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Abstract
Hospital-acquired infections pose a significant risk to patient health, while their surveillance is an additional 
workload for hospital staff. Our overall aim is to build a surveillance system that reliably detects all patient 
records that potentially include hospital-acquired infections. This is to reduce the burden of having the 
hospital staff manually check patient records. This study focuses on the application of text classification using 
support vector machines and gradient tree boosting to the problem. Support vector machines and gradient 
tree boosting have never been applied to the problem of detecting hospital-acquired infections in Swedish 
patient records, and according to our experiments, they lead to encouraging results. The best result is 
yielded by gradient tree boosting, at 93.7 percent recall, 79.7 percent precision and 85.7 percent F1 score 
when using stemming. We can show that simple preprocessing techniques and parameter tuning can lead to 
high recall (which we aim for in screening patient records) with appropriate precision for this task.
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Introduction

Patient security in hospitals is crucial. Various risk factors for patients can be found within clinical 
settings, including hospital-acquired infections (HAIs). HAI is defined as

[a]n infection occurring in a patient in a hospital or other healthcare facility in whom the infection was not 
present or incubating at the time of admission. This includes infections acquired in the hospital but 
appearing after discharge, and also occupational infections among staff of the facility.1

HAIs may be caused by medical procedures, for instance, during the implantation of contaminated 
urinary tract catheters. HAI might also develop in wounds after surgery or occur when micro-
organisms spread from person to person, such as during winter vomiting diseases. HAIs pose a 
public health problem worldwide. A survey conducted under the patronage of World Health 
Organization (WHO) in 2002 found that for 55 hospitals in 14 countries, an average of 8.5 percent 
of all hospital patients suffer from HAI.1

Many attempts have been made to confine HAIs, for example, better hygiene or manual surveil-
lance performed by infection control professionals, constituting an additional workload for hospi-
tal medical staff and hospital management. Nevertheless, the presence of HAIs remains unvaried 
in modern health facilities. Hospital Information Systems, which are standard in most health facili-
ties today, in combination with the increasing amount of digital data, has pioneered the way for 
automatic surveillance systems. In the course of this development, research that focuses on the 
automatic detection of HAI has emerged throughout the past years. The exact approaches vary, 
ranging from numerous attempts that implement rule-based systems to fewer machine learning–
based approaches.

Our study is of an experimental nature and focuses on applying machine-learning techniques to 
the problem of detecting HAIs. For our task, two well-known learning algorithms, support vector 
machines (SVMs) and gradient tree boosting (GTB), were applied to the data. The data used in this 
study comprise patient records provided by Karolinska University Hospital.

The focus of our study lies on the recall values obtained using different classifiers. We aim at 
approaching 100 percent recall with the highest precision possible, which is a reasonable overall 
performance in terms of F1. As presented in the literature,2 we obtained encouraging results 
when applying Naive Bayes, SVM and a C4.5 Decision Tree to the problem in an initial approach. 
Therefore, SVM, in particular, revealed its potential application for our task, as it tendentiously 
yielded the best results. Thus, we decided to apply SVM once again, this time with tuned param-
eters. We further applied GTB since it has good classification abilities and interesting data-
mining capabilities.3 The data-mining capability of interest is the ability to interpret the trained 
classifier. It makes it possible to get a measurement of how important each feature is. This is of 
interest since it enables us to assess if the features used by the classifier are plausible indicators 
of HAI. In combination with each of the classifiers, we applied different data preprocessing and 
feature selection methods, namely, term frequency (TF), lemmatization, stemming, stop word 
removal, infection-specific terms, term frequency–inverse document frequency (TF-IDF), a 
combination of lemmatization, respectively, stemming, stop word removal and TF-IDF. The 
study focused on answering the question regarding whether or not any preprocessing method or 
parameter tuning would help to increase performance.
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Algorithms with high recall are especially suitable for the screening of infections.4 Thus, this 
study is an important step toward implementing a system that is expected to constantly screen 
patient records and determine whether they contain HAI. Automatic HAI screening is especially 
valuable for medical staff and hospital management, since it would significantly reduce the burden 
of manually checking patient records for HAI, which is a time-consuming task even for highly 
trained experts.5 Instead of analyzing all records, the hospital staff would only have to check those 
patient records that the system preselected as containing HAI.

Related work

During the past decade, multiple studies have utilized machine learning in the medical domain. See 
Claster et al.6 for an overview of some of the more recent papers. The following section presents 
recent studies that adapt machine-learning approaches to the problem of detecting HAI.

Researchers have aimed at developing a monitoring system that predicts potential HAIs.7 In that 
particular study, six classifiers were applied to the problem: Alternating Decision Tree (ADTree), 
C4.5, ID3, RNA, Decision Tables and nearest neighbor with generalization (NNge). Their data 
comprise 1520 patient records from the intensive care unit (ICU) of the University Hospital of 
Oron, Algeria. From this, 17 features were derived, some of which are sex of patient, age of patient, 
reason for the hospitalization or catheter. They solely measure accuracy, obtaining the highest one 
of 100 percent with the NNge classifier.

In a study conducted in Taiwan,8 linear regression (LR) and artificial neural networks (ANNs) 
were used to predict HAI. The system used structured data. A total of 16 features were extracted 
from patient records, ranging from demographic, procedural and therapeutic features to features 
concerning the general health status of the patient. ANNs are trained using back-propagation and 
conjugate gradient descent. Evaluation of the system was done using an internal test set from the 
same hospital, as well as an external test set from a different hospital. For the internal test set of 
461 hospitalizations, the best result was produced using the ANN approach, reaching a recall of 
96.64 percent and a specificity of 85.96 percent. For the external test set consisting of 2500 hos-
pitalizations from different hospitals, LR gave the best result with 82.76 percent recall and 
80.90 percent specificity. 

In a series of papers,9–12 researchers around Gilles Cohen addressed the task of monitoring and 
detecting HAI using data from the University Hospital of Geneva, Switzerland. Their focus lied on 
the class imbalance, a problem that can be observed in many real-world classifications, especially 
in the medical domain. They used data from 683 patients, out of which 11 percent were positive 
cases (contracted HAI) and 89 percent were negative (did not contract HAI). From these records, 
the researchers collected features, such as demographic characteristics, admission date or admis-
sion diagnosis, and applied various techniques in order to detect patients with HAI.

In another study,9 the researchers tested (1) random and agglomerative-hierarchical-cluster-
ing (AHC) oversampling, (2) K-means subsampling and random subsampling and (3) combined 
AHC oversampling and K-Means subsampling. They compared them using five different classi-
fiers: IB1, Naive Bayes, C4.5, AdaBoost and a symmetrical-margin SVM. They obtained a recall 
ranging from 49 percent (IB1) to 87 percent (NB) for the five different classifiers when applying 
combined AHC oversampling and K-Means subsampling. Specificity ranged from 74 percent 
(NB) to 86 percent (IB1).

In yet another study,10 the researchers compared a symmetrical SVM against an asymmetrical 
one. The experiments showed the inadequacy of the symmetrical SVM when dealing with a skewed 
class distribution. They obtained the highest recall, at 92 percent, with a specificity of 72.2 percent 
when using the asymmetrical SVM.
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In the follow-up paper,11 the researchers applied one-class SVMs to the problem. This adaption 
of SVM can be trained to distinguish two classes by ignoring one of the two classes and learning 
from one class only. Their best results yielded a recall of 92.6 percent at the cost of a very low 
specificity of 43.73 percent.

In a study from 2006,12 the researchers compared the resampling strategy that had yielded the 
best results in a prior study,9 that is, they combined AHC oversampling and K-means subsampling, 
to the asymmetrical soft-margin SVM, which had been proven to be suitable for an imbalanced 
data, as shown in an earlier study.10 The asymmetrical soft-margin SVM obtained a recall of 92 per-
cent and a specificity of 72 percent, thus clearly outperforming their resampling method that 
obtained the highest recall at 87 percent with a 74 percent specificity for Naive Bayes.

In two additional studies,13,14 researchers presented results from a retrospective analysis of 
data that were collected during the 2006 HAI prevalence survey at the University Hospital of 
Geneva. The objective of their study, which encompassed both papers, was to define the minimal 
set of features needed for automated case reporting of HAI. Their dataset comprised 1384 cases, 
with 166 positive cases (11.99%) and 1218 negative cases (88.01%). The data contained four 
categories of interest: demographic information, admission diagnosis, patient information on the 
study date and 6 days before and information related to the infection. They used information gain 
and SVM recursive feature elimination, combined with chi-squared filtering, to select the most 
important features. They built two datasets: S1, which contained the most significant features 
retained by both feature selection algorithms; and S2, which also contained the most important 
features, but the features that were not well-documented in the patient record were removed. 
They then applied Fisher’s Linear Discriminant for classification. As a result, they obtained 
65.37 percent recall and 41.5 percent precision for S1 and 82.56 percent recall and 43.54 percent 
precision for S2.

Method

The method used in text classification using machine learning, a high-level flow chart, can be seen 
in Figure 1. An explanation of each part of the flow chart is given in the sections below.

Figure 1. A high-level flow chart describing this study’s text-classification approach for automatically 
detecting HAI. DR stands for daily patient record. In this study, a patient’s DR comprises data from four 
modules. All DRs of a patient together amount to the patient’s HR.
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Data

The dataset (This research has been approved by the Regional Ethical Review Board in Stockholm 
(Etikprövningsnämnden i Stockholm), permission number 2012/1838-31/3.) encompasses data 
from the electronic health records (EHRs) of 120 inpatients at a major university hospital in Sweden 
and was collected during a Point Prevalence Survey (PPS) (In Sweden, PPSs are performed twice a 
year to estimate the occurrence of HAI by counting existing cases of HAI at one specific time) in 
spring 2012. Not all information stored in the patients’ EHRs was considered valuable by the physi-
cians for detecting HAI. Thus, a subset of information from the EHRs was retrieved: Journalanteckning 
(Engl.: record notes), Läkemedelsmodul (Engl.: drug module), Mikrobiologiska Svar (Engl.: micro-
biological result) and Kroppstemperatur (Engl.: body temperature). The information extracted from 
these modules consists of structured and unstructured data. Structured data refer to data that are 
stored in predefined fields, such as International Classification of Diseases–10th Revision (ICD-10) 
diagnosis codes, medication or body temperature. Unstructured data refer to textual notes written by 
physicians, such as daily notes or microbiological results.

For each of the 120 patients, information from all four modules was extracted for the patient’s 
entire hospitalization. The physicians defined one hospitalization as the stay of a patient at a health 
facility for one care process. If the patient is discharged from one department of the hospital and 
admitted to another within 24 h, this was regarded as the same hospitalization. Moreover, any noted 
event occurring within 24 h after discharge was included in the hospitalization. From this point on, 
we will refer to the file that contains the data of a patient’s entire hospitalization as the hospitaliza-
tion record (HR). Since some of the 120 patients were hospitalized multiple times during the 
5-month period of records we received, our dataset comprises 213 HRs. Hospitalizations of less 
than 48 h are not represented in the final dataset as they were considered to carry too little informa-
tion. (This time frame is based on international definitions of HAI and the incubation period of 
infections and is estimated to be less than 48 h for a multitude of disorders.15) Table 1 depicts the 
characteristics of the HRs that were used as input for the classifiers.

All 120 patients had experienced HAI according to the PPS results. We had access to a 5-month 
period of records. As a result, the physicians in this study, unlike the physicians who carried out the 
PPSs, obtained information on how the health status of the patient progressed and which assessment 
he or she received during the time after the PPSs had been conducted. The physicians in this study 
could therefore give a more accurate answer on whether or not HAI occurred. Only 128 of 213 HRs 
contained HAI diagnoses (positive examples). Those records represent the HAI class. According to the 
physician’s assessment, the remaining 85 HRs contained no HAI diagnoses (negative examples), thus 
representing the NoHAI class. The dataset was not balanced, but instead, it was skewed toward the 
positive class. We only used the class containing HAI for prediction and not the class without HAI.

Machine learning 

There are a large number of different learning algorithms and classifier models that could be 
applied in our classification task. We decided to apply SVMs and GTB to the problem. Instead of 

Table 1. The characteristics of the HRs used in our study.

HAI NoHAI Total

Number of HRs 128 85 213
Length of hospitalization in days 2–144 3–93 2–144
Total number of tokens 22,528,102 2,598,036 25,126,138

HR: hospitalization record; HAI: hospital-acquired infection.
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exhaustively testing different learning strategies, we focused on a problem that is common for all 
supervised learning techniques—feature selection and the optimization of parameters. The authors 
in previous studies16,17 stated that preprocessing, feature selection and parameter tuning have a 
large impact on performance—more than the actual choice of the classification model. For a more 
detailed description of GTB, see Hastie et al.,18 and for SVM, see Dalal and Zaveri16 and Noble.19 
The two classifiers are part of the scikit-learn environment (available via http://scikit-learn.org).

SVM

SVMs use the concept of representing the documents that are to be classified as points in a high-
dimensional space and finding the hyperplane that separates them. This concept, in fact, is not unique 
to SVM. However, the difference between SVM and other classifiers using this concept is how the 
hyperplane is selected. SVM tries to find the hyperplane with the maximum margin, where margin 
refers to the distance between the hyperplane and the nearest data points.19 Using SVM is, among oth-
ers, motivated by the statement that SVM is very effective for two-class classification problems.16

We used an optimized and non-optimized SVM on our dataset. For the non-optimized SVM 
classifier, a radial basis function (RBF) kernel with degree = 3, C = 1, epsilon = 0.001 and 
gamma = 1/1000 was used. Usually, an RBF kernel is preferred unless the number of features is 
huge. In that case, a linear kernel is appropriate.20

GTB

GTB utilizes the power of a forest of weak tree learners to approximate the sought-after classifica-
tion function. By training a number of tree classifiers on different parts of the training data and then 
weighting their collective decision, a strong classifier is produced. The weak learner is a learner that 
may only have slightly better classification abilities than random guessing, but the combined strong 
learner will be an approximation of the true classification function. Using decision trees as the weak 
learner has the advantage of being able to handle different data types without conversion. Inherent 
when using trees with a maximum depth is feature selection, as only the most important features will 
be used when constructing the trees. Using trees also makes it possible to interpret the trained model 
by examining which variables are used most commonly to branch in each individual decision tree.18 
We used GTB both with and without parameter optimization. When used without parameter optimi-
zation, the default parameters used were v = 0.1, J = 3, M = 100 and subsample = 1.0.

Preprocessing techniques and parameter optimization

According to previous researchers,17,21 the high-dimensional feature space, that is, the amount of unique 
terms that occur in the text documents to be classified, marks a major characteristic and difficulty in text 
classification, making it a non-trivial task for automatic classifiers. It is thus desirable to reduce the 
dimensionality of the data to be processed by the classifier, in addition to reducing execution time and 
improving predictive accuracy. In our study, we used well-known preprocessing and filter methods in 
order to optimize and reduce the feature space. The preprocessing techniques are depicted in Table 2.

Term frequency (TF)

In this method, TF 1000, the 1000 most frequent terms, was chosen based on their TF. TF refers to 
the simplest weighting scheme, where the weight of a term is equal to the number of times the term 
occurs in a document.22,23

http://scikit-learn.org
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Lemmatization and stemming 

In machine learning, lemmatization and stemming are the frequently used methods when preproc-
essing data.16 In our study, we use the CST lemmatize (http://cst.dk/online/lemmatiser/uk/) in order 
to perform lemmatization. Lemmatization describes the process of reducing a word to a common 
base form, normally its dictionary form (lemma). This is achieved by removing inflectional forms 
and sometimes derivationally related forms of the word, by means of vocabulary usage and morpho-
logical analysis, for instance, am, are, is, be, or hospitals, hospital’s → hospital.22,23 For the Swedish 
language, which is highly inflectional, lemmatization is more important than it is for English. 

We further use stemming, which is a simpler form of lemmatization, where the produced stemmed 
words do not need to be real words but the minimal set of characters that distinguish the different 
stemmed words, for example, hospitals, hospital’s → hospit. We used the Snowball stemmer (http://
snowball.tartarus.org/algorithms/swedish/stemmer.html) for the Swedish language. The patient 
records were lemmatized and stemmed separately, before then being given as input for the classifiers.

Stop word removal 

Stop words are terms that are regarded as not conveying any significant semantics to the texts or 
phrases they appear in and are consequently discarded.24 The filter was configured to use the 
Swedish stop list, which is available via Snowball (http://snowball.tartarus.org/algorithms/swed-
ish/stop.txt) and comprises 113 words, such as och (Engl.: and), att (Engl.: to) or i (Engl.: in).

Infection-specific terms

In the course of the Detect-HAI project (Detection of HAIs through language technology project—
conducted in collaboration between Karolinska University Hospital and the Department of Computer 
and System Science (DSV) at Stockholm University during 2012 and 2013; the aim of the project 
was to ultimately build a system that can automatically detect HAI in Swedish patient records), a 
terminology database containing infection-specific terms was built using a semi-automatic approach. 
Infection-specific terms, such as kateter (Engl.: catheter), ultraljud (Engl.: ultrasound), operation 
(Engl.: surgery) or feber (Engl.: fever), are expected to be contained in patient records in case an 
infection occurs. In order to build the terminology database, the medical experts involved in that 
project supplied a seed set of about 30 infection-specific terms, which were based on frequent obser-
vations in the above-mentioned data and their knowledge about infections. The seed set was then 

Table 2. Different combinations of applied text-classification techniques and feature selection methods as 
well as the name chosen for each combination.

Name Text-classification method Feature selection method

TF 1000 Data not processed TF 1000
Lemma Data lemmatized TF 1000
Stem Data stemmed TF 1000
Stop Stop words removed from data TF 1000
IST Data not processed Infection-specific terms used
TF-IDF 1000 Data not processed TF-IDF 1000
LS-TFIDF 1000 Data lemmatized + stop words removed TF-IDF 1000
SS-TFIDF 1000 Data stemmed + stop words removed TF-IDF 1000

TF: term frequency; IST: infection-specific terms; TF-IDF: term frequency–inverse document frequency.

http://cst.dk/online/lemmatiser/uk/
http://snowball.tartarus.org/algorithms/swedish/stemmer.html
http://snowball.tartarus.org/algorithms/swedish/stemmer.html
http://snowball.tartarus.org/algorithms/swedish/stop.txt
http://snowball.tartarus.org/algorithms/swedish/stop.txt
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extended by giving each term of it as input for an automatic synonym extractor. The synonym gen-
erator used was implemented in-house and was based on random indexing.25 For each input term, a 
table holding related terms, which could include synonyms or misspellings, was generated as an 
output by the synonym generator. One medical expert then manually analyzed all proposed terms 
with respect to whether or not they could be regarded as applicable infection-specific terms. All 
relevant terms were added to the terminology database. The final infection-specific term (IST) ter-
minology database comprised a total of 1045 terms. When using the terminology database as a 
feature reduction technique, we removed all terms from the HRs except for those that occurred in 
the terminology database. By means of this procedure, the feature space was decreased to 374.

Term frequency–inverse document frequency (TF-IDF)

In a final approach, we assigned a TF-IDF weight to all terms. TF is defined in section “Term 
frequency (TF).” IDF is, according to previous research,22,23 a mechanism used in combination 
with TF to attenuate the effect of words that occur too often in the set of documents, as they  
could be important in order to discriminate between those. IDF is calculated as follows: idft =  
log N / dft, where N is the number of documents in a collection and dft is the document frequency 
of term t, that is, the number of documents in the collection that contain t. TF-IDF for a term is 
calculated using: tf-idft,d = tft,d × idft. Thus, TF-IDF for a t is large if t occurs many times within a 
small number of documents. We reduced the number of features to a maximum of 1000 terms 
with the highest TF-IDF scores. For more information on TF-IDF and different weighting 
schemes, see Manning et al.22 and Van Rijsbergen.23

Combination of preprocessing techniques

In an additional preprocessing step, lemmatization, stop word removal and TF-IDF 1000 were 
combined. This preprocessing step is named LS-TFIDF 1000 in Table 2. The corresponding step 
with stemming is named SS-TFIDF. (For more examples of different preprocessing and filtering 
techniques, see Dalal and Zaveri,16 Yang and Pedersen21 and Doraisamy et al.26).

Parameter optimization

The chosen machine-learning algorithms have a number of parameters that can be fine-tuned to 
better adapt to the problem and data they are applied on. For SVM using the RBF kernel, there are 
two main parameters: C and gamma.20 C controls the number of misclassified examples tolerated 
in the training set, while the gamma value affects the number of support vectors used.

In the case of GTB, the important parameters are J, v and M.18 J refers to the number of terminal 
nodes in each tree and reflects the number of variable interactions that are possible, v is the learning 
rate and M is the number of trees. It is usually beneficial to use subsampling with GTB. When using 
subsampling, a random sample of a predefined size is used to train each tree. This reduces the risk of 
overfitting. We chose to use 0.5 subsampling, as it is a commonly chosen strategy and has been proven 
to work well for the task. The learning rate v was fixed to 0.01 after some initial experiments.

In order to find good combinations of parameter values, a grid-search was conducted using 
fivefold cross-validation on the training data in each fold. Using fivefold cross-validation instead 
of a higher value of K avoids overfitting, given the small amount of available data. The parameters 
searched for GTB were as follows:

•• J ◊ {1, 3, 6, 8};
•• M ∈ {25, 50, 100, 200, 500, 1000}.
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The parameters searched for SVM were as follows:

•• Gamma ∈ {1.0, 0.1, 0.01, 0.001, 0.0001, 0.00001, 0.00001, 0.000001};
•• C ∈ {1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10}.

Evaluation

10-fold cross-validation

For evaluation, we use stratified 10-fold cross-validation, which is one of the best known and most 
commonly used evaluation techniques. Cross-validation is especially useful if the dataset is small, 
such as in our case, as it maximizes the amount of training data.27

Statistical tests

When comparing the classifiers’ results, statistical testing is necessary in order to verify the signifi-
cance of the results. In this study, the non-parametric sign test was used. The choice was motivated 
by the fact that the authors in previous research27 presented this statistical test as being simple to 
calculate and yet appropriate when wanting to compare the performance of multiple classifiers on 
a single domain. Just like the researchers27 did in their example calculations, the sign test was one-
tailed and performed at 5 percent significance level.

Results

Table 3 depicts the results of SVM, GTB and their optimized counterparts, given the different pre-
processing and feature selection methods. The best precision, recall and F1 scores for each preproc-
essing method are highlighted. For both classifiers, we built the models using both classes, that is, 
the 128 HRs containing HAI and 85 HRs not containing HAI. However, since the focus of this study 
lies on obtaining high recall for HRs that contain HAI, we only present performance measures of the 
classifiers for those records. Precision, recall and F1 scores for HRs not containing HAI are thus 
neither depicted nor analyzed.

When considering the recall score, one needs to take the F1 score into consideration. A baseline 
majority classifier would classify all instances as HAI, yielding a recall of 100 percent, precision of 
60 percent and F1 score of 75 percent. Hence, if the F1 score for a classifier is close to the baseline of 
75 percent, the result is not of interest, even if the recall value is high, as the performance is not better 
than is the baseline majority classifier. This means that we can disregard all of the results with a recall 
value of 100 percent since these do not have an F1 score larger than 75 percent. The optimized GTB 
yields the highest recall for all preprocessing techniques, with a maximum recall value of 93.7 percent 
and an F1 score of 85.7 percent when using stemming as the preprocessing technique.

When comparing the unoptimized SVM with the optimized SVM approach, it becomes clear 
that it is very important to perform parameter optimization when using SVM; the optimized SVM 
obtains a higher F1 score than does the unoptimized SVM for all preprocessing techniques. It is 
also worth noting that the F1 scores of the unoptimized SVM only differ slightly from the baseline. 
In the case of GTB, however, the results did not differ much when parameter optimization was 
applied, and the default parameters used produced a result as good as, slightly better or slightly 
worse than its optimized counterpart.

To statistically verify the classifiers’ different performance, we applied the non-parametric sign 
test, as mentioned earlier when using stemming as preprocessing, since it yielded the highest recall 
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Table 3. Precision, recall and F1 score (in %) for detecting HAIs using GTB, optimized GTB, SVM and 
optimized SVM given the different preprocessing methods.

GTB GTB optimized SVM SVM optimized

 P R F1 P R F1 P R F1 P R F1

TF 1000 83.4 90.6 86.7 79.6 92.2 85.2 76.3 79.8 78.0 80.2 88.1 83.7
Lemma 79.3 87.6 83.0 76.5 92.2 83.1 60.1 100.0 75.1 78.9 88.2 83.1
Stem 82.4 88.3 85.0 79.7 93.7 85.7 60.1 100.0 75.1 80.7 89.8 84.8
Stop 79.0 83.6 80.6 79.0 93.0 85.0 76.5 78.3 77.4 83.1 89.8 84.8
IST 79.0 86.0 81.7 76.7 89.1 81.9 73.0 65.1 68.9 72.9 84.5 78.0
TF-IDF 1000 81.7 91.2 86.0 79.5 92.1 84.9 60.1 100.0 75.1 78.1 89.7 82.8
LS-TFIDF 1000 80.2 84.4 81.9 78.9 91.3 84.2 60.1 100.0 75.1 72.7 88.9 79.3
SS-TFIDF 1000 78.6 85.8 81.6 78.8 93.0 85.0 60.1 100.0 75.1 75.3 86.6 79.8

GTB: gradient tree boosting; SVM: support vector machine; TF: term frequency; IST: infection-specific term; TF-IDF: 
term frequency–inverse document frequency.
In total, the material comprised 213 HRs of which 128 contained HAI giving a baseline precision of 60 percent, recall of 
100 percent and F-score of 75 percent.

score, in combination with a high F1 score for GTB, optimized GTB and optimized SVM. The con-
clusion was that the performance results obtained using the GTB, optimized GTB and optimized 
SVM, respectively, are not significantly different. However, they are significantly better compared 
to the unoptimized SVM that does not perform significantly better than the baseline classifier.

When comparing the recall, precision and F1 scores that the optimized GTB and optimized 
SVM obtained for the different preprocessing methods, it became apparent that the techniques did 
not generate a significant difference in the results. For the optimized GTB, the obtained recall 
values ranged from 89.1 percent (GTB-IST) at the lowest to 93.7 percent (optimized GTB-Stem) at 
the highest, indicating significant improvement from using one or the other technique. Likewise, 
the precision and F1 score values did not show any significant difference. The same can be stated 
for the performance results of the optimized SVM. The recall values varied between the minimum 
recall of 83.7 percent and the maximum recall of 89.8 percent, not differing significantly.

To summarize our observations, GTB obtained the highest recall and F1 score for all preprocessing 
methods when results too close to the baseline are disregarded. The difference between the best recall 
value, 93.7 percent (Stem), and the second best, 93.0 percent (SS-TFIDF 1000 or Stop), was only 
0.7 percentage points, and thus was not statistically significant. The difference in the third best 
recall value, 92.2 percent (TF 1000), amounted to 1.5 percentage points. Compared to this spread, 
the respective F1 scores remained quite close: 85.7 percent (Stem), 85.0 percent (stop word removal/
SS-TFIDF 1000) and 85.2 percent (TF 1000), indicating a comparable overall performance. The 
highest F1 score, 85.7 percent, was obtained when only stemming was applied. Since we aimed for 
the highest recall with the highest precision possible, that is, a reasonable overall performance in terms 
of F1, we concluded that the performance of optimized GTB-Stem came closest to our objective.

Decision features

It is interesting to look at the features upon which the classifiers base their decision. Using GTB, a 
measure of the relative importance of each feature used can be obtained by examining and scoring 
features that are most frequently used to branch off in each tree.18 The way to visualize and inter-
pret the results happens in the form of a relative importance plot: the value of each feature is cal-
culated as feature value = 100×(feature score / max score), giving each feature a value relative to 
the most important feature.
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Doing this for a GTB classifier trained on the whole stemmed point prevalence measurement 
(PPM) dataset yielded Figure 2. This can be compared to Figures 3 and 4, which show relative 
feature importance for unoptimized GTB-Stem and unoptimized GTB using TF1000 without stem-
ming. Based on these figures, some important observations can be made: (1) among the most 
important features are words that are plausible HAI indicators, such as växt (Eng.: growth), infek-
tionskonsult (Eng.: infection consultant), antibiotik (stemmed Swedish word, Eng.: antibiotics) and 
infektion (Eng.: infection). This is good as it hints that the approach was not building a model 
randomly. The features should be important indicators, even for larger datasets. (2) We can, how-
ever, also observe that idag (Eng.: today) and the abbreviation mkt (Eng. much), which are consid-
ered to be Swedish stop words, were seen as important features. This observation asks for a more 
thorough analysis of the terminological structure of patient records in order to optimize feature 
selection. (3) The most important features were independent of parameter optimization and pre-
processing: the top two features in all of the figures were växt (Eng.: growth) and infektionskonsult 
(Eng.: infection consultant). This observation strengthens the case that the application of different 
preprocessing techniques may not be very significant. (4) Furthermore, the two most important 
features were not present in the database of ISTs in section “Infection-specific terms.” In other 
words, there were terms that were either overlooked or deemed to not be indicators of HAI that 
were, in fact, important. This indicates that feature selection should either be automatic or semi-
automatic since there may be important terms that may be left out otherwise.

Figure 2. Top 20 feature importances for optimized GTB TF1000+stemming trained on the whole 
dataset. English translation within parenthesis. Note that since stemming is used the english translation is 
an approximation as directly translating a stem is not always possible.
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Classifier errors

As the optimized GTB-Stem produced the overall best results for our objective, it is interesting to 
analyze the types of errors the classifier made. To do this, all misclassified examples from each of 
the 10-folds were examined. It is observable from Table 3 that a recall of 100 percent can be 
achieved, yet at the cost of very low precision. However, as stated earlier, we emphasized recall 
(aiming at 100 percent) with the highest precision possible. If we considered the obtained recall of 
above 90 percent as being sufficiently high, it would be interesting to look at what keeps the preci-
sion low. In order to do so, we must evaluate what type of errors were made in the NoHAI class 
since misclassifications for this class appeared as false positives in the predicted HAI class, keep-
ing the precision score below 80 percent in almost all cases.

As visible in Table 4, the class NoHAI can be divided into two disjoint subclasses: hospitaliza-
tions with no infections at all (NoINF) and hospitalizations with community-acquired infections 
(CAIs), the latter of which we defined as infections that were not acquired in the hospital. 
Furthermore, some of the hospitalizations were, at the time the PPMs were carried out, considered 
to contain HAI, but in retrospect did not contain any HAI, but rather, some other type of infection 
or no infection at all. These are referred to as “HAI suspects.”

If we examine the type of errors made in the NoHAI class, we can make the following observa-
tions: 11/14 of all the “suspected HAI” cases were misclassified in comparison to the non-suspects, 
which were only misclassified in 17/70 of the cases. Furthermore, of all hospitalizations that con-
tained CAI, 12/22 were misclassified, while only 16/62 of all hospitalizations not containing infec-
tions were misclassified. Based on this, it seems like it is difficult for the classifier to distinguish 

Figure 3. Top 20 feature importances for un-optimized GTB TF1000+stemming trained on the whole 
dataset. English translation within parenthesis.
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between a HAI and CAI, and the cases misclassified by the medical staff during the PPM study are 
indeed hard to classify.

Compared to the fairly high recall, the precision stayed below 80 percent in almost all cases. Error 
analysis revealed that 42.8 percent of the false positives were patient records that contained a CAI. 
Another 25 percent of the false positives were “suspected HAI.” Handling these false positives in a 
future approach is crucial for increasing precision. Excluding records containing CAI from classifica-
tion is one option. Another idea is to, as a first step, train a classifier to differentiate between patient 
records containing an infection (including HAIs and CAIs) and those not containing an infection. In 
the second step, HAIs are then detected from the records that were predicted as infections.

Table 5 depicts the classifier errors for each label in class HAI. All hospitalizations that con-
tained ventilator-associated pneumonia (VAP) were classified correctly. Likewise, the classifier 
performed well for the hospitalizations containing pneumonia and sepsis: only 3 and 2 percent, 
respectively, of the hospitalizations containing these types of HAI were classified incorrectly. On 
the other hand, 20 percent of all hospitalizations containing urinary tract infections (UTI) and 
Clostridium difficile were classified into the wrong class. The analysis gives an indication that 
some types of HAI are easier to classify compared to others.

Yet, the count of certain types, for example, VAP, central venous catheter–related HAI or 
Clostridium difficile, is quite low. It is therefore difficult to say whether or not the error rate 
would be the same for a larger number of cases. Looking at how the different types of HAIs 
were classified, it is evident that some types, such as VAP, sepsis and pneumonia, have a lower 

Figure 4. Top 20 feature importances for unoptimized GTB using TF1000 without stemming. English 
translation within parenthesis.
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error rate compared to, for instance, UTI or Clostridium difficile. This observation demands a 
more thorough analysis of the records and how they have been classified with regard to which 
type of HAI they contain. This is to ultimately find out whether there are any indications in the 
records that keep the classification error rate for some types of HAI low, while others remain 
high.

Discussion

To our knowledge, our project group is the first or only one that has applied machine-learning 
techniques to Swedish patient records in order to detect HAIs. Compared to our previous approach, 
which was previously presented,2 we increased performance while using the same input data, that 
is, from 89.84 percent recall, 66.9 percent precision and 76.7 percent F1 score when applying 
SVM-tfidf50 in our previous paper to 93.7 percent recall, 79.7 percent precision and 85.7 percent 
F1 score when applying optimized GTB-Stem in our present approach. Although the recall values 
differed by only 3.86 percentage points, we could increase the precision significantly by 12.8 
percentage points. This yielded a considerably better F1 score, bringing us an important step 
toward our aim of approaching a 100 percent recall with the highest precision possible. Moreover, 
our experiments suggested that we can achieve better results than can some of the approaches 

Table 4. Classifier errors (optimized GTB-Stem) for the classes HAI and NoHAI, the latter being divided 
into four disjoint subclasses.

Class structure Errors Dataset

HAI 11 128
NoHAI CAI Suspected HAI 4 5

Not suspected HAI 8 18
NoINF Suspected HAI 7 9

Not suspected HAI 9 53
Total 39 213

GTB: gradient tree boosting; HAI: hospital-acquired infection; CAI: community-acquired infection; NoINF: no infections 
at all.

Table 5. Classifier errors (optimized GTB-Stem) for the different types of HAIs.

Label Errors Dataset

Ventilator-associated pneumonia 0  8
Sepsis 1 46
Pneumonia 1 33
Other HAI 1 15
Fungus/virus 1 15
Central venous catheter–related HAI 1 10
Wound infection 2 25
Urinary tract infection 4 20
Clostridium difficile 2 10

GTB: gradient tree boosting.
A hospitalization marked with HAI may have one or more types of HAI. Hence, a misclassified HAI hospitalization may 
contribute to the number of errors for multiple labels.
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presented in section “Related work,” even though they are not directly comparable due to differ-
ent datasets and variant languages used.

Limitations

One limitation of this study was the size of the dataset. The task of manually classifying patient 
records as to whether or not they contained HAI was difficult and time consuming. Manually ana-
lyzing a larger amount of patient records than the one we had and marking them as HAI or NoHAI 
have therefore not been possible in the amount of time available.

Another limitation was the distribution of positive and false cases in our dataset. The number 
of records that contain HAI (61%) and NoHAI (39%) in our dataset does not relate to the real-
life distribution, which is approximately 10 percent HAI and 90 percent NoHAI. Furthermore, 
the majority of the NoHAI records were from patients who had a HAI at some point or another 
(there also exists a HAI record for the same patient). This, as well as the fact that several of the 
NoHAI records were incorrectly classified as HAI by the medical staff at some point, gives us a 
dataset where the NoHAI class is harder to distinguish from the HAI class that what we thought 
would be the case.

Importance of preprocessing methods and choice of classifier

Even though the optimized GTB-Stem yielded the best performance results, it became apparent 
that the results yielded by a classifier, given the different preprocessing and feature selection tech-
niques, were only marginal. This means that, given our data, it does not make a significant differ-
ence whether we choose, for instance, stemming, stop word removal or SS-TFIDF 1000 as a 
preprocessing technique since the performance results are nearly the same. In our case, it made a 
bigger difference as to which classifier was used and whether the parameters were tuned. In terms 
of recall and F1 score, the optimized GTB generally yielded better results than did the (un)opti-
mized SVM. Moreover, the improvement in results obtained using the optimized SVM compared 
to the unoptimized SVM were clearly visible.

Text classification

A major difference between our approach and the similar work mentioned in Ehrentraut et al.2 is 
the fact that we treated all available data—free-text and lab results were treated as a single unstruc-
tured text document. This allowed us to apply standard text-classification methods, namely, apply-
ing TFs, such as features and standard machine-learning algorithms, to the problem. This has a big 
advantage compared to methods that rely on structured data: the amount and type of structured data 
available are different between hospitals and journal systems. The approach does not rely on the 
availability of such data and it does not rely on the data being available in a certain format. 
Furthermore, our approach was able to detect HAI indicators that were not known ahead of time, 
as shown in section Decision Features.

Comparing the text-classification approach with an approach based on structured data requires 
further research—evaluating and comparing the text-classification approach with a structured data 
approach using the same dataset. The results of this study showed that in terms of recall, the text-
classification approach was proven to produce results that were as good as using structured data 
(see Table 6). However, the specificity was lower than were the best scores found in the studies 
using structured data, but this may be due to the characteristics of the dataset used. If the text-
classification approach was able to produce the results seen in Table 3 on larger datasets, it might 
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be a good candidate for application in real-world scenarios, with minimal changes to the journal 
systems used and minimal additional work for the medical staff.

Cost analysis

In a report by the Swedish National Board of Health and Welfare,28 it is estimated that HAIs prolong 
the length of a patient’s stay in the hospital by an average of 4 days. Given all of the patients suffering 
from HAI, this is estimated to be about 500,000 extra hospital days per year. With a daily average cost 
of SEK7.373 (US$860) per day of care, HAIs generate an additional cost of approximately SEK3.7b 
(US$0.43b) per year except for the labor-intensive cost for carrying out manual PPM twice a year. 
However, if we can automatize this process, we would save labor, as well as improve the quality of 
the controls by carrying them out automatically and continuously, 24 h a day, all year long.12,29

Future work

We are well aware of the facts that

•• Our dataset is small, containing only 213 instances;
•• The distribution of positive and negative cases, that is, 128 HAI and 85 NoHAI instances, 

does not correlate with the real-life distribution;
•• The differences in the results of optimized GTB and optimized SVM are marginal and are 

not significantly different.

However, the result is significantly better compared to a majority baseline classifiers and unop-
timized SVM, and we are convinced that the results reveal the potential for applying text-classifi-
cation techniques to patient records, including the structured as well as unstructured parts. This is 
further motivated by the fact that, so far, we have used no particularly elaborate preprocessing and 
feature reduction methods. Future research will thus have to focus on improving the scores by, for 
instance, using wrapper techniques for feature reduction that are optimized on a specific learning 
algorithm and, therefore, yield better results according to previous research.30

Moreover, the medical experts involved in this project will manually analyze 292 additional 
HRs from the rheumatic clinic at Karolinska University Hospital. Thus, we will be able to train the 

Table 6. Recall, specificity and precision for optimized GTB-Stem compared with the results found in the 
“Related work” section.

Recall Specificity Precision

GTB-Stem optimized 93.7 64.1 79.7
[7] ANN Internal 96.64 85.96 –
[7] LR external 82.76 80.90 –
[10] SVM 92.6 43.73 –
[11] SVM 92.0 72.0 –
[11] NB 87 74.0 –
[13] FLD S2 82.56 – 43.54

GTB: gradient tree boosting; ANN: artificial neural network; LR: linear regression; SVM: support vector machine;  
NB: Naïve Bayes classifiers;  FLD: Fisher’s linear discriminant.
Note that the evaluation methods and datasets are not the same.
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classifiers on about twice as many data as we did for the current project, leading us to expect an 
improvement in performance. In addition, we aim at training the classifiers on a more realistic 
dataset, with a real-life distribution of about 10 percent positive and 90 percent negative cases.

Conclusion

This article focuses on applying SVM and GTB to the problem of detecting HAI in digital patient 
records. By means of applying different preprocessing, as well as feature selection, methods, we 
tried to increase recall. The results of the machine-learning algorithms were all in all very encour-
aging. Optimized GTB-Stem came closest to the objective of obtaining high recall with the highest 
precision possible, that is, yielding a recall of 93.7 percent, precision of 79.7 percent and F1 score 
of 85.7 percent.

This revealed the applicability of GTB to the task. The increased recall value obtained with the 
optimized SVM compared to the unoptimized SVM confirmed the assumption that SVM seemed 
to be suitable for the task and, more importantly, revealed the importance of parameter tuning, 
leading to significantly better results. Applying stemming yielded high performance results for all 
three classifiers, yet the difference in the results yielded by the classifiers when other preprocessing 
techniques (especially stop word removal) are applied were marginal.

Finally, the overall goal will continue to be obtaining high recall (approaching 100%) with the 
highest precision possible for HRs. This will enable us to implement a system that can screen all 
HRs and filter out all HRs that contain HAI. This would reduce the workload for hospital staff 
tremendously as they only need to analyze those HRs that were preselected by the system.
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