
Protection of Information and Communications in Distributed Systems
and Microservices

Antti Myyrä

Master's Thesis
UNIVERSITY OF HELSINKI
Department of Computer Science

Helsinki, October 31, 2018

HELSINGIN YLIOPISTO – HELSINGFORS UNIVERSITET – UNIVERSITY OF HELSINKI
Tiedekunta – Fakultet – Faculty

 Faculty of Science

 Laitos – Institution – Department

 Department of Computer Science
Tekijä – Författare – Author

 Antti Myyrä
Työn nimi – Arbetets titel – Title

 Protection of Information and Communications in Distributed Systems and Microservices
Oppiaine – Läroämne – Subject

 Computer Science
Työn laji – Arbetets art – Level

 Master's Thesis
 Aika – Datum – Month and year

 October 31, 2018
 Sivumäärä – Sidoantal – Number of pages

 64
Tiivistelmä – Referat – Abstract

 Distributed systems have been a topic of discussion since the 1980s, but the adoption of
microservices has raised number of system components considerably. With more decentralised
distributed systems, new ways to handle authentication, authorisation and accounting (AAA) are
needed, as well as ways to allow components to communicate between themselves securely. New
standards and technologies have been created to deal with these new requirements and many of them
have already found their way to most used systems and services globally.

 After covering AAA and separate access control models, we continue with ways to secure
communications between two connecting parties, using Transport Layer Security (TLS) and other
more specialised methods such as the Google-originated Secure Production Identity Framework for
Everyone (SPIFFE). We also discuss X.509 certificates for ensuring identities. Next, both older time-
tested and newer distributed AAA technologies are presented. After this, we are looking into
communication between distributed components with both synchronous and asynchronous
communication mechanisms, as well as into the publish/subscribe communication model popular with
the rise of the streaming platform.

 This thesis also explores possibilities in securing communications between distributed endpoints
and ways to handle AAA in a distributed context. This is showcased in a new software component that
handles authentication through a separate identity endpoint using the OpenID Connect authentication
protocol and stores identity in a Javascript object-notation formatted and cryptographically signed
JSON Web Token, allowing stateless session handling as the token can be validated by checking its
signature. This enables fast and scalable session management and identity handling for any distributed
system.

ACM Computing Classification System (CCS):

Security and privacy
 Security services
 Authentication
 Authorization
 Systems security
 Distributed systems security

Computer systems organization
 Architectures
 Distributed architectures

Avainsanat – Nyckelord – Keywords

AAA, distributed systems, microservices, secure communication
Säilytyspaikka – Förvaringställe – Where deposited

Muita tietoja – Övriga uppgifter – Additional information

1

Table of Contents

1. Introduction..2
2. Authentication, Authorisation & Accounting..4
3. Access Control Models..6

3.1. Mandatory Access Control...6
3.2. Role-Based Access Control...7
3.3. Discretionary Access Control..8
3.4. Attribute-Based Access Control...8

4. Secure Communication over Networks...10
4.1. Diffie-Hellman Key Exchange...10
4.2. Public Key Infrastructure...11
4.3. Transport Layer Security...13

5. Distributed Systems and Microservices...16
5.1. Overlays and Service Meshes..17
5.2. Secure Communication Mechanisms Between Services.....................................18

5.2.1. Mutual TLS..19
5.2.2. Secure Production Identity Framework for Everyone..................................20

6. Distributed Authentication, Authorisation & Accounting...21
6.1. Traditional Mechanisms of Distributed AAA..23

6.1.1. Simple Authentication Security Layer...24
6.1.2. Kerberos...24
6.1.3. Security Assertion Markup Language..26

6.2. New distributed authentication & authorisation models......................................27
6.2.1. JSON-based standards..27
6.2.2. OAuth 2.0...29
6.2.3. OpenID Connect...32
6.2.4. Macaroons..33

7. Communication Mechanisms Between Microservices and Distributed Systems........36
7.1. Synchronous Mechanisms..36

7.1.1. Remote Procedure Calls...37
7.1.2. HTTP-Based Methods..38

7.2. Asynchronous mechanisms..39
7.2.1. Advanced Message Queuing Protocol ..41
7.2.2. Message Queue Telemetry Transport...41
7.2.3. Message Broker Specific Protocols..42

8. Authentication, Session Management and Identity Propagation for Microservices....44
9. Conclusions..46
References..48
Attachment: Ambassador AuthService..53

A.1. Main..53
A.2. Login...55
A.3. Auth...59

2

1. Introduction

Any system that can be used by more than a single user must have some form of au-

thentication, authorisation and accounting (AAA) taking place. Some part of AAA can

happen outside of a computer system, for example having a guard standing in front of

the room housing computers that are not connected to external networks. When users

have different roles and privileges, a more sophisticated AAA setup needs to be in place

and the guard might have a list of people and what they are allowed to do. With connec-

ted systems that can be accessed from anywhere on the planet, validating users, their

permissions and logging their actions automatically is vital for any system or software

in order to function properly.

As the amount of software used in the world constantly grows, so does the amount of

flaws and security vulnerabilities available for attackers. With European Union's Gener-

al Data Protection Regulation (GDPR) and similar legal frameworks around the world,

organisations are looking into securing their systems with emerging priority. The AAA

is a key part of these endeavours: while we want to provide users their data, we are also

trying to prevent unauthorised access by anyone else. With the number of system integ-

rations rising constantly, more often another system ends up using the service instead of

the end user. As systems use each others' data, it is also critical to know where the cop-

ies of the data end up and to what ends the data will be used in the future. In this regard

privacy of users' own data is also a growing concern.

As systems grow more complex, data itself is often stored separately from the user ac-

counts. To complicate this, decisions on who is allowed to read and modify the data de-

pend on their identity. Modern AAA provides the solutions for both tying the user back

to her data, as well as giving service the tools to verify that the user is also the one she

claims to be. Another current development is the increasing complexity of system archi-

tectures in the Internet of Things (IoT), where a sensor or probe might not only produce

data, but can also use data gathered by others to enhance its own functionality. As com-

plexity and amount of data grows, so do demands of load that systems are expected to

handle. Either authentication or authorisation cannot become a bottleneck that restricts

development.

3

In Chapters 3, 4 and 5 we discover current and time-tested technologies in securing and

verifying data and communications between systems, with focus on access control, the

Transport Layer Security (TLS), Public Key Infrastructure (PKI) and communication

frameworks for distributed systems. In Chapter 6 we are looking into frameworks and

technologies that have been traditionally used to enable AAA for distributed systems.

Chapter 7 consists of communication models between separated system components and

systems with focus on the synchronous and asynchronous communication, as well as the

publish/subscribe communication model.

In Chapter 8 we are presenting an example of how new technologies can be put togeth-

er, with an authentication service implementation for an open source Ambassador API

gateway [Amb17]. The service offers authentication by acting as OpenID Connect au-

thentication protocol client, storing authentication details in cryptographically signed

claim-representations, JSON Web Tokens (JWT). These JWTs can also be validated

without earlier knowledge of them on each incoming request, as they carry the proof of

authentication with them and they can be validated from their signature. The service can

also revoke signed tokens and operate both by itself or scale in parallel, supporting any

number of users without too much effort.

4

2. Authentication, Authorisation & Accounting

In this chapter we cover the basics of authentication, authorisation and accounting

(AAA). The emphasis will be on definitions of AAA concepts, as well as the most com-

mon access control models currently in use and examples of their usage.

Authentication involves validating that the user is who she claims to be [MET99]. Au-

thentication is often done with username and password, or by transferring the identity

from another service that has authenticated the user. Other methods involve using certi-

ficates and secondary tokens, but these are usually used together with passwords. We

will cover cryptography-based authentication and especially certificates more thor-

oughly in section 3.

Once identity has been confirmed, each action the user takes must be validated to be

within their assigned privileges. Authorisation covers the validation of actions accord-

ing to system-specific conditions. Principles for secure authorisation design were

presented in 1975 by Saltzer and Schroeder [SaS75]. Despite their work coming from an

age where the Internet or distributed systems did not exist, it is still surprisingly current

in its design suggestions. One example of these suggestions is the Complete Mediation

principle, which states that every access to every object within the system must be

checked for authority each time it is accessed. This guarantees that changes to user priv-

ileges are in effect immediately, not only after the user logs in next time. Other good

basis for secure systems is the Least Privilege principle, meaning that all users, roles or

groups should always start without any rights and only ones needed to complete the task

should be given.

After user has been correctly identified and each action authorised, actions taken must

also be logged and this is where accounting comes in. Accounting covers collecting the

information of user actions, which can then be used for logging, billing and possible se-

curity alerts if user is doing something that normally should not be done, even with the

correct privileges. In secure systems, logs should also be sent to a separate location so

accounting is preserved even in the event of a hacking incident or a catastrophic failure

where the system is wiped out. Accounting is not covered too broadly in this thesis, al-

though it is a key part of any secure system. The reason for this is the fact that account-

5

ing itself is useless without authentication and authorisation, but it can be fitted into any

of the models that we cover. A little bit more about accounting can be found in Chapter

6, where we look into the simplicity of accounting with different authentication and au-

thorisation technologies.

6

3. Access Control Models

Access control is the enforcement of rights after the user has been authorised and au-

thenticated: to whom the access to a resource is given and who should not be allowed.

Access control models differ based on whether we want to target individual users, user

groups or perhaps both. Starting from simple mandatory access control, models have

evolved as use cases have grown more complex [KHD10]. Currently numerous models

exist for different scenarios, but most of them can be categorised into four different

classes that we cover more deeply in the following subchapters. To simplify differences

and present different use cases, we're using an example of hospital IT with all the mod-

els.

3.1. Mandatory Access Control

Mandatory access control (MAC) gives control to an administrator of the resources.

The creator of a file or the end user, to whom access is given, cannot delegate access

further. Its history in the US military data protection, MAC has strict organisational

hierarchy and two different security models known as Biba and Bell-LaPadula [Lin06].

Biba is a more open model, where users at lower clearance levels can read what users at

higher levels have written, but cannot themselves modify this information. Bell-LaPad-

ula on the other hand, is the more standard access model where users at higher clearance

levels can read and modify anything others have written at lower levels, but cannot read

(or modify) anything created in clearance levels higher than their own. Bell-LaPadula is

the access control model most often used when handling critical information.

The MAC can be used to create simple rules that can easily cover every use case within

the organisation, but it can also freeze organisational structures, as changes to a more

non-hierarchical structure are not supported by the used access control model.

In our example, a hospital using MAC might be using Bell-LaPadula, as performance

reviews of personnel, done by their superiors, should not be readable by their cowork-

ers. This allows more senior physicians on a higher authorisation level to read and

modify drug prescriptions and medical reports created by doctors with lower seniority,

but would not allow nurses to view them while attending to a patient. If we do not need

7

patients to have access to the system, the Biba model, where younger doctors and nurses

can see the info for all patients, but cannot modify them without action from the attend-

ing physician, might be a more suitable candidate as the access control model. Account-

ing is also critical in protection of patient records and each access or modification

should be recorded and later validated to prevent confidential knowledge from spread-

ing.

3.2. Role-Based Access Control

Role-based access control (RBAC) does not concern itself with organisational structure

nor individual users, but the roles they possess [SCF96]. For example, user with the role

"employee" might see only her own information, whereas user with the role "HR" can

see other people's information as well, but cannot delete anything as this is reserved

only for the user with the "administrator" role. In RBAC, access can also be given to a

combination of roles so only HR people within a specific department might be able to

access the personal information of people within their department, but not personal in-

formation from other department's personnel. Similarly to MAC, in RBAC users often

cannot delegate access rights outside their own groups and rights are often given based

on automated policies.

With increased complexity, role delegation also requires more planning and auditing

from time to time, with the time period depending on the confidentiality of the protected

information. To reduce complexity, RBAC also includes sub model categories that limit

allocated roles based on the login session [SCF96]. With the Core RBAC (or Flat

RBAC) model, user is allowed only one role per session to prevent complex role man-

agement. The Hierarchical RBAC model is similar to Core RBAC in the sense that the

user will be equipped with the highest role in the role hierarchy according to her own

roles. As access management in hierarchical RBAC is based on roles and subroles, with

user being given the highest role that she has, without all the underlying roles. Between

single-role models and unlimited roles, there's also the Constrained RBAC model that

limits the number of roles based on organisational policy.

The RBAC for our example hospital might be based on hierarchical RBAC model, so

personnel can have access to patient information within their own department, but not to

patients in other departments of the same hospital. RBAC also allows for patients to ac-

8

cess the system as the patient role allows seeing their own medical records.

3.3. Discretionary Access Control

Known especially from the standard access control models of Unix and Linux, Discre-

tionary Access Control (DAC) is the most flexible of the four models. In file systems,

DAC allows the owner of a file or folder to completely control access to her resources

and even to change user and group ownership of the file to someone else [OSM00].

DAC also prevents unauthorised users from seeing object details, such as file size or

modification dates.

Flexibility makes DAC a compelling option as the administration does not have to deal

with user requests for access rights to information, but it also comes with a cost of se-

curity concerns. With DAC, any user can give out access to protected resources on pur-

pose or by accident, which both can be leveraged by malware or badly written software

running with user's access rights [OSM00].

As DAC can be quickly implemented, our hospital might initially use it with their

shared filesystems. With this, an accountant for the hospital might have write access to

all the bills her department sends, but have only read access to bills from other depart-

ments. When the accountant accidentally opens a new bill for the department that con-

tains ransomware, it would encrypt only the parts of the shared drive that can be written

into, leaving the fate of department bills to depend on how well their backup policy is

working. Bills from other departments would be safe as the accountant does not have

write access to them.

3.4. Attribute-Based Access Control

Attribute-Based Access Control (ABAC) is based on the idea of combined roles in

RBAC, but taken much further. The ABAC policies can include numerous rules with

simple Boolean Logic (if, else). For example, a policy can be used to check if the user is

over 18 years old and if she has completed necessary safety courses and has a driver's li-

cense in order to rent a car [YuT05]. Other simple use case for ABAC are university

courses where student has to have necessary knowledge before participating to a higher-

level course.

9

Common downside of ABAC is the added complexity that can lead to someone gaining

access to wrong resources. Prevention of these cases requires sane defaults, well-

thought out rules and continuous auditing.

ABAC policies in the example hospital environment could be related to individual per-

formed operations. For example, a surgeon might have read and write access to a sur-

gery report for an operation that she is performing, but only read access to a one that is

done by one of her colleagues. After the surgery has been completed and report written,

write access might be revoked to maintain auditable records of past events.

10

4. Secure Communication over Networks

For almost any single network request over the Internet, tens or hundreds of switches,

routers and servers are involved. Traffic can be listened in, captured or modified at any

point of its journey by malicious actors. Because of this, cryptography is required to en-

sure both confidentiality and integrity of digital communication between remote parties.

Public-key cryptography is a system that uses pairs of keys, public and private, to en-

crypt communication between parties. Public-key cryptography, also known as asym-

metric cryptography, was invented in two places [Ell99]. In 1970 a British government-

al cryptographer James H. Ellis presented his work in an internal document. Without

knowledge of Ellis' work, that was then a British government secret, two US crypto-

graphers, Whitfield Diffie and Martin Hellman invented a similar solution and pub-

lished it in 1976. Diffie and Hellman presented the key exchange algorithm named after

them as Diffie-Hellman key exchange that later became a starting point for most of se-

cure communication happening over the Internet. Ellis never received recognition for

his work as it was made public only after his death in 1997.

4.1. Diffie-Hellman Key Exchange

With key exchange algorithms, two parties can set up a secure way of communicating

without knowledge of each others' private keys, and without anyone else being able to

observe the conversation by listening even when the whole traffic session has been

copied.

In the Internet, one of the most common use cases for public-key cryptography is the

key exchange in Transport Layer Security (TLS). The TLS is a protocol enabling en-

crypted Hypertext Transport Protocol (HTTPS) traffic using a key-exchange algorithm

known as Diffie-Hellman key exchange [DVW92]. TLS, that also has support for other

key-exchange protocols, is in focus at Chapter 4.3. Diffie-Hellman (DH) is an imple-

mentation of modular arithmetics, where an interceptable modulus and base are used to-

gether with secret integers that each party keeps only to themselves. With secret in-

tegers, parties can set up a shared secret that is not feasible to calculate for anyone

listening in. This exchange is covered in Figure 1.

11

As both sides discard their secret integers after the session has ended, it is not possible

for a listener to decrypt the conversation afterwards. It is however possible to execute a

man-in-the-middle (MITM) attack, with attacker performing Diffie-Hellman key ex-

changes with both parties, making them think that they are communicating only with

each other. To prevent this, public key certificates are used to verify identity of the serv-

er, and in some cases to verify identity of the client as well.

The DH key exchange shown in Figure 1 is a simplified one and is presented in this

form as a toy example. Modern DH has considerably bigger values as secrets and prime

p. Currently recommended primes and secrets are 2048 bits in length [GiB17], making

possible combinations close to impossible to calculate for an eavesdropping attacker. In

addition elliptic curves are often used in place of modular arithmetics in a key-exchange

protocol known as Elliptic Curve Diffie-Hellman (ECDH) [Tur14].

4.2. Public Key Infrastructure

Methods and physical means for signing, distributing, using, storing, distributing and re-

voking certificates are collectively known as Public Key Infrastructure (PKI), and the

Figure 1: Diffie-Hellman key exchange (simplified)

12

standard format for certificates is known as X.509 [RFC5280]. The PKI defines how

trust to a specific certificate is allocated and how it propagates. Public key certificates

are proofs of key ownership, issued by an external trusted party known as a Certificate

Authority (CA) and validated by a Registration Authority (RA). PKI's use in certificate

acquisition is presented in Figure 2.

In a typical client-server context, server has a self-created private key that is kept secret

and never transmitted towards a client. In HTTPS, certificate subject is a certain host-

name, with a signed certificate proving that the private key belongs to the verified party.

The process involves a Certificate Signing Request (CSR) that includes owner informa-

tion such as company name, country and city, as well as Common Name (CN) and Sub-

ject Alternative Names (SAN) that are the domain names that require a certificate. Certi-

ficate authority processes the CSR and checks that the requesting party actually controls

the domain names that the certificate is requested for. The checks vary based on the

level of validation required for the certificate, but often a DNS record or file under a

specific path of the domain is required to grant a certificate for that domain.

Validation process varies depending on the type of certificate [RFC3647]. With domain

validation, only the control of the domain(s) mentioned in CSR is checked through a

HTTP request, email or a new DNS record and is the most common certificate valida-

Figure 2: Public Key Infrastructure for SSL certificates

13

tion type as it can be easily automated. Organisation validation involves confirming the

certificate with a person that is listed as a contact for the organisation in an official com-

pany register, in addition to domain validation. Extended validation covers both of these

and also requires a written intent by an official representative of a organisation request-

ing the certificate, as well as verification call from the RA to the representative to con-

firm the request.

Once the RA has finished validation, it will give a permission for the CA to issue a cer-

tificate for the requested domain names. The certificate has a property that as it was cre-

ated based on the specific CSR, it can also be used only with the private key used to cre-

ate the CSR. As browsers include the CA's root certificates, a new certificate is trusted

without updates for the browser. Certificates have a validity period covering from a few

months to even 3 years, preventing stolen certificates to be used indefinitely. If any

compromise is detected, certificates can be revoked faster in two different ways. The

original method was by using a Certificate Revocation List (CRL) that is maintained

and signed by the CA. The CRL is updated regularly by the browser and then used loc-

ally, so no external request is required for each check. CRLs are considered problematic

as they do not provide an instantaneous way to revoke a compromised certificate. Be-

cause of this an alternative method, known as the Online Certificate Status Protocol

(OCSP) is also used [RFC6960]. The CAs operate OCSP endpoints that have know-

ledge of every signed certificate, allowing users to check certificate validity in real time.

4.3. Transport Layer Security

Transport Layer Security (TLS) is a collection of cryptographic protocols that enable

secure communication over the Internet [Tur14]. Besides Diffie-Hellman, TLS also sup-

ports other key exchange algorithms and aims to be a standard for all secure communic-

ation over networks, fitting to almost every communication use case involving TCP.

TLS was originally developed in 1999 to replace the Secure Sockets Layer (SSL) de

facto standard that had been in use previously. Currently, an earlier SSL version 3.0 and

first TLS version 1.0 implementation are considered insecure and their use is discour-

aged. TLS versions currently supported are 1.1, 1.2 and the new version 1.3, which was

accepted as a standard in August 2018 [RFC8446].

14

As illustrated in Figure 3, when a client contacts the server with a list of cipher suites

and TLS versions supported, the server selects the best ones it supports and replies with

them accompanied by its public certificate and its public key. After verifying certificate

validity (signed by a known CA, has not been expired, not in revocation list and

checked with OCSP) to prevent MITM attacks, the client encrypts the response using

the server's public key, so it is decryptable only with the server's private key. Client-

generated Pre-shared key (PSK) is also included. Pre-shared key is used to set up the

shared secret used in the actual TLS session. Shared secret is agreed by using some

form of the Diffie-Hellman key exchange. As both parties delete the unique shared

secret after the session is over, the TLS sessions are not decryptable even if servers'

private key is exposed later. The undecryptability of older sessions is known as forward

secrecy.

Besides key exchange, TLS is also protecting the established connection. During key

exchange, parties also agree on the used cipher that will be symmetrically encrypted us-

ing the established shared secret. In addition, TLS also protects connection reliability as

it checks each incoming message with message authentication code, preventing the tam-

pering of encrypted data [RFC8446].

Figure 3: The TLS 1.2 three-way handshake. Diffie-Hellman

randomised strings shown in Figure 2 are sent as part of

ClientHello and ServerHello.

15

The older stable version, TLS 1.2 was published in 2008 and had served for exactly 10

years when it was superseded by TLS 1.3 [RFC8446], that brings in new supported

ciphers and obsoletes older ones. Perhaps the biggest change from the old standard is

the shorter handshake, shown in Figure 4: instead of the standard three-way handshake

shown in Figure 3, TLS 1.3 uses a two-way handshake to establish the connection, sav-

ing time every time user connects to a new server endpoint. TLS 1.3 can can also re-

sume previous TLS sessions with an earlier shared key (Session Ticket), allowing the

client to send encrypted data along the first TCP packet. This feature is known as Zero

Round Trip (0-RTT).

TLS forms the backbone of secure communication between networked hosts. In Chapter

5.1, we continue with the same TLS 1.3 standard to see how it can also be used to verify

connecting clients or any two parties wanting to share data securely.

Figure 4: TLS 1.3 handshake & 0-RTT resumption later

16

5. Distributed Systems and Microservices

As the term suggests, distributed systems consist of physically distributed components

that communicate with each other over a network. An example of such setup can be

seen in Figure 5. The scope of distributed systems varies, with some having all of their

components within a single datacenter, while others can have a global presence with

data stored and transferred between endpoints all around the world.

Even though application with its data residing on a separate server can also be defined

as a distributed system, we are focusing more on systems that have their data stored in

different locations. For example, user accounts and passwords can be stored in a separ-

ate location or service from the one used for the application. The application can then

call for the authentication service to verify user credentials.

Figure 5: An example of microservice platform with user accounts

stored in another service

17

The paradigm of disappearing master authority of data is clearly visible in the fields of

Internet of Things (IoT) and data processing. Traditionally, sensors have been the ones

publishing data and other systems have subscribed to their data feeds. This has lead to a

clear structure and direction for the system, even with many systems subscribing to the

same data [EFG03]. A newer, emerging paradigm that is shown in Figure 6 can have

sensors subscribing to each others' data and doing their own collecting based on that

data. The model, named as Connected Intranets of Things [RZL13], requires new types

of authentication and authorisation schemes as a single compromised sensor or probe

could otherwise be used to tamper and steal huge amounts of data. For example, if the

bed presented in Figure 6 could tell toilet to flush, it might do so repeatedly, wasting

huge amounts of water.

5.1. Overlays and Service Meshes

In a constantly changing environment the idea of servers having a dedicated IP address

or hostname is evaporating fast, as any service can exist only when it's needed or have

10 replicas of it to handle the incoming load. As virtualised or containerised applica-

tions can be started on any host, networking has evolved to find the correct destination

for requests. As shown in Figure 7, overlay network operates through virtual network

interfaces within compute nodes, and passes its packets encapsulated through a standard

physical network.

Figure 6: The movement of data within the IoT and Connected Intranets of Things

paradigms

18

Overlay networks can have the knowledge of each service endpoints location and can

forward traffic accordingly [AKB01], allowing services to talk with each other inde-

pendently of their physical location. With the addition of security features such as re-

quest auditing and firewalling, the concept of overlay networks has evolved into service

meshes that handle all communication between different distributed services. In Chapter

5.2.2, we are taking a closer look at Secure Production Identity Framework for Every-

one (SPIFFE) for network request authorisation and auditing and observe a real world

example of SPIFFE's usage in Chapter 8.

5.2. Secure Communication Mechanisms Between Services

The basis for secure networking has long been that private networks are secure and

communication within them is safe from prying eyes. With constantly changing distrib-

uted systems and changing attack vectors, this approach has become a liability and new

approaches are needed to secure the data [GiB17].

Often the first step in securing internal networks is the same we have been using for

communication over the Internet: TLS X.509 certificates. While this works fine on a

standard system where front end services query back end services, and they in turn

query databases, it may become problematic when services are subscribing and publish-

ing data to each other, similar to the Connected Intranets of Things model. Publish-sub-

Figure 7: Overlay network flows through the standard

physical network

19

scribe, explained in more detail in Chapter 7.2, requires both the sending and receiving

end to be sure about the other's identity. Below we are describing two ways to deal with

client authentication: mutual TLS using client certificates and a modern SPIFFE frame-

work using X.509 certificates in requests for authentication.

5.2.1. Mutual TLS

The TLS specification includes support for client certificates, allowing the server to ask

for the client to verify itself through some trusted CA that the server knows and trusts.

This allows an external party to verify clients and removes the need for password au-

thentication, trading password management for certificate management.

Client certificates are requested during the initial handshake by the server, when it adds

CertificateRequest to its first response [RFC8443], as shown in Figure 8. This adds a

step to the handshake as the client needs to send its certificate to the server, thus making

handshakes in TLS 1.3 a three-way and in TLS 1.2 a four-way one.

In untrusted networks, mutual TLS is a good choice for preventing brute-force and deni-

al of service attacks, as the attacker is not able to send any data without a valid certific-

ate. The disadvantage of using client certificates is the added overhead of certificate

management and renewal, although with the correct software this can be automated.

Figure 8: Mutual TLS handshake in TLS 1.3

20

5.2.2. Secure Production Identity Framework for Everyone

Secure Production Identity Framework for Everyone (SPIFFE) is an open standard initi-

ated by Google for service identities in a fastly changing distributed environments

[SPI17]. It is comprised of three components: a specification for naming identities

(SPIFFE ID), SPIFFE Verifiable Identity Document (SVID) for authenticating the ser-

vice in requests, and the Workload API specification to generate SVIDs for services,

making it possible to create, renew, revoke and verify SVID certificates. Workload API

functionality is for validating identity for a single service, and it is shown in Figure 9

along with other SPIFFE components.

SPIFFE IDs are Uniform Resource Identifiers (URIs) including the protocol (spiffe://),

trust domain (for example, prod.company.com) and a path that either identifies the ser-

vice (for example, /bi l l ing/backend), service owners (for example ,

/group/accounting/user/bill) or is just a unique identifier for it (for example /543ca66a-

3215-4f4b-a835-1771fe64279d). The trust domain does not need to be the actual ad-

dress of the platform, but it should remain the same for every service, with only the path

changing depending on the service.

The SVID is a certificate conforming to the X.509 standard [RFC6960], giving it the

same cryptographical properties as standard HTTPS certificates and making it possible

to verify SVIDs outside of SPIFFE. SVID is used with requests, making it possible for

the accessed service to verify the requesting party's identity and also to log it, making

auditing on a request-level a possibility.

Figure 9: SPIFFE communication between a web front end and an internal API

21

6. Distributed Authentication, Authorisation &
Accounting

Distributed Authentication, Authorisation and Accounting (AAA) is not a new theme,

with research and implementations existing from the beginning of 1990's. These imple-

mentations usually include a single point of failure in the authentication step, although

authorisation can in some cases be done in a distributed manner.

Figure 10 illustrates technologies presented in this chapter and their relation to authen-

tication, authorisation and accounting. The noticeable lack of accounting technologies is

due to the fact that accounting by itself does not do anything, and it is always related to

authentication or authorisation, or even both. Different technologies are organised in a

way that shows how simply accounting can be tied to their usage. Each one of the

presented technologies can be made to support accounting, but technologies such as

Kerberos are built in a way that makes accounting easier to provide.

As illustrated in Figure 11 below, authentication and authorisation in distributed sys-

tems can be done in four different ways. Each one of them includes different possibilit-

Figure 10: Technologies and their relation to AAA

22

ies on how authentication and authorisation can be arranged in distributed systems, and

each one has its own benefits and drawbacks.

The first example is the traditional one of each service doing their own authentication

and authorisation. When a monolithic application is broken down to smaller services

without re-thinking the AAA infrastructure, the same credentials database can be used

by all services. But as services grow and start requiring their own databases, services

start to maintain their own credentials along with object permissions for user authorisa-

tion. While this is an understandable situation when a service is growing and evolving,

it will eventually become too difficult to maintain and other models are needed.

Moving from local AAA to a more distributed direction, a second option is to do both

authentication and authorisation centrally, with services only abiding by the given per-

missions. In the case of user-specific access controls, this model might make it hard to

maintain more fine-grained object permissions, but with role or attribute based access

control (RBAC, ABAC) introduced in Chapter 2 it offers a single point for permission

management and policies.

Figure 11: Possibilities for distributed or centralised

authentication (authn) and authorisation (auths)

23

A compromise between the two models of everything local or everything centralised, is

to do authentication centrally and keep object permissions within each service. This en-

ables support for more fine-grained user-specific object permissions, but makes central-

ised permission policies harder to implement. Even though RBAC or ABAC cannot be

centrally implemented with this model, it might seem tempting as adding new permis-

sions to a single service can be more easily done.

The fourth model is to have centralised authorisation and localised authentication, with

each service validating the user on its own, but fetching access rights from a centralised

location. This model is arguably the worst of the four, and is only mentioned because of

completeness. As authentication is done locally, each service would need to keep track

of local user database, but also maintain a relationship with a centralised rights database.

This would lead to a lot of duplicate code and would allow new attack vectors if any of

the authentication implementations were to be faulty.

Judging from a legal standpoint, the second approach might seem the most feasible, as

AAA is done centrally and user access to each service endpoint is validated before the

request is allowed to the specific service. While bugs and misconfigurations in the cent-

ral AAA service could be fatal, this reduces the attack surface as other services are more

protected from harm.

With either centralised authentication or authorisation, system needs a separate gateway

to vet requests before passing them onwards so the service can be certain that provided

details of the user or her rights are not fabricated. This can also be achieved with crypto-

graphic checks, as is done with JSON Web Tokens presented in Chapter 6.2.1, but a

gateway to check incoming requests can provide value with accounting and other tasks

in these cases as well. The related API gateway model is presented more thoroughly in

Chapter 8.

6.1. Traditional Mechanisms of Distributed AAA

As we have mentioned before, AAA is not a new theme in distributed environments.

Earliest technologies were originally created in 1980s, and even though they have seen

development their architecture has not changed much. We are presenting a few that are

still in use today and provide time-tested AAA to the systems they are guarding.

24

6.1.1. Simple Authentication Security Layer

T h e Simple Authentication Security Layer (SASL) was originally created by John

Gardiner Myers of Carnegie Mellon University in 1997 as RFC 2222, and updated in

2006 [RFC4422]. SASL allows a whole variety of services to be used as authentication

endpoints with the same protocol, effectively decoupling authentication from applica-

tion protocols with the provided abstraction. This enables server software to use many

different authentication backends without implementing each of them separately, just by

supporting SASL authentication.

SASL authentication can be established by a trusted service that processes user creden-

tials and replies with results. One example of a common use case for SASL is a distrib-

uted email system, presented in Figure 12. Within the system, each component needs to

verify user credentials when processing mailbox logins with Internet Message Access

Protocol (IMAP) or sending email with Simple Mail Transfer Protocol (SMTP). With

this setup, all email servers can share an authentication backend where login credentials

are queried with SASL before user is allowed to access resources.

6.1.2. Kerberos

Kerberos is one of the earliest authentication protocols that is still widely used in many

distributed systems and computer organisations. Originally developed within Massachu-

Figure 12: IMAP and SMTP with SASL back end login

25

setts Institute of Technology, its first non-internal version 4 was published in the late

1980s, and version 5 eventually became a standard as RFC 1510 in 1994 [KNT94]. The

standard was made obsolete in 2005 with the renewed RFC 4120, but it still maintains

backwards compatibility for the older Kerberos version 5.

Kerberos operates on tickets to allow nodes to prove their identity without trusting each

other with the help of a trusted Key Distribution Center (KDC), shown in Figure 13.

Other Kerberos-authentication-related objects are the Authentication Server (AS) and

the Ticket-Granting Service (TGS) that are both often found from the same KDC. Ker-

beros client transmits the user's id to the AS, that sends back a session key encrypted

with the users password or public key, along with an encrypted Ticket Granting Ticket

(TGT) to be used in the next step. If client has the correct password or key for the user,

it is able to decrypt the Client/TGS Session Key and use that to decrypt the TGT from

the message.

After validating the user, client sends a request to TGS with the ID of the service it

wants to authenticate with, along with TGT. After decrypting the TGT with previously

agreed Client/TGS Session Key, TGS sends back encrypted Client-to-Server Ticket in-

cluding client information and a newly created Client/Server Session Key that client

needs to use to communicate with the service. With the Client/Server Session Key and

Client-to-server ticket (that was encrypted using the service's secret key), service is able

Figure 13: Kerberos authentication to a single service. As long

as the TGT remains valid, only steps 3-6 need to be done for

other services.

26

to ascertain identity of the user that client is representing and can provide service to the

client. On the other side, connecting client can also be sure of the server's identity. As

long as TGT has not expired, it can be reused to get Client-to-Server Tickets for other

services as well.

Because Kerberos has a trust model based on symmetric key cryptography, it has been

able to withstand the test of time with updates to the cryptographic algorithms from

DES, which was originally used, to for example AES and other more secure algorithms.

Similar updates can keep Kerberos alive in the future as well. Another aspect that helps

keep Kerberos model current is the usability of the model in an automated manner. As

there is no Single Sign-On (SSO) endpoint for the user to interact with, systems can au-

thenticate and communicate between each other without a human operator with just

stored credentials. With Internet of Things and distributed systems, Kerberos will likely

retain its role as trust provider for numerous different services.

6.1.3. Security Assertion Markup Language

Security Assertion Markup Language (SAML) is a standard and an XML-based markup

language for exchanging authentication and authorisation data between identity and ser-

vice providers [HEL05]. One notable SAML-based entity is the Shibboleth framework

that is used by numerous public service organisations and universities across the world.

Login functionality is shown in detail in Figure 14.

Figure 14: Login to a service through SAML single sign-on (SSO)

27

The SAML authentication begins with the service provider redirecting the user's

browser to the identity provider (IdP), along with an assertion XML document defining

the requested action. SAML assertion contains the requested action, for example an Au-

thnRequest when authenticating users, as well as the information about the issuer and

RelayState to point to a resource, as is done in Figure 14. After authentication, IdP re-

directs the user back to the service with the SAML response XML document included in

the redirect. Response contains original ID that was sent from the service in a SAML as-

sertion, as well as other details that can be used when the response is verified from the

IdP. Other possibility for verification is to include a cryptographically signed token (for

example, a JSON Web Token as explained in section 5.2.1) in the response that can be

used to validate the response without contacting the IdP, but by just knowing its public

key.

6.2. New distributed authentication & authorisation models

While the models presented in section 5.1 have existed for quite some time, distributed

systems themselves have evolved in many ways. Previously distribution happened

mostly with centralised account management, with accounts separately accessible from

the systems providing the service. Newer development has seen the rise of mi-

croservices, where a single system can consist of tens or even hundreds of small ser-

vices. Many of these can process user information and need to independently make de-

cisions whether to give out requested data or to deny the request. As such services can

operate in another datacenter or even in another continent, calling home and asking for

confirmation is not always an option. In this chapter we present technologies that are

well suited for distributed use cases found in modern applications.

6.2.1. JSON-based standards

The Internet Engineering Task Force (IETF) published a set of JSON-based standards

in 2015, including JSON Web Signature (JWS), JSON Web Encryption (JWE) and

JSON Web Token (JWT) [Jon11]. Together they present a group of standards usable

with the Javascript API, making it approachable for browsers and server software alike.

JSON Web Token is a prime candidate for distributed authentication, as it can be signed

28

by the authentication service and validated by other services with its public key. In the

new 5G standard, JWTs are currently specified to be used as OAuth 2.0 access tokens

[GPP18].

In addition to just a username, JWT can hold all kinds of information, including token

signing time, expiration time, user roles and all sorts of private claims that need to be

agreed on only by the token issuer and consumers [RFC7797]. Figure 15 illustrates JWT

structure that consists of three different parts: the header that includes a signing al-

gorithm and tokens type, the payload that includes the data and the signature that can be

used to validate JWT's integrity and its signee, with either a shared secret or by its pub-

lic key, depending on what algorithm has been used in token creation.

As a single mechanism for both authentication and authorisation, plain JWTs do not ne-

cessarily make for a secure mechanism, since authorisation might be passed with the

signed token, making it impossible to change privileges of an already-issued token. For

just authentication, with each service doing authorisation JWTs are easy to use and offer

a good solution for a secure authentication layer.

For centralised authorisation, it is also possible to use authorisation-included JWTs only

within the system, with an API gateway fetching a new token from the authorisation

service for each request. This model also adds an extra check before any request reaches

the service, making it harder for an attacker to take advantage of signed but yet revoked

tokens. Unfortunately, increased security also adds extra complexity to the system, mak-

ing the authorisation service a single point of failure even when the user has already

Figure 15: A JSON Web Token in encoded and

decoded form.

29

logged in. Because of this, the refresh token model presented in section 5.3 with OAuth

2.0 and OpenID Connect might be a better alternative.

6.2.2. OAuth 2.0

OAuth is a standard for delegating access to application to use user information stored in

other service. A good use case for OAuth would be Gmail's contact list that is required

by Facebook to show which of your contacts are already using the service. Access to the

contact list is gained through service APIs. After authorisation, the application can use

specific parts of the service on users' behalf once or until the access is revoked.

OAuth standard was originally born in 2007, and published as informational RFC 5849

in 2010. First implementations were created by Twitter, with Google and others follow-

ing soon. However, the standard was not deemed adequate for non-browser-applications

and it was too complex for simple use. OAuth 2.0 framework, published as standard in

2012 [RFC6749], responds to these problems by simplifying many aspects of the origin-

al OAuth, a now obsolete RFC 5849.

OAuth 2.0 has different grant types for specific authorisation use cases, such as single-

page apps that cannot have application secrets, or even password-specific grant type for

authorisation services own applications. Most common usage is for a normal service

that can store application secrets in its own database and communicate with the author-

isation endpoint without visibility to the user. This grant type is known as Authorization

Code, that can also be used without secrets in single-page apps or mobile applications.

30

Authorization Code Grant, shown in Figure 16, starts with the user being redirected

from service to the authorising service's auth endpoint with specified response type and

unique client id of the service or application. Also included are redirect URL informing

where the user should be returned when done, scope indicating the parts of user's in-

formation service wants to access and state, which is a random string that is expected to

be returned when the authorisation is done. Authorising service (after logging in, if no

session exists) then presents the user an authorisation prompt with scopes needed by the

service. After accepting the prompt, user is redirected back to the original service along

with the same state string that was passed to the service, and an auth code, a one-time

code that the service will use to get the access token in order to use the resources of the

authorising service. Depending on the flow, token exchange can include a client secret

that is known only to the service requesting the token, not to the user or browser. In

single-page or mobile apps, the secret can be left out, but this needs to be defined when

the application is initially registered with the authorisation service.

Implicit Grant is a simplified version of the Authorisation Code Grant that was previ-

ously recommended for single-page JavaScript applications and other software that do

not necessarily have a backing service running and keeping secrets from the front end

application itself. In Implicit Grant flow, access token is received from the authorisation

service without separate token exchange using the one-time key given in redirect. While

Figure 16: OAuth 2.0 Authorization Code Grant

31

this was saving an additional HTTP request, it has problematic security implications

that can allow an attacker to steal the access token more easily. As the token is trans-

ferred as part of the redirect URL, browsers cache it into their history and it becomes

easier for the attacker to steal the token. Other problematic feature of the Implicit Grant

is the lack of 'state' variable found in Authorisation Code Grant that needs to be the

same throughout the authorisation flow, making brute force attacks harder. Because of

these, current recommendation for single-page applications and mobile applications is to

use the Authorisation Code Grant without application secret, where state is preserved

through the authorisation flow and no tokens are passed in redirect URLs.

Different tokens between client and server are also an issue. Newly upgraded Best Cur-

rent Practice for OAuth 2.0 suggests using the standard approach to access tokens by

separating them to a specific refresh token with even years of lifetime and to a more

short-lived access token, that is used to access the service. This approach is shown in

Figure 17 below. Refresh token is used by the application to get the access token from

the service's token endpoint, and then accessing the provided resources [RFC8252].

OAuth 2.0 has become de facto standard for API access delegation and is currently

widely used for this purpose. While OAuth 2.0 is an authorisation protocol, it has also

been used for authentication. This is done by authorizing the user with only user's in-

formation in authorisation scope, and then fetching the user identity from the authorisa-

tion provider. This is known as pseudo-authentication and OAuth 2.0 should not be mis-

Figure 17: Refresh & access token usage with

authorisation server.

32

taken to be an authentication protocol, as identity might not be as tightly coupled with

the API access to certain services given with OAuth 2.0 authorisation. For example, if

the checked scope is user information, this might also be available to an administrator of

the authorisation service and it could be used to gain access to another service. Other

possible attack routes have also been presented and fixed [SuB12].

OAuth 2.0 can also be combined with JSON Web Tokens. In a 2015 abstract extension,

JWTs for authorisation grants and client credentials were described in a standard

[RFC7523]. As client credentials can be described in JWT format, browser could au-

thenticate and authorise against an OAuth 2.0 endpoint without user needing to do any-

thing if the JWT is signed by a trusted party. When combined with the Web Authentica-

tion API currently developed as an experimental feature in browsers, future end users

could sign in and authorise services with their browser-stored JWTs without typing

passwords. JWTs as OAuth 2.0 tokens also help making the services more secure, as the

application can be sure of the token-issuers identity with its public key as tokens have

been signed. In the new 5G standard, currently in development, JWT's will be used as

access tokens with the Client Credentials Grant [GPP18].

6.2.3. OpenID Connect

OpenID Connect (OIDC) [SBJ14] is an authentication layer built on top of the OAuth

2.0 specification. OIDC uses JSON Web Tokens (JWT) to represent identities and au-

thentication happens using similar authentication flows as OAuth 2.0 has: authorisation

code, implicit flow and hybrid flow. As OAuth 2.0 is already in wide-spread use, creat-

ing OIDC-compatible authentication flows is relatively easy as developers already have

some knowledge of OAuth 2.0. OIDCs Authorization Code Flow is similar to OAuth

2.0's one presented in Figure 16. Different OIDC flows and their properties are illus-

trated below in Figure 18.

Similarly to OAuth 2.0, OIDC also supports refresh tokens, but access tokens are known

as id tokens, since in OIDC specification access tokens are for authorisation decisions

made by resource servers. With both refresh and id tokens being signed JWTs, authen-

tication to separate service endpoints happens easily as each endpoint can independently

assess the validity of identity tokens representing the user. OIDC JWTs can also contain

information of users' roles, making role-based access control (RBAC) an easy approach

33

even in distributed contexts.

Authorisation Code Flow is almost an exact copy of the OAuth 2.0 one. When authen-

ticating, user is given a one-time code that is passed back to the application (client),

which then uses the one-time code, along with its client secret to fetch id token to get

the logged in user's identity. Additionally, a refresh token is given to the application to

renew the shorter-lived id token when it expires.

Implicit Flow is meant for applications that do not necessarily have a back end server to

communicate with, but need to authenticate in order to communicate with one or numer-

ous API endpoints. Similar to OAuth 2.0's implicit grant, no client secret is used and ID

token is stored within an application (desktop or mobile) or in the browser. Implicit

Flow is much lighter than Authorisation Code Flow, but carries security risks similar to

its OAuth 2.0 paragon that are described in the above chapter.

Hybrid flow is more rarely used, but it still exists as part of OIDC. In Hybrid flow, both

the front end and back end of the application can receive their own ID tokens, with front

end receiving it from the identity provider (IdP) when logging in, and back end by using

the passed one-time code and client secret similar to Authorisation Code flow. One use

case for this is when we want to pass roles and other information to the back end applic-

ation in the ID token that we do not want to be visible to the user. Other possibility for

this is to use encrypted JSON Web Token, but as it isn't covered in the OpenID Connect

specification, we do not explore this further.

6.2.4. Macaroons

Similar to JWTs, Macaroons constitute a proof-carrying authorisation scheme where an

access token can be modified and restricted further after issuance, include validation re-

Figure 18: OpenID Connect flow comparison [SBJ14], coloring added for the thesis.

Property Authorization Code Flow Implicit Flow Hybrid Flow

All tokens from authorization endpoint no yes no

All tokens from token endpoint yes no no

Tokens not revealed to user agent yes no no

Client can be authenticated yes no yes

Refresh token possible yes no yes

Communication in one round trip no yes no

Most communication server-to-server yes no varies

34

quirements from 3rd party service and be passed along to other services using the issuing

service on behalf of the user [BPE14]. Macaroons include contextual caveats that can be

used to limit the given scope to what the token can be used for. This is similar to vallet

keys found in more expensive cars that allow them to be driven for a limited amount

and with reduced speed for parking the car, but cannot be used to fully drive the car

when compared to what can be done with an actual key.

As shown in Figure 19, Macaroon consists of a secret string known only by the creating

service, location indicating where the Macaroon should be used and an identifier that

can describe Macaroon's scope, for example "Billing service". Macaroons are based on

a hashing function, but can also be signed with private keys and validated with public

ones, similarly to client certificates. Most interesting properties of Macaroons are first

and third party caveats that can be layered on top of the original Macaroon. For ex-

ample, initial Macaroon is hashed with the secret variable known only by the issuer.

Each layer on top of the initial Macaroon, containing caveats such as username or valid-

ity, is hashed with itself, and issuer can easily verify each addition as well as the origin-

al token when the initialisation vector is known. With key signing, others can also valid-

ate the Macaroon if public keys are known.

Third party caveats specify that Macaroon cannot be trusted unless it is satisfactory for a

third party, for example, an identity service such as Google or Facebook. To satisfy the

requirement, user must log in to the service and have it sign the token. In a web browser

environment, this can be done automatically as user is often already signed in to the ser-

Figure 19: Example Macaroon for a billing service.

35

vice within the same browser session.

Macaroons are not an authentication or authorisation framework such as OAuth 2.0 or

OpenID Connect, but can be used to harden them by substituting the created access

tokens with Macaroons [BPE14]. This allows an authorisation service to delegate au-

thentication to a third party service more easily, as is shown in Figure 20, and removes

the worry of revocation as identity endpoint can issue Macaroons for 10 seconds and al-

most every new request would require client to ask for a newly signed Macaroon. As

Macaroons default hashing is based on the HMAC function, this operation does not re-

quire much computing power and verification can thus be performed without much

computational overhead.

Figure 20: Macaroon usage with third party caveats.

36

7. Communication Mechanisms Between Microservices
and Distributed Systems

As distributed systems and microservices perform most of their communication between

remote parts, efficiency of that communication is essential. Latency can easily become a

bottleneck if any call to a system generates more calls to other systems, with each sub

request adding up to a time it takes to resolve the original request. While HTTP-based

methods have not disappeared from intra-service communication landscape, they have

gotten company from a whole family of other communication standards and paradigms.

In this chapter, we attempt to present a variety of both synchronous and asynchronous

methods for achieving efficient and trusted communication between separated system

components.

When speaking of asynchronous and synchronous communication, it is important to un-

derstand that we are not discussing programming language semantics, where a language

allows an operation to be handled asynchronously while doing other tasks. With asyn-

chronous we mean, in this context, events that are not necessarily fully completed when

the remote request is finished, such as pushing a message to a queue, where messages

are picked up and processed later. Whether the later processing happens within a second

or within a few hours makes no difference.

7.1. Synchronous Mechanisms

Synchronous mechanisms offer an immediate response on the performed remote action.

Traditionally, all communication between systems and system components has

happened in a synchronous manner.

Many events in systems require synchronous processing. For example, a bank transfer

from an account to another requires that events on both accounts, withdrawal from one

and deposit to other, are completed. Otherwise money will either disappear or come into

existence from nothing. With synchronous communication, requesting party can be cer-

tain that the event was processed before proceeding.

37

7.1.1. Remote Procedure Calls

Remote Procedure Call (RPC) was the first widely accepted idea of remote communica-

tion between processes [TaV07]. First designed to allow programs to run on different

computers without sharing memory, it evolved into XML-RPC in 1998 for the purpose

of functioning on top of HTTP. More recent application of the RPC paradigm is JSON-

RPC, originally from 2005.

The RPC model, as well as its XML and JSON variants, consists of application calling

its own conversion stub that packages its request to a specified format and sends it to a

remote server for processing. Once remote server has performed the task, its stub passes

it back to the calling client's stub and execution continues. An example of this is shown

in Figure 21.

During the current decade, synchronous RPCs were mostly forgotten and thought to be

a dying breed that would eventually be replaced completely by RESTful APIs, but recent

development has proved otherwise. In 2015, Google published its internal RPC frame-

work known as Stubby, under a new name, gRPC Remote Procedure Call (gRPC) [GM-

D15] for both asynchronous and synchronous message passing. The gRPC framework

has since become part of the Cloud-Native Computing Foundation (CNCF) and is con-

sidered a key framework in internal communication of distributed systems.

Figure 21: Example of RPC call over a network. Execution continues when

steps 1, 2 and 3 are completed.

38

gRPC as an implementation framework allows clients written in different languages to

communicate with each other using a Google-oriented way to serialize data structures

known as protocol buffers that are presented in Figure 22. In this regard, gRPC is simil-

ar to XML-RPC, but with smaller and more efficient packaging and native language

support, making its use more tempting.

7.1.2. HTTP-Based Methods

Representational State Transfer (REST) architecture was defined in 2000 as part of the

PhD dissertation by Roy Fielding [Fie00]. REST uses HTTP properties to define archi-

tectural constraints that require APIs to represent their functionality by using base

URLs , s uch a s ap i . company . com/ us e r s t o r ep re se n t u s e r s e rv i ce ,

api.company.com/billing to represent billing etc. Elements are represented under collec-

tions, for example api.company.com/users/user1 that covers a specific user. In addition,

APIs conforming to the RESTful specification require the use of standard HTTP meth-

ods to create, read, update and delete objects in collections. Possible actions for a single

item are shown in Figure 23.

Figure 23: HTTP API endpoints for manipulating items

Action Path Method
Create https://api.company.com/item POST

Read https://api.company.com/item/3 GET

Update https://api.company.com/item/3 PUT
Destroy https://api.company.com/item/3 DELETE

Figure 22: gRPC protocol buffer describing a person and communication between

people

39

RESTful APIs have become a standard way of representing API resources to outside

users, but their usage is also increasing within distributed systems and especially within

microservices. As services can allow several different functions to other services within

the system, it is easy to represent them with RESTful semantics, making it easy for de-

veloper of another service to use the needed implementation available.

Recently, RESTful APIs have seen a contestant as GraphQL was published by Face-

book in 2015, with the latest working draft towards a GraphQL standard from October

2016 [Gra16]. GraphQL is a query language and type system that offers a developer-

friendly way to search for data provided by the API and to easily mock queries using the

provided web user interface to receive only the needed parts from the API, as is shown

in Figure 24. GraphQL does not provide similar semantics with URIs as RESTful APIs

do, but it offers same functionality through its own query language. Currently it is most

often used as a read-only API for data, but this might change in the future as its usage

grows and GraphQL implementations and its use cases become more tested and

hardened in terms of security. As internal usage does not have as strict security require-

ments as something that is open to the world, GraphQL can more easily become trusted

as an internal component within a system.

7.2. Asynchronous mechanisms

Asynchronous mechanisms offer systems a possibility to perform non-time-critical ac-

tions when resources allow. They also allow the system to scale more easily when more

Figure 24: REST queries are smaller, but GraphQL allows requesting specifically

what is needed

40

requests are coming in as events are not failing due to more stringent timeout expecta-

tions often found in synchronous communication.

In message queue -based communication, described in 6.2.1. and 6.2.2., message sender

(publisher) will publish the message into a broker-maintained message queue. Message

recipients (consumers) are meanwhile subscribed into the queue with the broker, and re-

ceive the message when it is published with the broker. Message queues support point-

to-point delivery where message is strictly from a single party to another, as well as the

publish/subscribe model where a single message queue can be shared with one or more

publishers and consumers [EFG03]. Consumers in publish/subscribe model are often

separated into listeners that only receive messages from a queue when they are connec-

ted to it, and into consumers that also receive the queued messages that the broker re-

ceived when they were not connected. The broker-centric model, also known as loose

coupling, allows system components to operate without the knowledge of each other

and their addresses, as all communication is done through a message broker system

[TaV07]. This is illustrated in Figure 25.

Publish/subscribe model has enabled a generation of new fault-tolerant microservice

systems, where parts of the system can be taken down for maintenance or replacement

without other parts being affected. The amount of data that is produced and consumed

has exploded in the recent years, and as the trend grows, data streams have become a

critical part of infrastructure. Progress in the development of event-based architecture is

leading to the rise of the streaming platform, where message brokers are at the heart of

each system [LZF17].

Figure 25: Publish-subscribe with broker. Topic produced by

producer 4 currently has no consumers.

41

7.2.1. Advanced Message Queuing Protocol

Advanced Message Queuing Protocol (AMQP) is a binary protocol that was the first

step in an effort to create standards in the field of proprietary messaging formats in or-

der to allow different systems to communicate with each other [Vin06]. Adopted as an

international standard in 2014 [ISO14], AMQP is a good option for communicating

between systems or organisations, as it is well defined and easily scalable. Especially

business systems have grown fond of it. AMQP message format is shown in Figure 26

and defines the bare message that includes the original data from publisher as an unal-

terable part of the message. Bare message includes optional list of standard properties,

as well as application-specific properties, including the message body itself.

AMQP is usable both with a message broker or between single system endpoints, and is

quite ambiguous as a protocol in order to support multiple different scenarios. Adoption

of the standardised 1.0 version has been relatively slow, but over time brokers support-

ing AMQP will either add support or migrate entirely to it, as it does not contain break-

ing changes to its pre-standardised versions.

7.2.2. Message Queue Telemetry Transport

Message Queue Telemetry Transport (MQTT) is another standardised messaging pro-

tocol, built specifically to handle working with the publish/subscribe -based messaging

architectures [ReD17]. Originally created by IBM, MQTT was submitted to OASIS

standardisation body and became a standard with version 3.1.1 in 2014 [OAS14]. The

MQTT protocol with its compact message sizes is a perfect candidate for small sensors

and other Internet of Things devices where resources and network bandwidth are often

scarce. When compared to AMQP, MQTT protocol is more suitable for pushing mes-

Figure 26: AMQP message format specification [ISO14].

42

sages to a processing network, but MQTT has a clear scope of being a client-server pro-

tocol. Therefore, AMQP is better suited for point-to-point communication without ex-

ternal brokers.

The MQTT protocol consists of control packets, shown in Figure 27. Message type spe-

cifies the attempted operation, with 3 being a type for publishing a message. Other mes-

sage types include opening a connection, as well as acknowledging a received message.

MSB and LSB in Figure 27 stand for Most Significant Byte and Least Significant Byte.

In contrast to AMQP, the MQTT protocol does not scale so easily within single mes-

sage queues, but passing messages between entities close to each other and onwards to

processing platforms is a well supported use case. When we consider a modern data

analysis platform where endpoints are not just publishing data, but instead they are also

subscribers to different data streams, both MQTT and AMQP might be needed in order

for the platform to work efficiently.

7.2.3. Message Broker Specific Protocols

As the publish/subscribe model gains popularity, the number of different message

brokers available has also increased. Most brokers adhere to existing standards and of-

ten support either MQTT, AMQP or even both of them. Some message brokers have

defined their own protocols that have become relevant as the popularity of the broker

has grown. Two of these are Apache Foundation's Kafka and Pulsar.

Kafka was originally a software created within LinkedIn, and was open sourced in 2012.

Currently developed by the Apache Foundation, Kafka has grown to be the most used

Figure 27: MQTT control packet message format

for type 3 (PUBLISH) messages [OAS14]

43

message broker due to its almost endless scalability as it can handle almost a million

events with just a single consumer. Kafka has its own binary protocol that works over

TCP. Kafka's protocol supports messages of different sizes, arrays as well as strings.

Though proprietary, the protocol is well documented and has well-supported client lib-

raries available in almost every programming language.

Newer contestant in the broker field is another Apache Foundation project, Pulsar. Cur-

rently in incubator stage, it originates from Yahoo and has seen years of production us-

age inside the company, and is rising quickly in usage. Pulsar has two different proto-

cols available: its own binary protocol using protocol buffers (Protobuf) and a separate

protocol using standard W3C websockets [RFC6455]. While Pulsar is a much younger

project than Kafka, its websocket protocol helps in adoption as the standard can be used

on any existing programming language with websocket support available. Some clients

already exist for Pulsar's own protocol as well, with many more in the roadmap, and

with growing adoption, Pulsar's Protobufs, presented in Chapter 7.1.1 in Figure 22,

might very well be the next big proprietary messaging protocol.

44

8. Authentication, Session Management and Identity
Propagation for Microservices

The API gateway is a great tool in controlling access to different microservices. Ambas-

sador [Amb17] is one such gateway that can be used to protect services running in the

Kubernetes container orchestration platform [Kub14]. Ambassador works together with

other components using SPIFFE, providing trusted communication environment for

Ambassador and other resources running in the platform. Besides acting as a load balan-

cer for back end services, Ambassador offers support for external authentication mod-

ules that can be used in incoming request validation. To demonstrate the power of scal-

able session management and support for user accounts stored elsewhere, we created, as

part of the thesis work, an external authentication service for Ambassador using OpenID

Connect and JSON Web Tokens. Code for the authentication service can be found from

its repository [Myy18], with functional code also included as attachment in Chapter 11.

The authentication service, named simply Ambassador-Auth-OIDC (AuthService)

checks requests for cookies that contain JWTs and if such cookie exists, also checks the

embedded JWT for validity. AuthService is written in the Go programming language

for fast operations and JWTs are signed using the HMAC-SHA-512 algorithm

[RFC7519], making it possible to validate them if the secret is known. AuthService also

supports login through OIDC with Authorisation Code Flow and logout functionality.

Figure 28: Request flow from an unauthenticated user through Ambassador,

AuthService and OIDC provider

45

Figure 28 represents an unauthenticated request towards a protected resource. As the

user is not logged in, OIDC Authorisation Code Flow is used to login the user and her

userinfo is stored into a signed JWT that is included in user's HTTP cookie. User is then

redirected back to the original resource and cookie stored in browser is attached to the

request. AuthService then validates the JWT within the cookie and gives Ambassador

permission to proceed with the request that is sent to the resource server.

AuthService uses an external key-value storage to store OIDC mid-login states and re-

voked JWTs, so any running instance can finish the authentication flow. The storage is

however not used on request validation and AuthService only syncs its revocation

blacklist with it each minute, fetching JWTs that other AuthService instances have re-

voked. Separating key-value storage from AuthService's operation allows more than one

AuthService to be in use at the same time and allows multiple API gateways with fast

stateless request validation to be geographically distributed. This design choice also

helps with the service scaling to thousands or even millions of simultaneous requests as

the key-value store would easily become a bottleneck. It also removes additional latency

as JWTs can be validated without network requests.

A common pitfall with JWTs is revocation. As JWTs themselves are stateless, often

suggested solution is to forget revocation by issuing tokens with short lifetime and

checking session status each time a token is renewed. This requires more work in the

browser-side and if device is sleeping in between, JWT has often expired and login

needs to be done again. AuthService mitigates this by using longer lifetimes for JWTs

and instead controls a revocation blacklist that contains blacklisted tokens until their

validity expires. Each request is checked against the local blacklist and the local black-

list is synchronised from the central key-value store once every minute, so revocations

done by other AuthService instances are synced to every instance. Reason for not stor-

ing the blacklist only in the key-value store and syncing it locally is the same as the

reason for using JWT's in the first place: local validation for all incoming requests

without additional latency caused by querying the key-value store.

Each AuthService endpoint can easily process almost a thousand requests each second.

As they can be horizontally scaled with additional copies, AuthService will not become

a bottleneck even with a high number of simultaneous users.

46

9. Conclusions

Many technologies exist for implementing authentication, authorisation and accounting

for distributed systems and microservices. This thesis has presented several current and

also emerging technologies in this field and also given a concrete example of their use

for the Ambassador microservice API gateway. JSON Web Tokens and OpenID Con-

nect's Authorisation Code Flow were used in the authentication component to imple-

ment a stateless session handling and a secure way to authenticate users.

As systems, technologies and networks are evolving in ways that we often cannot pre-

dict, we need a versatile approach for AAA in order to securely support a wide variety

of different scenarios. Public-key cryptography is likely to be a key part of any future

AAA scheme, both in protecting communication as well as in message verification. The

use of JSON Web Tokens and OAuth 2.0 in the new 5G mobile network standard [GP-

P18] shows that these technologies will be around for a while, even if new technologies

are certainly developed and current ones upgraded.

Another key aspect in development of new AAA technologies is their ability to scale.

As a link posted to Twitter can go around the world in minutes, the amount of users a

system serves can rise fairly quickly from a few to hundreds of thousands. The AAA

must not become a bottleneck in any environment and it must scale along other system

components.

The streaming platform paradigm, presented in Chapter 7.2, enables future growth with

support for millions of simultaneous messages. Loose coupling in microservices gives

services freedom to be down without affecting the whole environment, also making it

possible to do rolling upgrades without any visible changes to users.

Newer technologies for modern AAA, presented in Chapter 6 and shown to be feasible

in Chapter 8, are already key parts of world's most used services and the adoption of

such new technologies will likely increase in the future. They also provide good build-

ing blocks for new authentication and authorisation frameworks as well as for commu-

nication models for internal and external communication of distributed systems.

The work around distributed AAA is nowhere finished and as systems and computers

evolve, so must both architectural patterns and algorithms used. One, perhaps a bit more

47

distant issue will be quantum computing. As computational power grows exponentially,

algorithms used to safeguard communication and authenticate users must be switched to

quantum-safe ones, preventing anyone from calculating the secrets used, for example, in

Diffie-Hellman, TLS connections or JSON Web Tokens.

In a more nearer future more work will be needed in service meshes. As we're moving

from securing internal networks by securing their outside connections, the zero trust net-

working paradigm [GiB17] is suggesting that even such networks should have their

communications completely secured. The SPIFFE framework, presented in Chapter

5.2.2, is a step in the right direction, but more work is needed, for example on initialisa-

tion of trust when a new device or user joins the network.

48

References

[AKB01] Andersen, H., Kaashoek, D., Balakrishnan, M., Morris, R., Resilient

overlay networks, Proceedings of 18th ACM Symposium on Operating

Systems, October 2001, pp 131-145.

[Amb17] The Ambassador API gateway, Datawire, https://www.getambassador.io/

(visited 23.8.2018).

[BPE14] Birgisson, A., Politz, J. G., Erlingsson, Ú., Taly, A., Vrable, M.,

Lentczner, M., Macaroons: Cookies with Contextual Caveats for

Decentralized Authorization in the Cloud, Proceedings of Network and

Distributed Systems Symposium '14, February 2014.

[DVW92] Diffie, W., Van Oorschot, P., Wiener, M., Authentication and

authenticated key exchanges, Designs, Codes and Cryptography, issue 2,

June 1992, pp. 107-125.

[EFG03] Eugster P., Felber P., Guerraoui R., Kermarrec A-M., The Many Faces of

Publish/Subscribe, ACM Computing Surveys, volume 35, June 2003,

pp. 114-131.

[Ell99] Ellis, J. H., The History of Non-Secret Encryption, Cryptologia,

volume 23, issue 3, Taylor & Francis, January 1999, pp. 267-273.

[Fie00] Fielding, Roy Thomas, Architectural Styles and the Design of Network-

based Software Architectures, PhD dissertation, University of California,

Irvine, 2000, https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

(visited 20.5.2018).

[GiB17] Gilman, E., Barth, D., Zero Trust Networks, O'Reilly Media, June 2017,

ISBN 978-1-491-96219-0.

[GMD15] gRPC Motivation and Design Principles, Google Inc, September 2015,

https://grpc.io/blog/principles (visited 20.5.2018).

[GPP18] Security architecture and procedures for 5G System, technical

specification 33.501, release 15, version 15.1.0, 3rd Generation

Partnership Project (3GPP), June 2018.

49

[Gra16] Draft RFC Specification for GraphQL, Facebook Inc, October 2016,

http://facebook.github.io/graphql/October2016/ (visited 26.5.2018).

[HEL05] Hughes, J., Maler, E., Lockhart, H., Wisniewski, T., Mishra, P.,

Ragouzis, N., Security Assertion Markup Language (SAML) V2.0

Technical Overview, Working Draft 08, OASIS Open, September 2005.

[ISO14] ISO/IEC 19464:2014, Advanced Message Queuing Protocol (AMQP)

v1.0, May 2014, https://www.iso.org/standard/64955.html

(visited 20.9.2018).

[Jon11] Jones, Michael B., The Emerging JSON-based identity protocol suite,

Proceedings of W3C workshop on identity in the browser, May 2011,

paper 24.

[KHD10] Karp, A., Haury, H., Davis, M., From ABAC to ZBAC: The Evolution of

Access Control Models, Proceedings of International Conference of

Information Warfare and Security, April 2010, pp. 202-211.

[KNT94] Kohl, J., Neuman, B.C., Ts'o, T., The evolution of the Kerberos

authentication service, Distributed Open Systems, IEEE Computer

Society Press, 1994, pp. 78-94.

[Kub14] Google Inc, Kubernetes orchestration platform, https://kubernetes.io/

(visited 23.8.2018)

[Lin06] Lindqvist, Håkan, Mandatory Access Control, Master's Thesis in

Computing Science, Umeå University, SE-901 87, 2006.

[LFZ17] Liao, J., Zhuang, X., Fan, R., Peng, X., Towards a General Distributed

Messaging Framework for Online Transaction Processing Applications,

IEEE Access, volume 5, June 2017, pp. 18166-18178.

[MET99] Metz, Christopher, AAA Protocols: Authentication, Authorization and

Accounting for the Internet, IEEE Internet Computing, issue 6,

November 1999, pp. 75-79.

[Myy18] Myyrä, Antti, OpenID Connect authentication component for

Ambassador API gateway using JSON Web Tokens,

October 2018, https://github.com/ajmyyra/ambassador-auth-oidc .

50

[OAS14] OASIS Open, MQTT Version 3.1.1, Standards Track, October 2014,

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf

(visited 27.5.2018).

[OSM00] Osborn, S., Sandhu, R., Munawer, Q., Configuring role-based access

control to enforce mandatory and discretionary access control, ACM

Transactions on Information and System Security, volume 3, issue 2,

May 2000, pp 85-106.

[ReD17] Reddy, P., Deepthi, J., Message Queuing Telemetry Transport,

International Journal & Magazine of Engineering, Technology,

Management and Research, volume 4, issue 3, March 2017, pp. 380-384.

[RFC3647] Chokhani et al., Internet X.509 Public Key Infrastructure Certificate

Policy and Certification Practives Framework, Informational Track,

November 2003, https://tools.ietf.org/html/rfc3647 .

[RFC4422] Melnikov A., Zeilenga K., Simple Authentication and Security Layer

(SASL), RFC 4422, Standards Track, June 2006,

https://tools.ietf.org/html/rfc4422 .

[RFC5280] Cooper, D., et al., Internet X.509 Public Key Infrastructure Certificate

and Certificate Revocation List (CRL) Profile, RFC 5280, Standards

Track, May 2008, https://tools.ietf.org/html/rfc5280 .

[RFC6455] Fette, I., Melnikov, A., The WebSocket Protocol, RFC 6455, Standards

Track, December 2011, https://tools.ietf.org/html/rfc6455 .

[RFC6749] Hardt, D., The OAuth 2.0 Authorization Framework, RFC 6749,

Standards Track, October 2012, https://tools.ietf.org/html/rfc6749 .

[RFC6960] Santesson, S, et al., X.509 Internet Public Key Infrastructure Online

Certificate Status Protocol – OCSP, RFC 6960, Standards Track,

June 2013, https://tools.ietf.org/html/rfc6960 .

[RFC7519] Jones, M., Bradley, J., Sakimura, N., JSON Web Token (JWT), RFC

7519, Standards Track, May 2015, https://tools.ietf.org/html/rfc7519 .

51

[RFC7523] Jones, M., Campbell, B., Mortimore, C., JSON Web Token (JWT)

Profile for OAuth 2.0 Client Authentication and Authorization Grants,

RFC 7523, Standards Track, May 2015,

https://tools.ietf.org/html/rfc7523 .

[RFC8252] Denniss, W., Bradley, J., OAuth 2.0 for Native Apps, RFC 8252, Best

Current Practice, October 2017, https://tools.ietf.org/html/rfc8252 .

[RFC8446] Rescorla, E., The Transport Layer Security (TLS) Protocol Version 1.3,

RFC 8446, Standards Track, August 2018,

https://tools.ietf.org/html/rfc8446 .

[RZL13] Roman, R., Zhou, J., Lopez, J., On the features and challenges of security

and privacy in distributed internet of things, Computer Networks,

issue 57, June 2013, pp. 2266-2279.

[SaS75] Saltzer, J., Schroeder, M., The Protection of Information in Computer

Systems, Proceedings of the IEEE, volume 63, issue 9,

September 1975, pp. 1278-1308.

[SBJ14] Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., Mortimore, C.,

OpenID Connect Core 1.0 incorporating errata set 1, The OpenID

Foundation, November 2014, http://openid.net/specs/openid-connect-

core-1_0.html (visited 6.5.2018).

[SCF96] Sandhu, R., Coyne, E., Feinstein, H., Youman, C., Role-Based Access

Control Models, Computer, Volume 29, Issue 2,

February 1996, pp. 38-47.

[Sir14] Siriwardena, Prabath, Advanced API Security: Securing APIs with

OAuth 2.0, OpenID Connect, JWS, and JWE, Apress, August 2014,

ISBN 978-1430268185.

[SPI17] Secure Production Identity Framework for Everyone, Google Inc / Cloud

Native Computing Foundation, January 2017,

https://github.com/spiffe/spiffe/blob/master/standards/SPIFFE.md

(visited 2.9.2018)

52

[SuB12] Sun, S., Beznozov, K., The devil is in the (implementation) details: an

empirical analysis of OAuth SSO systems, Proceedings of the 2012 ACM

Conference on Computer and Communications Security,

October 2012, pp. 378-390.

[TaV07] Tanenbaum, A., Van Steen, M., Distributed Systems: principles and

paradigms, 2nd edition, Prentice-Hall, 2007, ISBN 0-13-239227-5.

[Tur14] Turner, Sean, Transport Layer Security, IEEE Internet Computing,

volume 18, issue 6, October 2014, pp. 60-63.

[Vin06] Vinoski, Steve, Advanced Message Queuing Protocol, IEEE Internet

Computing, volume 10, issue 6, November 2006, pp. 87-89.

[YuT05] Yuan, E., Tong, J., Attribute based access control (ABAC) for Web

services, IEEE International Conference on Web Services (ICWS'05),

July 2005, pp. 561-569.

53

Attachment: Ambassador AuthService

Functional components of the Ambassador OpenID Connect authentication service are

included in the subchapters. Tests, listed specific dependencies and documentation that

are vital parts of any software project, are not included as they are not needed for

running the code, but they can be found in the actual code repository [Myy18].

Chapter A.1 includes the main code of the program with routes for different functions

and a system health test. Chapter A.2 has the login functionality related to the OpenID

Connect Authorization Code Flow and JSON Web Token creation. Chapter A.3

includes the authorisation functionality used for validating incoming requests and

revoking JWTs of logged out sessions.

AuthService's version 1.0 was released in the beginning of October 2018. Within its

first month, its containerised version passed 10 000 downloads on Docker hub. While

some downloads are most likely from the same users, it is still safe to say that it has

been a needed component in the area of distributed systems and microservices.

A.1. Main

package main

import (
 "log"
 "net/http"
 "net/url"
 "os"
 "time"

 "github.com/gorilla/handlers"
 "github.com/gorilla/mux"
)

var port string

func init() {
 port = os.Getenv("PORT")
 if len(port) == 0 {
 log.Println("No port specified, using 8080 as default.")
 port = "8080"
 }
}

func parseEnvURL(URLEnv string) *url.URL {
 envContent := os.Getenv(URLEnv)
 parsedURL, err := url.ParseRequestURI(envContent)

54

 if err != nil {
 log.Fatal("Not a valid URL for env variable ", URLEnv, ": ",
envContent, "\n")
 }

 return parsedURL
}

func parseEnvVar(envVar string) string {
 envContent := os.Getenv(envVar)

 if len(envContent) == 0 {
 log.Fatal("Env variable ", envVar, " missing, exiting.")
 }

 return envContent
}

func scheduleBlacklistUpdater(seconds int) {
 for {
 time.Sleep(time.Duration(seconds) * time.Second)
 go updateBlacklist()
 }
}

// HealthHandler responds to /healthz endpoint for application
monitoring
func HealthHandler(w http.ResponseWriter, r *http.Request) {
 w.WriteHeader(http.StatusOK)
 w.Write([]byte("OK"))
}

func main() {
 wh := newWildcardHandler()

 router := mux.NewRouter()
 router.HandleFunc("/healthz",
HealthHandler).Methods(http.MethodGet)
 router.HandleFunc("/login/oidc",
OIDCHandler).Methods(http.MethodGet)
 router.HandleFunc("/login", LoginHandler).Methods(http.MethodGet)
 router.HandleFunc("/logout",
LogoutHandler).Methods(http.MethodGet)
 router.PathPrefix("/").Handler(wh)

 updateBlacklist()
 go scheduleBlacklistUpdater(60)

 var listenPort = ":" + port
 log.Println("Starting web server at", listenPort)
 log.Fatal(http.ListenAndServe(listenPort, handlers.CORS()
(router)))
}

55

A.2. Login

package main

import (
 "context"
 "encoding/json"
 "errors"
 "fmt"
 "log"
 "math/rand"
 "net/http"
 "os"
 "strings"
 "time"

 oidc "github.com/coreos/go-oidc"
 jwt "github.com/dgrijalva/jwt-go"
 "github.com/google/uuid"
 "golang.org/x/oauth2"
)

var ctx context.Context
var oauth2Config oauth2.Config
var oidcProvider *oidc.Provider
var oidcConfig *oidc.Config

var hmacSecret []byte
var nonceChars =
[]rune("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
")

func init() {
 // Because Host still has a port if it was in URL
 hostname = strings.Split(parseEnvURL("SELF_URL").Host, ":")[0]

 clientID := parseEnvVar("CLIENT_ID")
 clientSecret := parseEnvVar("CLIENT_SECRET")

 ctx = context.Background()

 provider, err := oidc.NewProvider(ctx,
parseEnvURL("OIDC_PROVIDER").String())
 if err != nil {
 log.Fatal("OIDC provider setup failed: ", err)
 }

 oidcConfig = &oidc.Config{
 ClientID: clientID,
 }

 var oidcScopes []string

 // "openid" (oidc.ScopeOpenID) is a required scope for OpenID
Connect flows.
 oidcScopes = append(oidcScopes, oidc.ScopeOpenID)
 for _, elem := range strings.Split(parseEnvVar("OIDC_SCOPES"), "
") {

56

 oidcScopes = append(oidcScopes, elem)
 }

 var redirURL = parseEnvURL("SELF_URL").String()
 if string(redirURL[len(redirURL)-1]) == "/" {
 redirURL = string(redirURL[:len(redirURL)-1])
 }
 redirURL = redirURL + "/login/oidc"

 oauth2Config = oauth2.Config{
 ClientID: clientID,
 ClientSecret: clientSecret,
 RedirectURL: redirURL,

 // Discovery returns the OAuth2 endpoints.
 Endpoint: provider.Endpoint(),

 Scopes: oidcScopes,
 }

 oidcProvider = provider

 rand.Seed(time.Now().UnixNano())

 // 64 char(512 bit) key is needed for HS512
 hmacSecret = initialiseHMACSecretFromEnv("JWT_HMAC_SECRET", 64)
}

// OIDCHandler processes authn responses from OpenID Provider,
exchanges token to userinfo and establishes user session with cookie
containing JWT token
func OIDCHandler(w http.ResponseWriter, r *http.Request) {
 var authCode = r.FormValue("code")
 if len(authCode) == 0 {
 log.Println(getUserIP(r), "Missing url parameter: code")
 returnStatus(w, http.StatusBadRequest, "Missing url parameter:
code")
 return
 }

 var state = r.FormValue("state")
 if len(state) == 0 {
 log.Println(getUserIP(r), "Missing url parameter: state")
 returnStatus(w, http.StatusBadRequest, "Missing url parameter:
state")
 return
 }

 // Getting original destination from DB with state
 destination, err := redisdb.Get("state-" + state).Result()
 if err != nil {
 if err.Error() == "redis: nil" { // State didn't exist,
redirecting to new login
 log.Print(getUserIP(r), " No state found with ", state, ",
starting new auth session.\n")
 beginOIDCLogin(w, r, "/")
 return
 }

57

 returnStatus(w, http.StatusInternalServerError, "Error
fetching state from DB.")
 panic(err)
 }

 oauth2Token, err := oauth2Config.Exchange(ctx, authCode)
 if err != nil {
 log.Println("Failed to exchange token:", err.Error())
 returnStatus(w, http.StatusInternalServerError, "Failed to
exchange token.")
 return
 }

 rawIDToken, ok := oauth2Token.Extra("id_token").(string)
 if !ok {
 log.Println("No id_token field available.")
 returnStatus(w, http.StatusInternalServerError, "No id_token
field in OAuth 2.0 token.")
 return
 }

 // Verifying received ID token
 verifier := oidcProvider.Verifier(oidcConfig)
 idToken, err := verifier.Verify(ctx, rawIDToken)
 if err != nil {
 log.Println("Not able to verify ID token:", err.Error())
 returnStatus(w, http.StatusInternalServerError, "Unable to
verify ID token.")
 return
 }

 userInfo, err := oidcProvider.UserInfo(ctx,
oauth2.StaticTokenSource(oauth2Token))
 if err != nil {
 log.Println("Problem fetching userinfo:", err.Error())
 returnStatus(w, http.StatusInternalServerError, "Not able to
fetch userinfo.")
 return
 }

 claims := json.RawMessage{}
 if err = userInfo.Claims(&claims); err != nil {
 log.Println("Problem getting userinfo claims:", err.Error())
 returnStatus(w, http.StatusInternalServerError, "Not able to
fetch userinfo claims.")
 return
 }

 cookie := createCookie(claims, idToken.Expiry, hostname)

 // Removing OIDC flow state from DB
 err = redisdb.Del("state-" + state).Err()
 if err != nil {
 log.Println("WARNING: Unable to remove state from DB,",
err.Error())
 }

 log.Println(getUserIP(r), "Login validated with ID token,
redirecting with cookie.")
 http.SetCookie(w, cookie)

58

 http.Redirect(w, r, destination, http.StatusFound)
}

// beginOIDCLogin starts the login sequence by creating state and
forwarding user to OIDC provider for verification
func beginOIDCLogin(w http.ResponseWriter, r *http.Request, origURL
string) {
 var state = createNonce(8)
 err := redisdb.Set("state-"+state, origURL, time.Hour).Err()
 if err != nil {
 panic(err)
 }

 http.Redirect(w, r, oauth2Config.AuthCodeURL(state),
http.StatusFound)
}

func createCookie(userinfo []byte, expiration time.Time, domain
string) *http.Cookie {

 token := jwt.NewWithClaims(jwt.SigningMethodHS512, jwt.MapClaims{
 "jti": uuid.New().String(),
 "iss": hostname,
 "iat": time.Now().Unix(),
 "exp": expiration.Unix(),
 "uif": base64encode(userinfo), // Userinfo will be readable to
user
 })

 tokenString, err := token.SignedString(hmacSecret)
 if err != nil {
 panic(err)
 }

 cookie := &http.Cookie{
 Name: "auth",
 Value: tokenString,
 Path: "/",
 Domain: domain,
 Expires: expiration,
 }

 return cookie
}

func createNonce(length int) string {
 var nonce = make([]rune, length)
 for i := range nonce {
 nonce[i] = nonceChars[rand.Intn(len(nonceChars))]
 }

 return string(nonce)
}

func parseJWT(tokenstr string) (*jwt.Token, error) {
 token, err := jwt.Parse(tokenstr, func(token *jwt.Token)
(interface{}, error) {
 if _, ok := token.Method.(*jwt.SigningMethodHMAC); !ok {
 return nil, fmt.Errorf("Unexpected signing method: %v",
token.Header["alg"])

59

 }

 return hmacSecret, nil
 })

 if err != nil {
 return nil, err
 }

 if token.Valid {
 return token, nil
 }

 return nil, errors.New("Token not valid")
}

func initialiseHMACSecretFromEnv(secEnv string, reqLen int) []byte {
 envContent := os.Getenv(secEnv)

 if len(envContent) < reqLen {
 log.Println("WARNING: HMAC secret not provided or secret too
short. Generating a random one from nonce characters.")
 return []byte(createNonce(reqLen))
 }

 return []byte(envContent)
}

A.3. Auth

package main

import (
 "crypto/md5"
 "encoding/base64"
 "encoding/hex"
 "encoding/json"
 "log"
 "net/http"
 "os"
 "reflect"
 "strings"
 "time"

 jwt "github.com/dgrijalva/jwt-go"
 "github.com/go-redis/redis"
)

var hostname string
var redisdb *redis.Client

var logoutCookie = false

var blacklist []string

type blacklistItem struct {
 Key string `json:"key"`

60

 JWTHash string `json:"hash"`
 Expiration time.Time `json:"exp"`
}

func init() {
 redisAddr := parseEnvVar("REDIS_ADDRESS")
 redisPwd := parseEnvVar("REDIS_PASSWORD")
 redisdb = redis.NewClient(&redis.Options{
 Addr: redisAddr,
 Password: redisPwd,
 DB: 0,
 })

 _, err := redisdb.Ping().Result()
 if err != nil {
 log.Fatal("Problem connecting to Redis: ", err.Error())
 }

 envContent := os.Getenv("LOGOUT_COOKIE")
 if envContent == "true" {
 logoutCookie = true
 }
}

// LoginHandler processes login requests
func LoginHandler(w http.ResponseWriter, r *http.Request) {
 beginOIDCLogin(w, r, "/")
}

// Wildcardhandler to provide ServeHTTP method required for Go's
handlers
type wildcardHandler struct {
}

func (wh *wildcardHandler) ServeHTTP(w http.ResponseWriter, r
*http.Request) {
 AuthReqHandler(w, r)
}

func newWildcardHandler() *wildcardHandler {
 return &wildcardHandler{}
}

// AuthReqHandler processes all incoming requests by default, unless
specific endpoint is mentioned
func AuthReqHandler(w http.ResponseWriter, r *http.Request) {
 cookie, err := r.Cookie("auth")
 if err != nil {
 log.Println(getUserIP(r), r.URL.String(), "Cookie not set,
redirecting to login.")
 beginOIDCLogin(w, r, r.URL.Path)
 return
 }

 if len(cookie.Value) == 0 { // No auth header set
 log.Println(getUserIP(r), r.URL.String(), "Empty authorization
header.")
 returnStatus(w, http.StatusBadRequest, "Cookie empty or
malformed.")
 } else {

61

 token, err := parseJWT(cookie.Value)
 if err != nil {
 if err.Error() == "Token is expired" {
 w.Header().Set("X-Unauthorized-Reason", "Token
Expired")
 log.Println(getUserIP(r), r.URL.String(), "JWT token
expired.")
 } else {
 log.Println(getUserIP(r), r.URL.String(), "Problem
validating JWT:", err.Error())
 }

 returnStatus(w, http.StatusUnauthorized, "Malformed or
expired token in cookie.")
 return
 }

 if checkBlacklist(hashString(token.Raw)) {
 log.Println(getUserIP(r), r.URL.String(), "Token in
blacklist.")
 returnStatus(w, http.StatusUnauthorized, "Not logged in")
 return
 }

 uifClaim, err := base64decode(token.Claims.(jwt.MapClaims)
["uif"].(string))
 if err != nil {
 log.Println(getUserIP(r), r.URL.String(), "Not able to
decode base64 content:", err.Error())
 returnStatus(w, http.StatusBadRequest, "Malformed
cookie.")
 return
 }

 log.Println(getUserIP(r), r.URL.String(), "Accepted.")
 w.Header().Set("X-Auth-Userinfo", string(uifClaim[:]))
 returnStatus(w, http.StatusOK, "OK")
 }
}

// LogoutHandler blacklists user token
func LogoutHandler(w http.ResponseWriter, r *http.Request) {
 cookie, err := r.Cookie("auth")
 if err != nil {
 log.Println(getUserIP(r), r.URL.String(), "Cookie not set, not
able to logout.")
 returnStatus(w, http.StatusBadRequest, "Cookie not set.")
 return
 }

 token, err := parseJWT(cookie.Value)
 if err != nil {
 log.Println(getUserIP(r), r.URL.String(), "Not able to use
JWT:", err.Error())
 returnStatus(w, http.StatusBadRequest, "Malformed JWT in
cookie.")
 return
 }

 tokenHash := hashString(token.Raw)

62

 if checkBlacklist(tokenHash) {
 log.Println(getUserIP(r), r.URL.String(), "Token already
blacklisted, cannot to logout again.")
 returnStatus(w, http.StatusForbidden, "Not logged in.")
 return
 }

 jwtExp := int64(token.Claims.(jwt.MapClaims)["exp"].(float64))

 _, err = addToBlacklist(tokenHash, time.Unix(jwtExp, 0))
 if err != nil {
 log.Println(getUserIP(r), "Problem setting JWT to Redis
blacklist:", err.Error())
 returnStatus(w, http.StatusInternalServerError, "Problem
logging out.")
 return
 }

 log.Println(getUserIP(r), r.URL.String(), "Logged out, token added
to blacklist.")

 if logoutCookie { // Sends empty expired cookie to remove the
logged out one.
 var emptyClaims []byte
 newCookie := createCookie(emptyClaims, time.Now().AddDate(0,
0, -2), hostname)
 http.SetCookie(w, newCookie)
 }

 returnStatus(w, http.StatusOK, "Succesfully logged out.")
}

func returnStatus(w http.ResponseWriter, statusCode int, errorMsg
string) {
 w.WriteHeader(statusCode)
 w.Write([]byte(errorMsg))
}

func getUserIP(r *http.Request) string {
 headerIP := r.Header.Get("X-Forwarded-For")
 if headerIP != "" {
 return headerIP
 }

 return strings.Split(r.RemoteAddr, ":")[0]
}

func hashString(str string) string {
 hasher := md5.New()
 hasher.Write([]byte(str))
 return hex.EncodeToString(hasher.Sum(nil))
}

func base64encode(data []byte) string {
 str := base64.StdEncoding.EncodeToString(data)
 return str
}

func base64decode(str string) ([]byte, error) {
 arr, err := base64.StdEncoding.DecodeString(str)

63

 if err != nil {
 return nil, err
 }

 return arr, nil
}

func addToBlacklist(tokenHash string, exp time.Time) (bool, error) {
 blKey := createNonce(8)
 blItem := &blacklistItem{Key: blKey, JWTHash: tokenHash,
Expiration: exp}
 blJSON, err := json.Marshal(blItem)
 if err != nil {
 panic(err)
 }

 err = redisdb.HSet("blacklist", blKey, string(blJSON)).Err()
 if err != nil {
 return false, err
 }

 blacklist = append(blacklist, tokenHash)
 return true, nil
}

func updateBlacklist() {
 res, err := redisdb.HVals("blacklist").Result()
 if err != nil {
 panic(err)
 }

 var newBlacklist []string

 for _, i := range res {
 var blItem blacklistItem

 err = json.Unmarshal([]byte(i), &blItem)
 if err != nil {
 panic(err)
 }

 if blItem.Expiration.Before(time.Now()) {
 log.Println("Removing expired token", blItem.Key, "from
blacklist.")
 err = redisdb.HDel("blacklist", blItem.Key).Err()
 if err != nil {
 panic(err)
 }
 continue
 }

 newBlacklist = append(newBlacklist, blItem.JWTHash)
 }

 if !reflect.DeepEqual(blacklist, newBlacklist) {
 blacklist = newBlacklist
 log.Println("Blacklist changes in Redis, local blacklist
recreated.")
 }
}

64

func checkBlacklist(jwtHash string) bool {
 for _, e := range blacklist {
 if jwtHash == e {
 return true
 }
 }

 return false
}

	1. Introduction
	2. Authentication, Authorisation & Accounting
	3. Access Control Models
	3.1. Mandatory Access Control
	3.2. Role-Based Access Control
	3.3. Discretionary Access Control
	3.4. Attribute-Based Access Control

	4. Secure Communication over Networks
	4.1. Diffie-Hellman Key Exchange
	4.2. Public Key Infrastructure
	4.3. Transport Layer Security

	5. Distributed Systems and Microservices
	5.1. Overlays and Service Meshes
	5.2. Secure Communication Mechanisms Between Services
	5.2.1. Mutual TLS
	5.2.2. Secure Production Identity Framework for Everyone

	6. Distributed Authentication, Authorisation & Accounting
	6.1. Traditional Mechanisms of Distributed AAA
	6.1.1. Simple Authentication Security Layer
	6.1.2. Kerberos
	6.1.3. Security Assertion Markup Language

	6.2. New distributed authentication & authorisation models
	6.2.1. JSON-based standards
	6.2.2. OAuth 2.0
	6.2.3. OpenID Connect
	6.2.4. Macaroons

	7. Communication Mechanisms Between Microservices and Distributed Systems
	7.1. Synchronous Mechanisms
	7.1.1. Remote Procedure Calls
	7.1.2. HTTP-Based Methods

	7.2. Asynchronous mechanisms
	7.2.1. Advanced Message Queuing Protocol
	7.2.2. Message Queue Telemetry Transport
	7.2.3. Message Broker Specific Protocols

	8. Authentication, Session Management and Identity Propagation for Microservices
	9. Conclusions
	References
	Attachment: Ambassador AuthService
	A.1. Main
	A.2. Login
	A.3. Auth

