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Abstract  

Combinations of ultrasound (US) and high-pressure homogenization (HPH) at low-medium energy 

densities were studied as alternative processes to individual US and HPH to produce Tween 80 and 

whey protein stabilized nanoemulsions, while reducing the energy input. To this aim, preliminary 

trials were performed to compare emulsification efficacy of single and combined HPH and US 

treatments delivering low-medium energy densities. Results highlighted the efficacy of US-HPH 

combined process in reducing the energy required to produce nanoemulsions stabilized with both 

Tween 80 and whey protein isolate. Subsequently, the effect of emulsifier content (1-3% w/w), oil 

amount (10-20% w/w) and energy density (47-175 MJ/m
3
) on emulsion mean particle diameter was 

evaluated by means of a central composite design. Particles of 140-190 nm were obtained by 

delivering 175 MJ/m
3
 energy density at emulsions containing 3% (w/w) Tween 80 and 10% (w/w) 

oil. In the case of whey protein isolate stabilized emulsions, a reduced emulsifier amount (1% w/w) 

and intermediate energy density (120 MJ/m
3
) allowed a minimum droplet size around 220-250 nm 

to be achieved. Results showed that, in both cases, at least 50% of the energy density should be 

delivered by HPH to obtain the minimum particle diameter.  

 

 

Keywords: high-power ultrasound, high-pressure homogenization, combined technologies, energy 

reduction, nanoemulsion, food emulsifiers.  
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1. Introduction 

The interest in food grade nanoemulsions has rapidly increased in the last decades, due to their 

unique physico-chemical properties and possible application as delivery systems of bioactive 

molecules (Karthik, Ezhilarasi, & Anandharamakrishnan, 2017; Sanguansri & Augustin, 2006). 

Nanoemulsions are heterogeneous systems consisting of two immiscible liquids, with one phase 

being dispersed as nanometric droplets with diameter lower than 200 nm (Salvia-Trujillo, Soliva-

Fortuny, Rojas-Grau, McClements, & Martin-Belloso, 2017). Formation and stabilization of 

nanoemulsions depend on the physical-chemical properties of constituents, including oil and 

aqueous phases and emulsifiers, as well as on the energy density, i.e. the energy input per unit 

volume transferred to the sample. Energy density, in turn, depends on treatment intensity and 

duration (Mohd-Setapar, Nian-Yian, Nuraisha, Kamarudin, & Idham, 2013; Schubert & Engel, 

2004; Schubert, Ax, & Behrend, 2003; Stang, Schuchmann, & Schubert, 2001; Wooster, Golding, 

& Sanguansri, 2008). Smaller droplets are usually obtained by increasing the emulsifier content and 

the supplied energy density. Also, at comparable energy densities, the modality of energy delivering 

can affect the nanoemulsion particle size and stability (Calligaris et al., 2016; Jafari, Assadpoor, He, 

& Bhandari, 2008). Different mechanical devices capable of generating intense disruptive forces 

can be used to obtain nanoemulsions. High-power ultrasound (US) and high-pressure 

homogenization (HPH) are high-energy nanoemulsification processes, which are able to reduce the 

emulsion particle diameter at nano-level (Abbas, Hayat, Karangwa, Bashari, & Zhang, 2013; 

Canselier, Delmas, Wilhelm, & Abismaïl, 2002; Dumay et al., 2013; McClements, 2005; Silva, 

Cerqueira, & Vicente, 2012). High-power ultrasonic devices form emulsions with nano-sized 

droplets through the propagation of low frequency sound waves (20-24 kHz), which cause the 

formation and violent collapse of cavitation bubbles (Abbas et al., 2013; Leong, Wooster, Kentish, 

& Ashokkumar, 2009). High-pressure homogenizers break large droplets into smaller ones by a 

combination of intensive disruptive forces, such as shear stress, cavitation and turbulent flow 

conditions, suffered by the product during the passage in the homogenization valve (Stang et al., 

2001). Both technologies require extremely intense treatments (long times in US and high pressures 

and/or multiple passes in HPH) to produce emulsions with nano-size droplets (Kentish et al., 2008; 

McClements & Rao, 2011; Qian & McClements, 2011). This implies the use of specifically 

designed equipment and relatively high running and maintenance costs, due to elevated energy 

consumption and frequent replacement of wearing parts. Therefore, the industrial application of US 

and HPH as high-energy emulsification processes is limited because of their low sustainability. 

Based on these considerations, the possibility to reduce the energy requirements for 

nanoemulsification might stir up new interest in large-scale production of nanoemulsions. Recently, 
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it has been demonstrated that combined US-HPH processes can be effective in reducing the energy 

demand for nanoemulsion preparation by using a combination of food-grade synthetic surfactants 

(Tween 80 and Span 80) with well-known excellent performances under high-energy emulsification 

(Calligaris et al., 2016). In particular, US and HPH provided in combination at low and medium 

energy density values led to nanoemulsions with particle size and stability comparable to those 

prepared by using individual US or HPH at high energy densities.  

The aim of this work was to investigate further US-HPH nanoemulsification in obtaining 

nanoemulsions in the presence of food grade emulsifiers. To this purpose, preliminary trials were 

carried out to evaluate the effectiveness of US-HPH combined processes to obtain nanoemulsions 

containing Tween 80 or whey proteins as emulsifiers. Then, a three-variable face centred central 

composite design was used to study the effect of emulsifier content (1-3% w/w), oil amount (10-

20% w/w) and energy density (48-175 MJ/m
3
) on emulsion mean particle diameter. Finally, the 

effect of different US and HPH combinations developing the same energy density was studied to 

identify the optimal energy share between US and HPH allowing minimum droplet diameter to be 

obtained during a combined process.   

 

2. Materials and methods 

2.1.   Coarse emulsion preparation 

The aqueous phase was prepared by mixing an amount allowing to obtain in the final emulsion 1 to 

3% (w/w) of Tween 80 (Tween 80®, Sigma Aldrich, Milano, Italy) or whey protein isolate (94.7% 

protein content; 74.6% β-lactoglobulin, 23.8% α-lactoglobulin, 1.6% bovine serum albumin; 

Davisco Food International Inc., Le Seur, Germany) with deionized water. The aqueous phase was 

stirred at 20 °C for 2 h, until the surfactant was completely dissolved. The coarse emulsion was 

prepared by mixing the aqueous phase with sunflower oil (10-20% w/w) with a high-speed blender 

(Polytron, PT 3000, Cinematica, Littau, Swiss) at 8000 rpm for 1 min. The coarse emulsion was 

immediately subjected to the nanoemulsification processes. 

 

2.2.   Nanoemulsification processes  

2.2.1.   High-power ultrasound (US) 

An ultrasonic processor (Hieschler Ultrasonics GmbH, mod. UP400S, Teltow, Germany) with a 

titanium horn tip diameter of 22 mm was used. The instrument operated at constant ultrasound 

amplitude and frequency of 100 μm and 24 kHz, respectively. Aliquots of 150 mL of coarse 

emulsion were introduced into 250 mL capacity (110 mm height, 60 mm internal diameter) glass 

vessel. The tip of the sonicator horn was placed in the centre of the solution, with an immersion 
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depth in the fluid of 50 mm. The ultrasound treatments were performed up to 240 s and the 

temperature was controlled using a cryostatic cooling system set at 4 °C to dissipate the heat 

generated during the treatment.  

 

2.2.2.    High-pressure homogenization (HPH) 

A continuous lab-scale high-pressure homogenizer (Panda Plus 2000, GEA Niro Soavi, Parma, 

Italy) supplied with two PS type homogenization valves with a flow rate of 10 L/h was used to treat 

150 mL of coarse emulsion. The first valve was the actual homogenization stage and was set at 

increasing pressure up to 150 MPa. The second valve was set at the constant value of 5 MPa. 

Additional samples were prepared by subjecting the coarse emulsion to HPH for up to 3 successive 

passes at 120 MPa. At the exit of the homogenizer, the emulsions were forced into a heat exchanger 

(GEA Niro Soavi, Parma, Italy) and cooled to room temperature. 

 

2.2.3.   Combined US-HPH  

The coarse emulsion (150 mL) was subjected to US followed by HPH. The time between the two 

treatments did not exceed 30s. US treatments were applied for 20 or 60 s, while homogenization 

pressure was set at 20, 50, 80 and 100 MPa. Further US-HPH treatments consisting of 20 s + 20 

MPa, 22 s + 80 MPa and 60 s + 100 MPa were carried out to provide energy densities of 47, 111 

and175 MJ/m
3
according to a central composite design. Finally, to deliver to the sample energy 

densities of 145 and 120 MJ/m
3
, the percentage ratio between the energy delivered by US and HPH 

was progressively changed.  

 

2.3.   Temperature measurement 

The sample temperature was measured just before and immediately after (i.e. before the cooling 

step) HPH process and during US by a copper-constantan thermocouple probe (Ellab, Hillerød, 

Denmark) connected to a portable data logger (mod. 502A1, Tersid, Milan, Italy). 

 

2.4.   Energy density computation  

The energy density, i.e. the energy input per unit volume (Ev, MJ/m
3
), was computed as described 

by Bot et al. (2017). In particular, the Ev transferred from the probe to the sample during ultrasound 

treatments was calculated by using equation (1) (Raso, Mañas, Pagán, & Sala, 1999): 

t
V

tTmc
E

p

v 



)/(

    (1) 
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 where m is the sample mass (kg), cp is the sample heat capacity (4186 J/(kg K)), V is the sample 

volume (cm
3
), and t (s) is the duration of the ultrasonication time.  

The energy density transferred from the valve to the sample during the HPH treatment was 

determined as described by Stang et al. (2001), according to equation (2): 

PEv                           (2) 

where ΔP is the pressure difference operating at the nozzles.  

The energy density of multiple passes HPH and combined treatments was calculated as the sum of 

the energy density values of the corresponding single pass HPH or US plus HPH treatments.  

 

2.5.   Droplet size 

The mean diameter of emulsion droplets was measured by using the dynamic light scattering 

instrument Zetasizer Nano ZS (Malvern, Milan, Italy). Samples were diluted 1:10 (v/v) with 

deionised water prior to the analysis to avoid multiple scattering effects. The angle of observation 

was 173°. Solution refractive index and viscosity were set at 1.333 and 1.0 cP, respectively, 

corresponding to the values of pure water at 20 °C.  

 

2.6.   Polynomial equations and statistical analysis 

Modelling was aimed at describing the variation of mean particle diameter as a function of the 

variables of the central composite design. In particular, a 3-factors face centred central composite 

design (CCF) was used. The three considered factors were oil content, emulsifier concentration and 

energy density. The ranges of variables were chosen on the basis of information from the 

preliminary trials, showing that the application of values outside the considered intervals led to non-

emulsified samples. For each factor, extreme, lower and upper values were identified and combined 

to form the factorial part of the design (8 factorial points). In particular, oil content, emulsifier 

concentration and energy density were set at 10, 15 and 20% (w/w), 1, 2 and 3% (w/w) and 48, 111 

and 175 MJ/m
3
, respectively. The energy density values were obtained by US-HPH combined 

treatments of 20 s+20 MPa, 22 s+80 MPa and 60 s+100 MPa. To complete the CCF, 6 axial points 

(combinations of the extreme value of one factor and the intermediate level for the others) and 1 

central point (combination of the intermediate values of the three factors) were defined. All the 

factorial and axial points were replicated once, while the central point was replicated 6 times. The 

full set of sampling points is reported in Table 1. A software package (Statistica for Windows v. 10, 

StatSoft, Inc.) was used to fit the second order response surface to the observed data according to 

the following equation: 
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y = B0 + ∑ Bixi
k
i=1 + ∑ Biixi

2k
i=1 + ∑ Bijxixj

k
j>𝑖≥1   (3) 

where B0 is a constant, and Bi, Bii, Bij are regression coefficients of the model, xi and xj are the 

independent variables in coded values, and k is the number of factors.  

Shapiro-Wilk test was used to evaluate normality of the data, while the possible presence of outliers 

and the homogeneity of variance were evaluated by residual analysis. Goodness of fit was measured 

with the adjusted determination coefficient (R
2

adj). p-Values for the coefficients of the response 

surface were defined using standard t-test. Three-dimensional counter plots were drawn to illustrate 

the effects of the considered factors on the responses. To this purpose, the values of the response 

were plotted on the z-axis against the two most relevant factors, keeping the third one fixed to a 

constant value (the central one). 

Results relevant to preliminary trials are the average of at least three measurements carried out on 

two replicated experiments. Data are reported as mean value ± standard deviation. Statistical 

analysis was performed by using R v. 2.15.0 (The R Foundation for Statistical Computing). 

Bartlett’s test was used to check the homogeneity of variance, one way ANOVA was carried out 

and Tukey test was used to determine statistically significant differences among means (p<0.05). 
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3. Results and discussion 

3.1.   Individual vs combined US-HPH nanoemulsification preliminary trials 

Preliminary trials were performed to assess the capability of US-HPH combined processes to 

produce nanoemulsions containing 2% (w/w) Tween 80 or whey protein isolate, as emulsifiers, in 

comparison to US and HPH individual treatments. In particular, the combined US-HPH processes 

consisted of 20 s or 60 s US followed by HPH process at 20, 50, 80 and 100 MPa. The reverse 

process (HPH-US) was not considered based on previous results highlighting that only US before 

HPH allowed the efficacy of combined process to be improved (Calligaris et al., 2016). The 

individual US treatments were conducted for 20 to 240 s, whereas HPH homogenization was 

performed by increasing pressure from 20 to 150MPafor 1 pass, and at120 MPa for 3 passes. The 

energy densities provided by the combined treatments to the samples ranged from 20 to 360 MJ/m
3
 

(Table 2). Figure 1 shows the particle size distributions of emulsions stabilized by Tween 80 or 

whey protein isolate obtained by means of the combined US-HPH as well as single US and HPH 

processes.  

US-HPH processes allowed obtaining monomodal distributions using both emulsifiers at US times 

and pressure levels as low as 20 s and 50 MPa, respectively (Figures 1a and 1b). It must be noted 

that monomodal distributions were also obtained in both Tween 80 and whey protein isolate 

stabilized emulsions by means of 240 s US (278 MJ/m
3
) and HPH at pressure higher than 80 MPa 

(80 MJ/m
3
) (Figures 1c, 1d, 1e and 1f). The particle distribution amplitude and the mean particle 

diameter decreased with the increase in the energy density provided to samples, as well evidenced 

by the distribution width, the mean particle diameter value and the corresponding polydispersity 

index (PDI) (Figure 1, Table 2). In the energy density range of 78-125 MJ/m
3
, particles with 

diameter of about 220 nm and 300 nm were obtained using Tween 80 and whey protein isolate, 

respectively (Table 2). Combined treatments at energies of 155-175 MJ/m
3
 further reduced the 

distribution width and particle dimensions below 220 nm (Figure 1, Table 2). It is noteworthy that 

diameters in the same order of magnitude were obtained only by applying 3 passes HPH at 120 

MPa, corresponding 360 MJ/m
3
 of energy density (Table 2). Such high energy levels pose different 

issues, including rapid wear and tear of plants and high energy consumption, which, in turn, 

increase process costs and reduce process sustainability and industrial feasibility (Yang, Marshall-

Breton, Leser, Sher, & McClements, 2012). By contrast, results of the study showed that the 

combination of US and HPH actually led to produce Tween 80 and whey protein isolate stabilized 

nanoemulsions at energy densities lower than those required by the individual treatments. 

Synergistic homogenization effects of US and HPH have been previously attributed to the effect of 

the sequential application of different emulsification processes (Calligaris et al., 2016). It particular, 
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the first homogenization by US would reduce particle dimension and distribution width of the 

coarse emulsion favouring the further droplet break-up in the second HPH step (Abbas et al., 2013; 

Calligaris et al., 2016; Pandolfe, 1995). Results of this study also shows that within each 

emulsifying process, the distribution width and the mean particle diameter of Tween 80 containing 

emulsions was lower than that of whey protein isolate containing ones (Figure 1, Table 2). This can 

be attributed to the chemical features of the considered emulsifiers and their ability to absorb on oil-

water interfaces. Being Tween 80 a small non-ionic surfactant, it can rapidly adsorb to the oil-water 

interface during high-energy emulsification leading to the formation of small particles (Amani, 

York, Chrystyn, & Clark, 2009; Ghosh, Mukherjee, & Chandrasekaran, 2013). On the contrary, due 

to their high molecular weight, globular whey proteins are expected to slowly cover oil droplet 

surface generated during the high-energy emulsification process (Adjonu, Doran, Torley, & 

Agboola, 2014; Dissanayake & Vasiljevic, 2009; O’Regan & Mulvihill, 2010; Pearce & Kinsella, 

1978).  

 

3.2.   Identification of the best US-HPH emulsifying conditions  

To define the best performing process conditions to obtain nanoemulsions at the lowest energy 

level, a three factors face centred central composite design (CCF) was used. To this aim, the oil 

content, emulsifier concentration and emulsification energy density were considered as independent 

variables and their effect on emulsion mean particle diameter was studied (Table 1). According to 

the results of the preliminary trials, US-HPH treatments were applied to provide samples with low-

medium energy densities. Table 1 also shows the mean particle diameter of emulsions obtained 

under the different CCF conditions. The regression coefficients and the relative analysis of variance 

of the polynomial models for the dependent variables are presented in Table 3. R
2

adj values for the 

responses were higher than 0.894. 

The results showed that linear and quadratic terms of energy density (Ev and Ev
2
, respectively), and 

linear terms of oil (Oil) and emulsifier (Emuls) contents had significant effects on mean particle 

diameter of Tween 80 stabilized emulsions, showing p-values lower than 0.001. Similarly, energy 

density (both linear and quadratic term) and oil content (linear term) significantly affected droplet 

dimensions of whey protein stabilized emulsions (p<0.001, 0.01 and 0.05, respectively). 

To evaluate the effects of the independent variables on the dependent one and to predict the 

optimum values of each variable for minimum mean droplet diameter to be achieved, contour-plots 

were generated. Figure 2 shows the contour-plots relevant to the effect of energy density and oil 

content (Figure 2a) or surfactant content (Figure 2b) on particle dimensions of Tween 80 stabilized 

emulsions. Nanoemulsions with the lowest diameter were obtained at the highest energy densities 
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and were associated to the lowest oil content (Figure 2a). In particular, the mean particle diameter 

decreased from about 400 nm to less than 160 nm as the energy density of the treatment increased. 

This indicated that the progressive enhancement of disruptive forces at the homogenization valve 

led to the generation of particles getting smaller due to the rapid absorption of Tween 80 at the 

oil/water interface. As the oil content increased at constant emulsifier level, the mean particle 

diameter also increased. It is likely that the passage at the homogenization valve of a higher 

quantity of oil reduced the efficacy of the treatment being the energy delivered to be shared between 

an increased oil quantity at a constant emulsifier concentration. Moreover, the surfactant content (2 

% w/w) could be not enough to surround all the newly formed oil droplets. This observation is 

supported by results reported in Figure 2b, showing the mean particle diameter of Tween 80 

stabilised emulsions as a function of energy density and emulsifier content, while maintaining oil 

content constant at 15 % (w/w). In fact, increasing the Tween 80 level produced a significant 

decrease in oil droplet dimensions. 

Different behaviour was observed for whey protein stabilized emulsions (Figure 3). The minimum 

oil droplet diameter was achieved by transferring to the 10% (w/w) oil emulsion intermediate 

energies of about 110-140 MJ/m
3
 (Figure 3a). Beyond these energy values, a further decrease of 

droplet size was not observed. Similar considerations can be also drawn by observing the plot of 

mean droplet diameter as a function of whey protein content and energy density (Figure 3b), by 

imposing 15% (w/w) value to the oil content variable. Also in this case, the best performing 

conditions in terms of emulsion droplet size were achieved at intermediate energy densities. It is 

possible that higher energy density values produced a progressive unfolding of whey proteins, 

leading to a reduction of their emulsifying properties. To this regard, different studies highlighted 

the capability of HPH to modify the protein structure. In particular, Oboroceanu et al. (2011) 

showed that high pressure microfluidization treatments (>50 MPa) of β-lactoglobulin induced 30% 

protein denaturation, accompanied by changes in secondary structure. Similarly, Bouaouina, 

Desrumaux, Loisel and Legrand (2006) reported that high pressure homogenization could modify 

the structure of whey protein, exposing the buried hydrophobic residues. Moreover, a recent study 

of Ali et al. (2018) reported HPH treatments to induced secondary structure transformation and 

protein aggregation via intermolecular disulfide bridges. Additionally, observing Figure 3b, it can 

be noted that whey protein isolate concentration did not to significantly affect the particle 

dimensions. An amount of 1% (w/w) whey proteins resulted to be sufficient to stabilize oil-water 

interface developed by the applied US-HPH combined treatments. Exceeding 1% (w/w) content, 

proteins were likely to locate in the continuous aqueous phase rather than at the oil-water interface 
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(Yan, Park, & Balasubramaniam, 2017). Based on these considerations, whey protein content can 

be minimized while maintaining good emulsification efficacy. 

In the light of these results, the energy density developed by US-HPH process and the formulation 

conditions allowing the minimum dimension of emulsion oil droplets to be obtained, were 

estimated. For Tween 80 stabilized emulsions, 3% (w/w) emulsifier concentration, 10% (w/w) oil 

content and at least 145 MJ/m
3
 energy density would guarantee emulsions with droplet diameter of 

140-190 nm. In the case of whey protein stabilized emulsions, a minimum droplet size around 200-

250 nm can be achieved by supplying energy density values lower than 120 MJ/m
3
 to an emulsion 

containing 10% (w/w) oil and 1% (w/w) emulsifier. 

 

3.3.   Effect of energy density share between US and HPH during combined emulsification 

processes 

Different combinations of US time and HPH pressure can be employed to deliver the same energy 

density during a US-HPH process. For instance, 120 MJ/m
3 

can be transferred to the system by 

applying 22 s+90 MPa, 44 s+60 MPa or 75 s+30 MPa. Therefore, the last part of the research aimed 

to study the effect of the ratio between US and HPH in delivering the energy density during US-

HPH nanoemulsification. The total energy densities, oil and emulsifier contents were selected based 

on CCF results as those allowing the lowest nanoemulsion droplet diameter to be generated. Energy 

density, oil content and emulsifier concentrations were 145 MJ/m
3
, 10% (w/w) and 3% (w/w) for 

the Tween 80 containing system; 120 MJ/m
3
, 10% (w/w) and 1% (w/w) for whey protein isolate 

containing one. The selected energy densities were, then, provided by using different combinations 

of US time and HPH pressure, progressively increasing the energy share generated by US and 

concomitantly reducing the one delivered by HPH, as shown in Table 4.  

All combined processes resulted in lower particle dimensions than the corresponding individual 

homogenization treatments delivering the same energy density, in agreement with the CCF data and 

previously reported results (Calligaris et al., 2016). In particular, in the case of Tween 80 containing 

emulsions, the combinations in which 50-75% of the total energy density was delivered by HPH 

and the remaining energy by US, resulted in particle diameters in the range of 150-170 nm. It is 

noteworthy that an increase in energy share delivered by US (75%), with a concomitant reduction of 

HPH-delivered one (25%), produced larger diameters, confirming the higher emulsification efficacy 

of HPH as compared to US. Similarly, in the case of whey protein isolate stabilized emulsions, 

lower diameters were observed when at least 50% of total energy share was delivered by HPH. 

These treatments, in fact, allowed particles with mean diameters of about 230 nm to be obtained, 

again validating the CCF model. It can be concluded that the high pressure homogenization step of 
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the combined process has to be considered the critical phase to obtain fine emulsions. The US 

treatment before HPH would prevalently serve to reduce particle size and distribution width of the 

coarse emulsion before entering in the homogenization valve. In other words, the US step would 

improve the efficiency of the second HPH homogenization in obtaining particles even lower.  

 

Conclusions 

In this work, the efficacy of combined US-HPH emulsification processes at low energy density to 

obtain nanoemulsions was demonstrated. Moreover, the proposed combined nanoemulsification 

appears to be versatile, since it can be exploited by using different levels of both Tween 80 and 

whey protein isolate as emulsifiers as well as oil at different contents. Depending on the emulsifier 

used in the formulation, the best performing processing parameters (total energy density and energy 

density share between US and HPH) and formulation conditions (oil and emulsifier contents) has to 

be tested and defined. In fact, the emulsifier characteristics greatly affected the performances of 

combined US-HPH process. In all cases, the combined process led to nanoemulsions at energy 

density levels which were approximately half of those required by single US or HPH to obtain the 

same emulsification performances in terms of mean particle diameter.  

From an industrial perspective, these results open interesting possible opportunities in the attempt to 

design more sustainable emulsification processes and devices. It should be stressed that 

homogenization pressure lower than 60 MPa and ultrasonication duration of a few seconds appear 

compatible with the actual industrial needs, leading to a possible reduction of the total ownership 

cost. Finally, the proposed approach could definitively contribute to increasing the exploitability of 

nanoemulsions in food at large-scale production facilities.  
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Caption of Figures 

Figure 1. Particle dimension distributions of emulsions containing 2% Tween 80 (a, c, e) or whey 

proteins (b, d, f), produced by means of US-HPH (20 s + 20 MPa, 20 s + 50 MPa, 60 s + 50 MPa 

and 60 s + 100 MPa), US (20, 60, 120 and 240 s) and HPH (1 pass at 20, 80, 150 MPa and 3 passes 

at 120 MPa) treatments.  

Figure 2. Fitted contour plots of mean particle diameter of Tween 80 stabilized emulsions as a 

function of energy density (Ev) and oil content (Oil) (a) or emulsifier concentration (Emuls) (b). The 

value of the emulsifier concentration was kept at the central point (2% w/w). 

Figure 3. Fitted contour plots of mean particle diameter of and whey protein stabilized emulsions as 

a function of energy density (Ev) and oil content (Oil) (a) or emulsifier concentration (Emuls) (b). 

The value of the oil content was kept at the central point (15% w/w). 
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Table 1. Combinations of oil content, emulsifier concentration and energy density of different 

runsand experimental results ± standard deviation of a three factors face centred central composite 

design 

Run Oil  

(% w/w) 

Emulsifier 

(% w/w) 

Energy density 

(MJ/m
3
) 

Mean particle diameter  

(nm) 

    Tween 80 Whey protein isolate 

1 10 1 47 420 ± 43 344 ± 12 

2 10 3 47 340 ± 34 353 ± 22 

3 20 3 47 389 ± 6 411 ± 15 

4 20 1 47 488 ± 59 427 ± 23 

5 10 1 175 212 ± 11 257 ± 29 

6 10 3 175 128 ± 13 239 ± 2 

7 20 1 175 323 ± 18 285 ± 14 

8 20 3 175 194 ± 8 241 ± 15 

9 10 2 111 220 ± 10 233 ± 7 

10 20 2 111 277 ± 9 279 ± 11 

11 15 1 111 257 ± 21 285 ± 7 

12 15 3 111 210 ± 11 228 ± 4 

13 15 2 47 397 ± 46 463 ± 31 

14 15 2 175 215 ± 7 240 ± 8 

15 15 2 111 239 ± 13 287 ± 13 

16 15 2 111 240 ± 11 279 ± 10 

17 15 2 111 249 ± 21 296 ± 3 

18 15 2 111 248 ± 9 279 ± 21 

19 15 2 111 249 ± 12 293 ± 24 

20 15 2 111 247 ± 12 215 ± 16 
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Table 2. Mean particle diameter and polydispersity index (PDI) ( ± standard deviation) of emulsions containing 2% (w/w) Tween 80 or whey 

protein isolate, subjected to HPH and US provided in combination or individually at increasing energy density. 

Treatment Pressure (MPa) Passes Time (s) Energy density 

(MJ/m
3
) 

Tween 80 Whey proteins 

Mean particle diameter (nm) PDI Mean particle diameter (nm) PDI 

US-HPH 

20 
 

20 41 296 ± 12
c
 0.35 ± 0.07

cde
 430 ± 9

b
 0.54 ± 0.08

b
 

50 
 

20 78 221 ± 9
ef
 0.24 ± 0.04

de
 291 ± 3

cd
 0.37 ± 0.01

bcd
 

80 
 

20 108 208 ± 11
fgh

 0.28 ± 0.00
de

 304 ± 10
bc

 0.33 ± 0.01
bcd

 

50 
 

60 125 225 ± 12
ef
 0.25 ± 0.01

de
 280 ± 8

de
 0.35 ± 0.09

bcd
 

80 
 

60 155 194 ± 10
hi
 0.22 ± 0.03

ef
 218 ± 1

fg
 0.21 ± 0.05

fg
 

100 
 

60 175 190 ± 1
hi
 0.17 ± 0.01

f
 205 ± 5

fg
 0.17 ± 0.01

g
 

US 

  
20 21 475 ± 21

a
 0.69 ± 0.04

a
 Phase separation 

  
60 75 361 ± 22

b
 0.49 ± 0.02

b
 498 ± 4

a
 0.75 ± 0.01

a
 

  
120 143 385 ± 10

b
 0.49 ± 0.03

b
 441 ± 17

ab
 0.47 ± 0.01

bc
 

  
240 278 258 ± 2

cd
 0.38 ± 0.04

bc
 299 ± 13

bc
 0.42 ± 0.03

bc
 

HPH 

20 1  20 363 ± 8
b
 0.41 ± 0.02

cd
 389 ± 15

b
 0.43 ± 0.01

bc
 

50 1  50 265 ± 12
cd

 0.34 ± 0.08
cde

 292 ± 13
cd

 0.30 ± 0.03
cd

 

80 1  80 228 ± 6
ef
 0.27 ± 0.01

de
 250 ± 14

ef
 0.27 ± 0.03

ef
 

120 1  120 229 ± 16
ef
 0.26 ± 0.06

de
 243 ± 7

ef
 0.27 ± 0.04

ef
 

150 1  150 208 ± 6
fgh

 0.23 ± 0.02
ef
 245 ± 13

ef
 0.27 ± 0.03

ef
 

120 3  360 168 ± 2
i
 0.15 ± 0.01

f
 182 ± 4

g
 0.16 ± 0.03

g
 

a-i
:within each column, means with different letters are statistically different (p<0.05)  
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Table 3. Regression coefficients of the models for mean particle diameter of emulsions stabilized 

with Tween 80 and whey proteins 

Variable Tween 80 Whey proteins 

Intercept 637.167 261.447 

Ev -5.697 *** -4.881 *** 

Ev
2
 0.018 *** 0.021 ** 

Oil -2.880 *** 32.172 * 

Oil
2
 0.348 -0.680 

Emuls 15.212 *** 83.995 

Emuls
2
 -6.873 -16.408 

Ev x Oil 0.024 -0.044 

Ev x Emuls -0.070 -0.104 

Oil x Emuls -1.594 -1.297 

R
2
adj 0.981 0.894 

*
: p<0.05; 

**
: p<0.01; 

***
: p<0.001 
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Table 4. Mean particle diameter obtained by the application of different combined US-HPH 

processes delivering energy densities of 145 and 120 MJ/m
3 

tosystems containing Tween 80 and 

whey protein isolate, respectively.  

Emulsifier 

US 

time 

(s) 

HPH 

pressure 

(MPa) 

Total energy 

density 

(MJ/m
3
) 

Energy delivered by 

US (%) 

Energy delivered 

by HPH (%)  

Mean particle 

diameter (nm) 

Tween 80 

0 145 

145 

0 100 278 ± 7
b
 

26 109 25 75 170 ± 9
de

 

50 73 50 50 151 ± 8
e
 

90 36 75 25 196 ± 3
c
 

100 0 100 0 389 ± 7
a
 

Whey 

proteins 

0 120 

120 

0 100 342 ± 10
b
 

22 90 25 75 228 ± 6
d
 

41 60 50 50 231 ± 5
d
 

75 30 75 25 270 ± 4
c
 

81 0 100 0 386 ± 4
a
 

a-c
: in the same emulsifier group, means with different letters are statistically different (p<0.05) 
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Highlights 

 

Combined US-HPH process allowed obtaining nanoemulsions using food grade emulsifiers 

US-HPH process allowed nanoemulsification energy density to be reduced 

Oil and emulsifier content and energy density affected US-HPH emulsification efficacy 

US and HPH energy levels affected US-HPH nanoemulsification performance 

ACCEPTED MANUSCRIPT



Graphics Abstract



Figure 1



Figure 2



Figure 3


