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Beta2-integrins are complex leukocyte-specific adhesion molecules that are essential

for leukocyte (e.g., neutrophil, lymphocyte) trafficking, as well as for other immunological

processes such as neutrophil phagocytosis and ROS production, and T cell activation.

Intriguingly, however, they have also been found to negatively regulate cytokine

responses, maturation, and migratory responses in myeloid cells such as macrophages

and dendritic cells, revealing new, and unexpected roles of these molecules in immunity.

Because of their essential role in leukocyte function, a lack of expression or function

of beta2-integrins causes rare immunodeficiency syndromes, Leukocyte adhesion

deficiency type I, and type III (LAD-I and LAD-III). LAD-I is caused by reduced or

lost expression of beta2-integrins, whilst in LAD-III, beta2-integrins are expressed but

dysfunctional because a major integrin cytoplasmic regulator, kindlin-3, is mutated.

Interestingly, some LAD-related phenotypes such as periodontitis have recently been

shown to be due to an uncontrolled inflammatory response rather than to an uncontrolled

infection, as was previously thought. This review will focus on the recent advances

concerning the regulation and functions of beta2-integrins in leukocyte trafficking,

immune suppression, and immune deficiency disease.
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INTEGRINS AND INTEGRIN REGULATION

Integrins are heterodimeric type I transmembrane proteins consisting of alpha and beta
subunits (1). Integrins are expressed in all nucleated cells and play a key role in adhesion, cell
communication, and migration. They mediate adhesion to the extracellular matrix, by binding to
the RGDmotif of fibronectin, collagen, and laminin, among others (2). Integrins in leukocytes also
bind to soluble ligands such as the complement component iC3b, and to other cells, by binding to
ICAMs (Intercellular adhesion molecules) and VCAM-1 (Vascular cell adhesion molecule) (3, 4).
Additionally, integrins link to the actin cytoskeleton inside the cell and thereby connect the inside
of the cell with the outside.

Integrins have large extracellular domains which contain the ligand-binding sites, and short
cytoplasmic domains which are important for integrin regulation. The ability of the integrin to
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bind to ligands is regulated through conformational changes as
well as by integrin clustering. Integrins can be found in three
main conformational states: inactive (bent-closed), intermediate
(extended-closed), and active state (extended-open) (5). The
predominant state seems to be the inactive (bent-closed) state
based on affinity and thermodynamics studies with K562 cells
(alpha5beta1-integrins, bent-closed: 99.75%; extended-closed:
0.10%; extended-open: 0.15%) (6). The active conformation
(extended-open) has a 4,000-fold increase in ligand affinity
compared to the other two states (7). Also on resting peripheral T
cells the vast majority of LFA-1 (Lymphocyte function-associated
antigen-1, alphaLbeta2-integrin) appear to be in the inactive
conformation, as stabilizing the active conformation leads to
a 1,000-fold increase in affinity of the integrin (8). The LFA-
1 conformational change (integrin extension) on the surface
of migrating T cells has recently been directly measured by
super-resolution microscopy [interferometric photoactivation,
and localization microscopy (iPALM)] (9).

Integrin activation takes place upon cell stimulation through
various cell surface receptors such as chemokine receptors or the
T cell receptor. Cell stimulation triggers an inside-out signaling
pathway that ultimately recruits cytoplasmic factors such as talin
and kindlin to the NPxY motifs of the cytoplasmic tail of the
integrin’s beta-chain, which causes the cytoplasmic tails of the
integrin subunits to separate (10) and switches the integrin to
the active (extended-open) conformation (11, 12). Kindlin and
talin connect the integrin to the actin cytoskeleton and stabilize
the extended-open conformation of the integrin through actin
cytoskeleton exerted tensile force (6, 13). In addition, many
other proteins, such as 14-3-3 proteins, alpha-actinin, coronin
1A, cytohesin 1, filamin A, and Dok1 can interact directly with
the integrin beta-chain and modulate integrin function (14–16).
These interactions are often regulated by phosphorylation of the
integrin beta-chain cytoplasmic domain (15–18).

In addition to their ability to respond to the environment
through inside-out signaling, integrins can take part in a
variety of signaling cascades following ligand binding (outside-
in signaling). Integrins take part in the formation of adhesion
complexes and focal adhesions in cells such as fibroblasts,
modulation of actin cytoskeleton dynamics, cell migration,
differentiation, proliferation, angiogenesis, and apoptosis (19).

BETA2-INTEGRINS IN LEUKOCYTE
TRAFFICKING

Beta2-integrins (CD11a/CD18, alphaLbeta2, LFA-1;
CD11b/CD18, alphaMbeta2, Mac-1, CR3; CD11c/CD18,
alphaXbeta2, p150.95, CR4; and CD11d/CD18, alphaDbeta2)
are a subgroup of integrins which share a common beta2-
or CD18-chain but have different alpha-chains and ligands.
Beta2-integrins are expressed exclusively in leukocytes, but
the different members have their own distinct expression
pattern. CD11a/CD18 is expressed on all leukocytes, while
CD11b/CD18, CD11c/CD18, and CD11d/CD18 are mainly
expressed on myeloid cells, but at varying levels (19, 20).
CD11a/CD18 has a more restricted ligand binding capacity

than the other beta2-integrins, and binds ligands such as
ICAM-1-5 found on the surface of other cells. In contrast,
CD11b/CD18 is a very promiscuous integrin with more than
40 reported ligands, including ICAMs, iC3b, fibrinogen, RAGE
(receptor for advanced glycation end products), and CD40L
(20). Interestingly, ligand-specific blockade of CD11b/CD18
has recently been shown to protect against bacterial sepsis,
while blocking all CD11b/CD18 functions potentiates it,
showing that CD11b/CD18 indeed has very complicated roles in
immunity due to its many ligands (21). In addition to leukocytes,
beta2-integrins are also found in extracellular vesicles (EVs),
and integrins in EVs may play novel roles in development of
pathogenic conditions such as sepsis (22).

It is undisputed that beta2-integrins are of fundamental
importance for leukocyte trafficking. This is because they
are required for the firm adhesion to the endothelial layer
surrounding the blood vessels under conditions of shear
flow (blood flow) and for leukocyte extravasation into
tissues (23). The leukocyte adhesion cascade (Figure 1) is a
multistep process involving rolling, firm adhesion or arrest,
spreading/crawling, and finally extravasation (24). This complex
process is accomplished by several proteins acting in parallel
and succession, as the leukocyte proceeds to its destination.
Initially contacts between the leukocyte and the endothelial
cells allows selectins and ICAM-1 on endothelial cells to
mediate leukocyte rolling on the endothelium. The close contact
between the cells during rolling allows the leukocyte to sense
chemokines present on the endothelium. In neutrophils, both
selectins and chemokine receptors activate beta2-integrins
via a signaling pathway involving the small GTPase Rap1a
and phosphatidylinositol-4-phosphate 5-kinase (PIP5Kγ90).
The activation of beta2-integrins involves conversion into the
intermediate affinity state that mediates slow rolling, followed by
conversion into the high affinity state, which mediates leukocyte
arrest (25). Both selectins and integrins can form slip bonds,
whose lifetime is shortened by applied shear force, as well as catch
bonds, which strengthen under shear force (26–28), inducing
further changes downstream of the integrins. During these
leukocyte-endothelial contacts numerous integrin-ligand bonds
are continuously broken and formed and further reinforced by
the recruitment of more integrins and downstream cytoskeletal
proteins such as talin, kindlin-3, focal adhesion kinase, and
paxillin to form adhesion complexes which strengthen cell
adhesion and induce actin reorganization and cell spreading
(26). Following adhesion, cells crawl along the endothelium
looking for a suitable extravasation site, a process critically
dependent on the beta2-integrin CD11b/CD18 (29). As integrins
act as mechanosensors in cells (30), it is likely that integrins are
also central for the subsequent steps of probing the endothelium
for suitable points of exit, either through a paracellular or
transcellular route.

Talin has long been known to be indispensable for leukocyte
trafficking (31–34). More recently, also kindlin-3 and its
interaction with the beta2-integrin tail has been shown to be
vital for neutrophil and effector T cell firm adhesion under shear
flow and for neutrophil and T cell trafficking in vivo (35–38),
and for homing of progenitor T cells to the vascularized thymus
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FIGURE 1 | The main roles of beta2-integrins in immune activation and suppression. (A) phagocytosis. Beta2-integrins mediate phagocytosis by binding to iC3b on

the surface of complement-coated bacteria. (B) regulation of T cell activation by a dendritic cell. Beta2-integrins participate in the formation of an immunological

synapse between a T cell and an antigen presenting cell such as DC. The synapse stabilizes the interaction between and regulates signaling in the two participating

cells. (C) target cell killing. Beta2-integrins participate in forming and maintaining an immunological synapse between a cytotoxic T cell and an infected cell. (D)

leukocyte recruitment to tissues. Leukocytes are activated by selectins and chemokines on the surface of activated endothelial cells close to a site of inflammation.

This slows down the leukocyte speed and induces integrins to change their conformation through inside-out signaling, allowing them to bind ICAMs on the

endothelium. Beta2-integrins are essential in the slow rolling and firm adhesion of a leukocyte, after which the cells transmigrate to the inflamed tissue. Leukocytes use

the chemokine gradient to navigate toward the site of inflammation. (E) regulation of TLR-signaling. Beta2-integrin CD11b/CD18 restrains macrophage activation and

cytokine production upon TLR (Toll-like receptor) activation by LPS (lipopolysaccharide). (F) restriction of dendritic cell migration, maturation, and Th1 priming. Proper

beta2-integrin—cytoskeleton linkage controls DC maturation toward a migratory phenotype and restricts priming of Th1 cells. (G) restriction of B cell receptor

signaling. Interaction of CD11b/CD18 and CD22 on the surface of an autoreactive B cell leads to constraint in BCR signaling. This decreases auto-reactive B cell

proliferation and antibody production.

(39). However, talin and kindlin-3 regulate different aspects of
leukocyte trafficking. Talin is required for the conformational
change of the integrin to the extended, intermediate affinity

conformation which mediates slow rolling. In contrast, both talin
and kindlin-3 are required for the induction of the high-affinity
conformation, full integrin activation and neutrophil arrest (33,
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38, 40). Recently, Src kinase-associated phosphoprotein 2 (Skap2)
has been shown to be essential for the recruitment of talin
and kindlin-3 to the beta2-integrin tail, and for neutrophil
trafficking in vivo (41). Interestingly, a bent-open conformation
of beta2-integrins has been reported on neutrophils, which
limits neutrophil recruitment by binding to ICAM-1 in cis,
but the molecular mechanisms regulating this process are
currently unknown (42).

In contrast to talin and kindlin-3, filaminA has been suggested
to negatively regulate integrin functions in vitro (15, 43, 44).
However, it has also been reported to be required for platelet
shear flow adhesion because it stabilizes the links between the
plasma membrane and the underlying actin cytoskeleton (45).
Recent studies utilizing T cell-specific filamin A-deficient mice
have shown that filamin A is required for the optimal firm
adhesion of T cells under shear flow conditions, trafficking of
T cells into lymph nodes, and to the inflamed skin (46). These
results demonstrate that in T cells, filamin A does not function as
an integrin inhibitor but rather is required for cell trafficking in
vivo. However, filamin A is not required for neutrophil adhesion
under shear flow conditions, but instead filamin A-deficient
neutrophils display enhanced adhesion, spreading, and defects in
uropod retraction, thereby revealing cell-type specific functions
of this integrin interacting protein (47, 48).

In contrast to leukocyte trafficking from blood stream to
lymph nodes and tissues, leukocyte trafficking within tissues
(e.g., in a confined 3D environment in the absence of shear
flow) is a mechanistically different process that can occur
even in the absence of integrins (49). In lymph nodes,
integrins, and chemokine receptors contribute partly to naïve
T cell migration speed (50). In this environment the integrin
CD11a/CD18 (LFA-1) is required as a frictional interface with
the substrate (the so called “integrin clutch”) by generating
traction forces, but does not mediate substantial adhesion to
the substrate (50). In some cases, integrins can even restrict
leukocyte migration in tissues. Indeed, the beta2-integrin-
kindlin-3 interaction negatively regulates DCmigration to lymph
nodes both under steady state and inflammatory conditions (36,
51). beta2-integrins restrict DCmigration through a downstream
mechanism which involves regulation of the transcriptional
program and migratory phenotype of these cells (Figure 1).

BETA2-INTEGRINS IN OTHER
IMMUNE-RELATED FUNCTIONS

In addition to their fundamentally important role in leukocyte
trafficking, beta2-integrins also mediate other cell-cell contacts
that are essential for immunological processes (Figure 1).
Beta2-integrins (e.g., CD11a/CD18-integrin; LFA-1) are central
components of the immunological synapse which forms between
an antigen presenting cell (APC) and a T cell [reviewed in Dustin
(52)], between a B cell and a T cell (53) and between an NK
cell and its target cell (54). In brief, the cell-cell interactions
mediated by CD11a/CD18 on the T cell enables T cell activation,
by binding to ICAM-1 on the APC. T cells sample antigens on
dendritic cells in lymph nodes via short term contacts, termed

kinapses (52). When antigen is found, T cells stop migrating and
form an immunological synapse with the dendritic cell (52). LFA-
1 on the T cell binding to ICAM-1 on the DC play a crucial
role in this structure. LFA-1, together with talin, kindlin-3, and
Rap1, is positioned in the p-SMAC (peripheral supramolecular
activation cluster), thereby stabilizing the interaction between the
T cell receptor and peptide-MHC II at the center of the contact
(c-SMAC) (52, 55). Optimal T cell activation in vivo requires
talin and kindlin-3 to bind to LFA-1 (32, 56). Upon activation,
LFA-1 can the signal into the T cell and thereby contribute to T
cell activation and polarization of the T cell response (57). For
example, LFA-1 ligation in T cells has been shown to promote
Th1 polarization through a pathway involving Erk and Akt-
mediated GSK3beta-inhibition, in turn leading to activation of
the Notch pathway (58), and LFA-1 can also be regulated by, and
engage in crosstalk with TGF-beta signaling in T cells (59, 60).
In addition, a role for an intracellular pool of beta2-integrins in T
cell activation and differentiation has recently been reported (61).

In addition to T cell activation, CD11a/CD18 is involved
in the killing of infected target cells by cytotoxic T cells, by
stabilizing the contact between the T cell and the target cell,
and by sealing the contact zone so that cytolytic granules cannot
escape (57). LFA-1 furthermore plays a role in the generation of
T cell memory (57), survival of T follicular helper cells (62) and
regulatory T cells (63) and B cell-mediated antibody production,
by mediating cell-cell contacts, but also by initiating intracellular
signaling cascades (57, 64). LFA-1 is important for CD8+ T cell
trafficking (65) and for Th2 (but not Th1) homing, as well as Th2-
induced allergic lung disease (66). Interestingly, certain CD11a
polymorphisms critically influence Th2 homing (67).

In myeloid cells such as macrophages, beta2-integrins can
initiate intracellular signaling pathways leading to cytokine
secretion, either by themselves or together with Toll like
receptors (TLRs) (21, 68, 69). In addition, many neutrophil
functions such as cytokine release and oxidative burst are
dependent on beta2-integrins (70–73). CD11b/CD18 and
CD11c/CD18 are receptors for complement component iC3b
and are essential for phagocytosis of opsonized pathogens in
neutrophils and other phagocytic cells, where they induce a
RhoA-dependent phagocytic pathway (74–76). The differential
roles of these two highly similar integrins have been studied
in vivo in CD11b−/− and CD11c−/− mice. The results indicate
that CD11b/CD18 is involved in neutrophil functions and
in the anti-inflammatory functions of macrophages, whereas
CD11c/CD18 is more relevant in the regulation of macrophage
inflammatory functions (77). Recently, beta2-integrins has been
shown to be required for recruitment of monocytes, as well as
hematopoiesis of these cells during Schistosome infection, and
a low expression of beta2-integrins correlates with increased
parasite burden in a murine model of the disease (78).

BETA2-INTEGRINS IN IMMUNE
SUPPRESSION

In addition to their well-characterized role in mediating
cellular interactions and promoting pro-inflammatory
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signaling, beta2-integrins have also been associated with
many immunosuppressive functions (20) (Figure 1). Beta2-
integrins can inhibit TLR signaling in macrophages through
negative feedback loops, either directly or indirectly, through
the anti-inflammatory cytokine IL-10 (79, 80). TLR stimulation
leads to PI(3)K- and RapL-mediated inside-out activation of
CD11b/CD18. Integrin outside-in signaling activates Src/Syk,
leading ultimately to degradation of the important TLR signaling
transducers MyD88 and TRIF and downregulation of TLR
signaling (80). The mechanism of CD11b/CD18-dependent
modulation of TLR responses has been shown to involve
inhibition of the NF-κB pathway and activation of the p38
MAPK pathway (81). Beta2-integrins have been found to repress
DC-mediated T cell activation (82–84), and the presence of
CD11b/CD18 on APCs has been demonstrated to suppress
Th17 differentiation and lead to immune tolerance (85, 86).
Recently, CD11b/CD18-expressing neutrophils have been
shown to suppress T cell-dependent influenza pathology in vivo
by limiting T cell proliferation (87). The immunoregulatory
role of leukocyte integrins may be taken advantage of by
the macrophage-infecting bacterium Francisella tularensis,
which is phagocytosed in a CD11b-dependent manner and
uses the CD11b-driven inhibition of inflammasome activation
to evade the innate immune system (88). In addition to
opsonized bacteria, CD11b/CD18, and CD11c/CD18 also
recognize iC3b-opsonized apoptotic cells, which leads to
inhibition of proinflammatory cytokine production through
NF-κB inhibition (89).

A series of important findings of the immunoregulatory roles
of beta2-integrins has been produced using mice where the
kindlin-3 binding site in the CD18-chain has been mutated,
leading to expressed but inactive integrins on the surface
of immune cells (TTT/AAA-beta2-integrin KI mice) (35).
DCs from these mice mature toward a migratory phenotype,
accumulate in lymphoid organs, and induce increased Th1
immune responses in vivo (51). In addition, functional integrins
are essential for restricting the accumulation of mast cells in
inflamed skin and mast cell responses in vitro, and inflammatory
cytokine production in the inflamed skin in vivo (36). In the
context of obesity-associated inflammation, mice on a high fat
diet display increased numbers of neutrophils in white adipose
tissue, increased insulin resistance and elevated inflammatory
profile (90). However, the total deletion of an individual beta2-
integrin, e.g., CD11b in mice led to increased weight gain
on a high fat diet and lowered insulin sensitivity but to
decreased inflammatory gene expression compared to WT mice
in vivo, suggesting that the CD11b-integrin specifically is pro-
inflammatory under diet-induced obesity conditions (91).

Interestingly, variations at the ITGAM gene, which encodes
for CD11b, is one of the strongest genetic risk factors for systemic
lupus erythematosus (SLE). These nucleotide polymorphisms
confer amino acid changes in the CD11b protein, leading
to deficient ligand binding, and a reduced ability to restrict
cellular cytokine expression (92–94). Interestingly, activation of
CD11b/CD18 with a CD11b agonist LA1 is able to overcome
the effects of CD11b/CD18 malfunction in the carriers of the
SLE-associated polymorphisms (95).

While most of the findings concerning the immunoregulatory
role of beta2 integrins have been made in myeloid cells, also
some lymphocyte subgroups express CD11b/CD18. Indeed, in
B cells, CD11b/CD18 has been shown to negatively regulate B
cell receptor signaling to maintain autoreactive B cell tolerance
(96). Together, these results show that, while it is clear that beta2-
integrins are important for immune cell activation and function,
beta2 integrins (especially CD11b) have an equally significant
role in repressing the body’s reactions against self. Therefore,
manipulating integrin activation pharmacologically could be an
efficient therapeutic approach in treating certain inflammatory or
autoimmune diseases.

LEUKOCYTE ADHESION DEFICIENCIES

The importance of beta2-integrins in immunity is highlighted
by the rare genetic diseases known as Leukocyte adhesion
deficiencies type I and type III (LAD-I and LAD-III) (Table 1).
LAD syndromes are a group of congenital autosomal-recessive
diseases with immune deficiency condition resulting in impaired
leukocyte adhesion and migration. In LAD-I, the expression
of CD18 (the beta2-integrin-chain) is either diminished or
abolished. In LAD-III, mutations in kindlin-3 prevents it from
activating beta2-integrins. Both conditions present partly with
similar symptoms, which include leukocytosis and a lack of
neutrophil extravasation from the blood stream into tissues.
Consequently, the patients end up suffering from recurrent life-
threatening infections, unless they receive a hematopoietic stem
cell transplant (HSCT) (97). LAD-II is a selectin- (rather than
integrin) related disease which is caused by a failure in selectin
ligand expression (98) and will not be discussed further here.

LAD I—Over 200 mutations have been identified in LAD-I
patients which cause decreased expression of CD18. The severity
of the disease varies according to the functionality of the beta2-
integrin (99). LAD-I patients suffer from life threatening bacterial
and fungal infections early in life, and especially neutrophil
trafficking is reduced into the inflamed tissue. In a recent (2018)
review of all published LAD cases before 2017 (323 cases) (100)
it was reported that the most common infections in severe
LAD-I (<2% CD18 expression) were respiratory tract infections
(including pneumonia), sepsis, and otitis media whilst in LAD-
I with moderate CD18 expression the most common infections
were periodontal infection, otitis media and sepsis. Perianal skin
infections and necrotic skin ulcers were reported in both groups.
Delayed umbilical cord detachment is common. In addition,
patients suffer from symptoms such as delayed wound healing.

For severe LAD-I, survival beyond 2 years of age was only
39%, showing that severe LAD-I remains a life-threatening
condition (100). The prognosis for LAD-I with moderate CD18
expression is much better, with survival over 2 years and
beyond (to adulthood) for over 90% of cases with >4% CD18
expression (100, 101).

HSCT remains the only cure for patients expressing very low
(<1–2 %) levels of CD18 protein in leukocytes, but unfortunately
transplant-related mortality remains high (19% for all groups in
LAD-I) (100).
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TABLE 1 | Beta2-integrins in immunodeficiency and inflammatory disease.

Disease Symptoms Beta2-integrin defects Impaired immune functions

LAD I Bacterial and fungal infections in skin and

other tissues; Delayed wound healing.

Periodontitis, Leukocytosis, Candidiasis

Mutation in CD18 chain leading to

decreased or non-existent expression of

beta2-integrins

Decreased neutrophil trafficking to the site of

inflammation. Defective adaptive immune responses

(especially in T cells) Impaired restriction of

inflammatory responses (e.g., cytokine release)

LAD III Same as Lad I but also Glanzmann

thrombasthenia. Osteopetrosis

Mutation in kindlin-3 protein, leading to

incorrect activation of betal-, beta2-, and

beta3-integrins

In addition to LAD I functions: Impaired platelet

activation and blood clotting Impaired osteoclast

function

SLE (Systemic

Lupus

Erythematosus)

Severe fatigue, Joint pain and swelling,

Headaches, Rashes on cheeks and nose,

Hair loss, Anemia, Blood-clotting problems

R77H, P1146S and A858V substitutions in

CDllb

Impaired ligand binding and phagocytosis(R77H)

Increased adhesion, spreading, and migration

(P1146S) Increased pro-inflammatory cytokine

release (R77H and P1146S)

Beta2-integrin deficient mice have similar immune defects as
LAD-I patients (102). These mice have been useful to investigate
the role of beta2-integrins and their function in different
leukocytes (102, 103).

LAD-III—LAD-III is a much rarer disease than LAD-I,
with <40 patients reported worldwide (104). Patients suffer
from similar symptoms as LAD-I patients, e.g., recurrent
bacterial infections including bacteremias, pulmonary infections,
omphalitis, and other soft tissue infections. Also fungal infections
have been reported. However, unlike LAD-I patients, LAD-III
patients additionally have Glanzmann type thrombasthenia, a
bleeding disorder. Transfusions have been performed in >90%
of cases as bleeding is a hallmark of the disease and remains a
serious complication (105). In addition, recombinant factor VIIa
has been used successfully in LAD-III to treat bleeding events
(105). Furthermore, patients can suffer from osteopetrosis, due
to deficient integrin-mediated osteoclast bone resorption.

LAD-III patients have normal integrin expression but carry
mutations in the FERMT3 gene encoding kindlin-3 protein
(106). Since kindlin-3 binds to beta1, beta2, and beta3-integrins
and regulates their function, patients display more complex
symptoms compared to LAD-I patients. In platelets kindlin-3 is
required for αIIbβ3-integrin-mediated formation of blood clots.
Kindlin-3 further regulates normal bone regeneration by several
integrins. As for LAD-I, the only curative treatment for LAD-III
is HSCT, and HSCT-related mortality remains high [22%, (105)].

Kindlin-3 has a central role in immunity which is shown by
the phenotype of the kindlin-3 deficient mice (12, 38). Thesemice
die early after birth because of excessive bleeding. These mice,
as well as mice carrying a mutation in the kindlin-3 binding site
in beta2-integrin cytoplasmic tail (TTT/AAA-beta2-integrin KI
mice) have shown a crucial role of kindlin-3 and beta2-integrins
in the regulation of immune cells (35, 36, 51, 56).

LAD AND INFLAMMATION

Many of the symptoms in LAD patients are thought to be caused
by defective leukocyte (especially neutrophil) trafficking into
inflamed tissue. However, not all symptoms in LAD-I are due
to defective leukocyte-mediated immune surveillance. Instead,

periodontitis and associated bone loss in LAD-I has recently been
shown to be associated with an increased inflammatory response,
with excessive production of IL-17 and related cytokines (107),
and blocking the IL-17 cytokine response reduces symptoms
in a LAD-I patient (108). In addition, particular inflammatory
disorders (e.g., colitis) have been reported in LAD-patients (109–
111). This indicates that at least some pathological symptoms
in LAD-I patients are caused by dysregulated inflammatory
responses. The increased IL-17 production in LAD-I patients
may be—at least in part—due to defective neutrophil recruitment
into tissues e.g., dysregulation of the so called “neutrostat,”
which senses and regulates neutrophil numbers in vivo (107).
However, beta2-integrins have been shown to directly restrict
cytokine responses in many types of immune cells, such
as macrophages (80), DCs (51), and mast cells (36), and
to restrict Th1 (51) and Th17 (85) polarization in vivo.
In addition, functional beta2-integrins restrict expression of
cytokines in a skin inflammation model, although neutrophil
trafficking is relatively normal in this model (36). Dysregulated
cytokine responses may therefore contribute to the paradoxical
increase in inflammation (periodontitis, colitis) in LAD-I
patients (107, 109, 110, 112).

THERAPEUTIC TARGETING OF
BETA2-INTEGRINS

Because of the crucial role of beta2-integrins in leukocyte
functions such as leukocyte recruitment, beta2-integrins
have been considered attractive targets in inflammatory
disease such as psoriasis, arthritis, and multiple sclerosis
[reviewed in Mitroulis et al. (113)]. Indeed, an antibody
against alphaL-integrin chain, efalizumab, has previously
been in clinical use in psoriasis (113). However, the drug
was withdrawn from the market in 2009 because it was
associated with serious side effects, e.g., reactivation of
latent John Cunningham (JC) virus infection and resulting
progressive multifocal leukoenphalopathy (PML). Therefore,
therapeutic blocking of beta2-integrins in disease may be difficult
because these molecules play such multifaceted roles in central
immune reactions.
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CONCLUSIONS AND FUTURE
PERSPECTIVES

Beta2-integrins are of crucial importance for leukocyte
trafficking and immune cell activation, but interestingly
play a role in immune suppression as well. Consequently,
dysfunctional or absent integrins are linked not only to immune
deficiency disease but also to inflammatory disease, thereby
contributing to both ends of the spectrum of immune-related
diseases. A better understanding of the disease processes where
dysfunctional beta2-integrins are involved may provide novel
drug targets for immunodeficiency and inflammatory disease
symptoms (95, 108).
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