

https://helda.helsinki.fi

Taxonomy proposal : To create 6 new species in the genus Cystovirus

Poranen, Minna Marjetta

International Committee on Taxonomy of Viruses (ICTV) 2018-03-08

Poranen , M M , Mäntynen , S , Kuhn , J H , Adriaenssens , E M & Kropinski , A M 2018 , Taxonomy proposal : To create 6 new species in the genus Cystovirus . in ICTV Online : International Committee on Taxonomy of Viruses (ICTV) Database . , 2017.016B.A.v1 , International Committee on Taxonomy of Viruses (ICTV) . < https://talk.ictvonline.org/files/ictv_official_taxonomy_updates_since_the_8th_report/m/prokaryote-official/7110

http://hdl.handle.net/10138/299455

cc_by publishedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.

This form should be used for all taxonomic proposals. Please complete all those modules that are applicable.

For guidance, see the notes written in blue and the separate document "Help with completing a taxonomic proposal"

Please try to keep related proposals within a single document.

Part 1: TITLE, AUTHORS, etc

Code assigned:	2017.016B			(to be completed by ICTV officers)		
Short title: To create six (6) ne Modules attached (Modules 1, 4 and either 2 or 3 ar		enus Cystor 1 🔀	virus 2 🔀	3	4 🖂	

Author(s):

Minna M. Poranen, University of Helsinki (Finland)
Sari Mäntynen, University of Jyväskylä (Finland)
Jens H. Kuhn, National Institute of Allergy and Infectious Diseases (USA)
Evelien M. Adriaenssens, University of Liverpool (UK)
Andrew M. Kropinski, University of Guelph (Canada)

Corresponding author with e-mail address:

Minna M. Poranen, minna.poranen@helsinki.fi

List the ICTV study group(s) that have seen this proposal:

A list of study groups and contacts is provided at <u>http://www.ictvonline.org/subcommittees.asp</u> . If in doubt, contact the appropriate subcommittee chair (there are six virus subcommittees: animal DNA and retroviruses, animal ssRNA-, animal ssRNA+, fungal and protist, plant, bacterial and archaeal)	ICTV Bacterial and Archaeal Viruses Subcommittee
---	---

ICTV Study Group comments (if any) and response of the proposer:

Date first submitted to ICTV:

Date of this revision (if different to above):

June 8, 2017

ICTV-EC comments and response of the proposer:

Part 2: PROPOSED TAXONOMY

Present the proposed new taxonomy on accompanying spreadsheet

Name of accompanying spreadsheet: 2017.016B.N.v1.Cystovirus_6sp

Please display the taxonomic changes you are proposing on the accompanying spreadsheet module 2017_TP_Template_Excel_module. Submit both this and the spreadsheet to the appropriate ICTV Subcommittee Chair.

Part 4: APPENDIX: supporting material

additional material in support of this proposal

References:

Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36 (Web Server issue):W465-9.

Gottlieb P, Potgieter C, Wei H, Toporovsky I (2002a) Characterization of φ12, a bacteriophage related to φ6: nucleotide sequence of the large double-stranded RNA. Virology 295: 266-271.

Gottlieb P, Wei H., Potgieter C, Toporovsky I (2002b) Characterization of φ 12, a bacteriophage related to φ 6: nucleotide sequence of the small and middle double-stranded RNA. Virology 293: 118-124.

Hoogstraten D, Qiao X, Sun Y, Hu A, Onodera S, Mindich L (2000) Characterization of φ 8, a bacteriophage containing three double-stranded RNA genomic segments and distantly related to φ 6. *Virology* 272: 218-224.

Jäälinoja HT, Huiskonen JT, Butcher SJ (2007) Electron cryomicroscopy comparison of the architectures of the enveloped bacteriophages $\varphi 6$ and $\varphi 8$. Structure 15: 157-167.

Mindich L, Qiao X, Qiao J, Onodera S, Romantschuk M, Hoogstraten D (1999) Isolation of additional bacteriophages with genomes of segmented double-stranded RNA. J Bacteriol 181: 4505-4508.

Mäntynen S, Laanto E, Kohvakka A, Poranen MM, Bamford JKH, Ravantti JJ (2015) New enveloped dsRNA phage from freshwater habitat. Journal of General Virology. 96: 1180-1189.

Qiao X, Qiao J, Onodera S, Mindich L (2000) Characterization of φ13, a bacteriophage related to φ6 and containing three dsRNA genomic segments. Virology 275: 218-224.

Qiao X, Sun Y, Qiao J, Di Sanzo F, Mindich L (2010) Characterization of φ2954, a newly isolated bacteriophage containing three dsRNA genomic segments. BMC Microbiol 10: 55-2180-10-55.

Wei H, Cheng RH, Berriman J, Rice WJ, Stokes DL, Katz A, Morgan DG, Gottlieb P (2009) Threedimensional structure of the enveloped bacteriophage phi12: an incomplete T=13 lattice is superposed on an enclosed T=1 shell. PLoS One 4(9):e6850.

Yang Y, Lu S, Shen W, Zhao X, Shen M, Tan Y, Li G, Li M, Wang J, Hu F, Le S (2016) Characterization of the first double-stranded RNA bacteriophage infecting *Pseudomonas aeruginosa*. Sci Rep 6:38795.

Annex:

Introduction:

The *Cystoviridae* family currently includes one genus *Cystovirus* and one species, *Pseudomonas virus phi6.* Six additional, cystovirus-related phages with dsRNA genomes have been isolated and completely sequenced (Table 1; Mindich *et al.*, 1999; Hoogstraten *et al.*, 2000; Qiao *et al.*, 2000, 2010; Gottlieb *et al.*, 2002a,b; Mäntynen *et al.*, 2015; Yang *et al.*, 2016).

Species demarcation: We have chosen 95% RNA sequence identity as the criterion for demarcation of species in the *Cystovirus* genus. The members of each of the proposed species differ from those of other species by more than 5% at the RNA level as confirmed with the Clustal Omega Multiple Alignment (Table 2).

Reasons to justify the assignment of the new species to the existing genus Cystovirus:

All six new isolates share similar genome and virion organizations with Pseudomonas phage phi6. Their genomes are composed of three linear dsRNA segments (S-, M- and L-segments) (Fig. 1) and similar genes can be identified in similar order in each segment (Fig. 1). The genome lengths (12.7 kb – 15.0 kb) and GC contents (53.4–58.8%) are also similar (Table 1). Phylogenetic analyses were done separately for each genome segment using Clustal Omega Multiple Alignment (Fig. 2) and "One Click" at Phylogeny.fr (Fig. 3). Due to the size of the L-segments (over 6000 bp), the phylogenetic analysis was done only for the S- and M-segments with "One Click" (Dereeper *et al.*, 2008). The clustering was different in each tree, suggesting that there has been reassortment of segments between members of the proposed species. Also, exchange of genome segments between the different isolates has been experimentally shown in a few cases (Mindich *et al.*, 1999; Qiao *et al.*, 2000; Qiao *et al.*, 2010).

The virion organization of members of the proposed species, if described, resembles that of members of the type species (Jäälinoja *et al.*, 2007; Wei *et al.*, 2009). Virions are enveloped and their genomes are enclosed in icosahedrally symmetric protein shells.

-		GenBank	Genome		No. CDS	% RNA sequence
Pseudomonas		accession	length		(in positive	similarity to the type
phage	RefSeq No	No	(kb)	GC%	strand)	species*
Pseudomonas		M17461;				
phage phi6	NC_003715;	M17462;				
(member of the	NC_003716;	M12921				
type species)	NC_003714		13.4	55.8	13	100
	NC_003299;	AF226851;				
Pseudomonas	NC_003300;	AF226852;				42.4, 44.0, and 44.0 for L,
phage phi8	NC_003301	AF226853	15	54.5	19	M and S segments
	NC_004173;	AF408636;				
Pseudomonas	NC_004175:	AY039807;				43.8, 45.7 and 42.9 for L,
phage phi12	NC_004174	AY034425	13.2	55.2	15	M and S segments
Deserdantenes	NC_004172;	AF261668;				
Pseudomonas	NC_004171;	AF261667;				50.0, 45.6 and 44.5 for L,
phage phi13	NC_004170	AF261666	13.7	57.7	13	M and S segments
Donudousonoo	NC_012091;	FJ608823;				
Pseudomonas	NC_012092;	FJ608824;				44.9, 44.2 and 43.6 for L,
phage phi2954	NC_012093	FJ608825	12.7	53.4	14	M and S segments
D 1		KJ957164;				
Pseudomonas		KJ957165;				78.7, 52.1 and 82.8 for L,
phage phiNN		KJ957166	13.3	54.7	13	M and S segments
		KX074201;				-
Pseudomonas		KX074202;				50.1, 43.7 and 43.2 for L,
phage phiYY		KX074203	13.5	58.8	14	M and S segments


Table 1. Properties of the proposed members of the Cystoviridae family.

*Determined using EMBOSS Needle Pairwise Sequence Alignment

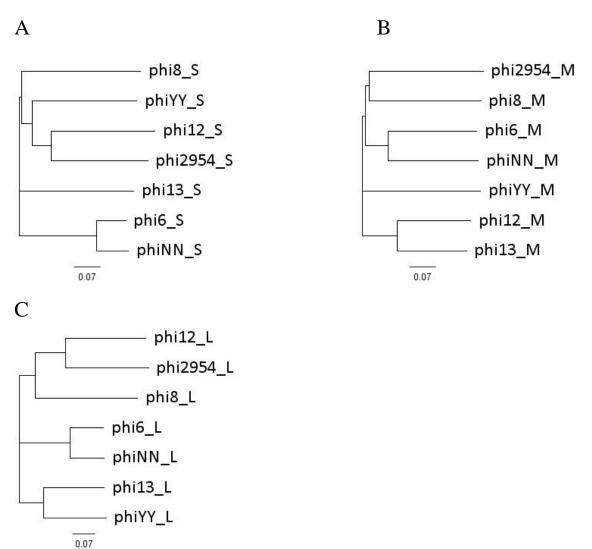

Nucleotide sequence similarities (%) between the L-segments								
Phage	phi6	phi8	phi12	phi13	phi2954	phiNN	phiYY	
phi6	100	38.47	36.42	48.84	36.01	79.46	48.46	
phi8	38.47	100	35.8	38.96	34.82	38.51	38	
phi12	36.42	35.8	100	35.98	51.13	36.07	35.48	
phi13	48.84	38.96	35.98	100	34.9	48.62	62.93	
phi2954	36.01	34.82	51.13	34.9	100	35.74	34.76	
phiNN	79.46	38.51	36.07	48.62	35.74	100	47.84	
phiYY	48.46	38	35.48	62.93	34.76	47.84	100	
Nucleo	Nucleotide sequence similarities (%) between the M-segments							
	phi6	phi8	phi12	phi13	phi2954	phiNN	phiYY	
phi6	100	38.17	38.99	40.34	39.2	51.18	35.34	
phi8	38.17	100	38.47	39.75	38.75	36.48	35.91	
phi12	38.99	38.47	100	61.26	37.46	39.15	38.32	
phi13	40.34	39.75	61.26	100	37.5	40.66	39.43	
phi2954	39.2	38.75	37.46	37.5	100	37.32	34.89	
phiNN	51.18	36.48	39.15	40.66	37.32	100	37.25	
phiYY	35.34	35.91	38.32	39.43	34.89	37.25	100	
Nucle	Nucleotide sequence similarities (%) between the S-segments							
	phi6	phi8	phi12	phi13	phi2954	phiNN	phiYY	
phi6	100	38.41	34.74	40.48	37.39	83.42	40.79	
phi8	38.41	100	33.3	37.13	34.02	37.7	37.11	
phi12	34.74	33.3	100	33.22	46.43	33.48	38.57	
phi13	40.48	37.13	33.22	100	34.45	40.23	37.1	
phi2954	37.39	34.02	46.43	34.45	100	36.41	41.64	
phiNN	83.42	37.7	33.48	40.23	36.41	100	40.18	
phiYY	40.79	37.11	38.57	37.1	41.64	40.18	100	

Table 2. Nucleotide sequence similarities (%) between the genome segments, determined using ClustalOmega Multiple Alignment. Color code: >95 % = red, >75 % = green, >50 % = yellow.

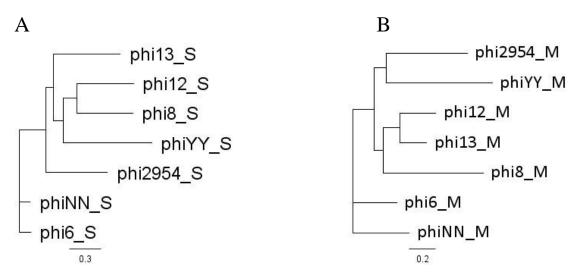

18Feb2017

Fig. 1. Genome maps of the segments S (A), M (B) and L (C) of the proposed members of the *Cystoviridae*. Open reading frames (ORFs) of the predicted positive strands are depicted and amino acid sequence similarities (%) between corresponding ORFs are indicated. Comparisons were conducted with EMBOSS Needle Pairwise Sequence Alignment. The order of the genome segments follows the clustering in the phylogenetic trees presented in Fig. 2.

Fig. 2. Phylogenetic trees showing relationships between proposed members of the *Cystoviridae* based on nucleotide sequence comparisons of the segments S (A), M (B) and L (C), constructed using Clustal Omega Multiple Alignment.

Fig. 3. Phylogenetic trees showing relationships between proposed members of the *Cystoviridae* based on nucleotide sequence comparisons of the segments S (A), M (B) and L (C), constructed using "One Click" at Phylogeny.fr.