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Abstract

Automated audio recording offers a powerful tool for acoustic monitoring schemes of bird, bat,
frog and other vocal organisms, but the lack of automated species identification methods has
made it difficult to fully utilise such data. We developed Animal Sound Identifier (ASI), a
MATLAB software that performs probabilistic classification of species occurrences from field
recordings. Unlike most previous approaches, ASI locates training data directly from the field
recordings and thus avoids the need of pre-defined reference libraries. We apply ASI to a case
study on Amazonian birds, in which we classify the vocalisations of 14 species in 194 504 one-
minute audio segments using in total two weeks of expert time to construct, parameterise, and val-
idate the classification models. We compare the classification performance of ASI (with training
templates extracted automatically from field data) to that of monitoR (with training templates
extracted manually from the Xeno-Canto database), the results showing ASI to have substantially
higher recall and precision rates.
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INTRODUCTION

Acquiring adequately replicated large-scale and long-term
data remains a major challenge in ecological research and bio-
diversity monitoring, especially for species-rich taxa in remote
areas as well as taxa that require expert input for identifica-
tion (Ferraz et al. 2008). For vocal taxa such as mammals
(Payne et al. 2003; Enari et al. 2017; Suter et al. 2017), birds
(Aide et al. 2013; Campos-Cerqueira & Aide 2016; Frommolt
2017), bats (MacSwiney et al. 2008; Armitage & Ober 2010),
frogs (Crouch & Paton 2002; Measey et al. 2017) and insects
(Fischer et al. 1997; Newson et al. 2017), automated audio
recording offers a powerful tool for acoustic monitoring
schemes (Aide et al. 2013). The application of bioacoustics
monitoring is growing rapidly, both due to technical advances
in data collection and management, and due to the rapid
build-up of reference audio databases (Ribeiro et al. 2017;
Wrege et al. 2017).
At present, the bottleneck with acoustic monitoring is not

so much the data collection, but the process of extracting spe-
cies detections from extensive recordings covering e.g. tens of
thousands of hours (Stowell et al. 2016). Several methods
have been proposed to semi-automatically identify species
from audio recordings, e.g. in the context of LifeCLEF classi-
fication challenges (Go€eau et al. 2015, 2016, 2017; Knight
et al. 2017). Many of the available methods feed spectral fea-
tures of sound to various kinds of classifiers, such as decision
trees (Acevedo et al. 2009; Digby et al. 2013), random forests
(Ross & Allen 2014; Lasseck 2015b), hidden Markov models
(Aide et al. 2013) and convolutional neural networks (Sala-
mon & Bello 2017). All available methods require some extent
of manual work (Knight et al. 2017) and only a few are

currently implemented in readily available software (e.g. Arbi-
mon from Sieve-analytics, Raven from Cornell Lab of
Ornithology, Sound Scope and Kaleidoscope from Wildlife
Acoustics; Shonfield & Bayne 2017). However, automated
identification algorithms that would be capable to process
continuous audio data from the field and that would have
classification accuracy even close to that of an expert observer
are still lacking (Stowell et al. 2016; Camargo et al. 2017;
Venier et al. 2017).
There are three reasons why automated identification is dif-

ficult. First, there is a high diversity of animal vocalisations,
both in the types of the basic elements, called syllables (Bran-
des 2008), and in the way they are combined in e.g. complex
vocalisations of songbirds (Brandes 2008; Kroodsma 2015).
Second, real field data are complex, as vocalisations of the
target species overlap with each other and with background
noise, the elimination of which is a challenging task per se
(Pacifici et al. 2008; Luther 2009). Third, vocalisations in ref-
erence databases (e.g. Xeno-Canto; http://www.xeno-canto.
org) are typically based on targeted recordings, and they thus
lack both biological and technical variation present in field
data to be classified, potentially leading to biased results.
Here, we overcome the above-mentioned challenges by

developing Animal Sound Identifier (ASI), a software for
probabilistic classification of animal sounds directly from field
data. We use a case study of crepuscular and nocturnal tropi-
cal birds to illustrate that the ASI framework is able to per-
form reliable species classification based on automatically
localised training vocalisations, with minimised user effort for
training the classification models. We describe a six-step pro-
cedure, which results in a probabilistic classification of the
presences or absences of the vocalisations of the target species

© 2018 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd
This is an open access article under the terms of the Creative Commons Attribution License, which permits use,

distribution and reproduction in any medium, provided the original work is properly cited.

Ecology Letters, (2018) 21: 1244–1254 doi: 10.1111/ele.13092

http://www.xeno-canto.org
http://www.xeno-canto.org
http://creativecommons.org/licenses/by/4.0/


(Fig. 1). We then compare the classification performance of
ASI to that of monitoR (Katz et al. 2016) trained with tem-
plates extracted from the Xeno-Canto database. Finally, we
illustrate the utility of acoustic monitoring data by deriving
ecological inferences from the ASI-based classifications
through a joint species distribution modelling approach. We
provide MATLAB code and manual to allow users to process
their own audio with ASI.

MATERIALS AND METHODS

We illustrate the use of ASI with data on crepuscular and
nocturnal birds in the Amazon rainforest. Our data originate
from 224 sampling sites where autonomous recorders were set
to record for 3 hours during dusk and night for each of five
consecutive nights, with a total of 1120 recording nights (see
Figueira et al. 2015 for further details about data collection).
We split these field recordings into one-minute segments,
totalling 194 504 segments. Our aim was to apply ASI to
these segments to first identify which birds vocalise in them,
and then classify all segments for the presence-absences of the
vocalisations of the identified species.

Step 1. Identifying letter candidates from field recordings

In the first step we asked ASI to provide 1000 letter candi-
dates from the field recordings, where “letter” stands for a
part of animal vocalisation that can be useful for its identifi-
cation, possibly including one or more syllables, or only a
part of a syllable (Brandes 2008). ASI can be used to search
for candidate letters either in an unsupervised manner, or
using pre-defined templates. The unsupervised search, which is
one of the key novelties of ASI, is based on randomly gener-
ated letter candidates. This is done by selecting one of the seg-
ments, randomising a letter candidate (a rectangular part of
the spectrogram, i.e. time-frequency representation of the
audio signal) from the segment, and scanning through the
other parts of the same segment or of other segments to
locate the best match to the letter candidate (Fig. 2; for tech-
nical details see Supporting Information). The match between
the letter candidate and the segment is measured by cross-cor-
relation using the MATLAB function normxcorr2 (Haralick
& Shapiro 1992; Lewis 1995). If the correlation exceeds a
threshold value (with 0.9 as default value), ASI includes the
located rectangle as a letter candidate, unless the area of high
intensity is confined to a few pixels only, which is typical for
noise (see Supporting Information for details). ASI then
stochastically adjusts the boundaries of the rectangle to
improve the correlation to the best match, and to locate the
area with the signal to the middle of the rectangle. In each
refinement attempt, ASI moves the lower-left and upper-right
edges of the box defining the letter by adding to the x- and y-
coordinates uniformly distributed random values (see Sup-
porting Information for details).

Step 2. Choosing, improving and annotating letters

The automated search made in Step 1 extracts from possibly
thousands of hours of field recordings a set of letter

candidates, i.e. subsets of spectrograms that are likely to
include vocalising species and be useful for their identification.
To further minimise user input, the candidate letters are clus-
tered based on their similarity, so that the user can process
letter candidates representing the same vocalisation in a batch
(Fig. 2d; see Supporting Information for more details). In the
second step, the user first scans through the letter candidates
to identify those that represent species of interest, and applies
the visual and acoustic tools implemented in ASI to refine the
letter boundaries, as necessary. In the example of Fig. 2, we
have defined four letters for Nyctidromus albicollis, which rep-
resent two different vocalisation types (song and call). Multi-
ple letters per species are recommended to be included to
provide complementary information to identification from
noisy data, and to include biological variation among and
within individuals in their vocalisations.

Step 3. Fitting letter-specific models

In the third step, the user constructs letter-specific models that
predict the probability by which the letter is present in each
audio segment. To do so, ASI first computes for all audio seg-
ments the highest correlations to all letters. To explore fast
the relationship between highest correlation and letter pres-
ence, ASI selects for each letter (a particular vocalisation type
of a particular species) ten segments for which the highest cor-
relation is approximately 0.1, 0.2, 0.3, . . ., 1.0. The user classi-
fies these training data to positive and negative matches based
on whether the training data actually contains the letter or
not. ASI then fits a letter-specific model (probit regression) to
the training data to convert the highest correlation into a clas-
sification probability. After this starts the adaptive refinement
of letter-specific models. In this phase, ASI selects new train-
ing data adaptively based on the letter-specific model fitted so
far, thus minimising user input by focusing on audio segments
that are likely to provide especially high information gain
(Fig. 3a–c). To do so, ASI samples a target classification
probability uniformly from the range [0,1], uses the current
fitted model to determine the corresponding target correlation,
and then selects the audio segment for which the highest cor-
relation with the letter is closest to the target correlation. The
user is recommended to continue training the model until the
mapping from correlation to classification probability
(Fig. 3b) converges.

Step 4. Combining multiple letters to construct species-level

predictors

In the fourth step ASI combines information from multiple
letters to construct predictors for the presences or absences of
the target species vocalisations at the level of the audio seg-
ments to be classified. These predictors are derived from the
letter-specific probabilities that are the outcome of Step 3, and
they characterise the temporal patterns at which the letters
belonging to the focal species appear in the segment. To com-
pute the species-level predictors, ASI first uses the letter-speci-
fic models to predict for each time frame the probability of
presence for each letter. In our case study, the segments are
one minute long, and we used as the time frame overlapping
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16 ms time windows computed at every 10 ms. Therefore, the
dimension of the matrix A of letter-specific probabilities (illus-
trated in the bottom half of Fig. 3d for one audio segment) is
n 9 6000, where n is the number of letters constructed for the
focal species, and 6000 is the number of time windows within
the segment. ASI extracts from the matrix A a set of sum-
maries that are organised as a vector b, called the vector of
raw predictors. The elements of the vector b are the highest
probability for each letter, the fraction of time frames for
which each letter exceeds multiple probability thresholds (i.e.
letter prevalence, counting vocalisations that are classified
with at least e.g. 95, 90 or 50% probability), and the temporal

autocorrelation structure of the letters described over logarith-
mically spaced time intervals (Fig. 3e). The vector b of raw-
predictors is computed for each audio segment, and these are
combined to form the matrix B. As the raw predictors are
high-dimensional and correlated among the audio segments,
they are further processed to produce the matrix of final pre-
dictors C to be used for parameterising species-level models.
Each column of the matrix C consists of the vector c of pre-
dictors for one audio segment, the number of columns equal-
ling the number of segments to be classified. The first element
of the vector c is defined as the maximum of the letter-specific
probabilities. The remaining elements of the vector c are

Figure 1 Overview of the Animal Sound Identifier (ASI) use in drawing ecological inference from autonomous-recorder audio data. (a) We acquired audio

data from 224 Amazon rain forest sites using autonomous recorders. The data consisted of 194 504 one-minute segments that we wanted to classify for the

detection of 14 crepuscular and nocturnal species. (b) ASI consists of a six-step pipeline that takes as input the raw audio data and provides as output the

detection probabilities of the target species for the audio segments to be classified. (c) The data provided by ASI works as a starting point for downstream

analyses, e.g. for ecological inference. The steps outlined here are further illustrated in Figs. 2–5.
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aimed to capture the dominating part of residual variation
(after accounting for the maximum probability) in the
raw-predictors B across the audio segments. To do so, ASI
summarises the residual variation by modified principal com-
ponents (MPCAs), where the modifications include shrinking
of outliers and removal of dependency between axes (see Sup-
porting Information for technical details).

Step 5. Fitting species-specific models

In the fifth step ASI guides the user to fit statistical models
that predict the presence-absence of vocalisation of each
species in each audio segment. The species-specific models are
fitted following a similar adaptive approach as for the letter-
specific models, thus first covering the entire predictor space
and then focusing on the part of the parameter space where
the present model involves a high amount of uncertainty
(Fig. 4a). Typically it is sufficient to use the maximal proba-
bility and the first MPCA1 as the predictors (as done in
Fig. 4a), but the user may explore also the discrimination

power of the others MPCAs as needed. ASI informs the user
about the quality of the present model in terms of its discrimi-
nation power, measured by Tjur (2009) R2, and the user may
thus decide when the model is of sufficient quality to cease
the training phase. In the example shown in Fig. 4a, the
model constructed for Nyctidromus albicollis was based on
193 user-classified training segments (the black and red dots
in the figure corresponding to presences and absences, respec-
tively), its R2 equalled 0.36 for the training data and its pre-
dicted R2 equalled 0.48 for all data. The reason why the
predicted R2 for all data often exceeds that of the training
data is that the training data are specifically selected to
involve cases that are especially difficult to classify.

Step 6. Validation of species-specific models

The models parameterised in the Step 5 estimate the proba-
bilities by which each audio segment contains the vocalisa-
tions of each species – which is the main output of ASI.
To validate these predictions against independent data that

Figure 2 An illustration of Step 1 (identification of letter candidates) and Step 2 (choice and annotation of letters) of the ASI pipeline. (a) shows a one-

minute segment of the raw data, from which ASI has identified a letter candidate (b) based on the fact that the same pattern repeats later in the same

segment with a sufficiently high correlation (c). (d) ASI clusters the letter candidates to facilitate the selection and annotation of the letters to be done by

the user. (e–h) exemplify four letters annotated by the user to represent songs (ef) and calls (gh) of Nyctidromus albicollis.
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involves both presences and absences, we randomly sampled
for each species 50 segments where the predicted probability
was <0.5 and 50 segments where the predicted probability
was > 0.5. To ensure independence of validation data, we

excluded those segments that were used as training data. In
the validation phase, ASI provides the segments in a ran-
dom order to the user, who then classifies them without
knowledge about the model-predicted classification

Figure 3 An illustration of Step 3 (fitting letter-specific models) and Step 4 (construction of species-level predictors) of the ASI pipeline. (a) ASI first scans

through all the audio segments to compute the highest correlation between each segment and the focal letter, the density of the highest correlations being

shown in logarithmic scale. (b) The user classifies training data as positive (black) and negative (red) matches, and ASI subsequently uses the data to model

the probability that the best match in each segment is the focal letter. (c) The classification window shows the audio segment, the focal letter and the best

match, providing the user with tools for listening to selected parts of the time-frequency space. (d) ASI then scans again through the audio segments to

compute the letter-specific probabilities for each segment and time-frame, forming the matrix A of letter-specific probabilities (shown in panel d for a single

audio segment). The information in matrix A is summarised as a set of species-level raw predictors, forming a vector b for each audio segment, which

vectors are combined in the matrix B for the collection of all audio segments (e). The raw predictors consist of highest probabilities of the letters, the

prevalence of each letter (proportion of time frames for which the letter is present, based on multiple probability thresholds), and the temporal

autocorrelation structure of letter presences.
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probabilities. We compared the model-predicted probabilities
to the actual classifications in terms of recall and precision,
as recommended by Knight et al. (2017). Recall is the pro-
portion of target species vocalisations that are detected as
hits by the classifier, whereas precision is defined as the pro-
portion of classifier hits that are true detections of the tar-
get species. While the output of ASI is probabilistic,
calculation of recall and precision requires that the classifi-
cation probabilities are converted simply to ‘hits’ or ‘non-
hits’. We did such a conversion using both 50 and 90% as
probability thresholds. We note that as the validation data
are constructed so that about half of the segments are
expected to contain the species, a classifier that performs
‘by random’ is predicted to have a precision of 0.5.

Comparison of classification performance between ASI and

monitoR

We compared the classifications performed by ASI to those
performed by monitoR (Katz et al. 2016). MonitoR is a

template matching based method for classifying audio data
for the presence/absence of target species, and it performed
well in a recent methodological comparison (Knight et al.
2017). We applied monitoR by following its user manual as
closely as possible by performing the following four steps.
First, we downloaded for each of the 14 target species five
Xeno-Canto reference audio files and used monitoR to
extract one template from each file, resulting in a total of 70
templates. Second, to calibrate cross-correlation thresholds,
we downloaded five additional Xeno-Canto reference audio
files for each species (except three for one of the species for
which no more were available). Third, we calculated the
maximal cross-correlation between all template and calibra-
tion files, and used these data to define an optimal threshold
value for each template. To do so, we computed how many
hits a candidate threshold value would give to the target spe-
cies (n) and to the non-target species (m) in the calibration
data. We then defined the optimal threshold value as the
one that maximised the ratio of hits to target vs. non-target
species, as measured by the score n/(m + 1). The template

Figure 4 An illustration of Step 5 (fitting species-specific models) and Step 6 (validation of species-specific models) of the ASI pipeline. (a) shows a model fitted

to the species Nyctidromus albicollis. The predictors used are the first two rows of the matrix C (see text) that consist of the maximal probability among the

letter (shown at the probit scale) and the first modified principal component (MPCA1). Black and red dots show segments for which the user has classified the

focal species to be, respectively, present or absent, while the remaining dots are coloured according to the probability predicted by the model. (b) shows the

results of model validation, where the classification probabilities are evaluated against independent validation data in terms of their precision and recall (see

text on how these were defined), for both of which 1 is the best and 0 the worst value. The solid dots show the results for ASI, with colours corresponding to

50% (red) and 90% (black) probability thresholds. For comparison, the open dots show the results for monitoR, with colours corresponding to cross-

correlation thresholds defined using the greedy (red) and conservative (black) strategies (see text on how these were defined). Cases that are on the right-hand

side of the vertical line have a higher precision than expected by random (precision > 0.5).
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and calibration data as well as correlation thresholds used in
the monitoR analysis is provided in Supporting Information.
We then applied monitoR to the same 100 species-specific
validation segments that were used to validate the ASI mod-
els, following both a greedy and a conservative strategy. In
the greedy strategy we considered monitoR to classify the
species being present if any of the five templates exceeded
the threshold. In the conservative strategy we considered
monitoR to classify the species being present if at least two
of the five templates exceeded the threshold (we made this
choice as only seldom more than two templates exceeded the
threshold). We then evaluated the performance of monitoR
in terms of precision and recall.

HMSC analyses of the case study on Amazonian crepuscular and

nocturnal birds

We derived ecological inferences from the classified data
provided by ASI by applying Hierarchical Modelling of
Species Communities (HMSC) (Ovaskainen et al. 2017).
HMSC is a joint species distribution model that models the
vector of species occurrences or abundances as a function
of environmental, spatial or temporal predictors, and that
estimates residual species co-occurrences (not explained by
the predictors) at different spatial or temporal levels. We
truncated the data to presences (y = 1) or absences (y = 0)
using 0.5 as a probability threshold, and omitted from the
analyses all audio segments that were classified as micro-
phone problem. As described in more detail in Supporting
Information, we used HMSC with probit regression to
model the presence of a detection at the level of day-loca-
tion pairs, including only those day-location pairs for which
at least 50 min had been classified (there was variation in
the sampling effort due to occasional microphone failure).
In the HMSC model, we used as fixed effects a classifica-
tion of sampling locations to primary and secondary forests
(FOREST; a categorical covariate), the phase of the moon
measured by luminosity (MOON; a continuous covariate)
and the log-transformed number of minutes of sampling
(EFFORT; a continuous covariate). As community-level
random effects that model random variation in species
occurrences as well as patterns of species co-occurrence, we
included the sampling location (LOCATION), the day
(DAY), and the location-day pair (LOCATION 9 DAY).
Out of these, LOCATION was assumed to be spatially
explicit and it models permanent spatial variation in occur-
rence and co-occurrence, whereas DAY models synchronised
temporal variation in vocalisation activity due to e.g.
weather. Our particular interest was LOCATION 9 DAY,
as that models spatiotemporal co-occurrence, thus allowing
us to ask whether two species vocalize in the same place at
the same day more or less often than expected at random,
potentially related to ecological interactions among the
species.

RESULTS

We used ASI to classify n = 194 504 sampling units (1-min seg-
ments of the data) for the occurrences of the vocalisations of

m = 14 Amazonian crepuscular and nocturnal bird species, as
well as to pinpoint audio tracks with microphone failure. In this
case study, ASI tested c. 36 000 potential letter candidates to
identify 1000 promising ones, which it then clustered into 700
clusters. The largest cluster consisted of > 100 very similar letter
candidates that represented technical microphone failure (e.g.
intense rainfall generates a transitory short-circuit on micro-
phones, which generates a repetitive beat in the audio), whereas
more variable bird sounds were found from smaller clusters of
1–5 candidates. As an example, Fig. 2d illustrates one cluster
that contains four similar vocalisations of the species Nyctidro-
mus albicollis. As a side product of the unsupervised letter
search, we identified also vocalisations of frogs, lizards, crickets
and jaguars (data not shown). The supervised approach in
which ASI seeks for letter candidates with the help of user pro-
vided templates was not applied in the case study, but is illus-
trated in the Supporting Information.
We selected and annotated from the letter candidates 2–23

letters for each species, yielding in total 110 letters. To con-
struct the letter-specific models, we classified on average 43
audio segments for each letter, thus performing 4757 manual
classifications, out of which 1667 were positive and 3090 nega-
tive matches. To parameterise the species-specific models, we
classified on average 225 audio segments for the 14 bird spe-
cies, thus performing 3150 manual classifications, out of
which 1233 were positive and 1917 negative matches.
Model validation was possible for 11 out of the 14 species as

two of the species (Micrastur mirandollei and Nyctibius bractea-
tus) were so rare in the audio data that all of their detected
vocalisations were used for training data, and we had identified
one species (Penelope sp.) to genus level only so that compar-
ison to monitoR would not have been possible. With 50%
probability threshold, ASI located almost all true vocalisations,
whereas with 90% probability threshold it did not provide
almost any false positives (Fig. 4b). Averaging over the species,
the mean recall rate of ASI was 0.99 (respectively, 0.30) for
50% (respectively, 90%) probability threshold, and its mean
precision was 0.71 (respectively, 0.98) for 50% (respectively,
90%) probability threshold. The performance of monitoR was
inferior to that of ASI as it resulted in lower recall-precision
combinations (Fig. 4b). Averaging over the species, the mean
recall rate of monitoR was 0.26 (respectively, 0.17) for greedy
(respectively, conservative) strategy, and its mean precision was
0.82 (respectively, 0.83) for the greedy (respectively, conserva-
tive) strategy. The average optimal cross-correlation threshold
for monitoR was 0.37 (range 0.18. . .0.58).
To produce the final ASI-based classifications for all seg-

ments, we re-parameterised the species-specific models by util-
ising also the validation data in model fitting. As
incorporating more data in model fitting will likely improve
its performance, the above reported measures of model per-
formance (which are based on models fitted solely to training
data) are likely to be conservative. With the final models, the
average power of the model-predicted probabilities to discrim-
inate presences and absences of vocalisations was R2 = 0.42
(range from 0.08 to 0.85) (Fig. 5a). To use the full informa-
tion when deriving ecological inference, we utilised the manu-
ally classified data (i.e. the training and validation data)
directly by replacing the predicted detection probabilities by
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the actually known presences or absences. Utilising the manu-
ally conducted classifications improved the average discrimi-
nation power to R2 = 0.60 (range from 0.21 to 0.99) (Fig. 5a).
The substantial increase is explained by the fact that many of
the species were very rare in the audio data, and thus in some
cases the manually confirmed vocalisations represented a large
proportion of all vocalisations, even if the amount of manual
classifications represent only a tiny fraction (c. 0.2%) of the
data to be classified.
The fraction of sampling units in which the species were

predicted to vocalise ranged from 0.04 to 1.3% (Fig. 5a). In
the HMSC model, the variances explained by the fixed effects
(averaged over the species) were FOREST: 9%, MOON: 5%
and EFFORT: 11%. Among the 14 species, four were found
to vocalise especially often in primary forests and two in sec-
ondary forests. The phase of the moon did not appear to have
a strong effect: vocal activity increased with luminosity for
one species and decreased for another species (Fig. 5a). The

proportions of variance explained by the random effects (aver-
aged over the species) were LOCATION: 41%, DAY: 17%,
and LOCATION 9 DAY: 16%. The associations among the
species were predominantly positive both at the level of loca-
tion (Fig. 5b) and at the level of day (Fig. 5c). The analysis
further pinpointed several species pairs that show positive
associations at the level of location-day (Fig. 5d), possibly
suggesting the presence of ecological interactions among
them.

DISCUSSION

As illustrated by our results, ASI provides a powerful tool for
classifying autonomous field recordings for the species occur-
rences. Compared to alternative approaches (Briggs et al.
2012; Potamitis 2014; Lasseck 2015a,b), the key novelties of
ASI are the following five. First, ASI does not require any a
priori templates of the target vocalisations, but it finds them

Figure 5 Ecological inference derived for the crepuscular and nocturnal bird case study. The first three columns in (a) show descriptive statistics for each

target species: the R2 value of the ASI models without (R2) or with (R2*) use of manually classified data, and the percentage (%) of audio segments for

which the probability of occurrence is at least 0.5 (P > 0.5), The last two columns in (a) show whether the species vocalisation activity increases with moon

luminosity (M) or is higher in primary than secondary forests (PF), the values 1 (respectively, -1) indicating a positive (respectively, negative) response with

at least 95% posterior probability based on the fitted HMSC model. Panels (bcd) show species associations at the levels of LOCATION, DAY, and

LOCATION x DAY. The red and blue squares indicate species pairs that co-occur or co-vocalise respectively more or less often than expected at random

with at least 95% posterior probability based on the fitted HMSC model.
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directly from field recordings. Second, as the letters are identi-
fied by a random search through the field recordings, they are
fully representative of the relevant technical and biological
variation in the data (Alldredge et al. 2007; Pacifici et al.
2008). Third, ASI generates training data adaptively, thus ask-
ing the user to classify only such training data for which clas-
sification by the present model would be uncertain, which
data are thus especially valuable for improving classification
accuracy. Fourth, ASI combines information across multiple
letters (e.g. syllables) in a generic manner, avoiding the need
to manually construct species-specific models, in contrast to
e.g. the approach of Aide et al. (2013). Fifth, as ASI is based
on a calibrated statistical model, it quantifies classification
uncertainty with the help of probabilities, thus providing the
user a quantitative mean to account for classification uncer-
tainty in any downstream analyses.
We found ASI to yield higher recall and precision rates

than monitoR, suggesting that ASI is able to detect species
occurrences from extensive amounts of noisy field recordings
in a computationally efficient and reliable manner. One key
reason behind the performance difference between ASI and
monitoR is that ASI’s classification models were based
directly on the field data, whereas in case of monitoR they
were based on reference audio files from the Xeno-Canto
database. The field recordings differ from Xeno-Canto refer-
ence audio files in many ways, including technical recording
quality, the type of background noise, and the geographic
region from which the vocalisations originate, all of which
factors reduce classification accuracy. We note that also moni-
toR could be applied to templates extracted from field data,
which could possibly improve its performance. However,
doing so would require subsampling and manual listening of
the field data in order to extract regions with target vocalisa-
tions to be used to generate templates. Covering enough data
to provide multiple templates for all species, however, would
be very time consuming for the users, especially if the interest
is in rare species. This is exactly what the unsupervised search
by ASI was designed for.
While ASI provides a major step forward in semi-automated

classification of animal vocalisations, it clearly involves several
limitations that we hope future research efforts to improve on.
First of all, as the classification models are based on training
data provided by the user, an upper limit for the performance
of ASI is clearly set by the level of expertise of the user. Most
obviously, if the user is not able to identify the species behind a
certain vocalisation type, ASI will not be able to classify those
vocalisation types either. One possibility to help users with
varying levels of expertise to overcome this limitation might be
to scan the letter candidates against existing databases, such as
Xeno-Canto, in order to provide automated suggestions of spe-
cies annotations. However, in the end the validity of such anno-
tations needs always be checked by an expert user. A second
limitation of ASI is that its core statistical approach is generi-
cally applied to all species, thus assuming that the same kinds of
features (e.g. letter prevalence and autocorrelation structure)
are relevant for all of them. Furthermore, the current imple-
mentation of ASI utilises cross-correlation as the basis of com-
parison between query and reference audio files, whereas also
many other kinds of acoustic features could be applied (Bardeli

2009; Lasseck 2015b). Tailoring the modelling approach and
choosing the acoustic features in a species-specific manner
would likely improve the recall and precision rates especially
for those species for which they were the lowest in our case
study. A third limitation is that, in spite of the high recall and
precision rates, the predicted classifications will always involve
some uncertainty. Whether or not removing such uncertainty
by post-classification validation is possible or necessary depends
on the type of the data and the purpose of the study. For exam-
ple, if the aims is to verify the occurrence of a rare species, it is
clearly both necessary and possible to manually scan through
the most likely detections and thus to confirm the occurrence of
the target species. For another example, if the aim is to use the
classifications in statistical analyses aimed for ecological infer-
ence, post-validation of both positive and negative classifica-
tions would surely be beneficial, but it may be very tedious to
do in practice. In our case study, some of the species were so
rare that the training data covered most occurrences, and thus
we were able to use the manual classifications instead of the
model predicted probabilities. In contrast, as the most common
species (Megascops watsonii) was predicted to vocalize in c.
2500 one minute segments, a manual post-classification valida-
tion just for this one species would require extensive work, in
particular for the validation of the absences which are equally
informative as presences from the viewpoint of statistical mod-
elling. As the key benefit of ASI is that it is able to classify mas-
sive amounts of data rather than a small sample of it, the
disadvantage of having some level of classification error is likely
to be more than compensated by the ample supply of data, as
long as the recall and precision rates are sufficiently high for the
signal to dominate the noise.
While our focus here was primarily in developing a method

for automated species identification, the case study of crepus-
cular and nocturnal birds provided also some ecological
insights on Amazonian birds. A previous analysis of nocturnal
birds from the same study area (Sberze et al. 2010) reported
generally similar habitat preferences as we observed here,
most species showing no strong preference, but e.g. Nyctibius
griseus being secondary forest specialist and Nyctibius leu-
copterus being primary forest specialist. However, the results
of Sberze et al. (2010) are not directly comparable to our
results because of differences in the field methods (their study
was based on manual point counting with play back and thus
the sample size was much lower) and in the statistical analyses
(their study focused on occupancy patterns). Of particular
interest are the co-occurrence patterns that we identified at
three spatiotemporal levels. As we had accounted for the dif-
ference between primary and secondary forests in the fixed
effects of the HMSC model, the positive associations related
to permanent spatial variation (Fig. 5b) are likely to be
related to more subtle habitat quality variation, many species
favouring the same kinds of microhabitats. The positive asso-
ciations among the species identified at the level of day
(Fig. 5c) suggest that vocalisation activity was generally syn-
chronised among the species over the days. As we accounted
for luminosity in the fixed effect, the synchronisation is not
likely to be related to the phase of the moon, but e.g. varia-
tion in weather conditions. While the positive associations
identified at the level of location-day (Fig. 5d) may partly be
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due to environmental covariates not included in the model,
they provide an interesting array of data-driven hypotheses of
interspecific interactions, and thus an exciting starting point
for more detailed analyses (Ferraz et al. 2010).
A previous analysis of diurnal birds from the same study

area found that while parrots inhabit both primary and sec-
ondary forests, their perching activity is higher in primary for-
ests (Figueira et al. 2015). The study of Figueira et al. (2015)
was based on autonomous recording, but they identified the
species by manual identification. As the study focused solely
on parrots, candidate locations for their vocalisations could
be fast found by visual scanning of the data before confirming
the identifications by listening. In spite of this, performing the
manual identifications took several months of expert time,
with the size of the data set being comparable with the one
considered here. In the present study, the total amount of
work by the user consisted of 14 working days, of which
4 days were spent in identifying and annotating letters (Step
2), 4 days in training the letter models (Step 3), 4 days in
training the species models (Step 5), and 2 days in validating
the species-level classifications (Step 6). This illustrates how
ASI not only provides accurate classifications, but also makes
an efficient use of human time. Consequently, we expect ASI
to become widely adopted as a tool for utilising autonomous
field recordings to acquire community-level data on the occur-
rences and abundances of vocal species.
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