton et al., 2006; 

Golden et al., 2011). Briefly, each intruder mouse (B6, D2, 129 or BALB) was placed into a cage 

of a resident (CD-1) (Fig. 8) for a maximum of 10 minutes. Following the defeat session, both 

mice remained in the same cage until the next day, separated by a perforated clear plexiglass 

divider to allow sensory contact. The defeat sessions were repeated for 10 consecutive days, 

each day with a new unfamiliar CD-1 resident. During the 10-day protocol, the control mice were 

housed in identical cages, on two sides of a clear plexiglass divider. While the control mice were 

handled and switched cagemates every day, similarly to the defeated mice, they were not in a 

direct physical contact with other mice at any time.  

 

Social avoidance (SA) test 

All mice underwent a SA test (Berton et al., 2006) 24 hours after the last social defeat session to 

assess the effects of CSDS and divide them into stress-resilient and stress-susceptible groups. 

Briefly, the SA test consisted of two trials, the first without a CD-1 aggressor (target absent) and 

second with aggressor (target present), each lasting 150 seconds. During both trials, the test 

mouse was placed in the middle of an open field (OF) arena with a clear circular perforated 

plexiglass cylinder located adjacent to one of the walls (Fig. 8). The test mouse was allowed to 

freely explore the arena while its movements were tracked using a camera connected to a 

computer running EthoVision XT10 video tracking software (Noldus Information Technology, 

Wageningen, Netherlands). The time the mouse spent in the interaction zone (IZ), a semicircle 

around the cylinder, during both trials was measured and a social interaction (SI) ratio was 

calculated by dividing the IZ time of the second trial by the IZ time of the first trial. To separate 

the mice into stress-susceptible and stress-resilient phenotypes, we calculated the mean and 

median SI ratio. Subsequently, we log-transformed the values to obtain normal distribution and 

removed outliers (SI > 3 IQRs from the median). We next divided the defeated mice into stress-

resilient and -susceptible phenotypes based on the SI ratio, with the border determined as the 

controls’ mean SI score minus one SD. SI ratio border values for each strain were the following: 

129 = 62.68, BALB = 81.76, B6 = 76.49, D2 = 105.99. Of all B6 mice subjected to a SA test, 9% of 
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the susceptible, 20% of the resilient, and 35% of the control mice were included in both study II 

and III.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Overview of the timeline of behavioral experiments including schemes of the chronic social 
defeat stress (CSDS) and social avoidance (SA) test. CSDS: chronic social defeat stress, EZM: Elevated 
zero maze, FST: Forced swim test, OF: Open field, SA: Social avoidance. For description of the OF, EZM 
and FST, please see section 2.4.4. 
 

4.4    Overview of the analyzed data sets (studies II and III) 

 
Studies II and III included a large number of data sets from various brain structures (PFCM, HIPV, 

and BNST) and species (Homo sapiens and Mus musculus; see also section 4.2) used for 

experiments conducted across different -omics platforms and other approaches. For 

simplification, the data sets are thereafter also referred to by their letter equivalents (Fig. 9). For 

details regarding the methods listed in Figure 9, see Tables 8 to 11 and section 4.5.   
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Figure 9. An overview of all data sets used in studies II and III. All data sets are organized by their tissue, 
organism (common name), study, and method. B6: C57BL/6NCrl strain; D2: DBA/2NCrl strain, LC-MS/MS: 
Liquid chromatography-tandem mass spectrometry; RNA-seq: RNA sequencing; TEM: Transmission 
electron microscopy. 
 

4.5    Overview of methods (studies I, II and III)  

The section below presents an overview of all methods used in studies I, II, and III. Table 8 shows 

the methods used in behavioral experiments in mice, animal tissue collection, and RNA 

extraction. Table 9 discusses methods related to RNA sequencing (RNA-seq), miRNA sequencing 

(miRNA-seq), transmission electron microscopy (TEM), and Western blot experiments. Tables 10 

to 11 include statistical methods used in all studies. Additionally, a short description of gene set 

enrichment analysis and pathway analysis (the main methods applied in studies II and II) is 

presented. Lastly, Figure 10 includes a guide for reading Figures 15, 16, 19 and 20, which are a 

part of section 5.2.   
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Gene set enrichment analysis (GSEA) (studies II and III) 

We performed gene set enrichment analysis (GSEA) on data sets A to D, I, and K using the GSEA 

Preranked tool implemented in GSEA Desktop v3.0 and the curated gene sets (C2) of the 

Molecular Signature Database (MSigDB) v6.0 provided by the Broad Institute (Mootha et al., 

2003; Subramanian et al., 2005). In study II, we further selected the top significantly 

dysregulated gene set present in at least 50% of the respective comparisons (Fig. 13b, data sets 

C and D; Fig. 17 data sets C, I, and K) for visualization. Due to the large number of data sets and 

differences in -omics platforms, a recommended exploratory false discovery rate (FDR) of 25% 

(Mootha et al., 2003) was applied. The DE genes, common among the B6 and D2 stress-

susceptible mice in comparison to controls (data sets C and I) were further investigated by 

hypergeometric distribution implemented in the MSigDB v6.0. In study III, we selected the top 

five gene sets with the highest positive and lowest negative enrichment scores (NES; PFDR < 0.05) 

within each strain (i.e., B6 and D2) and comparison (i.e., stress-susceptible, stress-resilient, and 

control) for further analysis. From the selected gene sets, all present in at least two brain regions 

and two comparisons were visualized (Fig. 11). The top enriched gene sets were further 

investigated for overlapping genes with hypergeometric test implemented in the MsigDB v6.0. 

All gene sets in Figures 17, 21b, and 25 are organized by frequency of gene sets with P < 0.05 

and then alphabetically.   

 
Ingenuity Pathway Analysis (IPA) (study II) 

The core and comparison network analyses were performed with IPA v.483681M (QIAGEN Inc., 

2018) for all genes (data set C) and proteins (data set D) with nominal P < 0.05 and absolute fold 

change (|FC|) ≥ 1.2. Figure 21a shows the top significantly dysregulated pathways present in at 

least 30% of all comparisons. All pathways in Figure 21a are organized by frequency of canonical 

pathways with P < 0.05 and then alphabetically.   

 

Gene Ontology (GO) term enrichment analysis  

We performed GO term enrichment analysis on DE genes (P < 0.05 and |FC| ≥ 1.2) overlapping 

between the B6 and D2 stress-susceptible vs control comparisons (data set C). The analysis was 

performed using the topGO R package (Alexa et al., 2006) with standard parameters. For data 

set K, we performed classical enrichment analysis by testing over-representation of GO terms 
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with the group of DE genes (P < 0.05). As background in the analysis, we used all annotated genes 

and probes. 

 

Transmission electron microscopy (TEM) statistical analysis (studies II and III) 

Mitochondria (study II) 

We measured the maximum (length) and minimum (width) diameter of all mitochondrial cross-

sections entirely within the microscope field using Microscopy Image Browser software (Belevich 

et al., 2016). Following identification of synaptic densities, we counted the number of 

mitochondrial cross-sections localized in the pre- or post-synaptic compartment. Study II 

included 60 to 80 individual axons from three to four animals per group. 

 

Myelinated axons (study III) 

We measured axon diameter, myelin thickness, and g ratio (ratio of the inner axonal diameter 

to the outer axonal diameter) with ImageJ software (Schneider et al., 2012). The diameter was 

measured by taking the circumference of the whole fiber and the circumference of the axon. 

The g ratio was calculated by dividing the diameter of the axon with the diameter of the whole 

fiber. Study III included 32 to 69 individual images from three to five animals per group. 

Group differences in TEM data (studies II and III) were assessed using generalized estimating 

equations (GEEs) to control for within-subject dependencies of individual axons measured from 

the same animal, which violated the ANOVA assumption of the independence of observation 

(see Hanley et al., 2003). Pair-wise contrasts were computed with Fisher’s LSD and significance 

determined with the Bonferroni method using SPSS Statistics v25 (IBM, NY, USA). 
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5    Results 

5.1    Genetic predisposition to acrophobia is likely to have a complex genetic    

          architecture (study I) 

We aimed to identify genetic risk variants for acrophobia, an abnormal fear of heights, through 

a genome-wide linkage scan using a panel of 570 microsatellite markers. The microsatellite 

marker panel had been genotyped as part of earlier schizophrenia linkage-based gene mapping 

studies (Hovatta et al., 1999; Wedenoja et al., 2008). Our analyses were performed in large 

multigenerational pedigrees belonging to an isolated homogenous population from a 

northeastern part of Finland. The cohort consisted of 642 people, of which 42 were affected only 

with acrophobia (6.5%) and 75 with acrophobia comorbid with schizophrenia (11.7%). As the 

inheritance pattern of acrophobia is unknown, due to their different strengths and weaknesses 

in detecting linkage, we applied a wide range of analytical methods and models (Ott, 1999; Sham 

et al., 2000; Goode et al., 2005) and accordingly divided our study into three stages. Stage I of 

the study consisted of parametric two-point (IA) and multipoint (IB) analyses and stage II of 

nonparametric multipoint analysis. Unlike nonparametric analysis, parametric linkage analysis 

requires the estimation of allele frequency and penetrance (Ott et al., 2015). Furthermore, while 

two-point analysis (also referred to as single-point analysis) examines linkage of a putative 

disease locus to a single marker locus at a time, significantly reducing computational load and 

enabling parallel processing, multipoint analysis evaluates linkage to multiple markers 

simultaneously (Szymczak et al., 2014). Lastly, in stage III of the study, we conducted joint linkage 

and LD analysis. Due to a significant number of individuals suffering from acrophobia with 

comorbid schizophrenia (44.0%), the three-stage analysis was conducted both for acrophobia 

with and without comorbid schizophrenia, thereafter also referred to as the pure acrophobia 

sample. An overview of the results of all performed analyses with both sub-samples is presented 

in Table 12.  
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5.1.1    Parametric two-point and multipoint analyses (stage I) 

The strongest evidence for linkage was detected for marker D5S2115 (LOD = 2.16, dominant 

model) when the analysis was performed with the acrophobia with comorbid schizophrenia 

sample and marker D8S373 (LOD = 2.09, recessive model) for the pure acrophobia sample. In 

acrophobia with comorbid schizophrenia, marker D8S373 obtained a LOD score of only 0.51 

(recessive model) and in the pure schizophrenia sample a LOD score of 0.00 (recessive model) 

(Fig. 11).  

 

Chromosomes 5 and 8, for which we obtained a LOD score of >2 with either the recessive or 

dominant inheritance model, were further examined using parametric multipoint linkage 

analysis. We obtained a maximum multipoint LOD score (MLOD) of 0.054 (α = 0.15, dominant 

model) for marker D5S2115 in the acrophobia sample with comorbid schizophrenia. In the pure 

schizophrenia sample, marker D8S373 yielded the maximum MLOD score of 0.533 (α = 1.00 

recessive model), the highest LOD score on chromosome 8.  

 

5.1.2    Nonparametric multipoint analysis (stage II) 

In stage II of the study, we conducted a multipoint nonparametric genome-wide linkage analysis 

with both an empirical, NPLall and NPLpair methods. While NPLall allows us to calculate if founder 

alleles are overrepresented in individuals affected with acrophobia, and NPLpair estimates the 

sum of conditional kinship coefficients for all affected pairs.  

 

The NPLall method yielded the highest LOD score of 2.91 for marker D13S173 in the acrophobia 

with comorbid schizophrenia sample, while the maximum score of 2.22 in the pure acrophobia 

sample was obtained for marker D13S162 (Fig. 11). Both markers are located on chromosome 

13, 37.8 cM apart. The distance between markers suggest that they are not strongly linked.  

 

The NPLpair approach gave the highest LOD score of 2.52 for marker D1S2817 in the acrophobia 

with comorbid schizophrenia sample and the maximum LOD score of 2.17 for marker D4S2394 

in the pure acrophobia sample (Fig. 11). It is likely that the signal detected for marker D4S2394 

comes from the acrophobia phenotype as the same marker in the acrophobia with comorbid 

schizophrenia yielded a LOD score of only 0.52.  
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Two-point nonparametric analysis was not performed as a part of this study as multiple 

pedigrees sizes, without being divided, exceeded the limits for the currently available software 

(Dudbridge, 2003).  

 

5.1.3    Joint linkage and linkage disequilibrium analysis (stage III) 

Genetic isolates, such as the one presented in this study, are characterized by reduced genetic 

heterogeneity that can result in the majority of affected individuals carrying the same 

predisposing variant, detectable as LD (Hiekkalinna et al., 2011). Marker D4S231 showed the 

strongest evidence for association with acrophobia including the samples with comorbid 

schizophrenia (P = 0.0003, recessive model), while in the acrophobia sample without comorbid 

psychiatric diagnosis the strongest association was obtained by both markers D1S235 and 

D17S2196 (P = 0.0054 for both markers).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. A summary of the most significant chromosomal regions implicated in a genome-wide 
linkage scan for acrophobia without comorbid schizophrenia. Chromosome numbers are indicated 
above the ideograms. Blue: Centromere; Light purple: variable region; dark purple: stalk. LOD: Logarithm 
(base 10) of odds. 
 
 
5.1.4    Estimation of statistical power  

To estimate the power of the analyzed sample to detect linkage, we performed a 

PSEUDOMARKER simulation with SLINK software package (Ott, 1989; Cottingham et al., 1993; 
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Hiekkalinna et al., 2011)). According to this analysis, average maximum LOD scores of 5.77 and 

5.03 were obtained with the dominant and recessive models, respectively. Furthermore, a 

conventional LOD score of 3.0 was reached by 31% and 12% of replicates in the recessive and 

dominant models (allele frequency of 0.00001 and 0.01 and phenocopy rates of 0 and 0.01, 

respectively) with the assumption of complete linkage (θ = 0.0), respectively. We therefore 

concluded that our sample has adequate power to detect significant evidence for linkage.  
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5.2    Trans-omics cross-species approach to identify molecular pathways    

          associated with anxiety-related behavior (studies II and III) 

In study II and III, we aimed to establish the major molecular mechanisms underlying anxiety-

related behavior in mice and humans. We used CSDS to study resilience and susceptibility to 

chronic psychosocial stress in mice. In humans, we used samples from PD patients who 

underwent exposure-induced panic attacks. 

In study II, we investigated gene and protein expression in the BNST and blood cells of mice 

subjected to CSDS. We further followed our analyses with integrative pathway analyses and 

comparison of mouse and human blood cell gene expression data. Information on BNST gene 

expression was further used in study III (see Fig. 9).    

In study III, following CSDS, we analyzed gene expression data from three brain regions, 

specifically the PFCM, the HIPV, and the BNST, followed by GSEA and data integration of all three 

structures. To compare and contrast the results obtained from different -omics platforms in 

studies II and III, different criteria to define DE genes were selected than in the original article 

(III) (i.e., P < 0.05 and |FC| ≥ 1.2 instead of the top 300 genes). However, as both criteria are 

relative, not simultaneously exclusive, and lead to the same conclusions, only the former are 

presented below. In addition to comparing stress-resilient and stress-susceptible mice to the 

same-strain controls (included in study III), this work also presents the DE profiles for the stress-

susceptible vs stress-resilient comparisons.  

For clarity, the data sets are also thereafter referred to by their letters (see Fig. 9). 

 

5.2.1    The effect of genetic background on behavioral response to chronic stress (studies II        

and III) 

To establish the effect of genetic background on the behavioral response to chronic psychosocial 

stress, we subjected mice from four inbred strains (129, BALB, D2, and B6) to 10-day CSDS. 

Subsequently, to assess their SA phenotype, we performed the SA test 24 hours after the last 

CSDS session. As the studied strains differed in their baseline social behavior during the SA test, 

we evaluated the behavior of the defeated mice individually for each strain by comparing them 

to the same-strain controls. We then assigned the defeated mice with SI ratios within and above 

one standard deviation from the same-strain control mean as stress-resilient (i.e., behaviorally 

resembling controls). The remaining defeated mice, or those with SI ratios below one standard 
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deviation from the mean, were defined as stress-susceptible. In both studies, we observed a 

distinct response to chronic stress, detected as the differences in distribution of susceptible and 

resilient mice, between the compared strains (Fig. 12, Pearson’s chi-square, χ2 = 60.38, P =   

7.76E-14 and χ2 = 63.401, P = 1.10E-13, respectively for studies II and III). The B6 and D2 strains, 

selected for all subsequent analyses, represented the phenotypic extremes for each study as 

only 30% to 31% of B6 defeated mice, but 89% to 95% of D2 mice, were susceptible to chronic 

psychosocial stress (Fig. 12 and Fig. 13). In both studies II and III, the susceptible mice from all 

four strains spent significantly less time in the IZ and significantly more time in the corners during 

the social target trial than in the no-target trial (Table 13).  

 

 

 

 

 

 

 

 

 

 

    

Figure 12. Percentage of mice resilient and susceptible to stress in the four mouse strains subjected to 
10-day chronic social defeat stress (CSDS). The bars show the proportion of resilient (left) and susceptible 
(right) mice in each strain and study. n (study II) = D2: Susceptible = 62, Resilient = 8; B6: Susceptible = 
34, Resilient = 78; n (study III) = D2: Susceptible = 40, Resilient = 2; 129: Susceptible = 13, Resilient = 3; 
BALB: Susceptible = 33, Resilient = 10; B6: Susceptible = 32, Resilient = 70; 129: 129S2/SvPasCrl; B6: 
C57BL/6NCrl; BALB: Balb/cAnNCrl; D2: DBA/2NCrl strain.  
 
To further determine the influence of genetic background on response to chronic stress, we 

assessed the locomotor behavior of the control and defeated mice measured as distance moved 

during the SA test (Table 13) and OF test (Table 14). While we did not observe differences in 

distance travelled between the defeated and control 129 and BALB mice in either of the tests, 

in both studies II and III the B6 and D2 susceptible mice moved significantly less than the same 

strain-controls during the no-target trial of the SA test. Additionally, in study III, B6 susceptible 

and D2 resilient mice moved less than the same-strain controls in the OF test. In study II, D2 
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resilient mice moved significantly more than D2 susceptible mice, however, we did not observe 

a similar difference in the B6 strain. This result was not validated in study III, most likely due to 

the small number of animals per group.  

 
 
 
 
 
 
 
 
 
 
 
 
Figure 13. Social interaction (SI) ratios in the social avoidance (SA) test of the B6 and D2 strains 
subjected to 10-day CSDS in study II. SI ratio border values for the B6 and D2 strains are marked with 
dotted lines. n = B6: Susceptible = 34, Resilient = 78, Control = 56; D2: Susceptible = 62, Resilient = 8, 
Control = 56. Outliers criterion: IQR > 3. B6: C57BL/6NCrl; CSDS: Chronic social defeat stress; D2: 
DBA/2NCrl strain; IQR: interquartile range; SA: Social avoidance.  
 

To assess if chronic psychosocial stress affects despair behavior and anxiety-like behavior, we 

performed the forced swim test (FST) and elevated zero maze (EZM), respectively. Susceptible 

mice showed increased anxiety-like, but not despair, behavior compared to the controls (Table 

14).  Furthermore, the latency to immobility during the FST, used as a measure of active stress 

coping (Commons et al., 2017; Anyan and Amir, 2018), was highly correlated with the SI ratio in 

the D2 defeated mice but not in the same-strain control group or the B6 control or defeated 

mice (Table 14). This suggests that defeated D2 mice with higher resilience to CSDS also showed 

a more active coping strategy than mice with higher SA.  
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To investigate the metabolic effect of chronic psychosocial stress, we weighed all defeated and 

control mice before and after CSDS. In the B6 strain, chronic stress did not have a significant 

effect on body weight as both control and defeated mice gained weight throughout the duration 

of the experiment (mixed-design repeated measures ANOVA, P = 9.45E-46 and P = 2.05E-44, in 

studies II and III, respectively). 129 and BALB controls gained weight during CSDS (P = 0.012 and 

P = 4.90E-5, respectively), while the weight of the defeated mice in both of these strains did not 

change. Furthermore, BALB susceptible mice gained significantly less weight than the same-

strain controls (P = 0.006). Conversely, in the D2 strain, the body weight of all defeated animals 

decreased during the chronic psychosocial stress (mixed-design repeated measures P < 0.001 

and P < 0.004, in studies II and III, respectively) (Fig. 14).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14. Difference in body weight before and after chronic social defeat stress. The figure shows 
mean ±1 SEM. * = P < 0.05, ** = P < 0.01, *** = P < 0.001, see text for exact P-values. n (study II) = B6: 
Susceptible = 34, Resilient = 77, Control = 55; D2: Susceptible = 55, Resilient = 6, Control = 59; n (study 
III), see Figure 2. Outlier criterion: modified Z-score > 3.5. Outliers (study II): n = B6: Resilient = 1, Control 
= 4; D2: Susceptible = 7, Resilient = 2, Control = 3. Inferential statistical testing by one-way ANOVA with 
Bonferroni correction. B6: C57BL/6NCrl; CSDS: Chronic social defeat stress; D2: DBA/2NCrl strain. 
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5.2.2    Differential gene expression in B6 and D2 strains following CSDS (study III) 

To detect DE mRNAs (data sets A-C) and to establish which biological pathways are dysregulated 

following CSDS, we performed gene expression (RNA-seq) profiling in the PFCM, HIPV, and BNST. 

We chose the B6 and D2 strains for these analyses as they represented the phenotypic extremes 

in their distribution of susceptible and resilient mice following CSDS (Fig. 12 and Fig. 13). In all 

data sets, we compared the stress-resilient, stress-susceptible, and same-strain control mice. 

However, we were not able to examine gene expression levels of resilient D2 mice for the PFCM 

and HIPV due to low numbers of resilient animals in those groups. Furthermore, it is important 

to note that data sets A and B contained seven of the same mice (n = B6: Resilient = 2, Control = 

2; D2: Susceptible = 2, Control = 1). Unless specified otherwise, DE thereafter refers to P < 0.05 

and |FC| ≥ 1.2. 

 

Genetic background affects differential gene expression in the PFCM and HIPV (study III) 

We first examined the transcriptional response in the PFCM and HIPV of stress-susceptible B6 and 

D2 mice and stress-resilient B6 mice. We observed differences in the number of DE genes 

between the strains in both brain regions (PFCM, n = 1146, B6; n = 261, D2; HIPV, n = 6633, B6; 

n = 1474, D2; Fig. 15; see also Fig. 10 for further explanation on how to read Fig. 15-16). In the 

PFCM, only 32 (2.3%) of the DE genes were common to the susceptible vs control comparisons 

in the B6 and D2 strains, with most of them (n = 25; 78%) DE in the same direction between the 

strains. We observed a much larger number of DE genes shared between the strains (n = 1376; 

20.4%) in the same comparison in the HIPV. Most of them were common to the B6 resilient vs 

control (n = 1074, 78.0%) and B6 susceptible vs control (n = 807; 58.7%) or both (n = 588; 42.7%) 

comparisons. Notably, all of them were DE in the same direction. Taken together, our results 

suggest that while in the HIPV the transcriptional profiles are more similarly affected by the 

chronic psychosocial stress, regardless of the mouse genetic background the strain effect is more 

prominent in the PFCM. 
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Overlapping DE genes in the BNST show divergent expression profiles in stress-susceptible B6 

and D2 mice (studies II and III)  

While we detected a similar number of uniquely DE genes (data set C) in the BNST of both B6 

and D2 strains (n = 1638, B6; n = 1441, D2), their overall distribution across the comparisons and 

the directionality of the expression of the genes common to both strains differed (Fig. 16). In the 

B6 strain we identified the smallest number of DE genes when comparing the resilient and 

control groups (n = 91, 5.6% of all DE genes). In contrast, in the D2 strain this comparison had 

the largest number of DE genes (n = 483; 35.5% of all DE genes). Within this comparison, only a 

few DE genes (n = 13) were common to both strains. Furthermore, we detected similar numbers 

of DE genes between the strains in the susceptible vs control comparison (n = 884, B6; n = 811, 

D2) with a larger overlap (n = 194) between the strains. Importantly, all genes common to both 

strains were DE in opposite directions and significantly enriched (PFDR < 0.05) for 

oligodendrocyte, translation, and mitochondria-related gene sets (Table 15) and GO terms 

(Table 16) in the gene set enrichment and Gene Ontology term enrichment analyses. Overall, 

our findings show a vastly divergent transcriptional CSDS-induced response in the B6 and D2 

strains.  
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5.2.3    Oligodendrocyte-related genes are differentially expressed after CSDS (study III) 

We performed GSEA to identify biological pathways and gene sets affected by chronic 

psychosocial stress in the PFCM, HIPV, and BNST. We identified five gene sets significantly 

enriched (PFRD < 0.05) in at least two comparisons and all analyzed brain structures (Fig. 17), of 

which ageing and oligodendrocyte (OLG)-related were the most prominent. Notably, both of the 

aging-related gene sets consisted of a functionally diverse group of genes (n = 301), which were 

also significantly overrepresented in the “Lein: Oligodendrocyte markers” gene set (PFDR =        

1.2E-16). We further investigated the oligodendrocyte-related genes to determine if OLG 

progenitor cells (OPCs) or mature OLGs cell populations predominantly contributed to the 

observed dysregulation of the gene sets of interest. The transcriptomic profiles associated with 

chronic psychosocial stress were stronger in mature OLG markers (Fig. 18), a finding which was 

further validated with q-RT-PCR by investigating the expression of five markers of mature OLG 

(Opalin, Ermn, Mbp, Mobp, and Plp1).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 17. Converging gene set enrichment analysis (GSEA) shows dysregulation of aging and 
oligodendrocyte-related gene set. Heatmap showing the top five enriched gene sets overlapping 
between PFCM, HIPV, and BNST in the stress-susceptible and resilient mice in comparison to same-strain 
controls. A positive (or negative) NES indicates overrepresentation at the top (or bottom, respectively) of 
the ranked list of upregulated (or downregulated, respectively) genes. Gene sets are ordered by PFDR-
value and frequency. PFDR-values < 0.25 are marked with black outlines around the circles. B6: 
C57BL/6NCrl; BNST: bed nucleus of the stria terminalis; Con: control; D2: DBA/2NCrl; HIPV: ventral 
hippocampus; PFCM: medial prefrontal cortex; NES: normalized enrichment score; Res: resilient; Sus: 
susceptible. 
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Our analyses showed a high correlation between the RNA-seq and q-RT-PCR results in all three 

brain structures and comparisons (mean r = 0.82). Furthermore, we did not observe any 

significant main effect of the group (susceptible, resilient, or control mice) on expression levels 

of any of the five genes in the whole cortex (without PFCM) or dorsal hippocampus as measured 

by q-RT-PCR (mixed ANOVA, B6, P ≥ 0.423; D2, P ≥ 0.060). While in the hypothalamus we 

observed lower expression of Opalin in the D2 susceptible mice in comparison to the same-strain 

controls (Student’s t-test, P = 0.006), the expression levels of all other investigated genes did not 

differ within any of the other regions. Lastly, we detected no differences in the thickness of the 

corpus callosum between any of the groups in either strain after CSDS (post hoc by Fisher’s LSD, 

P = 1.000), as measured in brain sections stained with an anti-CNPase myelin-binding antibody.  

 

5.2.4    Susceptibility to chronic psychosocial stress in the BNST is associated with myelin 

thickness in the B6 strain (study III) 

We next aimed to establish if the observed OLG-related differences in gene expression after 

CSDS (see Fig. 17 and 18) could be associated with alterations in axon myelination. To do so, we 

performed TEM of myelinated axons (Fig. 18a) in the PFCM, HIPV, and BNST of B6 and D2 mice 

(data set F). We analyzed stress-susceptible, stress-resilient, and same-strain control mice. The 

information below includes only a summary of the author’s own BNST results.  

We observed strain-specific differences between the groups in myelin thickness and g ratio (i.e., 

the ratio of the inner axonal diameter to the outer axonal diameter). Specifically, the B6 

susceptible mice had thicker myelin in the BNST compared to resilient mice (P = 2.67E-7). As 

different types of axonal projections are known to differ in axon diameter (Innocenti and 

Caminiti, 2017), we subsequently subdivided the axons into three size groups, specifically small, 

medium, and large axons (diameter: small < 0.52 µm, medium = 0.52-0.81 µm, and large > 0.81 

µm; see also section 4.5). We found thicker myelin in the axons of medium size in the B6 

susceptible group in comparison to the controls and resilient mice (P = 0.002 and P = 0.001, 

respectively). Concurrent to myelin thickness, we observed a smaller g ratio (see section 4.5) in 

the susceptible mice than those of the controls and the resilient mice (P = 3.33E-4 and P =       

3.11E-11, respectively).      
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5.2.5    Differential protein and miRNA expression in the BNST following CSDS (study II) 

To establish which biological pathways are dysregulated in the BNST following CSDS on both 

transcriptome and proteome levels, we further performed proteomic profiling via liquid 

chromatography-tandem mass spectrometry (data set D) in study II. As in the BNST gene 

expression experiment (data set C), we chose the B6 and D2 strains for these analyses as they 

represented the phenotypic extremes in their distribution of susceptible and resilient mice 

following CSDS (Fig. 12 and Fig. 13). Moreover, in the BNST of the B6 strain, we performed AGO2 

RNA immunoprecipitation-sequencing (AGO2 RIP-seq) of active microRNAs (miRNAs) and their 

mRNA targets (data sets G and H, respectively). In all data sets, we compared the stress-resilient, 

stress-susceptible, and same-strain control mice. Data sets C and D were collected from the same 

cohorts of animals, with each cohort being equally divided by the SI ratios between both 

transcriptomic and proteomic experiments. Data sets G and H (AGO2 RIP-seq) were prepared 

from much larger amounts of starting material and therefore required an additional cohort of 

animals.  

 

Distinct differences in protein abundance after CSDS in the B6 and D2 strains 

To test whether the differences in mRNA expression were also present at the protein level, we 

examined protein abundance in stress-susceptible, stress-resilient, and control B6 and D2 mice. 

We identified 1191 distinct labeled proteins, of which 9.8% (n = 117) showed differences in 

abundance in at least one of the comparisons in the B6, D2, or both strains (Fig. 19). 

Furthermore, similarly to the DE genes, only a small number of DE proteins (n = 27, 23%) were 

shared between at least two comparisons within or between the B6 and D2 strains. We found 

only one protein to be DE between the same comparison (i.e., susceptible vs resilient) in both 

strains (see Fig. 19; circles marked in purple), namely protein phosphatase 1 regulatory subunit 

1B (PPP1R1B), also known as dopamine- and cAMP-regulated neuronal phosphoprotein (DARPP-

32). PPP1R1B was expressed at a lower level in the B6 susceptible mice and at a higher level in 

the D2 mice in comparison to their respective same-strain resilient groups. Taken together, we 

identified discrete changes in protein abundance after CSDS in the B6 and D2 strains. 
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Isolation of active miRNAs and their mRNA targets in the BNST 

Comprehensive tissue and gene-specific analyses have previously shown that, in general, only 

30% to 40% of variance in protein abundance can be accounted for by mRNA expression due to 

translational, protein-degradation, and post-transcriptional processes (e.g., regulation by non-

coding RNAs such as miRNAs) (Vogel and Marcotte, 2012; Bauernfeind and Babbitt, 2017). To 

isolate and study stress-responsive miRNAs and their bound mRNA targets, we performed AGO2 

RNA immunoprecipitation-sequencing (AGO2 RIP-seq) in the B6 strain. Although the numbers of 

identified DE miRNAs were similar between all analyzed comparisons (n = 142, B6 susceptible vs 

control; n = 150, B6 resilient vs control; n = 112, B6 susceptible vs resilient; Fig. 20a), the numbers 

of their DE mRNA targets were not (n = 2994, B6 susceptible vs control; n = 2075, B6 resilient vs 

control; n = 487, B6 susceptible vs resilient; Fig. 20b). Notably, almost all detected DE miRNAs 

and mRNAs shared between the susceptible vs control and resilient vs control comparisons were 

expressed in the same direction (95.1% and 100%, respectively, for common DE miRNAs and 

mRNAs). Overall, although the DE miRNA profiles were largely private to the comparisons, the 

profiles common to both were expressed in the same direction, thus indicating a shared stress-

related response in both the resilient and the susceptible mice.  
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5.2.6    DE genes and proteins in the BNST are enriched for gene sets and biological pathways  

engaged in translational control and mitochondrial function (study II) 

To establish which biological pathways were dysregulated by CSDS, we performed GSEA and 

Ingenuity Pathway Analysis (IPA) of transcriptomic and proteomic data sets (C and D, 

respectively). We observed 16 top significantly dysregulated (P < 0.05) canonical pathways 

common to at least one-third of the comparisons in both data sets combined (Fig. 21a) and four 

top significantly enriched gene sets (Fig 21b; PFDR < 0.25, in accordance with recommended 

stringency threshold by Subramanian et al. 2005) common to at least half of the comparisons. 

We found several significantly dysregulated mitochondria-related and Ca2+ and cAMP-mediated 

signaling canonical pathways, genes, or both. Interestingly, at the transcriptome level, the 

oxidative phosphorylation pathway was expressed at a higher level in the B6 (Z-score = 4.90, P = 

1.55E-11) but on a lower level in the D2 (Z-score = -5.57, P = 1.59E-9) susceptible mice in 

comparison to the same-strain controls. An analogous pattern of expression was observed in the 

same comparison for the eIF2 signaling pathway (B6, Z-score = 4.36, P = 5.46E-11; D2, Z-score =   

-3.46, P = 8.40E-5). Furthermore, the Protein Kinase A and the dopamine-DARPP32 feedback in 

cAMP signaling pathways were upregulated at the protein level in the B6 resilient vs control mice 

(P = 2.21E-6 and P = 2.14E-5, respectively) and the D2 susceptible group in comparison to the D2 

resilient one (P = 1.42E-4 and P = 1.10E-4, respectively). Overall, our findings show significant 

genetic background-specific dysregulation of pathways related to mitochondrial function and 

transcriptional control after CSDS. 

 
Beta-estradiol, testosterone, and RICTOR predicted as shared upstream regulators of DE genes 

To determine the transcriptional regulators behind the detected differences in gene and protein 

expression in the BNST, we conducted IPA Upstream Regulator Analysis (QIAGEN Inc., 2018). The 

purpose of the analysis is to examine the data sets for known targets of transcription regulators 

and compare the directionality of the gene expression to the information included in the 

Ingenuity Knowledge Base. Within the beta-estradiol cluster, the target genes were predicted to 

be significantly downregulated at both the transcriptome and proteome level in the B6 and D2 

resilient mice in comparison to the controls (B6, P = 0.002 and P = 0.010; D2, P = 1.08E-5, P = 

0.015).  
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Furthermore, at the transcriptome level, the genes within the testosterone cluster were 

predicted to be significantly upregulated in the B6 and downregulated in the D2 susceptible 

groups in comparison to both the control and resilient groups (B6, P = 0.033 and P = 0.018; D2, 

P = 0.004 and P = 0.012). Notably, five of the genes predicted to be regulated by both hormones 

were highly DE (|FC| ≥ 1.8) between susceptible and control mice in either (B6, Top2a; D2, Crhr2, 

Esr1, Igf1) or both (Sstr2) strains (Table 17). Moreover, rapamycin-insensitive companion of 

mTOR (RICTOR) was detected as the most significant potential upstream regulator in the B6 and 

D2 strains. Specifically, the RICTOR cluster was downregulated in the B6 susceptible mice in 

comparison to the control and resilient groups (Z-score = -4.94, P = 3.43E-16 and Z-score =-3.03, 

P = 4.88E-4, respectively) and upregulated in the same comparisons in the D2 mice (Z-score = 

6.63, P = 1.86E-17 and Z-score = 3.74, P = 9.13E-8, respectively). In summary, although the main 

three predicted upstream regulators were identical in both strains, their predicted activation 

pattern was opposite in the B6 and D2 strains.    

 

Table 17. Top differentially expressed (P < 0.05 and |FC| ≥ 1.8) genes (data set A) included in the 
predicted beta-estradiol and testosterone IPA upstream regulator clusters.  
 
 
 
 
 
 
 
 
 
 

Data generated from mouse BNST after exposure to CSDS. All non-significant results (P > 0.05) are 
indicated by a hyphen ("-"). B6: C57BL/6NCrl; Con: Control; Crhr2: Corticotropin releasing hormone 
receptor 2; D2: DBA/2NCrl; DE: Differentially expressed; Esr1: Estrogen receptor 1 alpha; FC: Fold change; 
Igf1: Insulin-like growth factor 1; IPA: Ingenuity Pathway Analysis, Res: Resilient; Sstr2: Somatostatin 
receptor 2; Sus: Susceptible; Top2a: Topoisomerase II alpha.   
 

Analysis of active miRNAs and their mRNA targets in the BNST of CSDS-subjected B6 mice 

reveals lower levels of miR-34c and miR-99b and higher levels of miR-15b after stress    

To detect active DE miRNAs (data set G) and their bound mRNA targets (data set H), we 

performed AGO-RIP-seq followed by analysis with microRNA Target Filter tool implemented in 

Ingenuity Pathway Analysis (IPA) software (QIAGEN Inc., 2018). The aim of the analysis was to 

provide insight into the biological role of the identified DE miRNAs by using TargetScan-predicted 

FC P FC P FC P FC P FC P FC P

Top2a 2.5777 0.0112 - - 2.29 0.0233 - - 2.18 0.0226 -2.14 0.0207

Crhr2 - - - - - - 2.23 0.0147 3.83 <0.001 -1.72 0.0498

Esr1 - - - - - - 2.32 0.0286 2.33 0.0488 - -

Igf1 - - - - - - -1.80 0.0142 -2.29 0.0074 - -

Sstr2 -1.822 0.0441 - - -2.79 0.0008 2.87 0.0011 - - - -

DE genes in the B6 strain (data set A) DE genes in the D2 strain (data set A)
Upstream 

regulator cluster
Gene symbol

Beta-estradiol, 
Testosterone

 Sus vs Con   Res vs Con  Sus vs Res  Sus vs Con   Res vs Con  Sus vs Res



 
 

80 
 

miRNA-mRNA interactions (Agarwal et al. 2015) and experimentally validated interactions from 

miRecords (Xiao et al., 2009), TarBase (Karagkouni et al., 2018), and miRNA-associated findings 

from published literature (QIAGEN Inc., 2018). We identified several dozen (n = 59, susceptible 

vs control; n = 72, resilient vs control; n = 36, susceptible vs resilient) DE miRNAs that repressed 

from one to many (maximum n = 60) co-immunoprecipitated DE experimentally validated or 

computationally predicted (high confidence) mRNA targets. Table 18 shows miRNA-mRNA 

interactions selected with the highest confidence (i.e., based on at least three miRNA IPA Target 

Filter sources). Collectively, and consistent with the literature (Leung and Sharp, 2010), our 

results suggest that miRNA regulation of gene expression is not only influenced by the specificity 

of the interaction but also by the relative cellular concentrations of miRNAs and their mRNA 

targets.        

 

Table 18. Detected DE miRNAs with their predicted DE target genes in the B6 BNST after CSDS.  
 

 
 

All presented miRNA-mRNA interactions were predicted by Ingenuity Expert Findings, TargetScan, and 
miRecords, with the exception of miR-15b and Dmtf1 interaction, which was predicted by TarBase, 
TargetScan, and miRecords. All non-significant results (P > 0.05) are indicated by a hyphen ("-"). Abca1: 
ATP-binding cassette transporter; B6: C57BL/6NCrl; Con: Control; Dmtf1: Cyclin D binding Myb-like 
transcription factor 1; Esr1: Estrogen receptor 1; Igf1r: Insulin-like growth factor 1 receptor; Jag1: 
Jagged1; Irs1: Insulin receptor substrate 1; Res: Resilient; Sus: Susceptible. 
 
 
Converging multi-omics analysis implies dysregulation of CYCS and PPP1R1B following CSDS   

We then investigated the shared DE genes and proteins with the implicated dysregulated 

canonical pathways (Fig. 21a) and enriched gene sets (Fig. 21b) identified in the BNST of both B6 

and D2 mice. To determine the influence of genetic background on divergent regulation of 

mitochondria-related pathways, we included the comparison of B6 and D2 controls in the 

analysis (see S6 Table in Manuscript II). We examined similarities in expression patterns within 

at least one comparison (susceptible vs control, resilient vs control, susceptible vs resilient) 

between at least two BNST data sets (C, D, G and H; see Fig. 9). We identified three DE molecules 

FC P FC P FC P FC P FC P FC P
miR-34c -2.84 0.004 -1.77 0.041 - - Jag1 -1.41 0.020 -1.32 0.045 - -
miR-126a - - 1.21 0.011 - - Irs1 - - 1.21 0.023 - -
miR-15b 1.35 0.003 1.33 0.002 - - Dmtf1 1.20 0.006 1.23 0.002 - -
miR-33 1.25 0.047 - - - - Abca1 1.21 0.002 - - - -
miR-18a 3.22 0.026 2.59 0.034 - - Esr1 1.75 0.006 - - - -
miR-99b -1.50 <0.001 -1.22 0.005 -1.22 0.011 Igf1r - - - - -1.21 0.039

Target geneamiRNA
DE miRNA in the B6 strain (data set G) DE mRNA in the B6 strain (data set H)

 Sus vs Con   Res vs Con  Sus vs Res Sus vs Con   Res vs Con  Sus vs Res
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(Cycs, Pcsk1n, and Atp6v1e1) within the mitochondria-related canonical pathways (see Fig. 21a-

b pathways and gene sets written in bold) and four molecules (Adcy5, Ppp1r1b, Pcp4l1, and 

Ppp3ca) in all other top IPA canonical pathways dysregulated after CSDS (Fig. 21a). An overview 

of the converging analysis is shown in Figure 22 (see pages 82-83). Two of the selected 

molecules, CYCS (Cytochrome c somatic) and PPP1R1B, previously associated with psychiatric 

diseases and disorders, including anxiety disorders (Hroudova and Fisar, 2011; Davis et al., 2012; 

Jin et al., 2015; Kovalenko et al., 2016; Scaini et al., 2017), were further successfully validated by 

Western blot analysis (see Fig. 23 for observed differences between the groups).              
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Figure 23. Western blot analysis confirms significant differences in PPP1R1B and CYCS proteins in the 
BNST between the stress-susceptible and stress-resilient mice. B6: C57BL/6NCrl; CYCS: Cytochrome c, 
somatic; D2: DBA/2NCrl; PPP1R1B: Protein phosphatase 1 regulatory subunit 1B.  
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5.2.7    Gene expression profiling of blood cells from stressed mice and panic disorder patients 

after exposure-induced panic attack reveals dysregulation of mitochondria-related pathways 

We then aimed to determine which canonical pathways and gene sets could be identified as 

stress-responsive from easily accessible tissue (i.e., blood cells) collected from both mice and 

humans and if any of them were shared with the findings obtained from BNST gene expression 

(data set C). We performed RNA-seq and miRNA-seq (data sets I and J, respectively) and 

subsequently compared B6 and D2 stress-susceptible mice to the same-strain controls, and B6 

susceptible mice to the B6 resilient group. D2 resilient mice were not included in the analysis as 

we were not able to obtain a sufficient amount of blood. Importantly, all blood cell samples were 

collected from the same animals as those used for BNST transcriptome profiling (data set C). The 

human sample (data set K) consisted of individuals diagnosed with PD who underwent exposure-

induced panic attack as a part of exposure therapy. We compared blood cell gene expression 

profiles from samples collected at 1-hour and 24-hour post-exposure to a baseline 

measurement.   

We detected similar numbers of DE genes in the B6 and D2 susceptible mice in comparison to 

the same-strain controls (B6, n = 568 and D2, n = 771), of which 112 were shared between the 

strains. Notably, similarly to the BNST, the majority (n = 102, 91.1%) differed in their 

directionality of expression (Fig. 24a). To identify dysregulated canonical pathways and gene 

sets, we performed hypergeometric statistic using the MSigDB C2 collection (Mootha et al., 

2003; Subramanian et al., 2005). We observed significant enrichment (PFDR < 0.05) of over 100 

gene sets, including the Alzheimer’s disease gene set containing the largest number of shared 

DE genes (Table 19). Furthermore, we examined the expression patterns of all DE genes common 

to the BNST and blood cells data sets (C and I, respectively) and observed a moderate positive 

correlation between them (Pearson’s correlation, r = 0.410, P = 2.93E-33). Taken together, our 

results show similar patterns of the expression profiles in the BNST (data set C) and blood cells 

(data set I) after CSDS. 
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To examine the DE miRNAs in blood cells after chronic stress, we performed miRNA-seq followed 

by DE analysis (data set J). B6 susceptible and resilient groups had similar numbers of DE miRNAs 

(n = 11 and n = 15, respectively, Fig. 24b), which was consistent with our findings of active AGO2-

associated miRNAs in the BNST (data set G). Furthermore, we detected three DE miRNAs shared 

between the B6 and D2 susceptible vs control comparisons (miR-181b, miR-148a, and miR-592), 

two of which had opposite expression patterns (miR-148a and miR-181b, Table 20). Additionally, 

we identified two DE miRNAs (miR-3076 and miR-34c) as common to both blood cell and BNST 

data sets (J and G, respectively), with miR-34c being expressed at a lower level in B6 resilient 

mice in comparison to the same-strain controls in both. Taken together, our results show two 

interesting candidate miRNAs that have been previously implicated in psychiatric diseases and 

disorders. Notably, miR-148a has been previously associated with PD (Muinos-Gimeno et al., 

2011) and miR-181b has been proposed as a marker for Alzheimer’s disease (Femminella et al., 

2015). Furthermore, high levels of miR-181b have been correlated with increase in 

mitochondrial oxidative stress and DNA damage, an early systematic process in the 

pathophysiology of Alzheimer’s disease (Schipper et al., 2007).    

 

Table 20. DE miRNA in blood cells of B6 and D2 mice after CSDS (data set J).  
 

 
 
Only miRNAs DE in at least two comparisons are shown. All non-significant results (P > 0.05 and |FC| < 
1.2) are indicated by a hyphen ("-"). B6: C57BL/6NCrl; Con: Control; D2: DBA/2NCrl; DE: Differentially 
expressed; Res: Resilient; Sus: Susceptible. 
 
 

Simultaneously, we performed DE analysis of microarray-based gene expression data from PD 

(PD) patient blood cells (see section 4.2 and Fig. 9; data set K), collected immediately and 24 

hours after exposure-induced panic attack in comparison to baseline measurement. We 

detected 4185 significantly DE genes (P < 0.05) in either one or both time points. We detected a 

FC P FC P FC P FC P

mmu-miR-296-5p - - -2.50 0.005 2.06 0.021 - -

mmu-miR-6516-5p - - -2.44 0.010 2.34 0.013 - -

mmu-miR-503-5p - - 1.31 0.044 - - 1.54 0.003

mmu-miR-6546-5p - - 1.46 0.020 - - 1.40 0.035

mmu-miR-7a-5p 1.65 0.007 1.61 0.010 - - - -

mmu-miR-5620-5p -2.52 0.008 - - -2.50 0.008 - -

mmu-miR-592-5p -1.71 0.021 - - - - -1.71 0.021

mmu-miR-148a-5p 1.34 0.012 - - - - -1.26 0.042

mmu-miR-181b-5p 1.66 0.004 - - 1.57 0.008 -1.41 0.038

miRNA 

B6 strain D2 strain

Res vs ConSus vs Con Sus vs Res Sus vs Con
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larger number of DE genes directly after the exposure-induced panic attack (n = 2099) rather 

than 24 hours after (n = 1424), although a significant number of DE genes was shared between 

both (n = 692). We further analyzed the DE genes for overrepresentation of GO terms and 

reported higher than expected number of GO terms (PFDR < 0.05) associated with mitochondria 

and translational control (Table 21). Taken together, while we identified higher expression levels 

of a number of genes at the time of the panic attack, which continued one day after the attack, 

a significant number of genes exhibit a postponed response to the stressful event, being DE only 

at the second timepoint.         
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5.2.8    Integrated GSEA shows mitochondria-related dysregulation in mice subjected to 

chronic psychosocial stress and panic disorder patients after exposure-induced panic attack 

We performed a converging GSEA of blood cell transcriptomic data obtained from B6 and D2 

mice susceptible to CSDS in comparison to the same-strain controls (data set I) and data 

collected from PD patients after exposure-induced panic attacks (data set K). We detected an 

enrichment of several gene sets related to translational control and mitochondria (Fig. 25), a 

result which was in agreement with our findings in the BNST data (Fig. 21). Notably, these gene 

sets displayed a similar pattern in both the blood cells of defeated D2 mice and the PD patients. 

In summary, these results suggest a common evolutionarily conserved role of mitochondrial 

pathways in the regulation of anxiety-related behavior in mammals.   
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Figure 25. Merged heatmap showing the top overlapping gene sets between the gene expression data 
from CSDS-stressed mice (data sets C and I) and panic disorder (PD) patients’ blood cells collected 
directly and 24 hours after exposure-induced panic attack (data set H). A positive (or negative) NES for 
a given gene set implicates overrepresentation at the top (or bottom, respectively) of the ranked list of 
upregulated (or downregulated, respectively) genes. Gene sets are ordered by frequency and then 
alphabetically. PFDR-values < 0.25 are marked with black outlines around the circles.  3’-UTR: Three prime 
untranslated region; B6: C57BL/6NCrl; BNST: Bed nucleus of the stria terminalis; Com.: Complex; D2: 
DBA/2NCrl; GATA2: GATA-Binding Protein 2; KEGG: Kyoto Encyclopedia of Genes and Genomes; RC: 
Resilient vs control; SC: Susceptible vs control; SR: Susceptible vs resilient; SRP: signal recognition particle; 
VOXPHOS: genes involved in oxidative phosphorylation.  
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5.2.9    Susceptibility to chronic psychosocial stress in the BNST is associated with differences 

in mitochondria morphology in the B6 strain 

We then aimed to determine if the observed mitochondria-related differences in gene and 

protein expression after CSDS (see Fig. 21) are associated with alterations in mitochondrial 

morphology. To test this, we performed TEM of mitochondria in the BNST of B6 and D2 mice 

(data set F). We compared stress-susceptible, stress-resilient, and same-strain control mice. 

In TEM mitochondria analysis, we measured the number and size of mitochondrial cross-

sections. Mitochondrial cross-sections were classified as synaptic provided that the synaptic 

density and vesicles were clearly identifiable. We observed that the mitochondrial cross-section 

diameter in the B6 susceptible mice was on average 8.4% shorter than in the B6 controls (Table 

22). Furthermore, although the mean number of mitochondrial cross-sections was not affected 

by chronic stress, we observed a 39% higher number of pre-synaptic cross-sections in the B6 

susceptible mice in comparison to the B6 control and a 46% smaller number of post-synaptic 

cross-sections in the resilient B6 mice than in the susceptible mice. Our findings were strain 

specific, which was further confirmed by the observed differences between the strains (Table 

22). We therefore concluded that the changes in mitochondrial morphology in the BNST 

following CSDS are strain-dependent and consistent with our observed gene and protein 

differential expression.  

  

Table 22. Differences in mitochondrial morphology after chronic social defeat stress.  
 

 
 
Con: Control; Comp.: Compartment; Res: Resilient; Sus: Susceptible; t: Mean difference.  

B6 D2 B6 D2 B6 D2

P - - - - - - 0.013 - 0.054

t - - - - - - -2.150 - -2.433

P 0.015 - - - - - - 0.012 -

t 0.267 - - - - - - -0.167 -

P - - - - 0.038 - - - 0.014

t - - - - 0.352 - - - -0.097

P 0.003 - - - - - 0.041 - -

t -0.035 - - - - - -0.022 - -

P - - - - - - - 0.048 0.001

t - - - - - - - 0.020 0.021

P - - - - - 0.003 <0.001 - -

t - - - - - 0.080 -0.145 - -

Maximal

Susceptible

Differences between the B6 and D2 strains

Maximal/minimal

Minimal

Total

Pre-synaptic comp.

Post-synaptic comp. 

Mitochondrial 

cross-section 

diameter (µm)

Resilient Control

Differences within the B6 and D2 strains

Number of 

mitochondrial 

cross-sections

Measurment  Sus vs Con   Res vs Con  Sus vs Res
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6    Discussion 

6.1    General implications 

The studies presented in this work applied -omics and multi-omics approaches to establish the 

genetic architecture behind anxiety disorders and the molecular mechanisms that mediate 

susceptibility to psychosocial stress, a well-established factor for their onset and recurrence.  

In study I, we performed a genome-wide linkage scan in an isolated homogenous population 

with a high reported incidence of acrophobia, a subtype of a specific phobia also known as fear 

of heights. Although we were not able to identify high-risk variants for the disorder, several of 

the variants were suggestive (LOD > 2.0). These were located on chromosomes 4q28, 8q24, and 

13q21-q22. Our results imply that the genetic predisposition to acrophobia is likely to have a 

complex genetic architecture. 

In the two remaining studies, we subjected two inbred mouse strains (B6 and D2) with different 

stress susceptibility to CSDS. CSDS is used as a model of psychosocial stress, a key feature of 

anxiety disorders (Gerra et al., 2000). To identify the core dysregulated molecules and pathways 

behind susceptibility to stress, we subsequently performed unbiased transcriptomic profiling 

followed by data integration of the analyzed data sets. We compared the stress-resilient, stress-

susceptible, and same-strain control mice.  

In study II, we investigated gene expression (including expression of active miRNAs and their 

mRNA targets) and protein abundance in the BNST. Furthermore, we performed transcriptome 

profiling in blood cells of CSDS-subjected mice and compared it to gene expression patterns from 

blood cells of PD patients who underwent exposure-induced panic attacks. We further followed 

with integrative GSEA of both mouse and human data, which showed global genetic background-

specific significant enrichment of mitochondria-related gene sets. Interestingly, we observed 

lower expression of mitochondria-related genes in the D2 defeated mice and the PD patients. 

Additionally, we found differences in BNST mitochondrial morphology, as B6 susceptible mice 

had a significantly higher number of mitochondrial cross-sections in the pre-synaptic 

compartment than in B6 stress-resilient mice. 

In study III, we analyzed gene expression data from three brain regions (the PFCM, the HIPV , and 

the BNST) followed by GSEA and data integration. The converging analyses showed genetic 

background-dependent over-representation of mature oligodendrocyte-related genes within 
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the DE genes. We followed this compelling finding with TEM measurements of myelinated axons 

in the BNST. Our results showed that B6 susceptible mice had thicker myelin in comparison to 

the B6 resilient group. 

Overall, our results showed that anxiety disorders have a complex genetic architecture, most 

likely influenced by a spectrum of both common and rare variants (Bodmer and Bonilla, 2008; 

Smoller et al., 2009). Furthermore, they illustrated the large effect of genetic background on 

brain transcriptomic and proteomic response to chronic psychosocial stress, an important 

observation to improve the validity of translational studies. Finally, by identifying mitochondria-

related pathways associated with anxiety-related behavior in both mice and human, our findings 

support the suitability of cross-species approaches in studying the biological mechanisms 

underlying anxiety disorders (Smoller et al., 2001; Ashbrook et al., 2015).  
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6.2    Genetic predisposition to acrophobia has a complex genetic architecture   

          (study I) 
 
6.2.1    Regions 4q28, 8q24, and 13q21-q22 show suggestive evidence for linkage to acrophobia 

We detected three suggestive loci showing evidence of linkage to acrophobia on chromosomes 

4q28, 8q24, and 13q21-q22 with the peaks on markers D4S2394 (LOD = 2.17), D8S373 

(LOD = 2.09), and D13S162 (LOD = 2.22), respectively.  

Markers D13S162 and D4S2394 showed the strongest and second strongest linkage to 

acrophobia in our study. To our knowledge, neither of the regions have been previously 

associated with anxiety disorders. Marker D4S2394 has previously provided evidence for linkage 

to schizophrenia in a study sample of Finnish schizophrenia families (Paunio et al., 2001). 

Interestingly, in our study this marker showed evidence of suggestive linkage to the pure 

acrophobia sample, but not to the acrophobia with comorbid schizophrenia (LOD = 0.52). 

Therefore, in our sample, the signal is mainly derived from the acrophobia and not the 

schizophrenia phenotype.    

Marker D8S373 is located on the long arm of chromosome 8 (8q24.2-q24.3). Although in our 

study the marker did not provide evidence of linkage to schizophrenia (LOD = 0.51 and LOD = 

0.00, in acrophobia with comorbid schizophrenia and pure schizophrenia subsets, respectively), 

it has been previously associated with this disease (Holmans et al., 2009) and with bipolar 

disorder (Avramopoulos et al., 2004; Gonzalez et al., 2014; Kaminsky et al., 2015). Region 8q24.2-

q24.3 contains 49 genes, out of which KCNQ3 (Wang et al., 1998; Avramopoulos et al., 2004), 

ADCY8 (Avramopoulos et al., 2004; Wolf et al., 2014; Hu et al., 2015) have been previously 

implicated as a candidate genes for psychiatric diseases and disorders. Interestingly, KCNQ3 has 

been identified as an active mediator of resiliency within the ventral tegmental area (VTA) 

dopaminergic (DA) neurons through studies conducted in mice subjected to CSDS (Friedman et 

al., 2016).  

 

6.2.2    The genetic basis of fear of heights is highly complex 

While the behavioral and physiological symptoms of acrophobia have been extensively studied 

(Coelho and Wallis, 2010; Steinman and Teachman, 2011; Brandt et al., 2015; Kapfhammer et 

al., 2016) and are shown to involve, among others, dizziness, sweating, and heart palpitation 
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(see also section 2.4.1), little is known about its genetic architecture. As in other complex anxiety 

disorders (see Introduction), research efforts are hindered by the heterogeneity of the human 

population and the ambiguity of the studied phenotypes (Peltonen et al., 2000).   

Our study was conducted in an internal genetic isolate (Varilo et al., 1996; Hovatta et al., 1999; 

Wedenoja et al., 2008; Paunio et al., 2009), which offers several advantages in detecting both 

common (Stoll et al., 2013) and rare (Sullivan et al., 2012; Ott et al., 2015) variants associated 

with complex diseases as genetic, cultural, and environmental diversity are reduced. However, 

even in this genetic isolate and with sufficient statistical power, none of the loci reached the 

conventional genome-wide significance level (LOD = 3.3) (Lander and Kruglyak, 1995) and no 

locus was identified as a high-risk variant shared among the families. Together with our other 

results, this suggests that acrophobia has a complex genetic architecture. Our finding is 

consistent with a recent unpublished study conducted on a much larger heterogenous European 

population, where 392 genetic markers were shown to be associated with acrophobia 

(23andMe, 2018). However, it remains to be seen if the results from this study are reliable and 

reproducible.  

 

6.2.3    How to define a true finding: the multiple testing problem  

Due to the unknown inheritance pattern behind the fear of heights phenotype, our study 

consisted of a large number of genotyped markers (570) and six analyzed models. With each 

test, we increased the probability of observing type I error (false positive), which presents a 

difficulty when interpreting our findings without an adjustment of the significance threshold. 

However, as the performed analyses are not fully independent, the Bonferroni multiple testing 

correction (obtained by multiplication of the P-value by the number of independently performed 

tests) is not straightforward and might be considered overly conservative (Freimer and Sabatti, 

2004). Consequently, avoidance of the type I error might inflate the type II error (false negative). 

Furthermore, such correction is not typically performed in linkage studies (Hiekkalinna and 

Terwilliger, personal communication). Therefore, we presented all results by the obtained LOD 

scores or corresponding uncorrected nominal P-values when applicable. We recognize that our 

study is of hypothesis-generating character and we rely on future research to replicate our 

findings. 
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6.3    Role of myelin and mitochondria in pathological anxiety (studies II and III) 

6.3.1    Inbred mouse strains differ in their susceptibility to stress and coping strategies 

We demonstrated that the more innately anxious strains (D2, 129, and BALB) have higher 

susceptibility to stress than the less anxious strain (B6). Only a few studies have investigated 

strain differences in response to repeated stress (Pothion et al., 2004; Mineur et al., 2006; 

Mozhui et al., 2010), including CSDS (Razzoli et al., 2011; Savignac et al., 2011). Similar to our 

results, the results from these studies showed that mice with higher basal anxiety levels have 

heightened anxiety-like behavior following stress exposure (Jacobson and Cryan, 2007; Millstein 

and Holmes, 2007) (see also section 6.3.4 for discussion on the significance of these findings to 

human anxiety).  

We observed elevated latency to immobility in the FST in the D2 mice with higher levels of 

resilience to chronic stress. This observation was not true for the B6 strain. The behavior of the 

D2 mice can be interpreted as either an inability to maintain effort or adaptation aimed at energy 

conservation in the face of an inescapable situation (Arai et al., 2000; Petit-Demouliere et al., 

2005) and has been previously shown to involve cognitive flexibility and executive dopaminergic 

functions (Tye et al., 2013; de Kloet and Molendijk, 2016). However, the construct validity of the 

FST is difficult to establish (Petit-Demouliere et al., 2005) and it is possible that the same passive 

behavior might involve different molecular mechanisms (David et al., 2003; Puglisi-Allegra and 

Ventura, 2012). Furthermore, consistent with other studies (Krishnan et al., 2007; Razzoli et al., 

2011), we detected an increase in anxiety-like behavior in both B6 and D2 mice as measured by 

the OF test. Lastly, in both study II and III, we observed a decrease in body weight during CSDS 

in stress-susceptible and resilient D2 mice. In contrast, the same groups in the B6 strain gained 

weight, as did the B6 controls. Altogether, similar to earlier studies (Kulesskaya et al., 2014) our 

behavioral findings implicate an influence of genetic background on the adaptation of different 

stress-coping strategies (Wood and Bhatnagar, 2015).   

  

6.3.2    Differential gene and protein expression is dependent on the genetic background 

Consistent with our behavioral results, we observed strain- and brain region-specific divergent 

transcriptomic responses to chronic stress in the B6 and D2 mice. The specific findings within 

and between the studied brain structures are discussed below. 
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Differences and similarities between the PCFM, HIPV, and BNST 

Although the HIPV transcriptomic profiles in the B6 and D2 susceptible mice were highly similar 

to the same-strain controls (i.e., included a large number of shared genes DE in the same 

direction in both strains), the profiles of PFCM and BNST were not. This finding may reflect the 

discrete role of these structures in processing anxiety-related behavior or the variation in their 

organization, or both (Chadick et al., 2014; Carlen, 2017). In healthy individuals, PFCM and HIPV 

are both part of a circuit involved in distinguishing danger from safety. This process might be 

impaired in people suffering from pathological anxiety due to abnormal activity in the PFCM 

(Robinson et al., 2014). Furthermore, the BNST is involved in processing of information related 

to threat response through maintaining a vast connectivity network with other brain structures, 

including the PFCM and HIPV (Kim et al., 2013; Myers et al., 2014). As PFCM, the BNST is implicated 

in increased responses to uncertainty in individuals with pathological anxiety (Somerville et al., 

2010; Lebow and Chen, 2016). Interestingly, in all analyzed brain regions of the B6 mice 

subjected to CSDS, we identified the lowest number of DE genes in the resilient vs control 

comparisons. This result is consistent with the behavioral results, as resilient B6 mice were 

shown to behaviorally resemble controls despite being exposed to CSDS (Golden et al., 2011). 

Importantly, even though the detected patterns of gene expression were highly divergent, we 

observed a significant enrichment of oligodendrocyte-related genes in all the analyzed brain 

regions and both strains (see section 6.3.3).  

 

Differences and similarities within the BNST and blood cells 

We observed significant genetic background-dependent differences in gene and protein 

expression patterns in the BNST between all compared groups (stress-susceptible, stress-

resilient, and control). In summary, contrary to the gene expression patterns in the B6 strain (see 

above), the greatest number of DE genes in the D2 mice was found in the resilient vs control 

comparison. This result mirrored the differences in behavior observed between the strains. 

Conversely, the relative proportion of the DE genes in the susceptible mice in comparison to the 

same-strain controls was similar in the two strains in both the BNST and the blood cells. Notably, 

a number of those genes differed in the directionality of expression between the B6 and D2 

strains. Those genes were enriched for mitochondria and translation-related pathways (see 

section 6.3.3) and showed higher expression levels in the B6 susceptible and lower levels in the 

D2 susceptible mice in comparison to the same-strain controls. As in the case of the susceptible 
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vs control comparisons, we found significant enrichment of the same gene sets in the B6 and D2 

susceptible mice in comparison to the same-strain resilient groups. Furthermore, we also 

observed differences in miRNA expression levels in blood cells of both strains for miR-181b and 

miR-148a. Notably, miR-181b has been previously implicated in the pathophysiology of 

Alzheimer’s disease (Femminella et al., 2015) and mitochondrial oxidative stress (Migliore et al., 

2005; Bhatnagar et al., 2014), while SNP rs735316 within the miR-148a region is associated with 

a subtype of PD (Muinos-Gimeno et al., 2011).  

Taken together, these findings suggest that the transcriptomic response to chronic stress not 

only varies between the analyzed brain structures, but that this difference is also strongly 

dependent on the genetic background (Mozhui et al., 2010; Malki et al., 2015) and may reflect 

the distinct coping strategies observed in both strains.  

 

6.3.3    BNST myelin and mitochondria-related differences in normal and pathological anxiety 

The role of oligodendrocyte-related genes and myelination in anxiety-like behavior 

Consistent with the detected differences in the expression of oligodendrocyte-related genes, we 

observed thicker myelin in B6 mice susceptible to chronic stress in comparison to both the stress-

resilient and same-strain control groups. Myelin is produced by oligodendrocytes and insulates 

axons, thus promoting rapid nerve conduction in the central nervous system and thereby 

influencing the speed of communication between and within the brain structures implicated in 

normal and pathological anxiety (Aggarwal et al., 2011). Although the biogenesis of myelin has 

been mostly described in relation to brain development (McDougall et al., 2018) and has been 

largely considered static, recent studies have shown that deposition of myelin (Gibson et al., 

2014; McKenzie et al., 2014; Chang et al., 2016; Xiao et al., 2016) and the mature myelin 

structure are in fact dynamic, driven by changes in neuronal activity (Fields, 2014) and regulated 

by astrocytes at the nodes of Ranvier (Dutta et al., 2018). Additionally, early life stressors have 

been shown to induce myelination in the amygdala, an upstream and downstream target of the 

BNST (Lebow and Chen, 2016). Furthermore, although we observed lower levels of 

oligodendrocyte-related genes in the D2 strain, we did not observe differences in myelin 

thickness. Taken together, our findings suggest that while chronic stress affects myelin plasticity, 

its influence is dependent on the genetic background. 
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The role of mitochondria in anxiety-related behavior 

Our study implicated system-wide involvement of mitochondria-related pathways in anxiety-

related behavior in both mice and humans. Importantly, the mitochondria-related oxidative 

phosphorylation pathway, involved in both the production of ATP and apoptosis, showed 

opposite patterns of expression between the B6 and D2 strains. Interestingly, the pathway was 

downregulated in both the susceptible D2 mice and PD patients following a panic attack but was 

upregulated in B6 susceptible mice. Consistent with our results, previous gene expression 

studies have shown widespread mitochondria-related changes after stress, with their 

directionality strongly dependent on the duration of the stressor (i.e., acute or chronic stress) 

and the genetic background, among other factors (Gray et al., 2014; Picard et al., 2015; Larrieu 

et al., 2017). Furthermore, it has been suggested that the cumulative effect of stress over a 

lifetime contributes to mitochondria allostatic load and overload, thus promoting changes in 

mitochondrial functional adaptation (e.g., activation of hormonal receptors and structure, 

among others) (Picard and McEwen, 2018b; Picard and McEwen, 2018a; Picard et al., 2018).    

This opposite directionality of the transcriptomic response was consistent with the differences 

in the BNST mitochondrial morphology, where we observed a larger number of mitochondrial 

cross-sections in the B6 stress-susceptible mice than in the B6 stress-resilient mice after CSDS. 

The observed difference is likely connected to the unique property of mitochondria to undergo 

dynamic changes in shape, possibly in connection with a simultaneous shift in their function 

(Picard et al., 2013). Additionally, changes in mitochondrial shape, which are triggered by a 

disruption of Ca2+ mediated by cross-talk between the endoplasmic reticulum (ER) and the 

mitochondria, have been previously shown in response to stress. The known changes include 

fragmentation in response to cytochrome c release, hyperelongation, or donut formation (Eisner 

et al., 2018).  

 

The converging story: Are differences in brain neuroenergetics the answer? 

The body mobilizes energy stores in response to a threatening situation. This process is especially 

prominent in the brain, which accounts for more than 20% of the body’s energy consumption. 

Different cell types in the brain have various metabolic profiles. While much is known about 

neurons and astrocytes, less is known about oligodendrocytes and microglia (Magistretti and 

Allaman, 2015). As research by the Barres group on genes expressed in acutely isolated (not 

cultured prior to their experimental use) neurons and astrocytes has shown (Zhang et al., 2016), 
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neurons and astrocytes share metabolic complementarity. However, while neurons are 

predominantly oxidative, glycolysis is dominant in astrocytes. Axons represent a particular 

burden, namely a significant amount of ATP is required to maintain the activity of Na+/K+ 

channels to ensure action potential on limited energy storage and supply of neurons (Almeida 

et al., 2001; Saez-Atienzar et al., 2014) and are therefore vulnerable to situations where 

increased electrical activity is required (e.g., response to a threat). Past studies have shown that 

not only astrocytes, but also oligodendrocytes, participate in supporting metabolism in neurons 

and maintaining ATP homeostasis (Funfschilling et al., 2012) in addition to their role in myelin 

production, and that these two processes might be independent from each other (Philips and 

Rothstein, 2017). It is hypothesized that OXPHOS molecules are transferred from the 

mitochondria to oligodendrocytes by a fusion between mitochondria and the ER (Ravera and 

Panfoli, 2015). It is therefore possible that the observed higher number of mitochondria and 

upregulation of oxidative phosphorylation pathways support higher axon energy demand in 

stressed B6 mice. However, the mechanism behind this process is not yet clear and requires 

additional studies.  

 

6.3.4    Translational -omics approach to anxiety disorders: implications for future studies 

Comparison of gene expression profiles in brain and blood 

One of the main challenges in studying anxiety disorders in humans is access to human brain 

tissue from the regions implicated in the development and maintenance of pathological anxiety. 

Obtaining large and homogenous sample sets is especially difficult. Therefore, researchers have 

used peripheral tissues (e.g., blood) as a proxy (Erhardt and Spoormaker, 2013). Consistent with 

previous studies (Sullivan et al., 2006), our results demonstrated that the average gene 

expression between blood cells and brain tissue (i.e., BNST) was moderately correlated (r = 

0.410, P = 2.93E-33), suggesting that although not perfectly linked to gene expression in the brain, 

gene expression in peripheral tissues might be useful in studying pathological anxiety.  

 

Genetic biomarkers for anxiety disorders 

Much effort is currently focused on the discovery of treatment-related and pathogenic 

biomarkers for anxiety disorders (Nikolova et al., 2014; Maron and Nutt, 2017). The main 

strength of our study was that the gene expression in the BNST and blood cells was studied in 
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parallel, allowing us to examine the system-wide response associated with chronic stress. 

Interestingly, we identified two miRNAs, miR-3076 and miR-34c, present in both blood cells and 

the BNST of the B6 mice subjected to CSDS. Members of the miRNA-34 family, and miR-34c in 

particular, have been previously reported as critical modulators in many psychiatric diseases, 

including schizophrenia (Lai et al., 2011), major depressive disorder (Sun et al., 2016), and bipolar 

disorder (Bavamian et al., 2015). Additionally, dynamic changes of miR-34c were shown in the 

central nucleus of the amygdala in mice (Haramati et al., 2011) and in the hypothalamus in rats 

(Li et al., 2016) after either, or both, chronic and acute exposure to stress (Andolina et al., 2017). 

Our finding further validates miR-34c as a possible biomarker for anxiety disorders.  

 

The relevance of genetic background in mouse models of anxiety disorders 

Lastly, our study was performed in two mouse strains (B6 and D2) that have been shown to differ 

in their innate anxiety levels and in their response to stress (Hovatta et al., 2005; Miller et al., 

2010; Mozhui et al., 2010). Our study further confirms these findings.  Moreover, although 

similar molecular pathways are involved in the regulation of anxiety-like behavior in both strains, 

they show opposite directionality in some gene expression profiles. Importantly, the converging 

analyses between mouse and human gene expression data showed a similar pattern between 

the D2 mice exposed to CSDS and the PD patients after exposure-induced panic attack. This 

might be important for future translational research as currently most of the animal models in 

anxiety disorders use the B6 and not the D2 strain (Bryant et al., 2008).  

 
 
6.3.5    The multiple comparison problem in genome-wide studies 

Due to rapid advances in the fields of RNA-seq and mass spectrometry, we can now 

simultaneously measure the expression of thousands to tens of thousands of genes and proteins. 

This inevitably leads to statistical testing of more than one hypothesis at the same time (i.e., 

multiple comparisons) and therefore requires proper adjustment. Although much progress has 

been made in recent years, the selection of a proper method that considers the different 

experimental properties of the studies remains difficult (Hardcastle and Kelly, 2010; Li et al., 

2012; Chen et al., 2017). As most of our study has an exploratory and relative character (i.e., 

relative comparison of the studied data sets), we reported genes and proteins to be DE as those 

with nominal P < 0.05. Although this inevitably led to a number of false-positive findings, the 
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possibility of a large number of identical false positives across a large number of data sets 

presented in this study is also highly unlikely. We rely on future studies to replicate our results. 
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7    Concluding remarks  

Over 15 years have passed since the end of the Human Genome Project, arguably one of the 

largest human collaborations, which revolutionized the field of genetics and led to considerable 

innovations in molecular biology, biochemistry, and other fields. Today we can map a person’s 

genome within a few days and at a fraction of the original cost. The progress in genomics has 

been quickly matched with technical developments in other -omics approaches (e.g., 

transcriptomics, epigenomics, proteomics, and metabolomics). This allows for integration of 

different layers of information by understanding the interactions between different molecules, 

such as genes, mRNAs, miRNAs, proteins and their interplay with the environment (Fig. 26a). 

With these developments, the promise of precision medicine (i.e., a customized healthcare plan 

tailored to each individual patient based on his or her intrinsic biology) (Radder et al., 2014) was 

made.  

Even with integrative multi-omics approaches providing detailed information on where to look, 

we still do not understand which genetic variants are responsible for susceptibility to 

pathological fear and anxiety nor the precise molecular mechanisms behind these phenotypes. 

The problem might partially lie within the heterogeneity of the anxiety disorder subtypes, the 

historical approach to their categorization (Fig. 26b) within the DSM, and our currently 

developing view on anxiety disorders as involving symptoms that are a part of continuous normal 

state (see section 2.2.3) (Iacono, 2016). It is probably also related to the insufficient statistical 

power in the currently available GWAS studies of anxiety disorders (Otowa et al., 2016). 

However, the methodologies we use and how we approach a given scientific problem may also 

play a role.   

Studies of human neuroscience and genetics have traditionally followed a reductionist approach, 

namely an understanding of a complex system or phenomenon has been achieved by learning 

about its individual parts, such as studying sequence information from an individual cell (through 

single-cell sequencing) (Hwang et al., 2018), using model organisms (Hovatta et al., 2005), or 

genetic isolates with reduced genetic and environmental heterogeneity (Peltonen et al., 2000). 

Such approaches have been successful in the past and led to advances in tackling complex 

problems such as memory (Kandel and Spencer, 1968) or processing of visual sensory 

information (Hubel and Wiesel, 1962). However, the reductionist approach also has its 

limitations. Although the visual system constructs a complex representation of visual 
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information from simple stimulus, with rare exceptions (Quiroga et al., 2005), the model cannot 

explain the complexity of our visual system. This is because most complex systems are not only 

the sum of their parts (Fig. 26d) but are also their connections, both direct and indirect. Although 

learning about their components is meaningful, we cannot understand the whole, or modify it, 

by understanding or modifying its parts, as the process of forming connections is equal to the 

process of correcting the existing ones, thus leading to a Catch-22 (Fig. 26e). Such complex 

systems need a blueprint (e.g., our genome) to know what the outcome should be before they 

begin. However, they are not all created equal, e.g., monozygotic twins receive an unequal 

random number of mitochondria with the first cell division, nor are they all linear, e.g., the 

random motion of particles suspended in liquids, such as cytoplasm, known as Brownian 

movements (Fig. 26f-j). These unequal initial conditions result in diverging outcomes over a 

protracted time period, rendering long-term predictions of its approximate behavior difficult. 

The noise is an important part of this complex system, and by removing it we cannot answer the 

questions about the system as a whole (Fig. 26j) regardless of the degree of magnification we 

are using. Therefore, we need to embrace the chaos and develop new mathematical models 

instead (Macau, 2018). Because, unlike the answer in The Hitchhiker’s Guide to the Galaxy, the 

answer to understanding complex diseases will not be simply forty-two, but please Don’t panic. 
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