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Abstract. Coupling spin models to complex external fields can give rise to interesting
phenomena like zeroes of the partition function (Lee-Yang zeroes, edge singularities)
or oscillating propagators. Unfortunately, it usually also leads to a severe sign problem
that can be overcome only in special cases; if the partition function has zeroes, the sign
problem is even representation-independent at these points. In this study, we couple the
N-state Potts model in different ways to a complex external magnetic field and discuss the
above mentioned phenomena and their relations based on analytic calculations (1D) and
results obtained using a modified cluster algorithm (general D) that in many cases either
cures or at least drastically reduces the sign-problem induced by the complex external
field.

1 Introduction
1.1 Parameters of the Potts partition function

A general partition function for a d-dimensional N-state Potts system of size V , in which the spins
couple linearly to a complex external field, can be written as:

ZN,V (β, h0, . . . , hN−1) =
∑
{ s }

exp
(∑

x

(
β

d∑
ν=1

(
2 δsx,sx+̂ν − 1

)
+

N−1∑
n=0

hn δn,sx

))
, (1)

where sx ∈ {0, . . . ,N − 1 } is the Potts spin on site x, β ∈ R+ is the inverse temperature, and hn ∈ C
, n ∈ {0, . . . ,N − 1 } are N complex parameters that define the coupling to the external fields (note
that only (N − 1) of the hn are linearly independent as

∑N−1
n=0 δn,sx = 1 ∀x). We will focus on a subset

of possible choices for the external fields, namely on the cases where hn = h e
2 π i n

N +h′ e−
2 π i n

N , with
h, h′ ∈ C, so that the partition function can be written as:

ZN,V
(
β, h, h′

)
=
∑
{ s }

exp
(∑

x

(
β

d∑
ν=1

(
2 δsx,sx+̂ν − 1

)
+ h Px + h′ P∗x

))
, (2)

with Px = e
2 π i sx

N and P∗x = e−
2 π i sx

N . Observables of interest will be the magnetizations,

〈P〉 = 1
V
∂ log
(
ZN,V (β, h, h′)

)
∂h

and 〈P∗〉 = 1
V
∂ log
(
ZN,V (β, h, h′)

)
∂h′

, (3)
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and the two-point function

〈
Px P∗y

〉
c
=

1
V
∂2 log

(
ZN,V (β, h, h′)

)
∂hx∂h′y

∣∣∣∣∣
hz=h,h′z=h′∀z

, (4)

where h and h′ are temporarily interpreted as site-dependent quantities.

1.2 Sign problem

For arbitrary h, h′ ∈ C, the configuration weight (i.e. the exponential) in the partition sum (2) has in
general a non-constant complex phase and lacks therefore a direct probabilistic interpretation, which
would be necessary to estimate observables using Monte Carlo. This is called a sign-problem and a
standard way to deal with it is by using reweighting techniques, which means that one does Monte
Carlo for the corresponding phase-quenched system:

ZN,V,q
(
β, h, h′

)
=
∑
{ s }
|w[ s ]| , where w[ s ] = exp

(∑
x

(
β

d∑
ν=1

(
2 δsx,sx+̂ν − 1

)
+ h Px + h′ P∗x

))
, (5)

and evaluates observables for the original system by using that

〈O[ s ]〉 =

∑
{ s }
O[ s ]w[ s ]
∑
{ s }
w[ s ]

=

∑
{ s }
O[ s ] R[ s ] |w[ s ]|
∑
{ s }

R[ s ]|w[ s ]| =
〈O[ s ] R[ s ]〉q
〈R[ s ]〉q

, (6)

where R[ s ] = w[ s ]/|w[ s ]| is the complex phase of w[ s ] and 〈O′[ s ]〉q refers to the expectation value
of an observable O′[ s ] with respect to the phase-quenched system, i.e.:

〈O′[ s ]
〉

q =
1

ZN,V,q(β, h, h′)

∑
{ s }
O′[ s ] · |w[ s ]| . (7)

The reweighting formula (6) is a priori exact, but if the expectation values 〈. . .〉q after the last equality
sign in (6) are evaluated by Monte Carlo, then the statistical fluctuations of the phase R[ s ] cause
problems: by writing

〈R[ s ]〉q =
ZN,V (β, h, h′)
ZN,V,q(β, h, h′)

= e−V ∆ f , (8)

where ∆ f = f − fq is the difference between the free energy densities for the full and the phase-
quenched system (which becomes independent of the system size V if V is large), we see that (the
modulus of) 〈R[ s ]〉 decays exponentially with increasing V , which in turn implies exponential growth
of the fluctuations in the reweighted observable O[ s ] R[ s ]/〈R[ s ]〉q and the corresponding statistical
error. As in a Monte Carlo simulation the statistical error depends on the number Nsamp of measure-
ments like err. ∝ 1/

√
Nsamp, the number of measurements required in (6) to obtain equally accurate

estimates of 〈O[ s ]〉 for different system sizes V , would therefore scale like Nsamp ∝ e2 V ∆ f , which
limits the applicability of the reweighting method (6) to very small system sizes.

2 Exact solution in 1D
In 1D, the partition function (1) can be computed analytically in terms of the eigenvalues of the
transfer matrix:

ZN,L
(
β, h, h′

)
= Tr

(
T L(β, h, h′)) = Tr

(
ΛL(β, h, h′)) =

N∑
k=1

λL
k
(
β, h, h′

)
, (9)
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2 Exact solution in 1D
In 1D, the partition function (1) can be computed analytically in terms of the eigenvalues of the
transfer matrix:

ZN,L
(
β, h, h′

)
= Tr

(
T L(β, h, h′)) = Tr

(
ΛL(β, h, h′)) =

N∑
k=1

λL
k
(
β, h, h′

)
, (9)

where L is the system size, T (β, h, h′) the transfer-matrix,

Tsx,sx+1

(
β, h, h′

)
= exp

(
β
(
2 δsx,sx+1 − 1

)
+ h

Px + Px+1

2
+ h′

P∗x + P∗x+1

2

)
, (10)

andΛ(β, h, h′) = diag{λ1(β, h, h′), . . . , λN(β, h, h′) } is the diagonal matrix of eigenvalues of T (β, h, h′),
so that:

T
(
β, h, h′

)
= U−1(β, h, h′)Λ(β, h, h′)U(β, h, h′) with U

(
β, h, h′

) ∈ L(N,C) . (11)

2.1 Non-Hermitian transfer matrix

If the transfer matrix T (β, h, h′) is non-Hermitian, then its eigenvalues λk are in general complex,
and therefore also the partition function (9) is in general complex (see Fig. 1, middle row). Howe-
ver, as shown in [1], if the Hamiltonian of the theory under consideration is invariant under CT -
transformations, then we have that

H |ψ〉 = E |ψ〉 ⇒ H CT |ψ〉 = CT H |ψ〉 = CT E |ψ〉 = E∗ CT |ψ〉 , (12)

so that the energies are either real or appear in complex-conjugate pairs. This implies that also the
eigenvalues of the transfer matrix have either to be real or appear in complex-conjugate pairs and (9)
is therefore not complex but real as well! In our case, the Hamiltonian is given by:

H = −
∑

x

((
2 δsx,sx+1 − 1

)
+

h Px + h′ P∗x
β

)
, (13)

which has CT -symmetry if one sets for example h + h′ = hR, h − h′ = hI with hR, hI ∈ R (see [1, 2]),
or if we set h′ = 0 and h ∈ C with arg(h) ∈ { π k

N | k ∈ Z } (see Fig. 1, first and last row) and use SCT
instead of CT with S ∈ S N (permutation group).

2.2 Edge singularities, disorder lines and two-point functions

Assume that all eigenvalues of the transfer matrix are either real or part of a complex-conjugate pair,
i.e. ∀n ∈ {1, . . . ,N }∃m ∈ {1, . . . ,N } : λm = λ

∗
n, and that they are ordered according to their moduli:

|λ1| ≥ |λ2| ≥ . . . ≥ |λN | | λn � λm ∀m, n ∈ {1, . . . ,N }. It is then possible, to identify three prototypes
of "phases" [1, 2], in which the two-point function,

〈
P0 P∗x

〉
=

Tr
(
φ T x φ∗ T L−x)

Tr
(
T L) =

Tr
(
φ̃Λx φ̃∗ ΛL−x)

Tr
(
ΛL) , (14)

with φkl = δkl e
2 π i (k−1)

N , φ∗kl = δkl e−
2 π i (k−1)

N , φ̃ = U φU−1 , φ̃∗ = U φ∗ U−1, behaves very differently.
In the limit L→ ∞, the origin of these different phases can be understood by analyzing the dependency
of (14) on the transfer-matrix eigenvalues λn, n ∈ {1, . . . ,N } [2]:

1. if λn ∈ R+ ∀ n ∈ {1, . . . ,N }, we are in the "gaseous" phase, where ZN,L ≈ λL
1 ∈ R+ and the

two-point function is a pure sum of exponentials:

〈
P0 P∗x

〉
=

N∑
n=1

∣∣∣φ̃1n

∣∣∣2
(
λn

λ1

)x
=
∣∣∣φ̃11
∣∣∣2 +
∣∣∣φ̃12
∣∣∣2 e−m1 x +O( e−m2 x ) with e−mn =

λn

λ1
. (15)
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Figure 1. The figures illustrate how for a 1d system defined by (9) with N = 3, L = 16, β = 0.8 and h′ = 0,
the quantity ZN,L(β, h, 0)/ZN,L,q(β, h, 0) (which is a measure for the severity of the sign problem, see eq. (8))
depends on the direction and magnitude of h ∈ C. For arg(h) = 0 (top row), ZN,L is real and positive, and
the sign-problem can most likely be overcome by a clever choice of new configuration space coordinates. For
0 < arg(h) < π/N (middle row), ZN,L is complex but the sign-problem might still be overcome by a clever change
of new coordinates in configuration space (as the complex phase of ZN,L could in some coordinates just be a
constant for all configurations). Finally, for arg(h) = π/N (bottom row), ZN,L is again real but no longer positive-
definite. At the zeroes of ZN,L, the sign-problem is irreducible and will be present in all possible representations
of the partition function. Note that ZN,L(β, h, 0) is invariant under ZN rotations of the complex h.
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2. If λ1 ∈ R+ and λ2 = λ
∗
3 ∈ C, we are in the "liquid" phase where still ZN,L ≈ λL

1 ∈ R+ but where
the two-point function is now a damped oscillation:

〈
P0 P∗x

〉 ≈
∣∣∣φ̃00
∣∣∣2 +

∣∣∣φ̃01
∣∣∣2
((
λ2

λ1

)x
+

(
λ∗2
λ1

)x)
=
∣∣∣φ̃00
∣∣∣2 + 2

∣∣∣φ̃01
∣∣∣2 e−mR x cos(mI x) , (16)

where the real and imaginary masses mR and mI are given by the relation e−mR+i mI = λ2
λ1

.

3. Finally, if λ1 = λ
∗
2 ∈ C, we are in the crystalline phase, where ZN,L ≈ λL

1 + (λ∗1)L =

2 |λ1|L cos(mI L/2) and the two-point function is a pure oscillation:

〈
P0 P∗x

〉 ≈
λL−x

1

N∑
n=1

∣∣∣φ̃1n

∣∣∣2 λx
n + (λ∗1)L−x

N∑
n=1

∣∣∣φ̃2n

∣∣∣2 λx
n

λL
1 + (λ∗1)L

≈
∣∣∣φ̃11
∣∣∣2 + cos(mI (x − L/2))

cos(mI L/2)

∣∣∣φ̃12
∣∣∣2 , (17)

where the mass has now only an imaginary part mI , defined through ei mI = λ2
λ1
=
λ∗1
λ1

.

Strictly speaking, the gaseous and liquid phases are not really distinct phases as they are not sepa-
rated by a true phase transition but only by a so-called disorder line. The boundary between ga-
seous or liquid phase and the crystalline phase on the other hand, forms an edge-singularity where
ZN,L(β, h, h′) = 0 and the free energy is therefore discontinuous along such a boundary.
A zero of the partition function implies that there must be a sign-problem which is physical or irredu-
cible, in the sense, that it cannot possibly be removed by a change or representation for the partition
sum: if the partition sum is zero, this means that either all configurations that contribute to it have
weight zero, or that there must be cancellations between weights for different configurations, which
means that some of them must be negative. In Sec. 4, we will investigate how quickly the average sign
drops to zero when approaching an edge-singularity in different representations of the same partition
function.

3 Alternative representations

From the discussion in Sec. 1.2, it is clear that the severity of the sign-problem in the partition function
(2) depends on the choice of representation (spin, flux-variable, cluster, etc.?). It is therefore reaso-
nable, to investigate how well the different representations deal with the sign-problem in the different
cases illustrated in Fig. 1.

3.1 Flux-variable representation

The flux-variable representation for (2) is unfortunately only available for N = 2, 3 in which case the
N-state Potts model is equivalent to the so-called N-state clock model. For N = 2, the flux-variable
formulation of (2) can be written as [3]:

Z
(
β, h, h′

)
=
(
cosh
(
h + h′

)
cosh(β)d

)V

·
∑
{ k,m }

∏
x

{
tanh
(
h + h′

)mx tanh(β)
∑d
µ=1 kx,µ δ0,mod2

(
mx+
∑d
µ=1

(
kx,µ+kx−µ̂,µ

))}. (18)

with the flux variables kx,µ ∈ {0, 1 } living on links, and the monomer occupation numbers mx ∈ {0, 1 }
living on sites. The configurations weights are obviously complex for general h, h′ ∈ C, real for h+ h′

purely real or purely imaginary, and real and positive for h+ h′ real and positive. For the flux-variable
formulation of the N = 3 case, see [4].
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3.2 Cluster representation

Deriving the cluster representation for the Potts partition function (1) is straightforward [5]. One can
then make use of the fact that individual clusters are completely decoupled so that one can easily sum
over all possible spin states in each of them [6]. The resulting partition function reads

ZN(β, h0, . . . , hN−1) = e−βV d
∑
{ b }

(
e2 β −1

)∑
x,ν

bx,ν
∏

C∈C[ b ]

WN,h0,...,hN−1 (|C|) , (19)

with bx,ν being the bond-variable that connects site x with site x+ ν̂. Sites that are connected by a bond
correspond to the same cluster, so that each bond-configuration b = {bx,ν }x,ν defines a corresponding
set of clusters C[b ]. The cluster weights are given in terms of a sum over all possible cluster spins:

WN,h0,...,hN−1 (VC) =
N−1∑
s=0

exp
(
VC

N−1∑
n=0

hn δn,s

)
=

N−1∑
n=0

exp(VC hn) . (20)

If (20) is real and positive for all VC ∈ {1, . . . ,V }, then the representation (19) is obviously sign-
problem free. By writing (20) as:

WN,h0,...,hN−1 (|C|) =
N−1∑
n=0

exp(|C| Re(hn)) cos(|C| Im(hn)) + i
N−1∑
n=0

exp(|C| Re(hn)) sin(|C| Im(hn)) (21)

we see from the second sum in (21) that WN,h0,...,hN−1 (VC) ∈ R ∀VC ∈ {1, . . . ,V } if non-real hn occur
in complex-conjugate pairs, and that WN,h0,...,hN−1 (VC) ∈ R+ ∀VC ∈ {1, . . . ,V } if there is in addition
at least one purely real hn that is sufficiently large so that the first sum in (21) is always positive.
If we set hn = h e

2 π i n
N = |h| ei arg(h) 2 π i n

N , which corresponds to setting h′ = 0 and h ∈ C in (2), the
condition that non-real hn appear in complex-conjugate pairs is satisfied if arg h = π k

N with k ∈ Z. If
k is even, then the hn which has the largest real part is purely real and WN,h(VC) ∈ R+, whereas if k
is odd, the hn with the largest real part form a complex-conjugate pair and WN,h(VC) ∈ R, i.e. can be
negative.

4 Results
4.1 Severity of sign-problem in different representations

In [2] and [6], it had already been shown that the flux-variable and cluster representations for the Potts
model solve the sign-problem in (2) for certain values of h and h′. Situations where the sign-problem
is irreducible because the partition function becomes zero, were however not considered so far. In
Fig. 2 we show how the average sign in the spin-, flux- (for N = 2) and cluster-representation of the
partition function (9) for h′ = 0 and h = |h| ei π/N behaves as a function of |h| when approaching the
value hcr where ZN,L

(
β, h ei π/N , 0

)
has its first zero. As can be seen, in the flux-variable representation

the average sign drops almost as fast as in the ordinary spin-representation, whereas with the cluster
representation, one can go much closer to the edge-singularity at hcr before the average sign starts to
decrease dramatically.

4.2 Oscillating/non-monotonic two-point functions in 2D

Using the cluster representation (19) with N = 3, h′ = 0 and h ∈ C, we checked that the three prototype
phases discussed in Sec. 2.2 for the one-dimensional system, can also be found in two dimensions:
Fig. 3 shows exemplary measurements of the two-point function (4) for β = 0.3 and h = 0.4 (left) in
an system of size V = 322, and for β = 0.3 and h = h · ei π/N (right) in a system of size V = 82, which
correspond to the liquid and crystalline phases, respectively.
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WN,h0,...,hN−1 (VC) =
N−1∑
s=0

exp
(
VC

N−1∑
n=0

hn δn,s

)
=

N−1∑
n=0

exp(VC hn) . (20)

If (20) is real and positive for all VC ∈ {1, . . . ,V }, then the representation (19) is obviously sign-
problem free. By writing (20) as:

WN,h0,...,hN−1 (|C|) =
N−1∑
n=0

exp(|C| Re(hn)) cos(|C| Im(hn)) + i
N−1∑
n=0

exp(|C| Re(hn)) sin(|C| Im(hn)) (21)

we see from the second sum in (21) that WN,h0,...,hN−1 (VC) ∈ R ∀VC ∈ {1, . . . ,V } if non-real hn occur
in complex-conjugate pairs, and that WN,h0,...,hN−1 (VC) ∈ R+ ∀VC ∈ {1, . . . ,V } if there is in addition
at least one purely real hn that is sufficiently large so that the first sum in (21) is always positive.
If we set hn = h e

2 π i n
N = |h| ei arg(h) 2 π i n

N , which corresponds to setting h′ = 0 and h ∈ C in (2), the
condition that non-real hn appear in complex-conjugate pairs is satisfied if arg h = π k

N with k ∈ Z. If
k is even, then the hn which has the largest real part is purely real and WN,h(VC) ∈ R+, whereas if k
is odd, the hn with the largest real part form a complex-conjugate pair and WN,h(VC) ∈ R, i.e. can be
negative.

4 Results
4.1 Severity of sign-problem in different representations

In [2] and [6], it had already been shown that the flux-variable and cluster representations for the Potts
model solve the sign-problem in (2) for certain values of h and h′. Situations where the sign-problem
is irreducible because the partition function becomes zero, were however not considered so far. In
Fig. 2 we show how the average sign in the spin-, flux- (for N = 2) and cluster-representation of the
partition function (9) for h′ = 0 and h = |h| ei π/N behaves as a function of |h| when approaching the
value hcr where ZN,L

(
β, h ei π/N , 0

)
has its first zero. As can be seen, in the flux-variable representation

the average sign drops almost as fast as in the ordinary spin-representation, whereas with the cluster
representation, one can go much closer to the edge-singularity at hcr before the average sign starts to
decrease dramatically.

4.2 Oscillating/non-monotonic two-point functions in 2D

Using the cluster representation (19) with N = 3, h′ = 0 and h ∈ C, we checked that the three prototype
phases discussed in Sec. 2.2 for the one-dimensional system, can also be found in two dimensions:
Fig. 3 shows exemplary measurements of the two-point function (4) for β = 0.3 and h = 0.4 (left) in
an system of size V = 322, and for β = 0.3 and h = h · ei π/N (right) in a system of size V = 82, which
correspond to the liquid and crystalline phases, respectively.
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β = 0.5, N = 3
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Figure 2. The figure shows for different representations (spin, cluster and flux-variable representation) of the
partition function (9) with h′ = 0 h = |h| ei π/N and for N = 2 (left) and N = 3 (right), the behavior of the average
sign as function of |h|, when approaching the first edge-singularity. As can be seen, the cluster representation
allows one to get much closer to the edge-singularity before the average sign starts to drop dramatically.
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Figure 3. The figures show for a 3-state Potts systems in 2d, exemplary measurements of the two-point correlator
(4) in the liquid (left) and crystalline (right) phase. In the left-hand figure, the red line corresponds to a two-mass
fit, which yields the indicated two complex masses. In the right-hand figure, the red line corresponds to a single-
mass fit.

5 Conclusion

We reviewed different ways to couple the N-state Potts model to a complex external field. This in-
troduces in general a sign-problem, which in some case can be overcome again by changing to the
flux-variable or cluster representation of the partition function, but if the partition function develops
zeros for some values of the external field, then the sign-problem is irreducible at these points. Alt-
hough the sign-problem has at these points to be present in any representation (flux-var.,cluster,...),
the rate at which the average sign drops, when approaching a zero of the partition function, can be
significantly different for different representations: compared to the spin and flux-variable represen-
tations, one can, using the cluster-representation, get much closer to the zero of the partition function
before the average sign starts to significantly deviate from unity and scales to zero.
We also discussed the relation between the sign problem and non-monotonic/oscillatory behavior of
correlation functions.
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