
Date of acceptance Grade

Instructor

Software Plagiarism Detection Using N-grams

Kristian Wahlroos

M.Sc. Thesis
UNIVERSITY OF HELSINKI
Department of Computer Science

Helsinki, November 1, 2018

Faculty of Science Department of Computer Science

Kristian Wahlroos

Software Plagiarism Detection Using N-grams

Computer Science

M.Sc. Thesis November 1, 2018 81

plagiarism detection; authorship identification; similarity detection

Plagiarism is an act of copying where one doesn’t rightfully credit the original source. The
motivations behind plagiarism can vary from completing academic courses to even gaining
economical advantage. Plagiarism exists in various domains, where people want to take credit
from something they have worked on. These areas can include e.g. literature, art or software,
which all have a meaning for an authorship.

In this thesis we conduct a systematic literature review from the topic of source code
plagiarism detection methods, then based on the literature propose a new approach to detect
plagiarism which combines both similarity detection and authorship identification, introduce
our tokenization method for the source code, and lastly evaluate the model by using real life
data sets. The goal for our model is to point out possible plagiarism from a collection of
documents, which in this thesis is specified as a collection of source code files written by various
authors. Our data, which we will use to our statistical methods, consists of three datasets:
(1) collection of documents belonging to University of Helsinki’s first programming course, (2)
collection of documents belonging to University of Helsinki’s advanced programming course
and (3) submissions for source code re-use competition. Statistical methods in this thesis are
inspired by the theory of search engines, which are related to data mining when detecting
similarity between documents and machine learning when classifying document with the most
likely author in authorship identification.

Results show that our similarity detection model can be used successfully to retrieve
documents for further plagiarism inspection, but false positives are quickly introduced even
when using a high threshold that controls the minimum allowed level of similarity between
documents. We were unable to use the results of authorship identification in our study, as
the results with our machine learning model were not high enough to be used sensibly. This
was possibly caused by the high similarity between documents, which is due to the restricted
tasks and the course setting that teaches a specific programming style during the timespan of
the course.

ACM Computing Classification System (CCS):
Information systems → Information retrieval → Retrieval tasks and goals → Near-duplicate
and plagiarism detection
Information systems → Information retrieval → Retrieval tasks and goals → Clustering and
classification
Information systems → Information systems applications → Data mining
Computing methodologies → Machine learning → Learning paradigms → Supervised learning
Computing methodologies → Machine learning → Learning paradigms → Unsupervised
learning

Tiedekunta — Fakultet — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — Övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

Contents
1 Introduction 1

2 Background 3
2.1 Source code plagiarism . 4
2.2 Similarity detection . 7
2.3 Authorship identification . 8
2.4 Information retrieval . 9

2.4.1 Document representation 10
2.4.2 Document similarity 11
2.4.3 Retrieval metrics . 12

2.5 Document classification . 13
2.6 Document clustering . 15
2.7 Summary . 20

3 Literature Survey 20
3.1 Survey methodology . 20
3.2 Categorization . 22
3.3 Descriptive statistics . 24
3.4 Methods . 27

3.4.1 Similarity detection 27
3.4.2 Authorship identification 32
3.4.3 Findings . 34

4 Research Design 35
4.1 Assumptions . 36
4.2 Data set . 37
4.3 Document normalization . 41
4.4 Document representation . 43
4.5 Similarity detection . 45
4.6 Authorship identification . 46
4.7 Evaluation . 47

5 Results 49
5.1 Document similarity . 49
5.2 Authorship identification . 56
5.3 PLGDetect . 63

6 Discussion 67
6.1 Revisiting research questions 67
6.2 Limitations of the study . 69
6.3 Future work . 70

7 Conclusion 72

ii

References 73

A Sample programs 80

B Token list 81

iii

1 Introduction
Massive Open Online Courses (MOOCs) are a popular way to complete
undergraduate courses offered by various institutes and universities. For
example a course Circuits and Electronics led by Massachusetts Institute
of Technology and Harvard University, gathered around 155 000 registered
students from all over the world to a website called edX1 in 2012 [7]. The
structure of Circuits and Electronics consisted of two parts which are now
common in majority of MOOCs: theory part and graded tasks which are
offered weekly during the timespan of a course.

The course Ohjelmoinnin MOOC is an online programming course offered
by University of Helsinki. It has a two-part structure; introduction and
advanced course in Java programming language, where both are mandatory
undergraduate-level courses including 14 weeks of total workload. During
these weeks students follow the offered course material independently and
submit their solutions to various programming tasks that are automatically
tested and scored. If the participant is not a student in University of Helsinki,
she can apply for a study right after completing the course and taking an
exam [56], otherwise the student gains total of ten credits to her degree. As
Ohjelmoinnin MOOC is based on scoring the submissions and students are
free to choose their working hours without any major mandatory attendance,
this can increase the likelihood for plagiarism. There are also over hundred
students registered and many submissions sent by each student, making it
very hard for course staff to manually detect possible cheating.

The word cheating here refers to an act of plagiarism and one of the
ways to define the verb plagiarize is as “to steal and pass off (the ideas or
words of another) as one’s own”2, and the person conducting this act is
called a plagiarist. Source-code plagiarism on other hand, refers to the act of
plagiarism that happens between software that is built from various source
code documents. This kind of plagiarism can be also defined as source-code
reuse, which includes the following four facets [11]: (1) copying others work
without alterations, (2) copying and changing some parts of the code to fool
a human inspector, (3) converting a solution from one language to another
and (4) using code-generators to automatically create a solution.

Source-code plagiarism in academia is considered as a serious offence
and there often exists a zero tolerance for it [11]. This is usually stressed
at the start of courses and can lead to serious consequences ranging from
rejecting the students current course registration to even suspension. Dick
et al. points out that in some courses over 80% of the students were found
guilty of cheating if they were given a good enough opportunity for it [15].
Usual forms of cheating methods were found to be related to plagiarism:

1https://www.edx.org/ Accessed 10th April 2018
2https://www.merriam-webster.com Accessed 10th April 2018

1

https://www.edx.org/
https://www.merriam-webster.com

copying solutions from the web, sharing solutions with friends and excessive
collaboration between students.

The opinions about cheating motives varies between students and aca-
demics [11]. Academics reported that cheating is due to three major factors:
external pressure, the ease of sharing solutions and cultural differences. Stu-
dents on the other hand, gave two major reasons under the study: time
pressure and heavy workloads. Given that MOOCs often have time sensi-
tive weekly assignments, an automatic scoring system and the freedom to
complete the course wherever students want can increase the likelihood of
cheating among students who want to complete the course without effort.

In this thesis we approach the problem of source code plagiarism detection
with data mining and machine learning. By data mining we mean an approach
that is able to use computers to find interesting patterns from the data, and
by machine learning a statistical process which is able to make predictions
using previously observed data. For our proposed detection model, we first
build two classifiers: identifying suspicious authors based on the similarity
of documents and authorship identification that is able to predict the most
likely author of a document. Using results from both of these classifiers,
we propose a novel approach where the intersection of suspicious authors
and the most likely authors of a document is able to reveal possible cases
of plagiarism. Suspicious authors are grouped together to reveal clusters of
possible plagiarists, whereas authorship identification is used to detect if a
writing style of an author matches her previous work. The intersection of
these two models should thus minimize the amount of falsely accused people,
as the model has two inputs that are used to verify if the author is who she
claims to be.

Following three research questions are asked and answered in this study,
which are all tied closely to the question How plagiarism can be automatically
detected from source code documents?

Q1: What kind of approaches exist to detect source code plagiarism?

Q2: What are the possible benefits of using code structure for plagiarism
detection?

Q3: How can one obtain a model with high plagiarism detection accuracy?

To answer these questions, we first conduct a systematic literature review in
which we establish a categorization for techniques used in plagiarism detec-
tion, show what kind of datasets are being used and search the theoretical
foundations for our model. Then, we show how documents can be presented
and retrieved in large-scale environment, and introduce the benefits of using
the code structure within plagiarism detection. Finally, we evaluate the
similarity detection and authorship identification individually and combine

2

the best scoring models to see how false positives are affected, and how they
are introduced in the model.

Rest of this thesis is structured as follows. In Section 2 more detailed
overview of source code plagiarism is given with a theory of classifiers, Section
3 presents the results of systematic literature review where we focus on data
and methods applied in research, in Section 4 our method of using the result
of two classifiers and the used real-life data sets are presented, Section 5
presents the results by comparing our method to two popular baselines.
Section 6 discusses the results by answering the previous research questions,
discusses the shortcomings with our proposal and presents possible problems
when automatic system is used to accuse students from plagiarism.

2 Background
In this section we define the problem of plagiarism detection more formally,
describe possible plagiarism strategies and give an overview to the similar-
ity detection and authorship identification. We approach these latter two
problems by first defining them, then showing how they tie closely to the
domain of information retrieval, and finally give two real-life models. The
first model is a probabilistic model able to predict the author based on the
authors previous work, and the second model is a clustering algorithm able
to group similar documents together. We start first by defining the problem
of plagiarism detection.
Plagiarism detection. Given a set of documents D = {d1, d2, ..., dn} called as
the corpus and a set of authors A = {a1, a2, ..., ak} who are writers of these
documents, define a function f that is able to classify which documents are
possibly written by more than one author, and who the possible suspects
from the set of authors A are.
The above formalization gives an overview of the problem that is studied in
this thesis. Some aspects about the general problem have been simplified for
this study, as for example we don’t try to reveal the direction of plagiarism,
we use solely the data gathered from submissions and we only consider
authors inside a predefined set. This means that we try only to detect if
possible plagiarism can be observed from the the collection of documents
submitted by students.

To get a better understanding of the details that are relevant to source-
code plagiarism, instead of e.g. detecting plagiarism from essays, we define
some important concepts and terms next. Starting from the definition of
source code plagiarism, we show some common strategies of plagiarists and
briefly introduce the underlying structure of source code and existing tools
to detect plagiarism.

3

2.1 Source code plagiarism

Source code plagiarism refers to a plagiarism between source code files,
which can happen in both academic programming courses as in software
industry. Despite our focus on academic courses, both of these domains share
a common problematic constraint which makes plagiarism detection often
manually impossible. This constraint is simply the time constraint, creating
a need for automatic detection tools as course administrators have limited
hours to use for one course.

In academia, the underlying motives behind source code plagiarism
include following concepts [30]: ambiguity about what is considered as
excessive collaboration between students, using other students work to gain
grades and minimizing the work needed to complete the course. There are
at least three plagiarism behaviors with take-home exams [28]: help-seeking,
collaboration and systematic cheating. Indicating that the most common
type of plagiarism is accidental and done with other students from the same
course.

Students committing plagiarism can have problems to define what they
consider as source code plagiarism, and generally three common guidelines
can be defined [44]:

1) Refactoring other students work, and submitting it as your own, is
plagiarism.

2) If exercise templates are used, possible similarities between documents
and templates are not plagiarism.

3) Submitting a direct copy of other students work is plagiarism.

Detecting 2. and 3. are straightforward; code templates can be filtered out
from documents so that they contain only students own work and detecting
direct copy can be easily found by using string matching techniques. However,
the problem arises when students try to hide the plagiarism by mutating the
directly copied document.

Plagiarism strategies
Some common source code transformation techniques, often called as ob-
fuscation strategies, are targeted mainly towards two types of changes [30]:
lexical and structural. Lexical changes such as changing variable names, do
not require a deeper understanding of the logic. Structural changes requires
understanding the program logic, and includes modifications which change
the layout of the source code but keeps the logic same. For example when
considering following clause with an operand if(a == true), it can be writ-
ten equally as if(a == !false), keeping the logic same but mutating the
lexical information.

4

Table 1 shows some of the most common transformation targets when
speaking of source code. Given source code from another student, plagiarist
can apply transformations on these targets and complicate the task for a
human to spot plagiarism, or even confuse naïve methods like string matching
techniques. The motivation behind these transformations is that plagiarists
want to hide traces and thus, the detection method must be resilient against
obfuscation strategies.

Table 1: Common targets for transformations [30]. Lexical changes are super-
ficial and easy to change, whereas structural changes requires understanding
of the logic.

Lexical Structural
Comments Loops
Formatting Clauses
Naming Statement order

Operand order

Transformations targets defined in Table 1 closely relate to another study
which characterizes six levels of transformations [18].

Table 2: Six levels of transformation which can be applied to any source
code document.

Level of change Target Example action
1 Comments and indentation Add extra spaces and newlines
2 Identifiers Rename all variables
3 Declarations Reorder functions
4 Modules Merge functions
5 Statements Use for instead of while
6 Logic Change whole expressions

Applying all of these transformations one after another from Table 2, makes
the detection of plagiarism very difficult, as the plagiarized document diverges
too much from the original document and hides most of the traces that could
be used for detection. However, as the textual information changes, plagiarists
still try to maintain the same logic between original and copied documents.
This means that there still exists some kind of similarity, but this similarity
can not be found directly from the textual representation of a source code.
Information about the logical structure is thus crucial and accessible, when
source code is parsed to a tree format.

Code structure
Source code is structured text, made of keywords and user-defined variables.
To write a running program, one must know the rules i.e., the grammar of a

5

language, which is represented as the order in which various keywords and
variables must follow each other. A compiler is the core of a programming
language and it is used to transform source code meant for humans into
machine code which is meant for computers. When grammar rules must be
interpreted by the compiler, it uses a parse tree that is generated from the
source code [29]. This parse tree captures the syntax and semantics of the
source. The abstracted version of parse tree is called the abstract syntax tree.

Consider for example storing an integer value to a variable. The source
code in JavaScript and its abstract syntax tree is visible from the following
diagram.

VariableDeclaration

Identifier

"a"

Literal

"5"

Diagram 1: Example syntax tree for the expression var a = 5;. Two leaves
are generated, one for the identifier and its value, and another for the literal
and its value. Together they form a declaration of a variable.

Pruning the leaves of Diagram 1 leads to a more general expression that
captures the logic of the source code, becoming resistant against most of
the transformations given in Table 2. This gives the ability to detect similar
structure rather than similar text tokens, where latter is more vulnerable to
simple transformations. For example changing the name of the identifier or
the value of the literal will not affect the upper tree structure at all.

Tools
Because plagiarism is considered a serious offence, a lot of various detection
software has been made to detect it. Novak lists seven of the most well-known
tools in a review [41]: MOSS, JPlag, SPLaT, SIM, Marble, Plaggie and
Sherlock. These tools can be classified into five different categories based
on methods used: text, token, graph, tree and hybrid which combines one
or more approach. The most common way to detect plagiarism follows a
five step approach: pre-process documents, tokenize documents, exclude
templates, calculate similarities and find suspects using the similarity scores.
It’s notable that all of these tools listed by Novak are trying to calculate the
similarity value between documents.

As an example, JPlag is tool targeted for Java language [45]. It works by
utilizing the program structure, transforming the program code into sequence
of tokens by traversing the parse tree of a program and using predefined
token correspondence to form a token stream which represents the source
code. To form similarity score between two programs, a string matching

6

algorithm called Greedy String Tiling [59], is applied and the summed length
of all matches are being stored. This results a similarity value between zero
and one, where the value one means that two programs are exact copies of
themselves. Makers of JPlag suggest that their tool is resilient against most
common obfuscations made by plagiarists e.g. renaming and reordering of
statements.

2.2 Similarity detection

Similarity detection, or code clone detection, focuses directly on finding
similar functionality from a set of source code documents. We define it
formally as following.
Similarity detection. Given a set of source code documents D = {d1, ..., dn}
called as the corpus, define normalized similarity function sim : di, dj → [0, 1]
where 1 ≤ i, j ≤ n, sim(di, dj) = sim(dj , di), and sim(di, di) = 1. In other
words similarity score is equal regardless of the order of two documents and
similarity value between clones is one. With an optional threshold θ ∈ [0, 1]
one can define the limit when two source codes are considered as too similar.

The definition of the similarity function is ultimately based on how the
source code document is presented as a data [46]: document consisting of
plain text, series of tokens, syntax tree, series of metrics or as a graph. If
the document is seen purely as a sequences of characters, one can use naïve
methods like string matching techniques to detect fragments of copy and
paste, which requires no pre-processing. Other data formats require some
kind of transformation or an extraction process.

If one represents the source code simply as metrics, then there exists two
major categorization for those metrics [46]: attribute-counting metrics and
structure metrics. Attribute-counting refers to high-level features which can
be extracted directly from plain source code e.g. line counts and the amount
of whitespace, whereas structure metrics use the underlying structure of the
source code to capture the low-level representation [55].

The core process to detect similarity can be visualized to Figure 1, which
follows the general structure seen in state of the art systems [46]. In Figure
1, after the corpus has been defined, pre-process stage takes as an input the
unmodified source codes to perform two key tasks: to remove unnecessary
segments such as template code and to determine the level of comparison
granularity. The granularity one chooses can range from function-level
to document-level, depending how accurately the results should pinpoint
plagiarism. After the source code is partitioned, it is transformed into
intermediate representation which consists of two parts: extraction and
normalization. In extraction the data is modified so it is usable in similarity
function, and covers things like parsing, tokenization or building control flow
from the given code. In normalization one applies techniques which reduces

7

the variation between documents [46]: comments and whitespace removal,
uniforming user-defined identifiers or removing anything not relevant for the
detection process. The final result after calculating the pairwise similarities
is a collection of documents which are suspect of being too similar to each
others.

Corpus Pre-process Transform

Clone detectionSuspects

Raw source code Partition

Intermediate representation

Pairwise similarity

Figure 1: Similarity detection process for source code documents. Documents
are transformed into intermediate representation so similarity scores can be
calculated.

The key issue regarding to similarity detection are false-positives that
can be handled by manual verification after the detected documents are
gathered [46,55]. This is often a mandatory step as the detection tools simply
try to find similarity between the documents, but this similarity can be pure
coincidence for example when the solution space for a given task is highly
limited.

2.3 Authorship identification

Authorship identification deals with the issue of trying to name the author
of a document given some previous work of the author. This problem can be
seen as a classification task [33], and thus, we define authorship identification
formally as following.
Authorship identification. Given a set of documents D, a set of authors A
and a function f : D → A that identifies the writer by assigning every source
code document d ∈ D to one author a ∈ A. Estimate f with f̂ , a classifier
that treats every document as a feature vector x where xi ∈ R, and every
known class as a vector y where yi ∈ {0, 1}. The binary value represents
boolean value if the ith author is the predicted author for a given document,
which means that if dimension of the vector y is Rn, then there are n authors
|A| = n. The predicted author ŷ can be thus expressed with f̂(x) = ŷ, ŷ ∈ ŷ.

This classifier should be able to discriminate between writing styles of
different authors, which is heavily restricted by the grammar of the chosen
programming language. Writing style can commonly refer to everything that
is controllable by the author e.g. how one names variables or uses spacing.

One way to represent writing style in programming is by using software
metrics [33]. Software metrics can be put into roughly three categories:

8

layout being fragile metrics which are easily transformed by the IDE, style
which are non-fragile metrics related to layout and lastly structure which
can capture experience and ability of the programmer. Because source code
can be also thought as a text written with a specific language, natural
language processing (NLP) techniques can be applied. Targets of these
NLP techniques can be categorized into five-level stylistic features called
stylometrics features [52]. Categorization for stylometric features is visualized
in Table 3, where semantic features are the most difficult to form as they
require understanding deeper meaning of the written source code.

Table 3: Five-levels of stylometrics features. More external information is
required on each level.

Category Feature examples
Character Character subsequences, types, compression
Lexical Token statistics, word sequences
Syntactic Errors, expression usage, keywords, parse tree

Application-specific Indentation, language-specific constructs
Semantic Synonyms, functional dependencies

In natural language authorship analysis, statistical methods are often
being used [52]. More specifically machine learning methods are used to find
reoccurring patterns that are able to distinguish between writing styles. The
training of these statistical models can happen in two ways: via profile-based
or via instance-based approach. In profile-based approach, all documents
that are presented as observed data per author are concatenated into one
file. In instance-based learning, each text is used as an individual data point.
If we know that each document belongs to one author, then the problem
can be thought as an instance of a multiclass classification [52], where there
exist many possible classes for a single observed data point, but only one of
them can be correct.

2.4 Information retrieval

Before we can apply any statistical models to our problem, we need a way
of properly represent the collection of documents. One way is to think the
problem of plagiarism detection as retrieving certain kinds of documents
from a collection. Therefore we next introduce some topics from the theory
of information retrieval.

Information retrieval (IR) is a collection of strategies of finding documents
from large collections [36]. These documents are often represented as un-
structured text and possible methods covers topic like: clustering documents
to find similar documents, classifying documents based on their content,
ranking text for query search and building search engines. In this thesis
as we mainly focus on finding similarities between documents and how to

9

classify the author, we disregard some of the query-based focus of IR and use
techniques that are relevant to plagiarism study i.e., how document can be
represented for statistical models and how distance between two documents
can be calculated.

2.4.1 Document representation

As we require some form of numerical way to represent one document, we
use following IR-related concepts to express the documents in our corpus:
vector space model which captures algebraically the representation of the
document and a weighting scheme which gives more importance to specific
terms appearing in documents.

Vector space model One form of vector space model is called a binary
term-document incidence matrix [36], which represents documents as columns
and terms as the rows of a matrix. Terms are gathered by tokenization
procedure which divides single document into units that are often words of
the document, but can also be adjacent characters.

Let Mn×k be a matrix having n terms and k documents, then the value
of Md,t i.e., term t appearing in document d, is 1 if it appears at all and zero
otherwise. Table 4 shows example matrix build from programs in Appendix
A.

Table 4: Example of a binary term-document incidence matrix for three
example programs in Appendix A.

Term
Document A B C

public 1 1 1
sum 0 1 0

double 1 1 0
...

...
...

...
b 1 1 1

Taking a transpose of the values in Table 4 gives a document-term matrix,
where one row represents a document having n dimensions, reserving one
dimension for each term occurrence. For example the representation of
document A is the vector a = [1, 0, 1, · · · , 1]. This is referred as the bag of
words model, because it treats every word as independent event, losing the
information about ordering of the words [36].

A binary term-document incidence matrix is however very naïve, giving
the same value for a term regardless of the times a term appears in a
document. This can be improved by using a method called term weighting,
which is able to assign non-binary values for terms.

10

Term weighting schemes One simple scheme is called term frequency,
which is the number of times term t appears in document d denoted by
tft,d [36]. Let ft,d denote the raw frequency count, then term frequency can
be given as tft,d = ft,d and normalized by dividing the raw frequency with
the total frequency over every term in document

tft,d = ft,d∑
t′∈d

ft′,d
(2.1)

To scale down the most frequently appearing terms, one can use inverse
document frequency which boosts the weights of rare occurring terms [36].
Inverse document frequency is defined as

idft = log N

dft
(2.2)

Where N is the total amount of documents and dft is the count of documents
that contains the term t.

By taking the product of the term frequency and inverse document
frequency, we get a weight for each term appearing in a document called
term frequency–inverse document frequency (TF-IDF):

tf -idft,d = tft,d · idft (2.3)
By using TF-IDF weighting scheme, we are able to discriminate between

documents despite their length and diminish the problem of frequently
appearing terms. In other words, TF-IDF is able to grow or decrease
the importance of individual terms making it an important concept, as in
programming a number of terms appear frequently because the language is
very structured and defined by a finite amount of keywords.

2.4.2 Document similarity

As we have a way of expressing a document as a numerical vector using a
weighted vector space model, we are interested in being able to calculate a
similarity value between two documents, which is a crucial part for similarity
detection. One way of doing this is by using cosine similarity.

Cosine similarity Cosine similarity measures the similarity between two
documents by calculating the cosine of the angle between the document
vector representations [36]. Let x,y be these vectors for documents d1, d2,
then

sim(d1, d2) = cos(θ) = x · y
‖x‖2 ‖y‖2

=

n∑
i=1

xiyi√
n∑

i=1
x2

i

√
n∑

i=1
y2

i

(2.4)

11

The dot-product is normalized in Equation 2.4 with Euclidean norm and
because weights derived from TF-IDF are non-negative, the cosine similarity
gets values between zero and one [36]. Values closer to one indicate high
content similarity, whereas values closer to zero indicate dissimilarity. The
opposite of cosine similarity is cosine distance, which can be calculated by
subtracting cosine similarity from one i.e., d = 1− cos(θ).

2.4.3 Retrieval metrics

Retrieving candidate documents to detect possible plagiarism creates a need
to measure how well the retrieval process is performing. For evaluating the
retrieval method, three important metrics have been defined [36]: precision,
recall and F1-score. To describe these metrics, we use a confusion matrix
which has four fields: true positive indicating a correctly retrieved relevant
item (TP), true negative indicating correctly rejected irrelevant item (TN),
false negative indicating relevant item which was incorrectly rejected (FN)
and false positive indicating an irrelevant item which was incorrectly retrieved
(FP). These four fields are visualized in Table 5.

Table 5: Confusion matrix which can be used to visualize the error in
retrieval [36].

Relevant Irrelevant
Retrieved TP FP
Rejected FN TN

Precision, recall and F1-score can all be defined by using the individual cells
of the confusion matrix. Both precision and recall count the rate of true
positives to falsely retrieved documents, and balancing between these values
requires knowledge about the domain where they are being applied to. If
precision is high, the model is able to correctly retrieve greater portion of
correct positive cases. If recall is high, the model is able to retrieve high
portion of relevant documents. Formally, precision and recall are defined as

Precision = TP

TP + FP
= |relevant ∩ retrieved|

|retrieved| (2.5)

Recall = TP

TP + FN
= |relevant ∩ retrieved|

|relevant| (2.6)

F1-score combines precision and recall, giving an average value between
them. It’s defined as

F1 = 2 · Precision · RecallPrecision + Recall (2.7)

12

All of the above metrics help to evaluate how well the retrieval process
is performing, but they require some form of process where one decides if a
document is relevant or not. This relevancy with respect to data point, is
often decided by the class or label that is attached to it.

2.5 Document classification

Following [36] we formulate the document classification problem as γ : X→ C,
approximating the function γ that maps data x ∈ X to a class c ∈ C. For
example a binary classifier would choose between a positive and a negative
class C = {+,−}, whereas a multiclass classifier chooses between multiple
classes C = {c1, c2, · · · , cn} for a given document.

To be able to classify documents algorithmically into some predefined
classes, the classifier must learn a way to predict outputs from inputs [26].
That is, given some d-dimensional data x ∈ Rd, the classifier γ must predict
the response variable y which represents the class. To make the prediction
in binary case, the classifier is supported with observed data as a training
data, represented in matrix format Xn×d and predefined response variables
in a column vector yn×1 [26]. This so called training of the model refers to
the classifier using some a part of the data to tune its internal parameters.
When a data point outside the training set is given, the classifier is able to
give prediction for it based on the data it has seen already. This kind of
setting is also called as supervised learning as there exist some data that
guides the process [26].

If we know the response variable y of each observed data point represented
as vector x, we want to have similar data to be predicted with the same value.
The prediction the algorithm gives can be noted as ŷ for x, and because
this value is just a prediction, evaluation is needed for the algorithm to be
able to change its learning into the right direction. This evaluation happens
by penalizing wrong predictions with a loss function L : θ̂ × θ → R [26],
where θ̂ is the prediction that the classifier gives and θ the value wanted the
prediction to be. For example a loss function able to penalize categorical
predictions, is called 0-1 loss and formulated as L(ŷ, y) = I(ŷ 6= y), where I
is the indicator function [26].

Naïve Bayes Naïve Bayes is a probabilistic model, which is often used as
a baseline model in text classification [37]. It applies the Bayes’ theorem to
estimate the parameters of the classifier i.e., conditional probabilities with
respect to data. Bayes’ theorem is generally given for events A,B as

P (A | B) = P (A ∩B)
P (B) = P (A)P (B | A)

P (B) (2.8)

Where P (B) can be expressed by the law of total probability

P (B) = P (B | A)P (A) + P (B | ¬A)P (¬A) (2.9)

13

When the area of interest is classification, we denote the probabilities
of events A,B as the prior and likelihood. Prior being in this case the
probability of a class appearing in data P (y = c), c ∈ C and likelihood
the likeliness of a document belonging to a class P (x | y = c). Therefore,
Equation 2.8 can be rewritten as [37,63]

P (y | x) = P (y)P (x | y)
P (x) = P (y)P (x | y)∑

c∈C
P (y = c)P (x | y = c) (2.10)

In Equation 2.10, the denominator remains constant because x is kept
unchanged as it’s the sum over every known class, and therefore the Equation
2.10 is proportional to the product between prior and likelihood [36].

P (y | x) ∝ P (y)P (x | y) (2.11)

Because the underlying real distribution is unknown, prior and likelihood
have to be estimated from the training data. Estimated prior can be calcu-
lated from the relative frequency i.e., number of samples belonging to the
class c divided by the total number of observations [36].

P̂ (c) = #c
|X|

(2.12)

To calculate the estimated likelihood P̂ (x | y), one uses the assumption that
features represented in feature vector x are conditionally independent with
respect to each other. This assumption simplifies the likelihood by applying
the chain rule [36].

P̂ (x | y) = P̂ (x1, x2, · · · , xn | y) =
n∏
i

P̂ (xi | y) (2.13)

To assign a single data point into a class, the most probable class is
chosen [36, 37, 63]. This is referred to also as the maximum a posteriori
(MAP), and the final class assignment i.e., the result of the classifier γ, is
expressible as

ŷ = cmap = argmax
c∈C

P̂ (c)
n∏
i

P̂ (xi | c) (2.14)

This means that the most likely class for a data point is the class which
maximizes the posterior, which again is proportional to calculating product
between prior and posterior.

A variant of Naive Bayes called Multinomial Naïve Bayes, is able to form
the likelihood by assuming underlying multinomial distribution [37]. Given
the problem of document classification and the feature vector x represented
as term frequencies of vocabulary V, the conditional probability of Equation
2.14 can be given in similar way as term-frequency function in Equation 2.1.

14

We use Laplace smoothing to eliminate the problem with terms appearing
zero times [36], which can happen regularly because the vocabulary V is only
formed from the training data. This smoothed version of the conditional
probability using frequencies is given as [36]

P̂ (x | c) = P̂ (t | c) = ft,c + 1∑
t′∈V

(ft′,c + 1) (2.15)

In Equation 2.15 ft,c is the frequency of term t ∈ V appearing in class c ∈ C,
so the conditional probability of a data point given a class is estimable from
the smoothed relative frequency of the term t that the point x represents.

It has been shown that TF-IDF weighting scheme improves the clas-
sification results even as TF-IDF weights are non-discrete like raw term
frequencies are [31]. This result means that all documents can be efficiently
represented also as vectors of TF-IDF weights for the Multinomial Naive
Bayes.

2.6 Document clustering

Document clustering is a process that is used to group a set of documents
into n clusters, so that their similarities within each cluster is maximized i.e.,
documents belonging to the same group are as similar as possible. This is
relatively easy task for a human to do manually for a small set of documents,
but in order to perform this task automatically in large scale typically uses
unsupervised learning.

Unsupervised learning can divide the observed data i.e., documents,
into subgroups called clusters [26]. The main difference to supervised
learning (classification) is that when the data is represented as a sequence
X = (x1,x2, · · · ,xn), where xi ∈ Rd is d-dimensional feature vector which
represents the ith document, we do not have the sequence of response vari-
ables y = (y1, y2, · · · , yn) to guide the process. Thus there is no clear loss
function that is dependent from the true classes of the data, which leads
to the situation where distribution of the data determines the classes [36].
The performance of the unsupervised model can be therefore very subjective,
requiring some kind of prior domain knowledge [26].

As an example, the Figure 2 visualizes two-dimensional data generated
from three separate distributions. Because we know how the data was
generated in Figure 2, we are able by prior knowledge and by visually to
divide the space exactly into three regions. However, if the data would
be more uniformly distributed and one could not say the exact amount of
regions, then this task requires more knowledge about how two data points
are able to have similar location. When considering for example plagiarism
between documents, we are highly interested of cases where there is too much
similarity between two or more documents.

15

Figure 2: Data points centered around three distributions with respect to
the means and variances. Three separable clusters are visible.

The normalized similarity value s ∈ [0, 1], or respectively distance value
d = 1− s, is defined before the clustering algorithm is executed [26], and it
ultimately controls what kind of cluster are being formed. Distances between
data points can be precomputed into matrix of documents Md×d, where
Mi,j is the similarity, or distance value between two documents di and dj .

We next give a brief formalization for the problem of clustering and
then introduce two different unsupervised clustering algorithms: K-means
clustering and DBSCAN.
Document clustering. Given a set of datapoints X = {x1,x2, · · · ,xn}, xi ∈
Rd which represents the documents, define assignment γ : X → {1, · · · , k}
where k is the total amount of clusters [36]. The set of clusters can be
notated by Ω = {ω1, ω2, · · · , ωk} and each document belongs to one cluster
∀d ∈ ω.

K-means clustering K-means clustering requires a predefined number
of clusters, the parameter k, to be predefined and it assumes there exists
a centroid i.e., a mean point, for every cluster. These cluster centroids are
notated as C = {µ1,µ2, · · · ,µk}, µi ∈ Rd [36]. To assign a data point to
a cluster, one calculates the squared Euclidean distance from a point to a
centroid ‖xi − µ‖2, and minimizes this distance. In other words this means,
that the data point is assigned to the same cluster as its nearest centroid.
The K-means algorithm works iteratively by updating the cluster assignments
for each point and calculating new centroids until the algorithm converges.
Convergence can be decided in multiple ways and one of those ways is, that
no new assignments have been done when all data points are being iterated.

Algorithm 1 shows the pseudocode for K-means. In it, centroids are first
chosen randomly from the set of data points with InitCentroids-function.
Then iteratively, until there are no further updates to centroids C, k clusters

16

are first initialized as empty sets. Next cluster assignments are calculated
from the set of data points with respect to Euclidean distance to the nearest
cluster. After every loop, new centroids are calculated by taking the mean of
assigned data points per cluster in UpdateCentroids. The return value of
the K-means will be k centroids, representing the middle points of a cluster,
and cluster assignments Ω indicating which data point belongs to which
cluster.

Algorithm 1 K-means algorithm [36]
Require: Set of datapoints X
Require: Amount of clusters k
procedure K-means(X, k)

C ← InitCentroids(X, k)
while stop criterion has not been met do

for i = 1 to k do
ωi ← {}

end for
for j = 1 to |X| do

l← argminl ‖xj − µl‖
2

ωl ← ωl ∪ xj

end for
C ← UpdateCentroids(Ω)

end while
return C,Ω

end procedure

The drawback with K-means clustering is that one must specify the
parameter k before the clustering [26]. When for example detecting similar
documents, there is no indication beforehand that how many documents
should be grouped together, and therefore pre-estimating number of clusters
can be very difficult. To overcome this issue, one can utilize the density of
the data points rather than the direct distance between them.

Visualization of the clustering result using K-means for the same data as
in Figure 2 is seen in Figure 3. From it, we see how three different clusters
emerge as the value of parameter k is 3. There are however many ways a
human could interpret the results, and especially the assignment of data
points which are located between multiple clusters.

17

Figure 3: Result of K-means clustering after converge. Crosses indicate the
cluster centroids, other colored markers cluster assignments. Parameter k
is set to 3, meaning that three different clusters will be discovered by the
algorithm.

DBSCAN Density-based spatial clustering of applications with noise (DB-
SCAN) can produce clustering by using only the density information, label
some data points as noise, produce arbitrary sized clusters and use any
distance function [17]. It requires two parameters. Epsilon ε which controls
the neighbour search radius, and MinPts defines the minimum number of
points needed to form a cluster.

To form a cluster, point q must be reachable from point p i.e., there must
exist a path from p to q that fulfills both ε and MinPts parameters. To
form this path, some points are labeled as core points satisfying parameters
simultaneously, and some as border points which have at least one core point
in its ε-range. If a data points is neither above, it is labeled as noise.

The pseudocode for DBSCAN is given in Algorithm 2, where Discov-
erNeighbours is a recursive function that finds the neighbourhood space by
forming the radius based on the distance function, and retrieves all reachable
points restricted by the ε-range. The algorithm is able to form the amount
of clusters itself and requires no pre-defined amount of clusters. Using pa-
rameters ε = 0.5,MinPts = 15 and setting distance function as Euclidean
distance, DBSCAN learns more denser clusters than K-means and is able
to label some data as noise. This noise is visible in Figure 4 as black cross
markers.

18

Algorithm 2 DBSCAN algorithm [17,48]
Require: Set of datapoints X
Require: Distance radius ε
Require: Minimum neighbour count MinPts
Require: Distance function dist : X ×X → R
procedure DBSCAN(X, ε,MinPts, dist)

k ← 0
for i = 1 to |X| do

N ← DiscoverNeighbours(X, dist,xi, ε,MinPts)
if xi is a core point then

k ← k + 1
ωk ← N ∪ xi

else
xi is noise

end if
end for
return {ω1, ω2, · · · , ωk}

end procedure

Figure 4: Result of DBSCAN by setting parameters ε = 0.5,MinPts = 15.
Black crosses refers to noise as these points are too far away from core points
which forms the three clusters.

If data points in Figure 4 would represent documents in Euclidean space,
we could interpret noise as documents which are too dissimilar to any other
document and requires no further attention. Therefore using DBSCAN
allows us to react only to the most densely packed documents.

19

2.7 Summary

In this section we showed what we mean by the term source code plagiarism
and what kind of transformations a plagiarist can apply to her source code.
We approach the problem of plagiarism detection from two major viewpoints:
identifying the most likely authorship of a source code document to verify the
author and clustering highly similar documents together to reveal suspects.
Because retrieving documents is close to the theory of information retrieval,
we explained some important concepts regarding it. Finally, we introduced the
equivalent algorithms for authorship identification and similarity detection.

3 Literature Survey
Systematic literature review was conducted to construct an overview of the
current state of source code plagiarism research. In the review, we mainly
focus on methods to determine what is considered as a well-performing
approach to plagiarism detection, especially focusing on authorship identifi-
cation and similarity detection. Our review consists six steps that follows
the structure of systematic review [43]: 1) purpose, 2) details of search,
3) inclusion criteria, 4) exclusion criteria, 5) information extraction and 6)
analysis.

The database that was utilized to query research articles is called Scopus3,
which is a service containing peer-reviewed scientific literature. It allows users
to search scientific articles by matching e.g. titles, abstracts or keywords to
user-defined query. The service itself maintains links to articles which are
published under for example ACM (Association for Computing Machinery)
and IEEE (Institute of Electrical and Electronics Engineers), both of these
being major computer science releases.

Following subsections describe how the review was conducted and what
results were found. We first form a categorization between studies to gain
overview of the methods that are applied, then we extract statistics about
data sets used in studies, and finally show the various methods that are
applied to detect plagiarism.

3.1 Survey methodology

Querying Scopus is similar to querying databases in SQL-like languages. The
query used is as follows:

TITLE-ABS-KEY (("plagiarism" OR "authorship identification")
AND "source code")

AND (LIMIT-TO (SUBJAREA,"COMP"))
3https://www.scopus.com/ Accessed 2nd February 2018

20

https://www.scopus.com/

Above query translates to searching for articles which title, abstract or
keywords contains the word plagiarism or authorship identification and the
term source code. These keywords were chosen in order to find articles which
study the problem of plagiarism finding from source code either in general
terms, or by utilizing authorship identification techniques. Finally, the query
limits the area of study to computer science publications to find relevant
methods for this thesis.

The total number of articles gathered by querying Scopus in the inclusive
search part of the literature review was 187, and the date when the query
was done was 7th of February 2018. The distribution of studies per year can
be seen in the following plot.

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

0

5

10

15

20

25

30

1 1
0

3
5

3

10
9

15

18

12
13

18 18

21

12

27

1

Year

Fr
eq
ue

nc
y

Figure 5: Distribution of articles per year after the inclusion phase.

After the inclusive search, we performed exclusion phase. This was
done by filtering out manually all articles that were any of the following
types: a review of certain aspect of source code plagiarism e.g. student
motives behind plagiarism, an improvement to some pre-existing algorithm
e.g. algorithmic speedups, plugins to online learning management systems,
applications where the used method was not explained, studies that used
either byte-level information or information gathered during running the
program, hashing techniques e.g. compression and using the remaining size
as a metric, system reviews which did not address the methods and theses.
Beside these attributes, articles needed to also test their proposed method
in some way and the amount of documents in experiment phase needed to
be larger than two. The reason for adding this as a limiting factor was to
gather studies that used test sets to evaluate the performance of their model.

The final number of articles after exclusion, and which are inspected more
carefully in this systematic literature review is 32. From the set of 32 studies,

21

we look answers for following questions: how plagiarism can be detected from
source code, what are possible features that can be derived from source code
and how can one identify the author of a given source code. We start first
by categorizing the articles by their themes to see what kind of different
approaches there are to deal with the problem of plagiarism detection. After
the initial classification, we summarize statistics about the data and explain
the used methods, using terminology introduced in Section 2.

3.2 Categorization

We first categorize the articles based on the objective; plagiarism detection
and authorship identification. However, as authorship identifying can also
work as a way to detect plagiarism by verifying the author, we use the
following high-level split visible in Table 6.

Table 6: Two high-level categories that both are closely connected to the
domain of plagiarism detection.

Similarity detection Authorship identification
[1, 8, 12,13] [3, 9, 53,54]

[19,23,27,61] [4, 10,16,32]
[14,22,40,42] [5, 20,21,34]
[38,39,51,64] [6, 60,62]

[24]
Number of articles Number of articles

17 15

Even though the articles are quite evenly divided in Table 6, these high-level
groups do not provide an overview of various methods being used. Thus we
continue to categorize both groups into smaller categorization, which reveals
differences between them.

Similarity detection in itself can be further divided into at least two
general categories based on the current tools [41]: attribute and structure.
Then naturally as authorship identification uses features derived directly
from the source code too, we can use the same categorization to authorship
identification studies. However, there are more finer categorizations that
define the studies better based on the features they use, and thus we propose
the following five categories: attribute counting (AC), segment matching (SM),
n-gram (NG-STRU), tree-based (TREE-STRU) and lastly hybrid approaches
(HYB-STRU). These categories are similar to categories identified from other
plagiarism detection studies by Ali et al. [2] and can be summarized briefly
as follows.

22

Attribute counting (AC) Utilizing countable statistics, often referred
as metrics, that are gathered from source codes. This includes any features
derived directly from source code like amount of words per line, number of
lines per source code and number of keywords. For example the first two
programs in Appendix A represented as metrics is seen below.

Program Line count Empty spaces Semicolon count
Listing 1 10 1 5
Listing 2 8 1 3

Table 7: First two programs in Appendix A; A and B, represented as software
metrics.

Segment matching (SM) Considers two source codes as two strings and
counts maximum match between them i.e. the longest common subsequence.
These problems are also known as string matching problems, where one of the
most famous algorithms is Greedy String Tiling introduced first by Wise [59].
As an example, statements int a = 2; and int b = 2; matching sequences
are "int" and "= 2;". We also count all string similarity measures like string
edit distances to this category.

N-gram (NG-STRU) Treating the source code as a continuous sequence
of characters or words, and splitting it using a sliding window where the
window size is the value of n and the window traverses on either character
or word level. This forms the vocabulary of the source code which is then
transformed into occurrences of particular terms that are present. For
example the statement int a = 2 could be transformed into following word
level 2-tuples using n = 2 (bigram). The first value of the following tuples is
the n-gram extracted and the second value is the frequency: (int a, 1), (a
=, 1), (= 2, 1).

Tree-based (AST-STRU) Constructing a tree presentation from the
source code. For example Diagram 1 captures the structure of a simple
assignment in parse tree, where one could compare e.g. nodes of trees, to
define a similarity. The generation of a tree presentation usually requires
a parser, whereas the inspection of a generated tree can be done with tree
traversal methods using recursive functions.

Hybrid (HYB-STRU) Combines the usage of tree structure with n-gram
representation. For example it can be a method which traverses abstract
syntax tree, prints it and generates n-gram representation from the output.

We form the subcategorization for previously mentioned high-level classes;

23

similarity detection and authorship identification. Results for similarity
detection studies can be seen from the following table, where most of them
use structural features, indicated by the STRU-ending. Many articles also
tends to use n-grams to represent the source code.

Table 8: Subgroups and sizes of similarity detection studies.

AC SM NG-STRU AST-STRU HYB-STRU
[38] [8, 64] [1, 12,19] [23,40,51] [24,39,61]

[13,27,42] [22]
[14]

#AC #SM #STRU
1 2 14

When making the division for authorship studies, we can see that Table
9 is more evenly distributed in contrast to similarity detection articles in
Table 8. Studies seem to utilize more countable attributes from source codes,
but using n-grams are as popular as they are in similarity detection, which
is quite obvious when one considers that these methods are able to capture
the writing style of an author from high-level features. For example authors
can name the identifiers how they like, introduce comments and use various
stylistic techniques when they write source code.

Table 9: Subgroups and sizes of authorship identification studies

AC NG-STRU AST-STRU HYB-STRU
[16, 32,34] [9, 10,21] [3] [60, 62]
[4, 5, 6] [20, 53,54]
#AC #STRU

6 9

This suggests that utilizing structure is popular in both high-level classes,
but quite dominant in similarity detection. Also both groups show high
popularity to the usage of n-grams, and authorship identification prefers to
represent documents as statistical metrics.

3.3 Descriptive statistics

The data used for evaluating the each approach of the 32 gathered articles is
presented next, where the focus is on the similarity detection of the following
attributes: number of total documents, is there any synthetic data used
and the average number of lines of code (Avg. LOC). For the authorship
identification, we focus on features: documents per author, number of possible
authors and whether the data is authentic or synthetic. We summarize these
findings utilizing the same categorization that was made earlier.

24

Similarity Detection
Attribute counting study by Moussiades and Vakali [38], uses two real data
sets written in C++. Both contain programming assignments and a synthetic
set of programs. The first data set contains 24 programs having an average
of 247 lines of code per submission and the second set 51 programs having an
average of 178 lines per source code. The forged data set uses two modified
versions from one program, trying to deliberately confuse state-of-the-art
detectors.

Segment matching study by Brixtel et al. used three corpora on their
evaluation, which are written in Haskell, Python and C [8]. Haskell corpus has
13 documents averaging 400 lines per each, Python 15 documents averaging
150 lines per each and C 19 documents averaging 250 lines per source code.
Study by Zhang and Liu used 12 programs written in C that all reflected
different plagiarism strategies [64].

Studies utilizing n-grams are summarized into following table.

Table 10: Data used in similarity detection studies utilizing n-grams.

Feature
Article [1] [12] [13] [14] [19] [27] [42]

Documents 191 179 5408 1277 5302 1356 2935
Synthetic No No No No No No No
Avg. LOC NA NA 63.7 NA NA NA NA

It’s visible from the Table 10 that there are a lot more documents used in
experimentation and surprisingly synthetic data is not used at all. This
is due to the usage of student submissions and competition data sets like
Google Code Jam submissions, which was utilized for example by Flores et
al. [19].

Table 11: Data used in similarity detection studies utilizing abstract syntax
tree

Feature
Article [22] [23] [40] [51]

Documents 22 214 NA 121 555
Synthetic Yes NA NA No
Avg. LOC 20 NA NA 305.7

One can see from the Table 11 that the study [22] has a large number of
documents. This is due to two facts: they reported the size as pairs of
documents and they used a generator to form a lot of forged documents from
a small set of 10 original submissions. Ganguly and Jones don’t explicitly
report the statistics of their data set [23], but use a competition test set

25

called SOurce COde Re-use (SOCO). This competition offers a set of C and
Java files which contains known cases of cross-lingual plagiarism [47].

Finally, a hybrid study by Xiong et al. utilizes 40 assignments gathered
from students [61], Muddu et al. uses 5054 original files that they mutate to
introduce copied code [39] and Ganguly et al. uses both train and test set of
the SOCO competition, totaling around 12 000 files [24].

Authorship identification
Usage of data in studies dealing with the problem of identifying the author
and utilizing attribute counting, are summarized to the following table where
we focus on the amount of candidate authors and documents per author
reported in studies.

In Table 12, one can see that there are two same data sets used in [5, 6].
This set was collected from SourceForge4 projects and there are around 61
to 377 files per author. Rest of the attribute counting studies prefers to use
e.g. submissions gathered from students.

Table 12: Data used in authorship studies utilizing attribute counting.

Feature
Article [4] [5] [6] [16] [32] [34]

Authors 120 10 10 46 8 20
Documents per author NA 61-377 61-377 NA 3 3

Synthetic No No No No No No

Data sets from the second popular method n-grams used in authorship
identification, are summarized into following table.

Table 13: Data used in authorship studies utilizing n-grams

Feature
Article [9] [10] [20] [21] [54] [53]

Authors 100 100 8 8 30 30
Documents per author 14 14-26 2 2 NA NA

Synthetic No No No No No No

There exists three different data sets used by three different authors in Table
13: Burrows et al. [9,10] used data set gathered from students C programming
assignments, Frantzeskou et al. [20,21] used open-source programs written
in Java and Tennyson et al. [53, 54] used programs written in C++ and Java.

The only study that mainly used abstract syntax tree in their authorship
study is by Alsulami et al. [3]. They used Google Code Jam to gather 700

4https://sourceforge.net/ Accessed 5th February 2018

26

https://sourceforge.net/

Python source code files belonging to 70 programmers averaging around 10
submissions per author.

Finally, the data used in two hybrid studies are summarized. Wisse and
Veenman used repositories from version control website called GitHub5 [60].
The largest author pool they had while testing was 30. Zhang et al. had the
data set also gathered from websites like GitHub in their study [62]. Their
largest data set with respect to the author size, was imbalanced set of 503
programs belonging to 53 authors.

Summary
When looking the data usage of plagiarism study as a whole, one can see
that almost all studies use data that is non-synthetic i.e., use real-life data,
that can be gathered for example from students course submissions or from
competitions like the SOCO dataset. In similarity detection studies the
median of the amount of source codes used is 447 and very few studies
reported the average lines of code. In authorship identification the median of
possible authors in studies is 30 and the documents per author ranges from
2 to as high as 377.

3.4 Methods

In this section we focus on the methods used in these studies. The formal
notation used in studies is generalized to match the style presented in Section
2, meaning that a single element of a set and scalars are represented as
lower-cased italics, matrices are bold and upper-cased, vectors are bold but
lower-cased, tree structures as capitalized T and segments of source codes as
capitalized S, which often implies string format. We use words term, token
and word as a synonym for a single sequence of characters, usually divided
by spaces.

3.4.1 Similarity detection

The problem of similarity detection is described formally in Section 2.2 and
we use that as a general high-level baseline. In similarity detection studies
we focus mainly to the actual similarity measure, as it is one of the major
focus in following 17 studies.

The attribute counting study by Moussiades and Vakali uses a graph
clustering on top of pair-wise similarities calculated using the Jaccard coeffi-
cient [38]. Authors use following form of Jaccard coeficcient in their study
where A is the indexed set of substitute keywords per source code

sim(d1, d2) = |A(d1) ∩A(d2)|
|A(d1) ∪A(d2)| (3.1)

5https://github.com/ Accessed 5th February 2018

27

https://github.com/

The indexed set can be built considering language dependent keywords
e.g. while, for, false and true in C++, and marking their position with
respect to the occurrences of same keywords previously. However, authors
suggest that in order to generalize the set more, substitution keywords
should be used. This means that for example all occurrences of for- and
while -loops should be counted together, which helps to protect against
plagiarism. The graph clustering algorithm Moussiades and Vakali uses is
called WMajorClust which works by presenting all pairs of source codes as
non-directed graph G = (V,E) where the set of vertices V represents the
source codes while the set of edges E are weighted by equation 3.1. We can
also express the definition of E by Moussiades and Vakali with following
constraints

E =
{
{di, dj , sim(di, dj)} | (di, dj) ∈ D ×D ∧ sim(di, dj) ≥ θ

}
(3.2)

In equation 3.2, θ is a user-defined parameter and works as a minimum
threshold value that separates non-plagiarized source codes from plagiarized
ones i.e., two source codes will not share an edge if their similarity is below
θ.

Segment matching study by Brixtel et al. presents their algorithm, using
three major steps [8]: pre-filtering, segmentation and document distance
calculation. Their pre-filtering is to normalize the source code so that every
keyword and parameter definition is transformed into a single symbol. In
segmentation, the authors split the source code by lines forming set of
segments Sk each presenting the partitioned set of a single source code.
Similarity calculation happens by first forming distance matrix M between
two source codes d1, d2 and then comparing all pairs of segments (s1

i , s
2
j) ∈

S1×S2 where Sk = (sk
1, ..., s

k
n), with Levenshtein edit distance [35]. Distance

matrix M is then transformed into noise reduction matrix H by finding
the maximal matching between segmentations. Finally, H is filtered into
a matrix P by convolution and utilizing a threshold. With the matrix P,
distance between two pairs of documents is calculated by Brixtel et al. as

sim(d1, d2) = 1− 1
min(|S1|, |S2|)

∑
i,j

1−P(i,j) (3.3)

Zhang and Liu utilize AST and their core method is mainly constructed from
two methods [64]: forming the AST-representation and similarity calculation.
Their AST-representation is done by traversing the tree structure and turning
it into textual format by printing the nodes, and similarity calculation is
computed using Smith Waterman algorithm that finds the optimal matching
between two strings S1, S2 [49]. Zhang et Liu gives the form for similarity
calculation between two source codes as

28

sim(d1, d2) = 2 · SLength(d1, d2)
|S1|+ |S2|

(3.4)

Where SLength is the length of maximal matching string obtained via Smith
Waterman algorithm, and |Sk| represents the character length of one segment.

N -gram studies take a different approach. Cosma and Joy uses Latent
Semantic Analysis to find suspicious documents [12]. They first preprocess
the documents by removing e.g. short terms and comments. Then all
documents are transformed into a term-by-file matrix A, which presents each
source code as occurrences of each possible unique term. Values of A are
weighted, and then A is decomposed via singular value decomposition [25]
into reduced matrices A ≈ Ak = UkΣkVᵀ

k where U represents terms by
dimension, Σ singular values and V files by dimensions. The dimensionality
reduction is performed for all these matrices by considering only the first 30
columns represented by the subscript k. Finally, the similarity between a
query vector q representing term frequency of document di, and document
dj represented as a column aj of matrix A is calculated by using cosine
similarity [12]

sim(q, dj) =
aᵀ

j q
‖aj‖2 ‖q‖2

= aj · q√∑
i

a2
(j,i)

√∑
i

q2
i

(3.5)

Acampora and Cosma [1] continues on same style as Cosma and Joy [12],
first preprocessing the documents by lowercasing and removing comments,
syntactical tokens and short terms. Then using singular value decomposition
with weighting, to form three matrices from the corpus of source codes. For
the reduced matrix V, they perform a Fuzzy C-Means clustering algorithm,
which is tuned with ANFIS learning algorithm to optimize the hyperparam-
eters of Fuzzy C-means [1]. The process returns a membership degree µi,k

per document, indicating how close ith document is to kth cluster. Flores
et al. [19] uses similar preprocessing approach to Cosma and Joy. They
first process the documents by lowercasing them and removing repeated
character, tabs and spaces. Then transform the documents into 3-grams and
weighting them by using a term frequency. Finally, similarity is calculated
using cosine similarity where t is one of the 3-grams and tf is the term
frequency function [19]. Formally this can be calculated in a same way as in
equation 3.5 between two documents as

sim(di, dj) =

∑
t∈di∩dj

tf(t, di)tf(t, dj)√∑
t∈di

tf(t, di)2 ∑
t∈dj

tf(t, dj)2
(3.6)

Heblikar et al. [27] preprocesses documents by lowercasing, pruning repeated
whitespace and removing single symbols. They then normalize the documents

29

by considering most frequent terms, renaming similar terms under same
symbols and ultimately filtering them completely out from the source codes.
For detection phase, they use same approach as Flores et al. [19] but use
both 1-grams and 2-grams with TF-IDF weighting. Also Ramírez de la Cruz
et al. [13] and Ramírez de la Cruz et al. [14] decides to use cosine similarity
and Jaccard coefficient. The only major difference being, that Ramírez
de la Cruz et al. uses additional structural and stylistic features, forming
total combination of eight various similarity measurements [13]. Where as
Ramírez de la Cruz et al. [14] uses cosine similarity with character 3-grams
to calculate five different similarities: lexical, stylistic, comments, textual
and structural. Lastly, Ohmann and Rahal proposes density-based clustering
to form clusters of similar documents [42]. Their similarity approach follows
closely to other studies presented above: filtering and normalization as
preprocessing, data format as word n-grams and similarity values gained by
using cosine similarity. The only major difference contrast to other studies is,
that they perform tokenization that transforms source code into predefined
set of tokens e.g. integer declarations are changed to a string "DN".

Tree-based studies mostly relies on calculating similarity between two
tree structures Ti, Tj obtained from the original documents di, dj by parsing
them. For example Ng et al. first generate a parse tree T from the source
code, then decompose the parse tree into subtrees T ′ ⊆ T with respect to the
functionality e.g. imports are categorized together [40]. The similarity score
is calculated by traversing trees with depth-first search and summing the node
and token similarities for all subtrees. The function of similarity between
two documents, is defined below where simST is a subtree similarity.

sim(di, dj) = sim(Ti, Tj) =

∑
i,j
simST (T ′i , T ′j)

10 · |T ′| · 100 (3.7)

Son et al. computes similarity value between two parse trees with a modified
parse tree kernel, and state that their kernel function is able to consider
also the length of the document [51]. They define the kernel function k via
recursive function C where n is a node of a subtree T ′. Function C finds
a maximal similarity between two nodes thus authors calls it also as the
maximum node value

k(Ti, Tj) =
∑

ni∈T ′
i

∑
nj∈T ′

j

C(ni, nj) (3.8)

This kernel function captures the similarity between two tree structures and
the normalized similarity function is defined as [51]

sim(di, dj) = k(Ti, Tj)√
k(Ti, Ti) · k(Tj , Tj)

(3.9)

30

Another study that utilizes kernel between tree structures is by Fu et al. [22].
They first build abstract syntax tree from a source code by normalizing and
weighting nodes with TF-IDF, then use a tree kernel to measure similarity
between two tree structures. This tree kernel is defined as

k(Ti, Tj) =
∑

ti∈Ti

∑
tj∈Tj

(
λ · dist(wordti ,wordtj) · wti,Ti · wtj ,Tj

)
(3.10)

Where λ is a decay factor penalizing tree height, dist is the edit distance
between two string values, wordt is the string value of in-order traversed
subtree t ∈ T ′ and wt,T is a weight given to a single subtree t inside abstract
syntax tree T . Fu et al. normalize the source code by transforming every
variable name, array size definition and indexing of an array into single unified
symbol. Then, authors remove all leaf nodes with common symbols to reduce
noise, for example round and curly brackets. The similarity score between
two source codes is calculated by normalizing the kernel values, leading
ultimately to equation 3.9, which is the equivalent to cosine similarity [22].
The last tree-based study is by Ganguly and Jones [23]. They use information
retrieval approach and treat every document as a pseudo-query. This means
that every document is first parsed into abstract syntax tree, then nodes
belonging to a similar functionality are collected together. Finally, specific
fields are gathered from this collection by using ranking scores. For example
all class definitions are treated as one collection and from that collection,
names of the classes are extracted as weighted terms to construct the pseudo-
query. Ganguly and Jones suggest that their approach allows to differentiate
usage of same string literals in different situations.

Study utilizing an ensemble of methods by Xiong et al. presents their
system named BUAA AntiPlagiarism which uses abstract syntax tree to
generate n-grams [61]. They first run the code through optimizer that
gets rid of unnecessary complexity, then turn the simplified code into AST-
representation and prune the tree by for example removing variable names
and constants. This pruned tree is travelled in pre-order traversal that turns
the tree into string format and forms n-grams from that representation. To
calculate similarity between documents, Xiong et al. uses Jaccard coefficient,
which was defined earlier in Equation 3.1. Muddu et al. continues on
combining approaches and presents their system called Code Plagiarism
Detection Platform (CPDP) [39]. CPDP detects plagiarism by first tokenizing
the AST, then turning the generated token stream into 4-grams to be used in
querying the matching documents. Finding the most closest document is done
by using string matching algorithm Karp-Rabin Greedy String Tiling given
n-grams from the set of matching documents. Finally, the last similarity
detection study is from Ganguly et al. [24]. They also use information
retrieval approach in similar fashion as they did in previous work [23], to
tackle with the problem related to n-grams without AST-representation;

31

false-positives and exhaustive pair-wise calculation. Their method consists
of building a pseudo-query and a ranked list of most matching documents.
This pseudo-query is built by first retrieving three kinds of features from
documents: (1) lexical, (2) structural like identifiers, function types, and
data types and (3) stylistic features like average term length.

3.4.2 Authorship identification

The problem of authorship identification is different from similarity detection.
Instead of trying to find a function to represent a numerical value as similarity
between two source code to detect plagiarism, authorship identification aims
to determine the writer of a document. It’s common in following studies that
the identification happens in closed environment e.g. student submissions.
Closed environment thus implies that the true author is someone from the
predefined set of possible authors and that authorship identification can be
used as authentication. Upcoming 15 studies reflect these findings.

Ding’s and Samadzadeh’s study follows the typical method of attribute
counting studies. Authors extract total of 56 metrics belonging to three
classes [16]: layout, style and structure. Their feature selection is done by
using variance and correlation analysis, whereas classification is done with
canonical discriminant analysis. Lange and Mancoridis extract 18 mostly text-
based metrics and use genetic algorithm to find out the best combination [34].
Their classification is done by constructing a histogram per feature for every
developer and then calculating which of the histograms are most closest to
the unknown source code. Kothari et al. uses very similar histogram-based
technique but considers style metrics and character distributions, namely
character level 4-grams [32]. To select the most matching features for a single
author, Kothari et al. uses information entropy which uses the distributions
to make probabilistic evaluations. To classify the author, their approach is
to have a database of writer profiles, extract metrics from source code and
calculate the likelihood which known writer is the author. Arabyarmohamady
et al. uses writing style to identify an author [4]. They build a profile for every
author by transforming the source code into a feature vector i.e., fingerprint
and compare it to database of profiles to choose the most closest author
profile. Plagiarism clusters are created by comparing the similarity of each
feature vector with Euclidean distance, thus allowing the detect issues with
authorships and reveal plagiarism cases. Bandara and Wijayarathna has
nine metrics that they use to generate tokens and token frequencies [6]. For
example, one of their metrics is number of characters per line (LLC) and to
tokenize it, one creates token for specific length n (LLCn) and calculates the
frequencies. This distribution of tokens is input to learning process called
sparse auto-encoder that learns to encode the features with neural network.
Weights of this neural network are used as features to logistic regression
which classifies the author to document. Finally, similar study by again

32

Bandara and Wijayarathna, uses full neural networks for the same task [5].
They use the same nine metrics with tokenization to get distributions per
metric, and use them as a input to their deep neural network to learn to
predict author from features.

Authorship identification with n-grams mostly use a profile-based method
called The Source Code Author Profile (SCAP) [20,21,53,54]. The idea of
SCAP is following: all known source codes from author a are concatenated
into one text file, n-grams are generated and only L most frequent are kept
per author to generate a profile P . To predict the author ŷ of a source code d,
one calculates how many n-grams does a unknown profile Pd has in common
with pre-existing author profile Pa, or respectively

ŷ = argmax
a∈A

|Pa ∩ Pd| (3.11)

The first study that uses its own method is by Burrows and Tahaghoghi.
They approach the problem with information retrieval and consider author
and document as queries [9]. Normalizing the documents is done by keeping
only operators and keywords, while n-grams are used to present one document
as overlapping sequences. Ranking the documents to create a ranked list,
happens with a proposed measure called Author1. Author1-measure evaluates
the similarity between documents and a query, and is defined using term
frequencies for both query q and document d

Author1(q, d) =
∑

t∈q∪d

1
min(|tf(t, q)− tf(t, d)|, 0.5) (3.12)

Burrow et al. continues on the topic of information retrieval in another study,
where they experiment on six additional features on top of 6-grams [10]: white
space, operators, literals, keywords, input/output (I/O) and function names.
Rest of the n-gram related studies use the SCAP method, mostly using it as
a baseline while trying to improve it. For example Frantzeskou et al. analyze
the contribution of four different high-level features when using SCAP [21].
These features are comments, layout features like spacing, identifier names
and keywords. In another study, Frantzeskou et al. continues to use SCAP,
but study the significance of user-defined identifiers with four categories [20]:
identifiers using basic data types like int for integers, class identifiers, method
identifiers and all identifiers defined by the author. Tennyson and Mitropoulos
study first the best profile length L for SCAP [54] and in another study,
use two Bayesian methods to build an ensemble [53]. This ensemble works
by utilizing the SCAP and the Burrows method as a baseline to decide
the author of a document. If there exists disagreement between baseline
models, probability theory is used to classify the author. These two Bayesian
methods are Maximum a Posteriori and Bayes Optimal Classifier, and both
of them calculate probability that author a wrote the document d given data
about authors previous work.

33

Alsulami et al. utilize deep neural network which uses features derived
from the abstract syntax tree of a source code [3]. Their method relies on
learning the features from AST, rather than explicitly handcraft them. To
learn these features, Alsulami et al. encode the tree as a vector by first
traversing its nodes and subtrees with depth-first search, then map them as a
multidimensional vector called embedding layer which works as an input for
their model. Lastly, the author classification is done using the deep neural
network.

Finally, two hybrid studies are by Wisse and Veenman [60] and Zhang
et al. [62]. Wisse and Veenman approach the problem of authorship by
using features extracted directly from the AST. They first parse the source
code into AST, then traverse it to derive metrics belonging to three classes:
structural, style and layout. Structural features include most frequent n-
grams, style features statistics about comments and layout features are
various spacing related metrics. The classification is done by deriving a high
dimensional feature vector from the data and using Support Vector Machine
for classification. Zhang et al. on the other hand, extract multiple features
belonging to four classes: layout, style, structure and logic. In their study,
layout features capture the usage of whitespace characters, style captures
usage of variable names and lengths, structure statistics about methods and
logic is defined as word-level n-grams.

3.4.3 Findings

Even though there exists multiple different ways to obtain similarity score
between a pair of source code, there are some reoccurring strategies for
comparison. Jaccard similarity coefficient can be used for a similarity measure
between two sets of tokens [13,14,38,61], string edit distance is a simple but
requires exhaustive pair-wise search to find direct occurrences [8,39,64], cosine
similarity can be used as similarity measure with vector space models often
utilizing weighting schemes like term-frequency or TF-IDF [12,13,14,19,27]
and similarity between tree structures can be calculated with a tree kernel
as a dot product or by exhaustively comparing the nodes [22, 40, 51]. To
reduce noise for similarity calculation, two kinds of approaches are used:
preprocessing and normalization. In preprocessing the data is turned into
another format e.g. from plain text to AST or filtered to remove unnecessary
information, and in normalization some weighting scheme is often applied or
keyword generalization.

Author identification mainly uses metrics and n-grams to answer the
question who wrote this code?. Used metrics often belongs to three categories:
layout, style and structure. However, coming up with meaningful metrics
can be hard and can easily lead to excessive feature engineering [16], where
one comes up with ad hoc solutions for the features to be used. N -grams are
popular and used in SCAP, with information retrieval and alongside statistical

34

metrics. The actual classification is in many cases done by representing
source code as a vector of numerical values i.e., the metrics, and then using
a supervised machine learning algorithm [60].

4 Research Design
Previously introduced concepts, results of systematic literature review and
the focus on document similarity and authorship identification has given
an overview of the problem of source code plagiarism detection. Next we
propose and later evaluate a two-phase model that combines both similarity
detection and authorship identification, and hypothesize that such minimizes
the amount of false positives in plagiarism detection. False-positives are
problematic as it means an innocent author is considered to be a possible
plagiarist, and therefore having too sensitive model introduces extra work. It
is notable that none of the studies that were discovered during the literature
review in Section 3 combine these two approaches when making the decision
of possible plagiarism. Therefore our goal is to introduce a new approach
which uses document clustering to retrieve similar documents, and tasks
submitted by students to form an author profile for each student.

Both of our models are based on other studies presented in the literature
review and combine the high-level approach used in many tools [41]: prepro-
cess, normalize, evaluate and predict. For the similarity detection we use
lower level features that capture the structure and are resilient against trans-
formations introduced in Section 3.4, and for the authorship identification
we use higher level features which can capture the style of an author. The
generalization of the proposed model is given below.

Algorithm 3 Detecting plagiarism between a set of source code files.
Require: Set of authors A
Require: Set of source code files D written by various authors ∀a ∈ A
Require: Index of the exercise of interest i ∈ N
Require: Length of word level n-grams nw ∈ N
Require: Length of character level n-grams nc ∈ N
Require: Minimum rate of similarity ε ∈ [0, 1]
procedure PLGdetect(A,D, i, nw, nc, ε)

D′ ← normalize(D)
Asusp ← detectSim(A, D′i, nw, ε)
Aauth ← trainAndPredictAuthor(A,D′, i, nc)
return Aauth ∩Asusp

end procedure

Algorithm 3 requires six parameters so it can fully function and the most
import ones are the collection of documents D, and the set of authors A

35

i.e., all source codes are submitted by a known author. Remaining four
parameters (i, nw, nc, ε) can be defined freely. In this work we estimate the
latter three by running a series of tests and choosing the best performing
values. Therefore the only parameter we can’t estimate is the index of
interest, which simply defines what is the exercise to focus to.

The flow of Algorithm 3 is following. Source code files are first normalized
for similarity and authorship detection separately. Then similarity is detected
for a collection of documents belonging under same exercise with the function
DetectSim, which forms a group of suspicious authors noted as Asusp.
The similarity detection process is controlled by the parameter ε which
acts as a threshold for the detection. For example ε = 1.0 means that
documents must be exact copies in order to group them together. The
function trainAndPredictAuthor trains our authorship identification
model with previous documents that the author has written, and then
predicts who are the most likely authors from the set A for ith exercise noted
as Aauth.

Our final result is the intersection between sets Asusp and Aauth, the
results of similarity detection and authorship identification. Our intuition
behind this can be shown with the following example. Let there be three
authors a, b, c ∈ A and three exercises under detection da, db, dc ∈ D, where
D contains also previous submissions for each author. Let there also exist a
similarity detection phase able to cluster perfectly when document similarity
is over the threshold ε, and authorship identification model trained with 100%
accuracy so that the expected error when classifying any of the documents
da, db, dc as is minimal. If the clustering result is that ω1 = {da, db} and
ω2 = {dc} implying authors a and b are suspects as they share too much
structural similarity, and the identification predicts f̂(da) = a, f̂(db) = a and
f̂(dc) = c, then we have verified that authors a and b have a high chance
for a case of plagiarism as their submissions are too similar and the style of
a document send by author b matches more the style of the author a. We
suggest that author a has probably shared the document to author b, but
because in this work we ignore the direction of plagiarism, both cases should
be reviewed equally by a human expert i.e., we treat sharing as equally
serious offense as copying.

4.1 Assumptions

We mainly focus on academia and especially to programming courses that are
offered by universities. Following five assumptions are defined to simplify the
problem of plagiarism detection by allowing us to focus only on plagiarism
that happens in a closed environment and within a closed set of documents.

In-class plagiarism Plagiarism has occured only within a specific course
implementation. Let P(A) be a powerset of students within offered courses

36

in a university. We are only interested about a set of students referred as
authors A attended in a specific course c i.e., a subset Ac ⊆ P(A), Ac 6= ∅.
The corpus Dc is built by gathering every submission done by students in
the course ∀a ∈ Ac and a set of documents belonging to individual student
is defined as Da = {d | d ∈ Dc, a = auth(d)}.

Exercise focus Let Ec = {e1, e2, ..., en} be a set of exercises for a course
c, then submissions for a single exercise is represented by a subset Dc,e ⊆ Dc.
With this assumption, we focus the plagiarism detection to submissions
done to a single exercise at a time i.e., plagiarism can happen only between
submissions done to a single exercise, not over exercises.

Single author Every source code d ∈ Dc is assumed to have a single
author a = auth(d), a ∈ Ac. This allows us to assume that every source code
submission is done as individual work, and all results that suggests otherwise
implies excessive collaboration or plagiarism.

Plagiarism direction Let a file di be plagiarized from dj : di
plag−−→ dj . We

treat this as same as the opposite direction di
plag←−− dj , making the direction

of plagiarism unimportant. This means that we treat both cases sharing and
copying, as an act of supporting plagiarism.

Expert interference We believe that no system can be accurate enough
to autonomously accuse students of plagiarism. However, this is doable when
some form of human judgment is added to the model. In principal this means
that the model can make predictions about cases of plagiarisms which we
call suspects, but the human expert must make the allegation of plagiarism
based on the results and after questioning the students. Having guidelines
about what is considered as plagiarism and how such cases are handled6,
helps both students and teachers to understand what the institution means
when it accuses somebody of plagiarism.

4.2 Data set

Our approach is aimed to the MOOC setting which is for example used
by undergraduate-level programming courses Introduction to Programming
(OHPE) and Advanced course in Programming (OHJA) in University of
Helsinki. We use three authentic data sets in Java language; students
submissions done to both of latter courses during the implementation in fall
2016 and data from SOCO task from 2014. Both OHPE and OHJA includes
proven cases of plagiarism, but to avoid any bias more specific information

6University of Helsinki’s guidelines: https://blogs.helsinki.fi/alakopsaa/?lang=
en Accessed 9th May 2018

37

https://blogs.helsinki.fi/alakopsaa/?lang=en
https://blogs.helsinki.fi/alakopsaa/?lang=en

about them is kept hidden as a golden standard until the final evaluation and
we also do not have access to original student identifiers e.g. student numbers.
SOCO’s training dataset on the other hand, contains prelabeled document
pairs that have conducted plagiarism which all have been discovered by
human experts, and test dataset pairs labeled by majority of the submitted
competitors [47].

To implement our models, we first use SOCO to train and evaluate our
similarity detection model, then train and test authorship identification with
OHPE and OHJA. Our proposed model is built based on these results and
plagiarism is detected individually for both courses. The reason to use SOCO
for similarity detection is simply that it’s the only data set that contains fully
labeled cases of plagiarism. OHPE and OHJA contains multiple files per
author making author identification possible, but they hide the plagiarism
cases. Therefore we make use of both sets and consider our model to be
successful if it has a high precision, minimizing the amount of false-positives
i.e., false plagiarism accusations, and maximizing the amount of true-positives
i.e., true plagiarists. As this setting means that we need a high precision
and a high recall, we resort to balancing between these metrics using the
F1-score.

Course overview
OHPE and OHJA shares the same structure; students first register to auto-
matic scoring system called Test My Code (TMC) [58] which also distributes
the exercises as an plugin to NetBeans IDE, then independently work during
seven weeks by completing programming exercises within deadlines [56].
Both of these courses follow Extreme Apprenticeship method [57]; theoret-
ical material is available online for students, students learn by doing i.e.,
there exists mandatory programming exercises, weekly exercise sessions are
available for those who require assistance, instructors can give feedback and
students are able to track their process. In addition, there are exercises in
which students are required to have a pair to program with. This is referred
as pair programming.

Students earn points from exercises depending if all tests were successfully
passed via TMC, and complete an exam at end of the course which is a
programming exam that ultimately decides if a student has learned the
minimum level of knowledge required to pass the course. The exam in fall
2016 was a home exam, meaning that students were able to do it individually
wherever they wanted to. As there were no mandatory lectures, students
were able to pass the whole course working individually without any physical
attendance. Students were informed at the beginning of the course and in
the course materials, that plagiarism is prohibited.

38

SOCO overview
Source code reuse (SOCO) data is from a 2014 competition PAN@FIRE,
where two sets were given to detect monolingual source code re-use [47].
SOCO2014 offered a train and a test set for competitors, which contained
files written in C++ and Java by various authors. The training set contains
source code files and annotations made by three experts flagging pairs that
are considered as plagiarized. Test set on the other hand, contains six
individual scenarios labeled by majority voting from multiple submissions.
The competitors were asked to retrieve the pairs with plagiarism, but the
direction was completely ignored, meaning that they did not have to show
who was the plagiarist and who was the sharer.

SOCO contains mainly submissions to a single exercise and documents,
that are transformed from C to Java [47]. As only the plagiarized file
pairs are annotated and SOCO has been used successfully used in other
studies [13, 19, 23, 24], we will use SOCO to train and evaluate our similarity
detection model. The number of authors is not explicitly reported in SOCO,
so we make a simplifying assumption that there exist one file per one author
and also that all submissions are for the same task.

Corpus statistics
As we are going to focus strictly to Java language, we only use the Java-
specific part of SOCO, whereas OHPE and OHJA are fully utilized because
they only contain Java files. Some non-transformative steps has been made
beforehand to both OHPE and OHJA; exams are added to data set and
submission containing multiple files are concatenated into one file. This
allows us to assume also in OHPE and OHJA that there exist one file per
submission, and we also get the benefit of having exam submissions where
plagiarism is absolutely not allowed and where students work under time
pressure. Exam submissions are thus picked as the main target for our
plagiarism detection approach to eventually report how accurately it can
perform. Statistics for all these three corpora are reported in Table 14, only
applying modifications given above.

39

Table 14: Descriptive statistics for the unprocessed corpora. SOCO has been
divided into three related corpora: train (T), test scenario without plagiarism
(C1) and test scenario with plagiarism (C2). Bold values represents maximum
value per metric.

Metric
Corpus SOCO-T SOCO-C1 SOCO-C2 OHPE OHJA

Authors 259 124 88 316 270
Exercises 1 1 1 151 92
Documents 259 124 88 33 363 15 196
Documents per author AVG. 1 1 1 106 56
Synthetic Partly Partly Partly No No
LOC min 12 7 7 1 1
LOC AVG. 149 155 144 44 109
LOC max 1696 1398 661 679 637
Expression AVG. 63 76 67 17 38
Character AVG. 3898 3848 3751 1139 2794

Table 14 reports ten different metrics: number of total authors, exercises and
documents; does the corpus contains synthetic data; averages for documents
per author, character count, lines of code (LOC) and expressions ending to
semicolon; and lastly minimum and maximum line counts. We can see from
the Table 14, that SOCO has the smallest amount of authors but the tasks
are more complex indicated by the largest LOC, amount of expressions and
the average character count. When comparing OHPE to OHJA, OHPE has
on average smaller submissions than OHJA, which is mostly due to OHPE
having easier tasks due to being the introductory course where students are
not expected to know anything about programming beforehand. OHPE also
has the most largest average document-to-author ratio (106) compared to
SOCO (1) and OHJA (56), making it the most richest data set when it comes
to having a large amount of submissions per author. Comparing to other
corpora presented in Section 3.3, our OHPE corpus is one of the largest with
OHJA. They both have over four times as many authors than any of the
corpora used in other studies.

A problem however arises when average line count with respect to the
exercises is visualized for both OHPE and OHJA. Figure 6 visualizes this by
histograms, where bin sizes are set to 50. From Figure 6 we see that majority
of the submissions for OHPE has under 100 lines of code. This can create
an issue, as there exists tasks where the submission can only contain a few
dozen lines meaning that the similarities between solutions will be naturally
high as the solution spaces of these tasks are very limited.

40

0 50 100 150 200 250 300 350 400 450 500
0

10
20
30
40
50

OHPE: Average LOC

C
ou

nt

0 50 100 150 200 250 300 350 400 450 500
0

10
20
30
40
50

OHJA: Average LOC

C
ou

nt

Figure 6: Histograms showing average line of count per exercise for OHPE
(top) and OHJA (below). OHJA has more evenly distributed length of
submissions, where as OHPE’s submissions are mostly under 100 lines in
length.

4.3 Document normalization

We utilize same approaches as studies reviewed in Section 3.4 to minimize
the variance between documents by using normalization. The benefit of
normalization is that it reduces the vocabulary size by unifying language
structures which are unimportant. However, with normalization we can
also emphasize certain aspects. In case of similarity detection we want to
preserve as much structural information as possible, and in case of authorship
identification the students author profile must be captured. This means we
can ignore all stylistic preferences in similarity detection and all structural
information in authorship identification, as they share different goals.

For similarity detection we transform every document into a token stream
by first parsing the program with a parser and turning it into abstract syntax
tree, then traversing the structure to get the stream as a string format. This
method allows to capture the higher-level structure of the program, and still
allows to handle it as a text. Also, it works against obfuscation strategies
which were stated in Tables 1, 2 in Section 2.1, by ignoring certain structures.
For example the parser will ignore all white spaces, comments, identifier
names and it standardizes loop names, meaning it works against levels 1,2
and 5 of Table 2. The parser we made only works with Java and is heavily
inspired by the one used in JPlag [45]. The complete list of tokens is seen in

41

Appendix B, which shows also the equivalencies to generate certain tokens.
For example all loop constructs generate a single token "LOOP{" to indicate
start of the loop, which normalizes the documents to preserve the underlying
similar logic behind them.

Table 15 shows the corresponding token stream for the program A in
Appendix A, where one can see how much information is discarded from the
source code as we only keep the crucial structural information. It allows us
to reduce the size of the possible vocabulary and generalize documents, as
for example changing all integer values of the example source code leaves
the token stream completely intact. Same goes for changing of the variable
names, as they are not presented in any way in the token stream.

Table 15: Token stream generated from the example source code in Appendix
A. No literal values are being saved to generalize documents as much as
possible.

Original source code Token stream

public class A{

public static void main(String[] args){
int a = 5;
int b = 10;
int c = 2;
double d = (a + b + c)/(double)3;
System.out.println(d);

}
}

CLASS{
VOID
METHOD{
VARDEF
ASSIGN
VARDEF
ASSIGN
VARDEF
ASSIGN
VARDEF
ASSIGN
APPLY
}METHOD
}CLASS

For authorship identification, normalization method we apply uses the
same idea as in [9,10]. We discard all comments and normalize literal values to
remove any possible notion of the original author, like unique student number
or name in comments. The purpose behind normalization for authorship
identification is therefore to leave the original document as intact as possible,
maintaining the preferences that the programmer might have for variable
naming or spacing. An example of the normalization procedure is given in
Table 16 for the same program used in Table 15, where one can see that all
numerical values have been transformed under a single dollar token $.

42

Table 16: The result of normalization procedure for the authorship identifi-
cation. All literals have been mutated.

Normalized code
public class A{

public static void main(String[] args){
int a = $;
int b = $;
int c = $;
double d = (a + b + c)/(double)$;
System.out.println(d);

}
}

4.4 Document representation

To represent every documents as vector, we use information retrieval tech-
niques introduced in Section 2.4. Plagiarism detection is therefore done first
by converting document into vector space model after the normalization.
In both similarity detection and authorship identification, terms are first
extracted, which in our case means all possible n-grams with respect to
vocabulary V. The only difference being that in similarity detection the
vocabulary is formed using every document as a token stream, where as
authorship identification uses only part of the complete data to form the
available vocabulary i.e., the training data.

To overcome the problem with varying document length and frequently
appearing terms, we apply TF-IDF weighting introduced in Section 2.4.1.
Table 17 shows an example of term extraction for similarity detection using
word level 2-grams for program A in Appendix A. All TF-IDF weights have
been normalized using Euclidean norm, formulated as follows:

x√
|V|∑
i
x2

i

(4.1)

43

Table 17: Similarity detection term extraction for document A. Terms are
word-level 2-grams extracted from the token stream, whereas TF-IDF weights
have been normalized and values rounded at two decimal places.

Term Raw frequency TF-IDF weight
APPLY }METHOD 1 0.14
ASSIGN APPLY 1 0.18
ASSIGN VARDEF 3 0.55
CLASS{ VOID 1 0.14
METHOD{ APPLY 0 0.00
METHOD{ VARDEF 1 0.18
VARDEF ASSIGN 4 0.74
VOID METHOD{ 1 0.14
}METHOD }CLASS 1 0.14

An example of how the calculation is done in Table 17 is given next. To get
the value 0.18 for a term ASSIGN APPLY in document A one sees first that
the value of tf is 1 from Table 17. The idf is formed by dividing number of
documents with the number of total term frequency over all documents, and
taking a logarithm i.e., idf = log(N/df) = log((1 + 3)/(1 + 2)) + 1 ≈ 1.29.
Note that we add extra ones to avoid division with zero and to diminish
the effect of terms appearing only in training set. Now tf -idf is simply
tf · idf = 1 · 1.29 = 1.29. Finally, after calculating non-normalized weight for
each term, we can derive the value 0.18 dividing 1.29 with the Euclidean norm
over the weights which gives tf -idfnorm = 1.29/‖w‖2 = 1.29/6.98 = 0.18.

The vocabulary V that forms the set of possible tokens in Table 17,
is the union between every token appearing in three example documents
i.e., V =

⋃3
i=1 Vi where Vi = {t1, t2, · · · , tn}. Therefore some terms may

appear zero like the term METHOD{ APPLY for the document A in Table
17, as it exists only in the token stream of document C. The smoothing
we apply in Equation 2.15 prevents the complete product to become zero.
Terms like ASSIGN VARDEF and VARDEF ASSIGN have a high weight as they
mostly appear in document A, implying that document A has more variable
assignments than document B or C, which is true when one looks at the raw
source code documents.

With our approach, we can now represent document as a vector of weights
e.g. document A as x = [0.14, 0.18, · · · , 0.14, 0.14], where the dimension of
x is the size of vocabulary V. The visualization of these three programs as
vectors of weights can be seen in Figure 7, where it is clear that program C
is the outlier whereas A and B share more similarities between each others.

44

0 0.2 0.4 0.6 0.8 1

0

0.5

1

A

B

C

Figure 7: Three sample programs from Appendix A visualized in two dimen-
sions. TF-IDF weights have been calculated from the token streams.

4.5 Similarity detection

After submissions for a given exercise have been normalized into a token
stream, we apply the DetectSim function of the Algorithm 3, which retrieves
set of authors we call suspicious authors. These authors share a lot of
structural similarity to each others within a given task, implying that there
it is possible that plagiarism might have occurred within this set.

The DetectSim in other words, is the similarity detection method of our
study, where we first calculate the vector similarity to form a distance matrix
M. In this matrix Mi,j implicates the similarity between documents di and
dj . Then, we calculate the similarity by using cosine similarity introduced
in Section 2.4.2, which was also extensively utilized by other studies in
Section 3.4. Lastly, we apply DBSCAN clustering to the values in similarity
matrix M to form a groups of suspicious authors. The pseudocode for the
DetectSim function can be seen in Algorithm 4, which is dependant from
two parameters: length of n-grams and similarity threshold ε. These two
hyperparameters are tuned with SOCO data set before the final evaluation.
The overall flow of operations is following: first we extract all word level
n-grams and turn the documents into raw term frequencies, then terms are
weighted using TF-IDF and cosine similarity is calculated between every
document. Finally DBSCAN clustering algorithm is used to form clusters of
similar documents. Because we know every author of each document and we
assume single authorship, these clusters are identical to clusters of authors.

45

Algorithm 4 Detecting suspicious authors.
Require: Set of authors A
Require: Set of documents D belonging to authors a ∈ A
Require: Every document d ∈ D is represented as a token stream
Require: Preferred length of word level n-grams n ∈ N
Require: Minimum rate of similarity ε ∈ [0, 1]
Assume: MinPts← 2
procedure DetectSim(A,D, n, ε)

X← ExctractNgrams(D,n)
W← TFIDF(X)
M← COS(W)
Ω← DBSCAN(M, ε,MinPts)
return Ω

end procedure

Note that in Algorithm 4, the value of MinPts is assumed to be value 2, as
only two documents are needed to form a cluster of suspicious documents.
This refers to a real life situation where two students have shared source
code between each others.

4.6 Authorship identification

The second method we apply, is the author identification from a collection
of source codes. Like in similarity detection, we apply this to one exercise
at a time but as this model requires training, we define the training set to
be all documents that the author has previously written. For example when
considering a course which consist of seven weeks and the final exam, we can
use all seven weeks per author to train the model i.e., try to capture the
preferred style of an author, and then predict the most likely author of a
random sample from a collection of exam submission.

The algorithm for authorship identification we use is based on the proba-
bilistic model Naïve Bayes from Section 2.5. We utilize n-grams which was
a popular method among other studies in Section 3.4, because it captures
preferences that the author might have when writing a program by using
character-level information. That is also why we don’t apply a lot of nor-
malization for the authorship identification, as this information would be
lost if too much transformation would be applied. The pseudocode for our
authorship identification is seen in Algorithm 5, which is dependent from
one hyperparameter, the length of character level n-grams. The value for
it will be tuned using both data sets OHPE and OHJA, and choosing the
value which performs best on average.

46

Algorithm 5 Detecting the most likely author for a source code.
Require: Set of authors A
Require: Set of documents D belonging to authors A
Require: Index of the exercise under detection i ∈ N
Require: Length of character level n-grams n ∈ N
procedure TrainAndPredictAuthor(A,D, i, n)

X← ExctractNgrams(D,n)
W← TFIDF(X)
Wtrain,ytrain,Wtest,ytest ← Split(W, A, i)
NB ← TrainNaïveBayes(Wtrain,ytrain)
Aauth ← Predict(NB,Wtest)
return Aauth

end procedure

The remaining flow of Algorithm 5 is following. After the weight matrix W
has been formed we split the data into training and test sets with appropriate
classes y, which indicates the authorship assignments. The split is done by
treating the ith exercise as a test set, and everything before it as a training
data. For example if the interest is the exam, which can be thought as the
final task of the course, there are 135 exercises before it in OHPE and 79
in OHJA7 that can be used to capture the individual style of an author.
The appropriate training data is given to the Naïve Bayes algorithm in
TrainNaïveBayes, which theoretical background is given in Section 2.5.
The training of the Naïve Bayes algorithm allows therefore to estimate the
probabilistic parameters inside the model. These parameters are reflected
into the function Predict, being the maximum a posteriori probability
(MAP) estimate, is then able make the author prediction.

4.7 Evaluation

We first introduce a metric called accuracy, which can be used in both binary
and multiclass evaluation. Accuracy score, simply being the fraction between
correct predictions and the total number of predictions, can be defined by
using the confusion matrix given in Section 2.4.2 as

ACC = TP + TN

TP + TN + FP + FN
(4.2)

Both models of our approach are first evaluated against the data. This
means that the similarity detection part uses SOCO to tune its parameters
(n-gram and ε) and evaluate the performance of our model. Evaluation
happens by reporting average precision and F1-metric of document retrieval,
and we mainly focus on the amount of correctly classified documents retrieved.

7Values 135 and 79 are after pair programming tasks are filtered out from both sets.

47

After the hyperparameters for the similarity detection have been tuned, we
compare it by calculating the agreement to the state of the art software
plagiarism detection called JPlag [45]. The agreement with respect to the
JPlag is based on the Jaccard similarity, which was given in Section 3.4
between two sets and we expect Jaccard similarity to be close to one, as our
methods should get similar results as the JPlag. However, we can’t say for
sure that did JPlag retrieve all possible cases of plagiarism as we don’t have
direct access to true classes without going through every possible document
in OHPE/OHJA. This means we can’t calculate precision nor recall for the
plagiarism detection, and we must resort to human judgement to base our
final evaluation.

When evaluating the authorship identification, our classification problem
is no longer binary. It’s a multiclass classification problem, and in order to
use F1-score, it must be redefined. The multiclass-version of the F1-score,
which treats all classes equally, is called macro-averaged F1 [50]. It’s defined
as

FM = 2 · PrecisionM · RecallM
PrecisionM + RecallM

(4.3)

Where PrecisionM and RecallM are averaged over every class as

PrecisionM =

∑
c∈C

T Pc
T Pc+F Pc

|C|
(4.4)

RecallM =

∑
c∈C

T Pc
T Pc+F Nc

|C|
(4.5)

Using above metrics for a multiclass classification, we are able to tune the
parameter n which controls the length of character-level n-grams. Tuning
is done by first dividing both OHPE and OHJA into seven splits which
corresponds each week, then taking the set of authors who submitted and
using their previous work as a training data, finally predicting the authors
of the last exercises and collecting calculating the average performance. For
example, when we evaluate our authorship identification on the first week
of OHPE, we take the subset of authors A′ ⊆ A who submitted to the last
exercise of the first week. Then the last exercise is left out as the test data,
and for each author a ∈ A′, we collect their submissions to form the training
data.

Our final result will be a set of detected documents for both OHPE’s
and OHJA’s exam tasks, and we will use a human expert who manually
goes through the retrieved documents and classifies which ones she considers
as real plagiarism. By using a human judgement, we get as unbiased and
realistic evaluation as possible, but also information about the decision
process. When the human expert has gone through all documents and

48

evaluated them, we calculate following four metrics to score our final result:
number of true positives, number of false positives, detected cluster sizes and
Jaccard similarity.

5 Results
Following sections describe the results we gathered during the evaluation
of our models. All results are generated using Python version 3.6.08 and
scikit-learn version 0.19.19.

As explained in the Section 4.7, we first evaluate both models individually
and lastly combine the results to create a final prediction which is evaluated
by a human expert. Our similarity detection is trained with SOCO data
set and authorship identification with OHPE and OHJA without using the
exams. A summary of these exam tasks is given below.

Table 18: Submission count and average line count for exam tasks. A refers
to OHPE and B to OHJA.

Task 1.A 2.A 3.A 4.A 1.B 2.B 3.B
Submissions 244 242 227 240 200 198 197
Avg. LOC 37 39 47 110 160 86 150

It’s clear from the Table 18 that OHJA’s tasks are more longer than OHPE’s.
Some of the tasks of OHPE’s exam have a very low average line count that
creates a challenge for the detection.

5.1 Document similarity

We start evaluating our similarity detection by tuning the hyperparameters
n for n-gram length and ε for the epsilon-range i.e., minimum distance to
other documents. By evaluation various values for the hyperparameters,
we try to find a general model which could perform well with any dataset.
Results are gained by turning all documents into binary vector based on the
SOCO labels i.e., vector y where yi = 1 and yj = 1 if ith and jth documents
are reported as plagiarized pairs. Our predictions are compared against this
golden standard.

Table 19 shows averaged F1-score, weighted by label counts, for the
SOCO-T data. One can see from it that the F1-score is highest when
n ∈ [4, 7] and ε ∈ [0.4, 0.6]. However, allowing 40-50% dissimilarity between
documents means that there is a high chance for false-positives, especially
when submissions are relatively short and the task is well-defined like in
OHPE and OHJA, meaning that the solution space for a given task can

8https://www.python.org/ Accessed 14th May 2018
9http://scikit-learn.org/stable/ Accessed 14th May 2018

49

https://www.python.org/
http://scikit-learn.org/stable/

be limited. Therefore to avoid overfitting similarity detection to SOCO’s
training data, we use also the test sets of SOCO C1 and C2.

Table 19: Average F1-score for n-gram length and ε-range for SOCO-T
containing 115 cases of plagiarism. The smaller the ε-range is, the more
similar documents have to be. F1-scores close or over 0.8 are bolded.

Epsilon

N-gram
1 2 3 4 5 6 7 8 9 10

0.1 0.31 0.69 0.63 0.60 0.59 0.56 0.55 0.55 0.52 0.52

0.2 0.28 0.59 0.73 0.66 0.63 0.62 0.60 0.59 0.56 0.55

0.3 0.27 0.43 0.78 0.73 0.70 0.67 0.64 0.63 0.59 0.58

0.4 0.27 0.31 0.72 0.81 0.78 0.72 0.71 0.69 0.65 0.64

0.5 0.27 0.29 0.57 0.80 0.81 0.80 0.81 0.78 0.77 0.74

0.6 0.27 0.27 0.39 0.71 0.83 0.89 0.90 0.86 0.85 0.85

Table 20: Precision with respect to plagiarized class, ranging various n-gram
lengths and ε-ranges for SOCO-T. Values close or over 0.9 are bolded.

Epsilon

n-gram
1 2 3 4 5 6 7 8 9 10

0.1 0.45 0.77 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.2 0.45 0.53 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.3 0.44 0.48 0.83 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.4 0.44 0.45 0.63 0.87 0.97 0.98 0.98 1.00 1.00 1.00

0.5 0.44 0.45 0.54 0.75 0.90 0.92 0.97 0.98 1.00 1.00

0.6 0.44 0.44 0.47 0.62 0.77 0.87 0.94 0.93 0.95 0.96

We see from the Table 20, that as we grow the number of n-grams, the
precision starts converging to 1.00. Having a high precision means that the
set of retrieved documents contains high number of true positives, as we
have effectively minimized the amount of false positives, and no document is
falsely accused of plagiarism. This happens because longer n-grams grow the
size of vocabulary V, thus making already dissimilar documents even more
dissimilar and allowing the threshold to grow. The most smallest n-gram
having a near perfect precision over plagiarized class is when n = 3 and
ε ∈ [0.1, 0.2]. This kind of high similarity value ranging between 80-99% is
also used in other studies [12,13,27,61].

One sees from the following table that the F1-score starts to deteriorate
in all cases, when no plagiarism occurs between a set of documents. One
must either have a high similarity threshold or increase the n-gram length to
get a high F1-score, because having a low threshold quickly introduces false

50

positives. The model thus becomes too sensitive and retrieves documents
where similarity has occurred naturally, adding work for the human expert
who must go through the detected pairs and label them again.

Table 21: F1-score for SOCO-C1, which contains no cases of plagiarism.
False-positives are introduced as the threshold gets lower.

Epsilon

n-gram
1 2 3 4 5 6 7 8 9 10

0.1 0.24 0.94 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

0.2 0.11 0.56 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99

0.3 0.06 0.38 0.95 0.99 0.98 0.99 0.99 0.99 0.99 0.99

0.4 0.03 0.20 0.87 0.98 0.98 0.98 0.98 0.98 0.98 0.98

0.5 0.03 0.16 0.59 0.95 0.98 0.98 0.98 0.98 0.98 0.98

0.6 0.02 0.08 0.29 0.88 0.96 0.98 0.98 0.98 0.98 0.98

Table 22: F1-score for SOCO-C2, which contains 28 cases of plagiarism.

Epsilon

n-gram
1 2 3 4 5 6 7 8 9 10

0.1 0.34 0.92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.2 0.27 0.57 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.3 0.20 0.38 0.92 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.4 0.15 0.31 0.75 0.97 0.97 0.99 0.99 0.99 0.99 1.00

0.5 0.15 0.27 0.47 0.91 0.97 0.97 0.97 0.97 0.99 0.99

0.6 0.15 0.22 0.33 0.78 0.92 0.97 0.97 0.97 0.97 0.97

As in Table 21, Table 22 shows that having n = 3 with similarity threshold
being around 80%, yields one of the highest F1-score with the lowest n used.

Taking the best scoring models over all scores for each n-gram and
excluding n ≥ 8 as they aren’t improving the performance compared to n = 7,
we end up with five model candidates A (n = 3, ε = 0.2), B (n = 4, ε = 0.4),
C (n = 5, ε = 0.5), D (n = 6, ε = 0.6), E (n = 7, ε = 0.6). As we compare
these five models by their relative size of the largest cluster across all formed
clusters of OHPE’s exam tasks, we see in Figure 8 that in majority of the
cases model A’s largest cluster has the lowest relative size. In Figure 8a
models B and D have relative size close to 1.0, meaning that the largest
cluster contains almost every single retrieved document. The most probable
cause for this is that all submissions share natural similarity, caused by the
restricted task description or that the solution space for a given task might
be very limited. Thus this kind of super cluster can contain a lot of false

51

positives in form of similar documents which are not necessarily plagiarized,
but rather correct similar solutions for the task.

A B C D E
0

0.2
0.4
0.6
0.8

1

R
el
at
iv
e
siz

e

(a) OHPE 1st exam task.

A B C D E
0

0.2
0.4
0.6
0.8

1

R
el
at
iv
e
siz

e

(b) OHPE 2nd exam task.

A B C D E
0

0.2
0.4
0.6
0.8

1

R
el
at
iv
e
siz

e

(c) OHPE 3rd exam task.

A B C D E
0

0.2
0.4
0.6
0.8

1
R
el
at
iv
e
siz

e

(d) OHPE 4th exam task.

Figure 8: Relative size of the largest cluster in OHPE.

A B C D E
0

0.2
0.4
0.6
0.8

1

R
el
at
iv
e
siz

e

(a) OHJA 1st exam task.

A B C D E
0

0.2
0.4
0.6
0.8

1

R
el
at
iv
e
siz

e

(b) OHJA 2nd exam task.

A B C D E
0

0.2
0.4
0.6
0.8

1

R
el
at
iv
e
siz

e

(c) OHJA 3rd exam task.

Figure 9: Relative size of the largest cluster in OHJA.

Figure 9 shows same results for OHJA, which is an advanced course
where a lot more programming skills are required from the students. This

52

allows the tasks to be more difficult and longer, and as we see, the relative
size has gone down in all cases compared to OHJA. Cluster sizes are a lot
smaller as exam tasks are more open-ended and more demanding. In other
words, exam tasks have a range of multiple solutions and ways to do them,
which minimizes the natural similarity between documents. This can be
seen as a trend where none of the models now suffer from forming clusters
containing majority of the retrieved documents, as the size is around 0.5
(50%) at maximum.

Retrieving majority of the documents is not optimal for plagiarism detec-
tion as these documents often needs to be manually inspected at the end.
When inspecting the retrieval rate i.e.,

Retrieval rate = #Documents retrieved
#Documents in total (5.1)

We can see that this rate should not get values near 1.0, as this would mean
that all documents are detected as plagiarism, which is very unlikely in cases
with hundreds of documents. Thus models with a very high retrieval rates
are almost guaranteed to have a high number of false positives.

The retrieval rates of all models can be seen from the Figure 10.

1 2 3 4

0.45
0.50
0.55
0.60
0.65
0.70

Exercise

R
at
e
of

re
tr
ie
va
l A

B
C
D
E

(a) OHPE’s exam tasks and the retrieval rates. Most models
consider around 60-70% of all document to be over the similarity
threshold.

1 2 3
0.00

0.05

0.10

0.15

0.20

Exercise

R
at
e
of

re
tr
ie
va
l A

B
C
D
E

(b) OHJA’s exam tasks and the retrieval rates. Models have similar
retrieval rates and the rate of retrieval is low.

Figure 10: Retrieval rates of all models across every exam task. The model
A keeps the lowest retrieval rate overall.

53

The Figure 10a shows how the the model A keeps the retrieval rate
lowest around 50%, meaning that half of the documents contain too much
similarities between each others, and as said before it’s very unlike so many
documents are plagiarized. When comparing the model A to other models,
they claim the rate of plagiarized documents to be even higher, which can
not be true. In Figure 10b, the models agree quite well, only having some
level of disagreement with first exam exercise of OHJA. The second exercise
shows good agreement, as all models have near 5% retrieval rate.

Results on similarity detection show that tuning the two parameters n
and ε is very data dependent as choosing the best performing combination
might lead to very different results for other data sets. In our case, we choose
the model A (n = 3, ε = 0.2) for the final evaluation, because that model had
a decent F1-score in SOCO-T the precision for SOCO-T was nearly perfect,
and F1 for both SOCO-C1 and SOCO-C2 were near 1.00. The model A also
kept the largest cluster relatively small compared to other models and the
retrieval rate for both OHPE and OHJA was the lowest, implying it could
maintain a low rate of false positives. Keeping the rate of false positives
minimal is more valuable us than retrieving every single plagiarism case, so
we allow the model’s detection rate to suffer with the benefit of having a
high precision.

To get perspective on how well our chosen model compares to the state
of the art Java plagiarism detection tools, we first run JPlag detection for
OHPE’s and OHJA’s exam tasks, then run our model for the same set of
exercises and finally report the Jaccard similarity between the set of detected
documents. For the JPlag, we use its default parameters and collect all
document pairs where the reported similarity is over 80%. This threshold
is chosen purely based on the fact that 70% felt too low and 90% too high,
therefore there is a possibility that some other threshold values could work
better for JPlag.

Following tables show results for both OHPE and OHJA with five metrics:
documents detected by JPlag, documents detected by our chosen model, size
of the intersection between the set of detected documents, number of unique
documents retrieved in total and the Jaccard similarity score.

Table 23: Retrieval metrics for model A compared to JPlag with OHPE’s
exam tasks.

Exam question 1. 2. 3. 4.
JPlag - Documents retrieved 127 134 106 156

Model A - Documents retrieved 109 130 111 114
Common documents 98 109 95 102
Unique documents 138 155 122 168
Jaccard similarity 0.71 0.70 0.78 0.61

54

Table 23 shows how our model agrees quite well with JPlag, as around 100
documents per exam task are shared. But even with the state of the art tool
like JPlag, one retrieves a lot of documents with a threshold like 80% for
OHPE as the retrieval rate with JPlag for all OHPE’s tasks is around 50%.

Table 24: Retrieval metrics for model A compared to JPlag with OHJA’s
exam tasks. JPlag retrieves just a few documents when using 80% threshold.

Exam question 1. 2. 3.
JPlag - Documents retrieved 2 2 0

Model A - Documents retrieved 15 9 9
Common documents 2 2 0
Unique documents 15 9 9
Jaccard similarity 0.13 0.22 0.00

The retrieval rate for OHJA’s tasks for all our model candidates was very low,
and this same result is reflected in Table 24 where JPlag retrieves only two
documents or no documents at all. It seems that our model retrieves more
documents than JPlag, but without a human interference it’s impossible to
say which one of the models is more correct. However, the retrieval from
tasks 1. and 2. share the same two documents that JPlag detected, meaning
that our model performs similar to JPlag but the scoring it produces is more
consistent which can be seen when we inspect the third task where the level
of agreement was the lowest.

As we inspect every pair our model retrieved from OHJA’s third task and
compare the similarity scores to JPlag, we get five unique document pairs
which are denoted here as pi, i ∈ [0, 5], formed by a total of nine documents.
The results are visible in Figure 11.

p1 p2 p3 p4 p5
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Author-pair

Si
m
ila

rit
y

Our model
JPlag

Figure 11: The difference between JPlag’s reported similarity value and our
model for OHJA’s third exam task.

Figure 11 visualizes how our model keeps the similarity score near 80% for
every pair, whereas JPlag’s score varies. The most similar scores are with

55

pairs p1 and p4, where the difference is around 0.1 compared to our model. In
other cases, it seems that JPlag can produce more specific results, because the
comparing process differs from ours. We use the whole vocabulary to produce
the similarity score, whereas JPlag forms the score by string matching the
token streams.

We have now trained and evaluated our similarity detection model. The
model we chose uses n-gram length of three, and retrieves any document
where the calculated similarity value is above the 80% threshold, which is
reflected as ε-range of 0.2 in our clustering method. Our model was compared
to JPlag and the retrieved documents were mostly the same, but there were
some variance in number of documents retrieved. In following section, we
train and evaluate the second model, the authorship identification.

5.2 Authorship identification

Our authorship identification model requires one parameter to be tuned, the
length of character-level n-grams to be extracted. We tune this parameter
based on the average F1-score and accuracy over seven split points for both
OHPE and OHJA. For every weekly split the final exercise is left out as a test
data, 80% of the remaining data is used for training and 20% for validation.
The training data is used purely to tune the model, whereas validation is
used to find the best performing n-gram length. After the value for n has
been found, we evaluate the final model with the test data.

Tables below show the splits we make, the number of students submitted
to the last exercise of the week and the average profile size. The profile size
refers simply to the amount of documents students have submitted before
the split.

Table 25: OHPE’s splits. Profile size grows naturally as students progress
the course.

Week 1. 2. 3. 4. 5. 6. 7.
Students 230 239 189 174 127 138 53

AVG. Profile size 24 40 64 76 85 94 102

Table 26: OHJA’s splits. The profile size is much lower than in OHPE.

Week 1. 2. 3. 4. 5. 6. 7.
Students 144 114 137 90 111 121 113

AVG. Profile size 11 21 30 36 43 50 53

We see in Table 25 how the amount of students varies quite a bit for the final
week as only 53 students submitted. This is probably because students have
calculated that they already got the points they need in order to pass the

56

course with the exam, so they skip the last exercise. The amount of students
remains more stable in OHJA seen in Table 26, where the profile size grows
more steadily.

For every split in OHPE we calculate the macro-averaged F1 for the
validation data, and these results are visible in following table.

Table 27: Macro-averaged F1-score calculated for each validation set of
OHPE.

n-gram

Week
1. 2. 3. 4. 5. 6. 7.

2 0.01 0.02 0.03 0.02 0.02 0.02 0.03

4 0.01 0.03 0.03 0.04 0.04 0.04 0.04

6 0.02 0.04 0.05 0.05 0.05 0.05 0.05

8 0.02 0.04 0.05 0.06 0.06 0.06 0.06

10 0.02 0.05 0.06 0.06 0.07 0.07 0.07

12 0.02 0.05 0.06 0.06 0.07 0.07 0.07

14 0.02 0.05 0.06 0.07 0.07 0.07 0.07

Table 27 shows how the model fails to predict the correct authors in a
multiclass setting, where each document can be predicted only to one author.
We see that the F1-score slightly increases when n ≥ 10 and when the
used weeks grows i.e., the submission amount per student grows. The same
evaluation was also run for the OHJA, but the results were as poor as for
the OHPE, and therefore they are not shown here. Based on these result
we fix the n-gram length as 10 as it’s the best overall result we got with the
smallest n used, which also limits the size of vocabulary.

Figure 12 reveals how the vocabulary size grows when the n-gram length
gets larger. Even by using a small value of n which keeps the vocabulary size
smallest and should effectively capture e.g. the spacing used after operator
symbols, gives poor results as seen in Table 27. However the problem with
large vocabulary is that the training consists a lot of noisy features i.e.,
features that could be dismissed completely, that the model is unable to find
important features and weight them properly.

57

2 4 6 8 10 12 14
0
1
2
3
4
5
6

n-gram length

Vo
ca
bu

la
ry

siz
e
(lo

g 1
0)

Figure 12: Vocabulary size in log10-scale with respect to character n-gram
length. Vocabulary is formed using 80% of OHPE’s tasks (training set) and
its size for 10-grams is around 278 000.

As we look from Table 28 the ten most common n-grams formed from
the training using OHPE’s data set and their frequencies, we see how similar
most features can be.

Table 28: Ten most frequent 10-grams encountered while training the Naïve
Bayes model. All of them contain the same overlapping sequence which is
the statement for printing in Java.

N-gram Frequency
System.out 18643
ystem.out. 18643
stem.out.p 18643
tem.out.pr 18643
em.out.pri 18643
m.out.prin 18643
.out.print 18643
System.ou 18640
out.printl 15171
ut.println 15171

In Table 28, most of the programs contain various sequences of the same
print statement in Java language. These statements exist in almost every
document, as many of the tasks in OHPE and OHJA require to print various
values to the console in order to evaluate the correctness of the submission.
All of these 10-grams can be considered as noise, because their informative
value is close to zero as they are used in similar way in all documents. Features
like these are problematic for our identification because as the vocabulary
size grows, the vector representing the document is starting to contain mostly
zeroes and the non-zero ones can contain a lot of non-informative duplicates

58

as are the 10-grams in Table 28.
We looked would the data be skewed while training i.e., would some

author have a majority of the documents, giving untrue prior probabilities
for authors. However this was not the case as seen from the following plot.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

0

25

50

75

100

125

Author

Pr
ofi

le
siz

e

Figure 13: The profile size of each included author in OHPE’s training set.

There are only four authors 2, 35, 41 and 49 who are below the average
profile size in Figure 13, so we can’t say that our data would have been
skewed in the training process. The data is very evenly spread amongst
the authors, as nearly all have around 100 documents for their profile size.
When comparing these numbers to other studies presented during literature
review in Section 3.3, we see that not only we have around ten times more
documents per authors, but also our author pool is a lot larger. Having a lot
of sample documents for each author should generate more distinct writing
preferences, but in our case it’s not the case as submissions seem to be too
similar. Excessive similarity was a problem also in our similarity detection
evaluation in Section 5.1.

To visualize the missclassification of our model, we formed the frequencies
of true authors and the predicted authors in the validation data of OHPE.
Figure 14 shows how the authorship identification should produce a uniform
distribution of authors, where each author has around 25 documents classified
for them. However, our model can’t find enough unique stylistic preferences
during the training, thus misclassifying majority of the documents to four
authors. This result reflects the same observation that was made earlier
about the excessive similarity of the documents, which leads to a situation
where some amount of authors might be so close to other profiles, that there
any not enough discriminating n-grams that could divide authors apart from
each other. This problem is visualized in Figure 14 as spikes, where four
authors become author archetypes who capture the writing style of everybody
else.

59

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

0

25

50

75

100

125

Author

Fr
eq
ue

nc
y

(a) True author distribution. The number of samples for each class in the validation
data is averaging around 25, with just a few outliers.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

0
25
50
75

100
125
150
175
200

Author

Fr
eq
ue

nc
y

(b) Predicted author distribution. There are several authors without any documents
classified to them, and four authors who have the majority.

Figure 14: The true distribution of authors in the validation data of OHPE
(a) compared to the predicted distribution (b). Our classifier predicts most
of documents to belong to just four unique authors.

Inspecting the probabilities of the Multinomial Naïve Bayes which is
trained with OHPE, the mean prior is 0.02 (2%) and the standard deviation
0.002. This means that the prior probabilities P (y) are very close to each
other so their influence is diminished at the prediction phase. The likelihood
i.e., probability of the ith feature appearing given the class P (xi|y), is also
very small for every feature and class combination, as using 10-grams there
are around 278 000 unique features. For every class the mean conditional
probability is 4.1×10−6 and standard deviations for conditional probabilities
are in range [1.3 × 10−7, 2.0 × 10−7], showing again how similar all values
are because our vocabulary is too large.

As we have now shown the results for training and validation, selected
the n-gram length as 10 and looked some of the reasons why the model fails

60

to predict the author, we next present the results for the test data. It consist
of the last exercises of OHPE and OHJA, and uses all possible data for the
training phase, as shown in Table 25 and Table 26. We will restrict the
author pool size to ease the problem and use the last week for both OHPE
and OHJA to have a full data set, and these results for both F1-score and
accuracy are visible in Figure 15.

2 4 6 8 10 20 30 40 50 60 70 80 90 10
0

11
0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Author pool size

F
1-
sc
or
e

OHPE
OHJA

(a) F1-score for OHPE’s and OHJA’s test set using 10-grams and varying the amount
of possible authors.

2 4 6 8 10 20 30 40 50 60 70 80 90 10
0

11
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Author pool size

A
cc
ur
ac
y

OHPE
OHJA

(b) Accuracy for OHPE’s and OHJA’s test sets using 10-grams with various author
pool sizes.

Figure 15: Evaluation results for the final authorship identification model.
Our model is not able to predict the author at a satisfactory level.

We can observe how in Figure 15a, the F1-score quickly deteriorates as
the number of possible authors grow. This same observation can be seen

61

also in Figure 15b where the accuracy is shown. In both cases there exist
fluctuation caused by random sampling when the author pool size is below
10. When the number of authors reaches 20, the F1-score settles quickly
around 0.1 regardless of the data set. Interestingly the F1-score and accuracy
remains around 0.1 and 0.2, implying that a portion of authors are always
classified correctly.

Finally, we compare our model to SCAP-method which was introduced
as an authorship identification method in Section 3.4 using same F1-tests as
in Figure 15a. We conduct this experiment to see if a method found during
systematic literature review would get better or similar results than the Naïve
Bayes model we used. As a recap, in SCAP-method one concatenates all
documents per author to one large document, forms n-grams and keeps only
the L most frequent n-grams to generate author profiles. A test document
is then compared using this same technique to all existing author profiles.
Comparison happens by taking intersection between n-gram set of a profile
and document to get a non-normalized similarity value, and the decision is
based on the largest intersection size. Selecting a small value of L allows
to reduce the vocabulary size greatly, so we run tests with three candidate
models with different profile sizes but using the same 10-grams as our model.
The three different values of L we test are 102, 103 and 104, which all are
a lot smaller than our original vocabulary size 2.78 · 105. The results for
F1-scores using OHPE’s data are seen in below figure.

2 4 6 8 10 20 30 40 50

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Author pool size

F
1-
sc
or
e

L = 102

L = 103

L = 104

Figure 16: F1-scores for three different profile lengths using 10-grams in
OHPE. The only slight improvement compared to our model is when L = 103.

Visible in Figure 16, even the SCAP-method is not able to predict the author
on a decent level of success, as the results are somewhat same when L = 103

as with our model. The fluctuations when the author pool size is under 10,
are caused by random sampling and the existence of similar authors inside

62

the same sampled pool. When we looked the three most closest authors in
every case, we saw the correct author was often in that set. However, as
the author pool size was grown there were similar confusion happening as
in Figure 14, where just few authors were labeled as authors of the most of
the documents. Because SCAP wouldn’t improve the results in OHPE, we
decide to not to run the evaluation for OHPE’s data.

We have now shown the results of our authorship identification model and
seen how the problem with our data sets is too difficult for both Multinomial
Naïve Bayes using TF-IDF weighted 10-grams and SCAP using 10-grams
with varying profile sizes. In the next section we show the the final results
for our plagiarism detection from the exam tasks of both OHPE and OHJA.

5.3 PLGDetect

Because the Multinomial Naïve Bayes and the SCAP evaluated poorly with
our data sets, we decide not to use authorship identification for the final
results as even reducing the amount of authors would diminish the possibility
of finding any plagiarists as random sampling would leave some students
out of the detection. This is a drawback for our approach and we discuss
the implications at the discussion. However, our similarity detection model
evaluated well and can be still used for exploring and detecting the possible
plagiarists. What we can’t do is to restrict efficiently the amount of false
detections by using the authorship identification model.

Before we can discuss the final results, we must consider an issue with
the retrieval rate of our similarity detection. Looking from the Table 23
and Table 24 there are around 500 total documents retrieved, which is too
many documents for the human expert to go through in reasonable time. To
overcome this issue the we select only a subset of the exam tasks reducing
the amount of documents to 144. These are OHPE’s third exam task (3.A)
and all of the exam tasks of OHJA’s (1.B, 2.B, 3.B). A brief description of
each selected task is given below.

3.A (OHPE) Students were required to fill a method to find the most
common number from the Java’s ArrayList structure. The methods name,
return value and parameters were given as a template.

1.B (OHJA) Students were required to make a text interface for adding
books with name and year information. The outline of the text interface
was given for the students. After the initial adding phase, added books were
printed in wanted order.

2.B (OHJA) This task measured how well students are able to manipulate
text data. The task required to have a small text interface to read a text
file, censor every occurrence of a given word and write the results to a new

63

text file. This exercise had a hint, which recommended to use a specific Java
class to read and write text files.

3.B (OHJA) Task required to create a text interface to emulate a simple
storage management software. The actions that had to be implemented were
adding, listing, searching, removing items and exiting the interface. A small
piece of code was given as a hint for this exercise.

In all exam tasks, also the scoring and example output was given for the
students, so that they could mimic the wanted functionality of these programs.
The reason behind this was to guide the student into right direction and also
to be able to automatically score the submissions.

To see the difference between these tasks, descriptive statistics about
them is given in Table 29. It shows how OHPE differs from OHJA, as its
task is quite constrained having only around 50 lines to get a correct answer.
OHPE also creates a lot more clusters, as the similarities between OHJA’s
submissions are more varied.

Table 29: Results before the evaluation by the human expert. These results
are produced by our similarity detection model which uses parameters n = 3
for the n-gram length and ε = 0.2 for the maximum allowed distance between
the documents, which reflects that the documents have to score over 80%
similarity in order to cluster them together.

Task 3.A 1.B 2.B 3.C
Number of submissions 227 200 198 197

Average line count 47 160 85 150
Documents retrieved 111 15 9 9
Clusters emerged 15 5 3 4

As the final result, we first show the pair-level detection results and then the
more general result, which shows the precision with respect to documents
considered containing plagiarism. For each of these tasks we inspect every
cluster and the true and false positives in them, where the results are given
by our human expert who has manually gone through detected documents.
Results for each task is given in following figures, where we show the frequen-
cies of retrieved pairs compared to true positives. Note that this format is
more fine grained than what we have used before as earlier we have reported
only the number of documents detected, and that we had to prune the first
cluster of OHPE’s third task, as it contained nearly 410 pairs. Pruning was
done by keeping only the pairs where the cosine similarity was 1.0.

64

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30 30

1 1

6

3

12

1 1
2

1 1 1 1 1
3

7

1 1
0

3
1 1 1 1 1

0 0
1

0

3

Cluster

N
um

be
r
of

pa
irs

Our model
Human expert

Figure 17: Detected and true pairs of 3.A OHPE. False positives in the first
cluster were mostly correct submissions which were similar to model solution.
Fourth cluster contained almost empty submissions and sixth cluster similarly
wrong solutions with two highly suspicious authors.

1 2 3 4 5
0

2

4

6

1

5

4

2

1

0 0 0

1 1

Cluster

N
um

be
r
of

pa
irs

Our model
Human expert

Figure 18: Detected and true pairs of 1.B OHJA. Most of the pairs were
reported to be close to model solution without any signs of plagiarism.
However, there were two pairs which were flagged for further attention.

65

1 2 3
0

2

4

6

1

4

1

0 0 0

Cluster

N
um

be
r
of

pa
irs

Our model
Human expert

Figure 19: Detected and true pairs of 2.B OHJA. All of the detected pairs in
this task were false positives. However, two non-paired authors were flagged
for further attention.

1 2 3 4
0

2

4

1 1

2

11

0

1 1

Cluster

N
um

be
r
of

pa
irs

Our model
Human expert

Figure 20: Detected and true pairs of 3.B OHJA. Three pairs were flagged
for further attention, but as difficult cases.

In Figures 17, 18 and 20, we see that our approach is able to retrieve suspicious
documents. As reported by the human expert, most of true positives contain
direct copies and renaming of the variables. However, there exist false
positives as seen in Figure 19 where most of these false positives are caused
by natural similarity between the submissions. The human expert reported
also that in most of the cases one can’t say for sure that the document pair
is plagiarism. Therefore, the reported pairs are flagged if they are considered
as suspicious and would require further information e.g. other submissions
done by the pair of authors. In Table 30, one sees the document level results
of false and true positives with the level of precision for each task.

66

Table 30: Document-level results of our plagiarism detection. There are false
positives introduced to our detection results.

Task 3.A 1.B 2.B 3.B
True Positives 30 4 0 6
False Positives 26 11 9 3

Precision 0.54 0.27 0.00 0.67

The low precision in Table 30 shows how our model fails to limit the amount
of false positives, which can be mostly due to the fact that we had to use
only the similarity detection part of our approach. As seen before, all of the
submissions for OHPE and OHJA contain a high level of natural similarity,
which introduces many false positives even with as high threshold as 80%.
To help the work of our human expert, we had to prune the first cluster of
OHPE’s third task. In reality there would be near 400 detected document
pairs, which are clearly all false positives due to the restricted solution space
of the task.

After the human expert evaluated the detected documents, the plagiarists
caught in 2016 were revealed. Our model was able to retrieve documents
belonging for all of these authors in OHPE’s third task.

6 Discussion
In following sections we first answer to our research questions, then discuss
about limitations of our study and finally present ideas for the future work.

6.1 Revisiting research questions

We asked following three research questions related to a more bigger question
How plagiarism can be automatically detected?.

Q1: What kind of approaches exist to detect source code plagiarism?

Q2: What are the possible benefits of using code structure for plagiarism
detection?

Q3: How can one obtain a model with a high detection accuracy?

What kind of approaches exist to detect source code plagiarism?
One must first define the term plagiarism to be able to detect it. We defined
it as stealing and passing ideas as one’s own which closely relates copying
other students work i.e., having similar documents. In Section 3, we made the
first division first between a similarity detection and authorship identification
methods based on the literature survey. Using similarity detection, one is
able to form a value between two documents that tells how similar these

67

documents are, whereas using authorship identification, one can verify the
author in theory. We found five subcategories from both methods: attribute
counting, segment matching, n-grams, tree-based and hybrid. Approaches
related to attribute counting forms frequencies or metrics from the source
code, and some examples of metrics are number of lines, number of operators
and number of tabs. Segment matching appears more frequently in similarity
detection, where similarity value can be formed as easily as by calculating
how many substrings two documents have in common. N -grams are easily
retrievable despite the used programming language in documents, but the
dimensionality of the data grows fast. Tree-based approaches transforms
the source code into a tree format to get additional features. Lastly, hybrid
approaches combine previously mentioned ideas to create more complex
models.

All previously mentioned subcategories handle the source codes in slightly
different ways and many of the studies we encountered during the literature
survey had varying levels of granularity. They all however, share the same two
principles: source code documents have to be normalized in order to remove
unnecessary features and one should always use a human expert to evaluate
the final results. Using a human, the automatic detection is not in practise
about directly detecting plagiarism, but more about retrieving interesting
documents which stands out from the mass. Retrieving documents based
on a given criteria resembles closely the functionality of a search engine and
therefore the same theoretical principles can be applied, which was seen in
many studies during literature review.

The domain of plagiarism detection offers many use cases for machine
learning and data exploration models because documents by themselves
contain a lot of data hidden inside the actual written text. There is also a
need for document suggestions so human experts do not have to go through
everything manually. In our case, one batch of submissions contained around
200 files totaling 19 900 unique pairs that needs to be compared.

What are the possible benefits of using code structure for pla-
giarism detection? The structure offers more data than what can be
extracted solely from written text. It allows to generalize the source code, so
it is able to show more high-level information, which can doable by generating
the abstract syntax tree. However, even more important benefits are the
ability to reduce the noise, to generalize the documents and make the detec-
tion process more stable. For example, we use the structure for similarity
detection to battle against obfuscation strategies like variable renaming or
changing the order of expressions. By using the structure one is then able
to 1) gain new features for the detection process, 2) restrict the variance of
observed data, 3) make the detection resilient against common obfuscation
strategies and 4) turn the focus more into the logic of the source code.

68

How can one obtain a model with high plagiarism detection ac-
curacy? Our hypothesis was that a model using the results of similarity
detection and authorship identification would be able to reduce the number
of false positives i.e., authors who are being wrongly accused. However, by
using Naïve Bayes with n-grams, a probabilistic machine learning model, we
couldn’t get results decent enough to be even consider using it to verify the
detected authors. The size of our author pool was during the evaluation
around 50 students with nearly 100 documents for each as a training data,
which is nearly double than other studies in Section 3. Also, most of those
studies had a pool under 10 authors.

There are several possible reasons for why the proposed model did not
perform as expected. First of all our vocabulary size was large and feature
selection methods could have been utilized. Having a large vocabulary during
authorship identification diminished the importance of possible features we
hoped the model would capture. Second, both OHPE and OHJA guide the
programming into a specific direction where students learn a unified style
to program these tasks. Having a general style learned from the course
material and exercises, makes it hard to detect authors when using only
the submissions. Finally, the documents are very similar naturally as the
exercises measure a specific knowledge per task, meaning that the solution
space is limited.

Something can be still said about reducing false accusations. Our simi-
larity detection uses a parameter to control the search range, which reflects
the threshold that decided when two source code documents are too sim-
ilar. With a low threshold, the amount of false accusations grows quickly
and vice versa i.e., in order to minimize false positives, one can use a high
threshold value. However as we saw during the evaluation, choosing the
best n-gram length and threshold value can be difficult, as these values are
highly data dependent. For example the submissions to SOCO competition
differs a lot from our data set and the only the training set of it is human
evaluated. Despite these shortcomings, SOCO’s training set is one of the few
publicly available data sets, that offers a plagiarized documents which are
all prelabeled and not synthetic. JPlag, on the other hand, is an existing
tool for plagiarism detection and as we saw during our evaluation, also it
generates false positives. The people using it must also come up with a way
of deciding a working threshold value, which in many cases can be impossible
due the lack of proper domain knowledge. Another thing that introduces
false positives, are the submissions for the same exercise, where the solution
space for is just too small to generate varying solutions.

6.2 Limitations of the study

Our study has limitations, mostly due to the assumptions we made. These
are 1) in-class plagiarism, 2) exercise focus, 3) single author and 4) plagiarism

69

direction. As these assumptions restrict the plagiarism to exist inside a single
course and exercise, we can’t say it is very realistic situation as plagiarism
can also be ongoing and exist between various courses by same plagiarists.
For example a student can use answers from previous iterations of the course,
can use material found from the Internet, and use a friend who has already
completed the course. These cases are difficult to detect as most of the
information can only be found outside the course, and thus many academic
studies use same assumptions as we, only difference being detecting the
plagiarism direction. There are many cases however, where the direction
is important for example when one wants to find the original source i.e.,
the sharer. Another major limitation is, as pointed out before, the poor
performance of authorship identification. With our real life data sets, the
amount of false positives in OHPE’s third task was so much that we had
to limit it by filtering out detected documents and our strategy was to
gather only documents for the biggest cluster emerged in OHPE, where the
similarity was maximum. Because we had to resort to this action in order
limit the work of the human expert, there can exist many true positives our
approach could not caught.

Another set of limitations are based on the choice of our approach, the
most problematic being the choice of the training data set for similarity
detection. We used the full training set of SOCO competition and its two
test sets, one containing no plagiarism and the another 28 cases decided by a
majority voting of other models, to tune our similarity detection model. Our
results show that the choice for hyperparameters using another non-course-
based data set is not easy to make as there exists a lack of proper domain
knowledge. For example 0.4 as the ε-range could work well for SOCO, but
produce large amount of false positives in OHPE. Other similarity detection
related limitation is that we use a fixed similarity measure and did not try out
other measures like for example the Euclidean distance. On the other hand,
limitations related to authorship identification include two major topics: we
did not restrict the vocabulary size using feature selection strategies and we
used a relatively simple probabilistic model. The vocabulary size for us was
278 000 unique features using character-level n-grams, which could have been
minimized by applying statistical methods e.g. chi-squared test, to select
only a set of most important features for classification. When speaking of
the model we used, it is a simple probabilistic model which is often used as a
baseline model and the assumption about non-existing feature correlation is
not true in real life, because source code is written by following the grammar
rules and various stylistic preferences e.g. spacing.

6.3 Future work

For the future, there are many approaches which could be taken. As an
example, one could use the process contrast to the final product, to get

70

more in-depth analysis of how the plagiarism occurs. One could also track
the style of an author inside a time frame, to see if it remains same over
time or changes. Different normalization methods and tokenization for both
similarity detection and authorship identification should be used, but at the
moment it is difficult as every source code data set differs from each other
thus no general guidelines can be given. Another important aspect is also
how the source code files are represented and handled during the detection.
We used the tree-format and project-level detection, but as well found from
other studies varying representations and granularities. For example to
minimize the amount of false positives during similarity detection, one could
first decompose a source code document into lines or other more coarse units
and then run the detection so that only parts of the documents would be
under the detection. But, even this approach wouldn’t help if the tasks are
too restricted by nature. Our results also revealed clusters which could be
studies more and generally more information about possible plagiarism can
be used to enhance the detection, like are same students regularly inside
same clusters and how correct non-plagiarized solutions could be filtered out
from the process. These emerging false positives are such a large issue, that
more effort should be put into tackling with them and looking if it’s possible
at all to find plagiarism inside a single course with short exercises.

We suggest that the concept of source code plagiarism should be more
researched, which means creating more studies answering to questions like 1)
What are the other topics related to source code plagiarism detection than
similarity detection and authorship identification?, 2) What is the amount of
data one needs to have for a precise detection?, 3) What kind of authorship
identification is possible to apply in a course with hundreds of students?, 4)
How much and what type of normalization can reduce the noise enough to
have a precise model? and 5) What types of data can be collected from a
student, so she can be accused from the act of plagiarism?. The field of source
code plagiarism detection offers many use cases for techniques like large-scale
machine learning, statistical modeling, data mining, data visualization and
artificial neural network, but the problem lies more in defining the actual
plagiarism. Even our human expert told after the evaluation, that it was
hard for some tasks to tell if it was plagiarism or just coincidental similarity,
which raises the question that how much evidence the plagiarism detection
process should gather and from where. We believe that using one course
as a detection target makes the overall detection difficult and using only
one model, makes accurate detection process nearly impossible. Thus more
effort should but into research of multi-model approaches, where similarity
detection plays a small part of much bigger detection process. There should
also exist more publicly available datasets containing proven cases of source
code plagiarism, which could be used for further academic research. In this
way, researchers could validate between different models.

71

7 Conclusion
The problem of software plagiarism detection is difficult as the term itself
is very vague. In its simplest form, plagiarism can mean direct copying
and in its most complex forms it is undetectable because the plagiarist has
obfuscated the document. To detect plagiarism in large amounts of source
codes, as seen in many programming courses, one must resort to tools that
can help humans with the overwhelming process of comparing large amount
of documents together.

In this thesis, we (1) conducted a systematic literature review on the
topic of How source code plagiarism can be detected in a set of documents, (2)
proposed a novel categorization between various plagiarism detection models,
(3) proposed an n-gram-based approach to detect software plagiarism using
two real-life data sets, and (4) compared it to an existing plagiarism detection
tool.

Our proposed approach consists of two parts: similarity detection and
authorship identification. The similarity detection model, which measures the
similarity between documents, works fairly well when our results were verified
by a human expert. We selected this model by running multiple tests ranging
from numerical evaluation to inspecting sizes of emerged similarity groups,
and found that false positives were often detected. Authorship identification
was tested using various training data and author pool sizes, but we were
unable to apply it in a useful way for our problem. The setback we faced
with the authorship identification was, in our opinion, due to the large size of
the formed vocabulary which minimized the importance of individual words.

Our preliminary results show that to some extent our approach is able
to detect plagiarism, as it was able to find all proven cases of plagiarism in
a predefined set of exams. However, the problem is not trivial because the
complexity of a human written text i.e., source code, provides interesting
challenges, as there are many ways to express the same logical meaning.
This means that the used vocabulary can grow very large for each student
and a fine balance must be found to decide which words or word pairs are
important for the detection task. Another challenge related to source code
plagiarism detection is to both acquire written samples for each student and
to decide which amount of samples is enough.

Based on the results of this thesis, we can say that decisions based on
single detection results are problematic, because the motivations and actions
behind a real plagiarism are multidimensional and proving plagiarism is
difficult. To be able to have a good detection approach, one must have
additional information about the possible plagiarism case, e.g. who the
sharer is and who has copied the document, if the creation process can reveal
more insight of the cheater, and how the suspects can be confirmed. Still,
computer-based tools can help with the overall process and reduce manual
work tremendously.

72

References
[1] Acampora, Giovanni and Cosma, Georgina: A fuzzy-based approach to

programming language independent source-code plagiarism detection. In
2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),
pages 1–8, Aug 2015.

[2] Ali, Asim M. El Tahir, Abdulla, Hussam M. Dahwa, and Snásel, Václav:
Overview and comparison of plagiarism detection tools. In DATESO,
pages 161–172, 2011.

[3] Alsulami, Bander, Dauber, Edwin, Harang, Richard, Mancoridis, Spiros,
and Greenstadt, Rachel: Source code authorship attribution using long
short-term memory based networks. In Computer Security – ESORICS
2017, pages 65–82. Springer International Publishing, 2017.

[4] Arabyarmohamady, S., Moradi, Hadi, and Asadpour, Masoud: A coding
style-based plagiarism detection. In Proceedings of 2012 International
Conference on Interactive Mobile and Computer Aided Learning (IMCL),
pages 180–186, Nov 2012.

[5] Bandara, Upul and Wijayarathna, Gamini: Deep neural networks for
source code author identification. In Proceedings, Part II, of the 20th
International Conference on Neural Information Processing - Volume
8227, ICONIP 2013, pages 368–375. Springer-Verlag New York, Inc.,
2013.

[6] Bandara, Upul and Wijayarathna, Gamini: Source code author iden-
tification with unsupervised feature learning. Pattern Recogn. Lett.,
34(3):330–334, February 2013, ISSN 0167-8655.

[7] Breslow, Lori, Pritchard, David, DeBoer, Jennifer, Stump, Glenda,
D. Ho, Andrew, and Seaton, Daniel: Studying learning in the worldwide
classroom: Research into edX’s first MOOC. Research & Practice and
Assessment, June 2013.

[8] Brixtel, Romain, Fontaine, Mathieu, Lesner, Boris, Bazin, Cyril, and
Robbes, Romain: Language-independent clone detection applied to pla-
giarism detection. In 2010 10th IEEE Working Conference on Source
Code Analysis and Manipulation, pages 77–86, Sept 2010.

[9] Burrows, Steven and Tahaghoghi, Seyed MM: Source code authorship
attribution using n-grams. In Proceedings of the Twelth Australasian Doc-
ument Computing Symposium, Melbourne, Australia, RMIT University,
pages 32–39. Citeseer, 2007.

73

[10] Burrows, Steven, Uitdenbogerd, Alexandra L., and Turpin, Andrew:
Application of information retrieval techniques for source code authorship
attribution. In Proceedings of the 14th International Conference on
Database Systems for Advanced Applications, DASFAA ’09, pages 699–
713, Berlin, Heidelberg, 2009. Springer-Verlag.

[11] Cosma, Georgina and Joy, Mike: Towards a definition of source-code
plagiarism. IEEE Transactions on Education, 51(2):195–200, 2008.

[12] Cosma, Georgina and Joy, Mike: An approach to source-code plagia-
rism detection and investigation using latent semantic analysis. IEEE
Transactions on Computers, 61(3):379–394, March 2012.

[13] Cruz, Aarón Ramírez de la, Rosa, Gabriela Ramírez de la,
Sánchez Sánchez, Christian, and Jiménez Salazar, Héctor: On the impor-
tance of lexicon, structure and style for identifying source code plagiarism.
In Proceedings of the Forum for Information Retrieval Evaluation, FIRE
’14, pages 31–38. ACM, 2015.

[14] Cruz, Aarón Ramírez de la, Rosa, Gabriela Ramírez de la,
Sánchez Sánchez, Christian, Jiménez Salazar, Héctor, Rodríguez-
Lucatero, Carlos, and Luna-Ramírez, Wulfrano Arturo: High level fea-
tures for detecting source code plagiarism across programming languages.
In FIRE Workshops, pages 10–14, 2015.

[15] Dick, Martin, Sheard, Judy, Bareiss, Cathy, Carter, Janet, Joyce, Don-
ald, Harding, Trevor, and Laxer, Cary: Addressing student cheating:
Definitions and solutions. SIGCSE Bull., 35(2):172–184, June 2002,
ISSN 0097-8418. http://doi.acm.org/10.1145/782941.783000.

[16] Ding, Haibiao and Samadzadeh, Mansur H.: Extraction of Java pro-
gram fingerprints for software authorship identification. J. Syst. Softw.,
72(1):49–57, June 2004, ISSN 0164-1212.

[17] Ester, Martin, Kriegel, Hans Peter, Sander, Jörg, and Xu, Xiaowei:
A density-based algorithm for discovering clusters a density-based al-
gorithm for discovering clusters in large spatial databases with noise.
In Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining, KDD’96, pages 226–231. AAAI Press, 1996.
http://dl.acm.org/citation.cfm?id=3001460.3001507.

[18] Faidhi, J. A. W. and Robinson, S. K.: An empirical approach for detecting
program similarity and plagiarism within a university programming en-
vironment. Comput. Educ., 11(1):11–19, January 1987, ISSN 0360-1315.
http://dx.doi.org/10.1016/0360-1315(87)90042-X.

74

http://doi.acm.org/10.1145/782941.783000
http://dl.acm.org/citation.cfm?id=3001460.3001507
http://dx.doi.org/10.1016/0360-1315(87)90042-X

[19] Flores, Enrique, Barrón-Cedeño, Alberto, Moreno, Lidia, and Rosso,
Paolo: Uncovering source code reuse in large-scale academic environ-
ments. Computer Applications in Engineering Education, 23(3):383–390,
2015.

[20] Frantzeskou, Georgia, MacDonell, Stephen, Stamatatos, Efstathios,
Georgiou, Stelios, and Gritzalis, Stefanos: The significance of user-
defined identifiers in Java source code authorship identification. In-
ternational Journal of Computer Systems Science and Engineering,
26:139–148, March 2011.

[21] Frantzeskou, Georgia, MacDonell, Stephen, Stamatatos, Efstathios, and
Gritzalis, Stefanos: Examining the significance of high-level programming
features in source code author classification. J. Syst. Softw., 81(3):447–
460, 2008, ISSN 0164-1212.

[22] Fu, Deqiang, Xu, Yanyan, Yu, Haoran, and Yang, Boyang: WASTK: A
weighted abstract syntax tree kernel method for source code plagiarism
detection. Scientific Programming, 2017:7809047:1–7809047:8, 2017.

[23] Ganguly, Debasis and Jones, Gareth J. F.: An information retrieval
approach for source code plagiarism detection. In Proceedings of the
Forum for Information Retrieval Evaluation, FIRE ’14, pages 39–42.
ACM, 2015.

[24] Ganguly, Debasis, Jones, Gareth J. F., Cruz, Aarón Ramírez de la,
Rosa, Gabriela Ramírez de la, and Villatoro Tello, Esaú: Retrieving and
classifying instances of source code plagiarism. Information Retrieval
Journal, Sep 2017.

[25] Golub, G. H. and Reinsch, C.: Singular value decomposition and
least squares solutions. Numer. Math., 14(5):403–420, April 1970,
ISSN 0029-599X.

[26] Hastie, Trevor, Tibshirani, Robert, and Friedman, Jerome: The elements
of statistical learning: data mining, inference and prediction. Springer,
2nd edition, 2009.

[27] Heblikar, Saimadhav, Sharma, Poorva, Munnangi, Manogna, and Banka-
pur, Channa: Normalization based stop-word approach to source code
plagiarism detection. In FIRE Workshops, 2015.

[28] Hellas, Arto, Leinonen, Juho, and Ihantola, Petri: Plagiarism in take-
home exams: Help-seeking, collaboration, and systematic cheating. In
Proceedings of the 2017 ACM Conference on Innovation and Technology
in Computer Science Education, ITiCSE ’17, pages 238–243, New York,
NY, USA, 2017. ACM, ISBN 978-1-4503-4704-4. http://doi.acm.org/
10.1145/3059009.3059065.

75

http://doi.acm.org/10.1145/3059009.3059065
http://doi.acm.org/10.1145/3059009.3059065

[29] Johnson, Stephen C: Yacc: Yet another compiler-compiler, volume 32.
Bell Laboratories Murray Hill, NJ, 1975.

[30] Joy, Mike and Luck, Michael: Plagiarism in programming assign-
ments. IEEE Transactions on Education, 42(2):129–133, May 1999,
ISSN 0018-9359.

[31] Kibriya, Ashraf M., Frank, Eibe, Pfahringer, Bernhard, and Holmes,
Geoffrey: Multinomial Naive Bayes for text categorization revisited. In
Proceedings of the 17th Australian Joint Conference on Advances in
Artificial Intelligence, AI’04, pages 488–499, Berlin, Heidelberg, 2004.
Springer-Verlag, ISBN 3-540-24059-4, 978-3-540-24059-4.

[32] Kothari, Ja., Shevertalov, Maxim, Stehle, Edward, and Mancoridis,
Spiros: A probabilistic approach to source code authorship identifica-
tion. In Information Technology, 2007. ITNG ’07. Fourth International
Conference on, pages 243–248, April 2007.

[33] Krsul, Ivan and Spafford, Eugene H.: Authorship analysis: identifying
the author of a program. Computers & Security, 16(3):233 – 257, 1997,
ISSN 0167-4048.

[34] Lange, Robert Charles and Mancoridis, Spiros: Using code metric his-
tograms and genetic algorithms to perform author identification for
software forensics. In Proceedings of the 9th Annual Conference on
Genetic and Evolutionary Computation, GECCO ’07, pages 2082–2089.
ACM, 2007.

[35] Levenshtein, V. I.: Binary Codes Capable of Correcting Deletions, In-
sertions and Reversals. Soviet Physics Doklady, 10:707, February 1966.

[36] Manning, Christopher D., Raghavan, Prabhakar, and Schütze, Hinrich:
Introduction to Information Retrieval. Cambridge University Press, New
York, NY, USA, 2008, ISBN 0521865719, 9780521865715.

[37] Mccallum, Andrew and Nigam, Kamal: A comparison of event models
for Naive Bayes text classification. In AAAI-98 workshop on learning
for text categorization, volume 752, pages 41–48, May 2001.

[38] Moussiades, Lefteris and Vakali, Athena: PDetect: A clustering approach
for detecting plagiarism in source code datasets. The Computer Journal,
48(6):651–661, Nov 2005.

[39] Muddu, Basavaraju, Asadullah, Allahbaksh, and Bhat, Vasudev: CPDP:
A robust technique for plagiarism detection in source code. In 2013 7th
International Workshop on Software Clones (IWSC), pages 39–45, May
2013.

76

[40] Ng, Sin Chun, Lui, Andrew Kwok Fai, and Wong, Lai Shan: Tree-
based comparison for plagiarism detection and automatic marking of
programming assignments. In Engaging Learners Through Emerging
Technologies, pages 165–179, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

[41] Novak, Matija: Review of source-code plagiarism detection in academia.
In 2016 39th International Convention on Information and Communi-
cation Technology, Electronics and Microelectronics (MIPRO), pages
796–801, May 2016.

[42] Ohmann, Tony and Rahal, Imad: Efficient clustering-based source code
plagiarism detection using PIY. Knowledge and Information Systems,
43(2):445–472, May 2015.

[43] Okoli, Chitu and Schabram, Kira: A guide to conducting a systematic
literature review of information systems research. SSRN Electronic
Journal, 10, May 2010.

[44] Pieterse, Vreda: Decoding code plagiarism. In Proceedings of the 44th
Annual Conference of the Southern African Computer Lecturers’ Asso-
ciation (SACLA), 2014.

[45] Prechelt, Lutz, Malpohl, Guido, and Philippsen, Michael: Finding pla-
giarisms among a set of programs with JPlag. J. UCS, 8(11):1016,
2002.

[46] Roy, Chanchal K., Cordy, James R., and Koschke, Rainer: Compar-
ison and evaluation of code clone detection techniques and tools: A
qualitative approach. Sci. Comput. Program., 74(7):470–495, May
2009, ISSN 0167-6423. http://dx.doi.org/10.1016/j.scico.2009.
02.007.

[47] Sáez, Enrique Flores, Rosso, Paolo, Boronat, Lidia Ana Moreno, and
Villatoro-Tello, Esaú: PAN@ FIRE: Overview of SOCO track on the
detection of source code re-use. ACM, 2014.

[48] Schubert, Erich, Sander, Jörg, Ester, Martin, Kriegel, Hans Peter, and
Xu, Xiaowei: DBSCAN revisited, revisited: Why and how you should
(still) use DBSCAN. ACM Trans. Database Syst., 42(3):19:1–19:21,
July 2017, ISSN 0362-5915. http://doi.acm.org/10.1145/3068335.

[49] Smith, T.F. and Waterman, M.S.: Identification of common molecular
subsequences. Journal of Molecular Biology, 147(1):195 – 197, 1981,
ISSN 0022-2836.

77

http://dx.doi.org/10.1016/j.scico.2009.02.007
http://dx.doi.org/10.1016/j.scico.2009.02.007
http://doi.acm.org/10.1145/3068335

[50] Sokolova, Marina and Lapalme, Guy: A systematic analysis of per-
formance measures for classification tasks. Information Processing &
Management, 45(4):427 – 437, 2009, ISSN 0306-4573.

[51] Son, Jeong Woo, Noh, Tae Gil, Song, Hyun Je, and Park, Seong Bae:
An application for plagiarized source code detection based on a parse
tree kernel. Eng. Appl. Artif. Intell., 26(8):1911–1918, September 2013,
ISSN 0952-1976.

[52] Stamatatos, Efstathios: A survey of modern authorship attribution
methods. J. Am. Soc. Inf. Sci. Technol., 60(3):538–556, March 2009,
ISSN 1532-2882.

[53] Tennyson, Matthew F. and Mitropoulos, Francisco J.: A Bayesian
ensemble classifier for source code authorship attribution. In Traina,
Agma Juci Machado, Traina, Caetano, and Cordeiro, Robson Leonardo
Ferreira (editors): Similarity Search and Applications, pages 265–276.
Springer International Publishing, 2014.

[54] Tennyson, Matthew F. and Mitropoulos, Francisco J.: Choosing a profile
length in the SCAP method of source code authorship attribution. In
IEEE SOUTHEASTCON 2014, pages 1–6, March 2014.

[55] Verco, Kristina L. and Wise, Michael J.: Software for detecting suspected
plagiarism: Comparing structure and attribute-counting systems. In
Proceedings of the 1st Australasian Conference on Computer Science
Education, ACSE ’96, pages 81–88, New York, NY, USA, 1996. ACM,
ISBN 0-89791-845-2. http://doi.acm.org/10.1145/369585.369598.

[56] Vihavainen, Arto, Luukkainen, Matti, and Kurhila, Jaakko: Multi-
faceted support for MOOC in programming. In Proceedings of
the 13th Annual Conference on Information Technology Education,
SIGITE ’12, pages 171–176, New York, NY, USA, 2012. ACM,
ISBN 978-1-4503-1464-0. http://doi.acm.org/10.1145/2380552.
2380603.

[57] Vihavainen, Arto, Paksula, Matti, and Luukkainen, Matti: Extreme
apprenticeship method in teaching programming for beginners. In Pro-
ceedings of the 42Nd ACM Technical Symposium on Computer Sci-
ence Education, SIGCSE ’11, pages 93–98, New York, NY, USA,
2011. ACM, ISBN 978-1-4503-0500-6. http://doi.acm.org/10.1145/
1953163.1953196.

[58] Vihavainen, Arto, Vikberg, Thomas, Luukkainen, Matti, and Pär-
tel, Martin: Scaffolding students’ learning using Test My Code. In
Proceedings of the 18th ACM Conference on Innovation and Tech-
nology in Computer Science Education, ITiCSE ’13, pages 117–122,

78

http://doi.acm.org/10.1145/369585.369598
http://doi.acm.org/10.1145/2380552.2380603
http://doi.acm.org/10.1145/2380552.2380603
http://doi.acm.org/10.1145/1953163.1953196
http://doi.acm.org/10.1145/1953163.1953196

New York, NY, USA, 2013. ACM, ISBN 978-1-4503-2078-8. http:
//doi.acm.org/10.1145/2462476.2462501.

[59] Wise, Michael: String similarity via Greedy String Tiling and running
Karp-Rabin matching. Online Preprint, January 1993.

[60] Wisse, Wilco and Veenman, Cor: Scripting DNA: Identifying the
JavaScript programmer. Digital Investigation, 15:61 – 71, 2015. Special
Issue: Big Data and Intelligent Data Analysis.

[61] Xiong, Hao, Yan, Haihua, Li, Zhoujun, and Li, Hu: Buaa antiplagiarism:
A system to detect plagiarism for C source code. In 2009 International
Conference on Computational Intelligence and Software Engineering,
pages 1–5, Dec 2009.

[62] Zhang, Chunxia, Wang, Sen, Wu, Jiayu, and Niu, Zhendong: Authorship
identification of source codes. In Web and Big Data, pages 282–296.
Springer International Publishing, 2017.

[63] Zhang, Harry: The optimality of Naïve Bayes. In In FLAIRS2004
conference, 2004.

[64] Zhang, Li ping and Liu, Dong sheng: AST-based multi-language plagia-
rism detection method. In 2013 IEEE 4th International Conference on
Software Engineering and Service Science, pages 738–742, May 2013.

79

http://doi.acm.org/10.1145/2462476.2462501
http://doi.acm.org/10.1145/2462476.2462501

A Sample programs
These three functionally similar source codes belong to three imaginary
authors A, B and C. They are used throughout the study as examples.
The task for all is to create a program that calculates mean between three
numbers: 5, 10, 2.

Listing 1: Java example belonging to author A
public class A{

public static void main(String[] args){
int a = 5;
int b = 10;
int c = 2;
double d = (a + b + c)/(double)3;
System.out.println(d);

}
}

Listing 2: Java example belonging to author B
public class B{

public static void main(String[] b){
int sum = 5 + 10 + 2;
double res = sum / 3.0;
System.out.println(res);

}
}

Listing 3: Java example belonging to author C
public class C{

public static void main(String[] b){
System.out.println((5 + 10 + 2)/3.0);

}
}

80

B Token list

Table 31: Token list for Java.

Token Equivalency Example

1 IMPORT Import declaration import java.awt.*;

2 PACKAGE Package declaration package foo;

3 VARDEF Variable declaration int a;

4 CLASS{ Enter class declaration public class A{

5 CATCH{ Enter catch clause try {catch (...){} }

6 INCLASS{ Statement inside a class -

7 ENUM{ Enter enum declaration public enum Day {

8 APPLY Method call, Explicit constructor invoca-
tion, Generic invocation

System.out.print(...);

9 NEWCLASS Create object new A(...);

10 NEWARRAY Create array object new int[5];

11 TRY{ Enter try declaration try {

12 INTERF{ Enter interface declaration interface Foo {

13 METHOD{ Enter method declaration void foo(int a) {

14 VOID Void method void main(String[] args)

15 CASE Case in switch statement case MONDAY:

16 CONSTR{ Enter constructor declaration public A(int a, int b) {

17 ARRINIT{ Enter array initialization new int[] {1, 2};

18 ASSIGN Variable assignment a += 5;

19 COND Conditional expression (a > b) ? a : b;

20 LOOP{ Enter for, while, do statement for(...) {

21 IF{ Enter if clause if(...) {

22 THROW Throw statement throw new Exception();

23 BREAK Break statement in loop break;

24 CONTINUE Continue statement in loop continue;

25 RETURN Return statement return a + b;

26 SWITCH{ Enter switch statement switch(...) {

Table 31 shows the token list used to transform a parse tree into a continuous
string of tokens. Every token with ending bracket also has a reserved token
when exiting the statement.

81

	Introduction
	Background
	Source code plagiarism
	Similarity detection
	Authorship identification
	Information retrieval
	Document representation
	Document similarity
	Retrieval metrics

	Document classification
	Document clustering
	Summary

	Literature Survey
	Survey methodology
	Categorization
	Descriptive statistics
	Methods
	Similarity detection
	Authorship identification
	Findings

	Research Design
	Assumptions
	Data set
	Document normalization
	Document representation
	Similarity detection
	Authorship identification
	Evaluation

	Results
	Document similarity
	Authorship identification
	PLGDetect

	Discussion
	Revisiting research questions
	Limitations of the study
	Future work

	Conclusion
	References
	Sample programs
	Token list

