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Abstract 

Multispectral airborne laser scanning (MS-ALS) sensors are a new promising source of 

data for automated mapping methods. Finding an optimal time for data acquisition is 

important in all mapping applications based on remotely sensed datasets. In this study, 

three MS-ALS datasets acquired at different times of the growing season were 

compared for automated land cover mapping and road detection in a suburban area. In 

addition, changes in the intensity were studied. An object-based random forest 

classification was carried out using reference points. The overall accuracy of the land 

cover classification was 93.9% (May dataset), 96.4% (June) and 95.9% (August). The 

use of the May dataset acquired under leafless conditions resulted in more complete 

roads than the other datasets acquired when trees were in leaf. It was concluded that all 

datasets used in the study are applicable for suburban land cover mapping, however 

small differences in accuracies between land cover classes exist. 

Keywords: multitemporal, multispectral, ALS, lidar, land cover, classification, roads, 

laser scanning 

1. Introduction 

Recently, automated mapping and change detection methods have become feasible for urban 

mapping due to new high-resolution remotely sensed datasets. Airborne laser scanning (ALS) 

is a technique widely used in digital elevation model (DEM) production and other 3D 

mapping applications. Nowadays, in addition to the XYZ coordinates, the intensity of the 

returning pulse is also recorded. In recent studies, ALS intensity has been found suitable for 



 

 

many applications, including urban land cover classification (Hug and Wehr 1997; Guo et al. 

2011; Zhou 2013; Yan, Shaker, and El-Ashmawy 2015). However, the class separation using 

single wavelength intensity data is limited. Therefore, numerous studies have combined ALS 

height/geometry information with multispectral optical data, often resulting in enhanced 

classification accuracy (e.g.  Gamba and Houshmand 2002; Huang et al. 2008; Salah, Trinder, 

and Shaker 2009; Matikainen and Karila 2011). 

A multispectral ALS (MS-ALS) sensor simultaneously provides, in addition to 

accurate height information, the intensity of reflected laser pulses at more than one 

wavelength. In 2014, the first commercial MS-ALS sensor was launched by Teledyne Optech 

(Toronto, Ontario, Canada). Recent studies have shown that MS-ALS is suitable for land 

cover classification (Wichmann et al. 2015; Fernandez-Diaz et al. 2016; Bakuła, Kupidura, 

and Jełowicki 2016; Matikainen et al. 2017; Morsy, Shaker, and El-Rabbany 2017; Teo and 

Wu 2017), forest and vegetation mapping (Hopkinson et al. 2016; Nabucet et al. 2016; Leigh 

and Magruder 2016; Yu et al. 2017; Budei et al. 2018) and road mapping (Karila et al. 2017). 

In comparison to optical aerial images, the independence of illumination conditions and the 

lack of shadows are real advantages of the data. These properties also mean that MS-ALS 

data have great potential for further increasing the automation level in mapping (Matikainen 

et al. 2017). 

The accuracy of mapping is strongly dependent on the quality of the input data. In 

traditional mapping based on aerial images, the acquisition time is selected based on the 

mapping application. This type of mapping has normally been carried out by human operators 

who interpret the image data visually. For the built-up land cover mapping, spring images 

under leafless conditions are often preferred since there is not so much occlusion of man-

made objects by the vegetation. For vegetation mapping (species identification), summer 

(trees in leaf) or fall images are preferred. In addition, in several studies multi-seasonal data 



 

 

have been found to be better than single season data for automatic vegetation mapping (e.g. 

Heinl and Tappeiner 2012; Clark 2017). Automatic methods are often more effective than a 

human operator at combining information from multiple sensors, bands or acquisition times. 

It can be expected that automated analysis methods can have different preferences for 

data acquisition time than visual methods. For example, the mapping of roads is easier for a 

human operator in leaf-off rather than leaf-on conditions. The tree cover can also be a 

problem for automatic classification algorithms. Generally, however, summer conditions with 

green vegetation might help automatic classification algorithms to separate roads from the 

surrounding environment. Only a few studies on the effect of seasonal variation on the 

accuracy of land cover classification exist, with tree species classification being the most 

studied topic. A multitemporal comparison of tree species classification has been carried out 

using hyperspectral imagery and lidar (Voss and Sugumaran 2008) as well as optical satellite 

data (Key et al. 2001; Sugumaran, Pavuluri, and Zerr 2003). There is thus a need for further 

studies on the topic in order to understand the effect of season on the performance of 

automated mapping methods and select the most optimal data acquisition times for different 

purposes. 

Another important question related to multitemporal MS-ALS data is the stability of 

the intensity values for objects that do not change during the year. It affects the feasibility of 

the intensity data from two separate data acquisitions for direct automatic change detection. 

The stability of the intensity of operational MS-ALS acquisitions and how seasonal variation 

affects the intensity of different land cover classes have not been reported yet. 

Generally, the recorded laser intensity is affected by the variations in range, incidence 

angle, emitted power, atmosphere and noise. It has been reported that ALS intensity levels 

between different flights vary (Kaasalainen et al. 2011). Studies have also shown that 

radiometric pre-processing (correction) of ALS data is beneficial (Höfle and Pfeifer 2007; 



 

 

Yan and Shaker 2014; Yan and Shaker 2017), and that for absolute calibration, external 

reference targets should be used (Ahokas et al. 2006).  

In this study, three MS-ALS datasets acquired at different times of the year are 

compared. The data used in this study is commercial data, and external reference targets for 

calibration were not available. In (Matikainen et al. 2017), the object-based mapping of six 

land cover classes using MS-ALS data and a reference point set was carried out. The achieved 

overall accuracy was 95.9%. Using similar methods in (Karila et al. 2017), the road detection 

rate, including also narrow pedestrian and cycle paths, was 84.1%. These studies were based 

on data acquired in late summer, in August, when trees were in leaf, with the leaves on trees 

still being green and lower vegetation being green or light brown, depending on the type of 

vegetation. In this paper, the tests in (Matikainen et al. 2017; Karila et al. 2017) were repeated 

using two MS-ALS datasets acquired at different times of the growing season: May and June. 

In early May, trees are leafless and low vegetation is mostly light brown. In June, trees are in 

leaf and low vegetation is green. In the study area, the leaves turn yellow beginning in 

September, and, the leaves fall from trees at the latest in October or November. Snow in the 

winter and fallen leaves in fall covering objects on the ground often disable mapping at other 

times of the year. The comparison of the multitemporal datasets was based on histogram 

analyses and object-based classifications trained for each data set separately. In this way, 

information on the usability of the different data acquisitions for automatic mapping could be 

obtained. 

The objectives of this paper are to study the object-based temporal stability of 

operational multispectral ALS intensity data for different land cover classes, and to study the 

effect of seasonal variation on land cover classification and road detection accuracy in a 

suburban area. Also, the importance of different features in class separation during different 



 

 

seasons is reported. This study will provide information to help acquisition planning for 

automated mapping in the future. 

2. Materials  

2.1 Study area and reference points 

The study area is located in Espoonlahti (60°9′18″N, 24°38′24″E), in southern Finland. It is a 

suburban area and constantly changing due to urban development. The area includes 

residential areas, industrial areas, recreational areas and boreal forests. The data used in this 

study were acquired in 2015 and 2016. In 2015, the thermal growing season started on the 8 

April and lasted until the 5 October in the study area. In 2016, it started on the 6 April and 

lasted until the 24 October (FMI 2018). The start of vegetation period (green-up) in deciduous 

species occurred between the 1 and 10 May 2016 (SYKE 2018). 

A permanent test field of land cover ground control points has been established in the 

area. These reference points have been used to evaluate the performance of different remotely 

sensed datasets (Matikainen & Karila 2011; Matikainen et al. 2017). The reference point set 

was updated to correspond to each data acquisition date. A few points were moved to 

different locations, and a few others were reclassified or removed. The study area had 

separate training and test areas, and thus separate training and test point sets. The reference 

point sets used for land cover classification and the number of points in each set are listed in 

Table 1. A water mask was derived from the topographic map data, and reference points 

under the mask have been left out. 

[Table 1 near here] 

The land cover classes of the reference points used in this study are as follows: 

building, tree, asphalt, gravel, low vegetation and rocky areas. The tree class includes 

deciduous and coniferous trees; the most common tree species in the area are Pine (Pinus 



 

 

silvestris), Spruce (Picea Abies) and Birch (Betula pubescens). The asphalt class includes 

roads and parking places with asphalt (and a few with tile) surfaces. The gravel class includes 

soft, non-vegetated surfaces with different grain sizes (roads, sports fields, beaches). The 

rocky areas have bare or slightly vegetated surface (typically some moss or patchy grass). The 

low vegetation class includes grass, meadow, forest floor, vegetable gardens, and low bushes. 

For road mapping tests, a different and more extensive set of test points concentrating 

on different types of roads was used. The road test points (Karila et al. 2017) produced using 

road database vectors were now updated. Only the overlapping area with the August 2015 

land cover classification (Matikainen et al. 2017) results and roads that did not change 

between data acquisitions were used for collecting the reference points. Finally, a total of 

5780 road points remained. The land cover training and test points and road test points are 

presented in Figure 1. 

[Figure 1 near here] 

2.2 MS-ALS datasets 

The MS-ALS data was acquired using an Optech Titan sensor in cooperation with TerraTec 

Oy (Helsinki, Finland). The sensor acquires three separate point clouds. The intensity bands 

of the Optech Titan sensor are infrared 1550 nm (Channel 1, Ch1), near-infrared 1064 nm 

(Channel 2) and green 532 nm (Channel 3). The channels have different nominal look angles: 

Ch1: 3.5° forward, Ch2: nadir, Ch3: 7° forward (Ahokas et al. 2016). The acquisition dates 

were 21 August 2015, 2 May 2016 and 14 June 2016. The main differences between the 

datasets were the different times of the growing season and especially that in May 2016, trees 

were not in leaf. The data acquisition parameters and weather conditions are listed in Table 2. 

Rain did not occur before the data acquisitions.  

[Table 2 near here] 



 

 

First, a relative radiometric calibration based on range differences was performed on 

the data (Ahokas et al. 2006; Höfle and Pfeifer 2007; Korpela et al. 2010, Matikainen et al. 

2017). Then, overlapping points of different flight lines and some error points were removed 

using TerraScan (Terrasolid Ltd., Helsinki, Finland) software. Before further analyses, the 

point clouds were rasterised. Five rasters were generated: the first and only pulse average 

intensity in a 20 cm grid separately for the three intensity channels (original intensity/100), 

and a maximum digital surface model (DSM) and minimum DSM from all channels in a 100 

cm grid. In addition, a digital terrain model (DTM) produced from the only and last pulse data 

from August 2015 was used. A more detailed description is available in (Matikainen et al. 

2017). 

An example of the intensity at three dates is presented in Figure 2. There were still 

significant differences, after range correction, in the absolute intensity values between the 

dates (upper row in Figure 2). Possible causes, in addition to seasonal changes in the 

landscape, are differences in humidity and sensor parameters (Table 2).  However, systematic 

differences in the intensity values between flights were not a problem in our study because the 

classifier was trained based on the input data separately for each date.  

[Figure 2 near here] 

To compare the intensity values of the three datasets using histogram analysis (section 

4.1), an additional intensity adjustment based on 18 natural and man-made calibration targets 

(building roofs, parking places, sports fields and beaches) was carried out.  The calibration 

sites were selected so that they included areas with different levels of brightness. Linear fit 

with scalar adjustment was found between the calibration target mean intensities of a 2016 

dataset and the August 2015 dataset. Separate linear models were derived for each of the three 

intensity channels and for both 2016 datasets. A minimum mean intensity value of the 



 

 

reference targets was found for the 2016 datasets, and only the intensity values above the 

minimum value were adjusted using the linear models.  

After the additional intensity adjustment, the intensity levels matched quite well in a 

visual inspection (Figure 2). However, small intensity differences remained in surfaces 

expected to remain stable, such as paved roads. Thus, it is impossible to say if they were 

caused by changes in the conditions or the quality of the selected calibration targets. Since the 

classification method used in this study took into account the intensity level differences in the 

training data (i.e., the classifier is trained separately for each dataset), the classification tests 

presented in this paper (sections 4.2 ‒ 4.5) were carried out on the (not-adjusted) range-

corrected data. The adjusted intensity was used for the histogram analyses only. 

3. Methods 

The three MS-ALS datasets were processed using the method described in (Matikainen et al. 

2017). Briefly, it is an object-based approach where each dataset is first processed using the 

multi-resolution segmentation algorithm (Baatz and Schäpe 2000) in eCognition Software 

(Trimble Germany GmbH, Munich). Segmentation and feature extraction steps were as 

follows: (1) First level segmentation was carried out based on MS-ALS MaxDSM raster 

(segmentation parameters: scale 15, shape 0). (2) The segments were divided into high and 

low segments based on a mean height threshold of 2.5 m (the standard ceiling height in 

Finland) from the ground. (3) The low segments were merged and then segmented using the 

intensity data only (scale 2, shape 0.01 and compactness 0.5). (4) Features based on segment 

intensity and height were calculated for each high and low segment. The 36 intensity features 

and 5 DSM features are listed in Table 3.  

[Table 3 near here] 

In the second stage, all segments and their features were imported to Matlab (The 

Mathworks, Inc., Natick, MA, USA), where the random forest (RF) (Breiman 2001) method 



 

 

was applied to carry out the land cover classification. The high segments were classified using 

the intensity and DSM features. The low segments were classified using the intensity features 

only.  In Matlab the following steps were carried out. (1) Training segments were selected 

based on the training points. (2) The ‘fitensemble’ function with bagging method in Matlab 

was used for training the RF classifier (i.e. to construct an ensemble of 1000 classification 

trees). (3) The out-of-bag (OOB) classification error was calculated using the ‘oobLoss’ 

function, and the importance of the different features in the classification was estimated using 

the ‘predictorImportance’ (Mathworks, 2018) function for the training segments. (4) The 

ensemble of classification trees generated was used to predict the land cover of all segments. 

(5) In a simple post-processing step, buildings smaller than 20 m2 were removed. 

Finally, the classification results were validated. The accuracies of the final land cover 

maps were estimated using the test point sets and geographic information system (GIS) 

software QGIS (QGIS 2017). The estimation of the road detection rate was based on the three 

land cover classification results for the gravel and asphalt classes and the road test point set.  

To study the distribution of intensity values in the range corrected and intensity 

adjusted data for all dates, histogram analyses were carried out in Matlab on the training 

segments. In this case, training points that remained the same from August 2015 to June 2016 

were used to define the training segments.  

4. Results and Discussion 

4.1 Intensity variation of different land cover classes 

The histograms (Figures 3 and 4) show the behaviour of the intensity values on different dates 

in the adjusted and original, non-adjusted (only range-corrected) data. In most cases, the 

adjusted intensity values matched the intensity values of the first dataset better than the 

original intensity values. A clear example of this is the histograms of rocky areas in Ch1. The 



 

 

benefits of the adjustment, however, are not obvious in all cases, and possible seasonal 

variations make it difficult to fully evaluate the effectiveness of the adjustment. As expected, 

for high objects, the difference in intensity stability between natural targets (trees) and man-

made objects, such as buildings, was clear. For low objects, there was more variability. It 

should also be noted that the small number of training objects in the gravel (15) and rocky 

area (16) classes can make the results from these classes less reliable and stable. Some 

variation, most likely related to seasonal changes, was also visible in the vegetated classes. 

For example, the low intensity values in Ch2 were more typical for trees in May than in June 

and August. To some extent, this also applies to low vegetation. 

[Figures 3 and 4 near here] 

4.2 OOB errors in land cover classifier training 

We carried out a random forest analysis, in which 1000 classification trees were created based 

on the training data, and, the OOB error rates were estimated based on the training points. 

OOB errors are listed in Table 4 together with the results from the previous study (Matikainen 

et al. 2017). In general, the lowest OOB error rates were reported for the August dataset. The 

classification based on the May dataset had the highest OOB error rates. However, the 

differences between datasets were quite small.  

There were bigger differences in the OOB errors (Table 4) between the dates for low 

objects than for high objects (building/trees). It can be expected that a Building-Tree 

classification is simpler to carry out than classification of low objects, which are likely more 

diverse.  June and August basically have similar vegetation cover (leaf-on), however there 

may be differences in the colour of the vegetation and height of the low vegetation. There 

were also small differences in the OOB classification error (Table 4) for low objects between 

June and August. In general, rocky areas are challenging to define because of the presence of 



 

 

many low vegetation spots in rocky areas. The small amount of gravel training points and the 

diversity of the gravel areas affected the results as well. 

[Table 4 near here] 

4.3 Importance of different features in land cover classification 

We estimated the importance of each feature in the land cover classification using the training 

data. The feature importance values for separating high objects (buildings and trees) and low 

objects (asphalt, gravel, rocky areas and low vegetation) are presented in Figure 5 for May, 

June and August. The five most important features for separating the classes are listed in 

Table 5 for August (Matikainen et al. 2017), May and June. As expected, feature importance 

(Figure 5) in June was near to that of August (Matikainen et al. 2017), especially for high 

objects. In general, channel ratios and indices were the most important features. In May, the 

importance of the features was different for separating the high objects; e.g. the intensity 

ratios were not as important as in summer and some of the DSM features appeared among the 

most useful features, unlike in summer. This is likely due to the smaller amount of green 

vegetation. In all datasets, the texture feature GLCM homogeneity for Ch 2 was important for 

separating the high objects.  

[Figure 5 near here] 

[Table 5 near here] 

4.4 Land cover classification results 

We used the test points to estimate the accuracy of the RF classifier. The classification results 

for the whole study area and three close-ups are presented in Figure 6 (May) and Figure 7 

(June). The corresponding Figure for August was presented in (Matikainen et al. 2017).  

The confusion matrices based on the test points are presented in Table 6. The overall 

accuracy in (Matikainen et al. 2017) of the August dataset was 95.9% and the Kappa 0.95. 



 

 

The overall accuracy was slightly higher in June (96.4%, kappa 0.95) and a little lower in 

May (93.8%, kappa 0.92).  

[Table 6 near here]  

[Figures 6 and 7 near here] 

In a visual inspection of the leaf-off data classification results, we detected 

misclassifications for open grass areas or meadow classified as gravel. The leaf-off results 

also contained fewer trees than the summer datasets, and they were replaced by the low object 

classes. In the May data, there was also seemingly more confusion in the high objects 

classification than in the summer data. These were likely caused by the lack of green 

vegetation. 

The differences detected in the visual inspection are not supported by the confusion 

matrices. The testing points were located in the middle of homogenous land cover areas, and 

many of the visually detected misclassifications were located in the borders of the land cover 

objects, and thus they were not included in the results. However, the visually detected 

artefacts were rather small in area and should not significantly affect the quality of the results. 

For the May results, the lowest completeness (Table 6) was for gravel, and the second 

lowest for rocky areas. For the June results, the classification accuracy of gravel was higher, 

but still the lowest of all the classes. This may have been caused by the variation in gravel 

surfaces (changes in particle locations, moisture changes) (Kaasalainen et al. 2010), making it 

easy to confuse them with other classes, especially asphalt. Because of the diversity in the 

gravel area, more training points are preferred for gravel areas in the future.  

The classification results (Figures 6 and 7) can also be used to detect changes. 

Logging and new-made objects are visible in the results. Change detection based on the 

multitemporal data and classification results is further analysed in another study (Matikainen 

et al. 2018). 



 

 

4.5 Road detection 

We analysed the road detection results using the separate road test point set of 5780 points. 

The results for August, May and June are presented in Table 7. The road detection rate was 

highest in May (86.7%) and lowest in June (81.5%). In June, there were difficulties in 

detecting gravel roads (53.9% vs. 67.6% in May). In a visual inspection, some gravel roads 

were classified as low vegetation. Many gravel roads in the study area are narrow cycle paths, 

which may be occluded by trees, and thus the detection rate was lower than the detection rate 

for asphalt roads. The road detection rates of different road classes are presented in Table 8. 

The largest differences between dates were found for the narrow roads (cycling paths / 

driveways). The main roads were detected with a high degree of accuracy in all datasets. 

These results indicate that leaf-off data (May) is preferred for more complete roads in road 

detection. However, based on a visual inspection, OOB errors (Table 4) and the confusion 

matrices (Table 6) asphalt and gravel classes are slightly more confused in May. Therefore, 

early May does not seem an optimal time for road surface classification. 

[Tables 7 and 8 near here] 

One question related to the road classification has to do with the small number of 

gravel training points. This may have had some effect on the road detection results. However, 

based on our previous study (Karila et al. 2017) with a larger number of road training points, 

we know that it does not necessarily increase the accuracy significantly. In (Karila et al. 

2017), a 2-stage classification for August dataset was carried out: first, a road/non-road 

classification for road detection and then an asphalt/gravel classification of the road surface. 

An expanded set of training points was used (more asphalt and gravel points and more rocky 

areas in the non-road class). Nevertheless, the accuracy was lower than in this study, 

especially for big roads. However, the results cannot be directly compared to the present study 

due to different classification strategies.  



 

 

4.6 Other seasons and the applicability of the method to other study areas 

The typical time for data acquisition flights is during spring or summer. We expect a decrease 

in the classification accuracy in other seasons in the study area. More colourful vegetation in 

autumn is likely to cause confusion between the classes used in this study. However, in 

studies on species classification it may be useful. Snow cover in winter time changes the 

landscape and bases for mapping completely and makes it impossible to distinguish many 

land cover classes from each other. For future studies, it would be an interesting research 

topic to determine whether automated land cover mapping is feasible in other snowless times 

of the year and estimate the accuracy decrease for autumn datasets or datasets acquired 

outside the growing season.  

The method can be applied in other areas as well. In the parameter selection, local 

building height should be considered when choosing the threshold for separating high and low 

objects. The segmentation parameters provided here may be applied as a starting point for 

MS-ALS raster datasets with similar characteristics, including pixel size and similar ground 

resolution or point density of the original data. However, depending on the land cover 

characteristics and the land cover classes, the parameters may need to be adjusted. 

5. Conclusions  

This paper provides the first results on multitemporal MS-ALS data for land cover 

classification. All multispectral airborne laser scanning datasets used in this study were 

suitable for automated suburban land cover classification, regardless of the acquisition date. 

The automated method was able to find a set of optimum features that separate the selected 

land use classes (building, tree, low vegetation, asphalt, gravel, rocky area) for each date. The 

feature importance results can also help in finding good features for class separation when 

less-automated image interpretation methods are used. Based on this study, the optimal time 



 

 

for MS-ALS acquisition for automated suburban land cover mapping under the studied 

conditions in a hemiboreal zone was summer (June). For automatic road detection, leaf-off 

conditions were preferred. However, the differences were small and data acquisition for 

automated mapping with MS-ALS can be carried out both in spring and the summer season.  

As already stated in earlier studies considering single-channel ALS intensity, the MS-

ALS intensity is also not stable between different acquisitions. In this study, we tested a 

simple additional intensity adjustment based on calibration sites selected from the data. The 

benefit of the approach is that external calibration targets are not needed. We achieved a good 

visual match between the datasets; however, some differences persisted in surfaces expected 

to remain unchanged. In the future, further studies on calibration and its effect on the 

classification accuracy of multitemporal datasets are needed. 
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Table 1. The number of land cover reference points. 

 
August 2015 May 2016 June 2016 

Class 

Training 

points 

Test  

points 

Training 

points 

Test  

points 

Training 

points 

Test 

 points 

Building 88 130 88 130 88 130 

Tree 83 142 83 141 85 141 

Asphalt 62 157 63 157 63 157 

Gravel 15 15 15 15 15 15 

Rocky area 16 44 16 44 16 44 

Low vegetation 68 76 67 76 65 76 

Total 332 566 332 565 332 565 

 

  



 

 

Table 2. The Optech Titan MS-ALS datasets. 

 

Date & time 

(UTC) 

Flying 

height 

(m) 

Laser 

pulse 

rate 

(kHz) 

Point density 

Ch1, Ch2, 

Ch3 (points 

per m2) 

Humidity 

(%) 

Temp. 

(°C) 
Trees 

in leaf 

August 21.8.2015 

17:01-17:57 

650 200 9, 9, 8 93 14  Yes 

May 2.5.2016  

8:12-9:12 

700 300 12, 14, 10 34 16  No 

June 14.6.2016 

6:26-7:15  

700 300 11, 13, 11 48 16  Yes 

 

  



 

 

Table 3. Intensity and DSM (height)* features used in the study. 

Feature type Data and additional details 

Brightness the mean value of the mean intensity values in different channels 

Intensity mean, 10th 

percentile of intensity (Q10), 

Q25, Q50, Q75, Q90,  

ch1, ch2, ch3 

Ratio to all 
ch1, ch2, ch3 ( the mean intensity in one channel divided by the sum of the 

mean intensity values in all channels) 

Standard deviation ch1, ch2, ch3, minDSM*, maxDSM* 

Grey-level co-occurrence 

matrix (GLCM) homogeneity 
ch1, ch2, ch3, minDSM*, maxDSM* 

Ratios of two channels ch1/ch3, ch1/ch2, ch2/ch3 

Indices 

pseudo NDVI (normalized difference vegetation index):  

(Mean Ch2 – Mean Ch 3)/(Mean Ch2 + Mean Ch3)  

pseudo NDBI (normalized difference built-up index):  

(Mean Ch1 – Mean Ch2)/(Mean Ch1 + Mean Ch2) 

Differences Q90-Q10 (Ch1, Ch2, Ch3), maxDSM-minDSM* 

 

  



 

 

Table 4. The OOB errors of the random forest land cover classifier. August 2015 results 

originally presented by Matikainen et al. (2017). 

 

High objects 

(intensity 

features) 

High objects 

(DSM 

features) 

High objects 

(DSM + 

intensity 

features) 

Low objects 

(intensity 

features 

only) 

Road-like 

surfaces/rocky 

areas/low 

vegetation 

(intensity 

features only) 

Asphalt/gravel 

(intensity 

features only) 

August 2015 0.00592 0.0178 0 0.0314 0.0189 0.0263 

May 2016 0.012 0.012 0 0.0881 0.0818 0.0533 

June 2016 0.0058 0.0234 0.0058 0.0506 0.0506 0.0267 

 

  



 

 

Table 5. The five most important features for the May, June and August datasets in high 

object classification (top) and low object classification (bottom). August 2015 results 

originally presented by Matikainen et al. (2017). 

August 2015: high objects  May 2016: high objects 
 

June 2016: high objects 

Ratio Ch2  MaxDSM - MinDSM 
 

Ratio Ch2 
GLCM hom. Ch2  GLCM hom. Ch2 

 
GLCM hom. Ch2 

PseudoNDVI  Q10 Ch3 
 

Ch2/Ch3 

Ch2/Ch3  Std MaxDSM 
 

Ratio Ch3 
Ch1/Ch2  Q25 Ch3 

 
PseudoNDVI 

  

   

August 2015: low objects  May 2016: low objects 
 

June 2016: low objects 
Ch1/Ch2  Ch1/Ch3 

 
Ratio Ch3 

PseudoNDBI  Ratio Ch3 
 

Ch1/Ch3 
Ratio Ch3  Ch2/Ch3 

 
PseudoNDVI 

Ch1/Ch3  PseudoNDVI 
 

Ch2/Ch3 

Ratio Ch2  Ratio Ch2 
 

Ratio Ch2 

 

  



 

 

Table 6. The confusion matrices for land cover classification for May 2016, June 2016 and 

August 2015. August 2015 results originally presented by Matikainen et al. (2017) 

 

 August 2015 Reference data 

    Building Tree Asphalt Gravel Rocky area Low veg. Total Correctness 

C
la

ss
if

ic
at

io
n

 r
es

u
lt

 

Building 125 0 0 0 0 0 125 100.00 % 

Tree 3 142 0 0 0 0 145 97.90 % 

Asphalt 1 0 149 3 0 0 153 97.40 % 

Gravel 1 0 5 12 0 0 18 66.70 % 

Rocky area 0 0 1 0 40 3 44 90.90 % 

Low veg. 0 1 2 0 4 73 79 92.40 % 

  Total 130 142 157 15 44 76 564   

  Completeness 96.20 % 100 % 94.90 % 80.00 % 90.90 % 96.10 %     

    Kappa 0.95       Overall accuracy 95.90 % 

           May 2016 Reference data 

    Building Tree Asphalt Gravel Rocky area Low veg. Total Correctness 

C
la

ss
if

ic
at

io
n

 r
es

u
lt

 

Building 127 0 1 1 0 0 129 98.40 % 

Tree 1 136 0 0 0 0 137 99.30 % 

Asphalt 2 0 148 5 0 0 155 95.50 % 

Gravel 0 0 7 9 1 1 18 50.00 % 

Rocky area 0 0 0 0 34 1 35 97.10 % 

Low veg. 0 5 1 0 9 74 89 83.10 % 

  Total 130 141 157 15 44 76 563   

  Completeness 97.70 % 96.50 % 94.30 % 60.00 % 77.30 % 97.40 %     

    Kappa 0.92       Overall accuracy 93.80 % 

          June 2016 Reference data 

    Building Tree Asphalt Gravel Rocky area Low veg. Total Correctness 

C
la

ss
if

ic
at

io
n

 r
es

u
lt

 

Building 127 0 0 0 0 0 127 100 % 

Tree 1 140 0 0 0 0 141 99.30 % 

Asphalt 2 0 154 3 0 0 159 96.90 % 

Gravel 0 0 2 12 1 1 16 75.00 % 

Rocky area 0 0 0 0 35 0 35 100 % 

Low veg. 0 1 1 0 8 75 85 88.20 % 

  Total 130 141 157 15 44 76 563   

  Completeness 97.70 % 99.30 % 98.10 % 80.00 % 79.50 % 98.70 %     

    Kappa 0.95       Overall accuracy 96.40 % 

 

  



 

 

Table 7. The road detection rates based on the road test points for all datasets 

 

August 

2015 

May  

2016 

June 

2016 

# test 

points 

Gravel road detected 61.6 % 67.6 % 53.9 % 1515 

Asphalt road detected 92.0 % 93.5 % 91.2 % 4265 

Total 84.1 % 86.7 % 81.5 % 5780 

 

  



 

 

Table 8. Road detection rates for road classes 

Road class 

August 

2015 

May 

2016 

June 

2016 

# test 

points 

Expressway 98.3 % 99.3 % 96.6 % 417 

Road, 2 lanes, 5 - 8 m 96.4 % 96.9 % 96.6 % 745 

Road, 1 lane, 3 - 5 m 91.9 % 93.5 % 89.8 % 2314 

Cycle way / Driveway < 3 m 69.7 % 74.4 % 65.4 % 2304 

 

 

 

  



 

 

 

Figure 1. The training (cyan) and test (red) points in the study area. An aerial ortho image is 

shown in the background. The road test points (yellow) were extracted from road vectors in 

the National Land Survey of Finland Topographic database 2015. Water areas were excluded 

from the study. Aerial ortho image ©National Land Survey 2013. 

 



 

 

 

Figure 2. Original range-corrected first and only pulse intensity images for a subarea: (a) 

August 2015, (b) May 2016, and (c) June 2016). (d) Aerial ortho image (the image acquisition 

date is different from MS-ALS acquisition date, © National Land Survey, 2013). Adjusted 

intensity images: (e) May 2016 and (f) June 2016. All colours matched to the August 2015 

intensity image (a). Red: Ch1; Green: Ch2; Blue: Ch3.  

  



 

 

 

Figure 3. Histograms of building (a) – (c) and tree (d) – (f) training segments in different 

intensity images. Mean intensity values of the segments were used to calculate the 

histograms. Not cal. is the range-corrected data and cal. is the range-corrected data with an 

additional intensity adjustment. 

 



 

 

Figure 4. Histograms of low vegetation (a) – (c), rocky area (d) – (f), gravel (g) – (i), and 

asphalt (j)-(l) training segments in different intensity images. Mean intensity values of the 

segments were used to calculate the histograms. Not cal. is the range-corrected data and cal. is 

the range-corrected data with an additional intensity adjustment. 



 

 

 

Figure 5. Feature importance for high objects (a) and low objects (b) for the three datasets. 

QX = intensity percentile X%. August 2015 results originally presented by Matikainen et al. 

(2017). 

  



 

 

Figure 6. May land cover classification result for the whole study area and three close-ups 

(black rectangles). The water mask contains data from the National Land Survey of Finland 

Topographic Database 2015. 

 



 

 

 

Figure 7. June land cover classification result for the whole study area and three close-ups. 

The water mask contains data from the National Land Survey of Finland Topographic 

Database 2015. 


