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Abstract The TOTEM collaboration has measured the
proton–proton total cross section at

√
s = 13 TeV with a

luminosity-independent method. Using dedicated β∗ = 90 m
beam optics, the Roman Pots were inserted very close to the
beam. The inelastic scattering rate has been measured by the
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T1 and T2 telescopes during the same LHC fill. After apply-
ing the optical theorem the total proton–proton cross section
isσtot = (110.6 ± 3.4) mb, well in agreement with the extrap-
olation from lower energies. This method also allows one to
derive the luminosity-independent elastic and inelastic cross
sections: σel = (31.0 ± 1.7) mb and σinel = (79.5 ± 1.8) mb.

1 Introduction

This paper presents the first measurement of the total proton–
proton cross section at a center of mass energy

√
s = 13 TeV;

the measurement is luminosity independent.
The TOTEM collaboration has already measured the total

proton-proton cross section at
√
s = 2.76 TeV, 7 TeV and

8 TeV, and has demonstrated the reliability of the luminosity-
independent method by comparing several approaches to
determine the total cross sections [10,12,13,18,21,32]. The
method requires the simultaneous measurements of the
inelastic and elastic rates, as well as the extrapolation of
the latter in the invisible region down to vanishing four-
momentum transfer squared t = 0.

The TOTEM experimental setup consists of two inelas-
tic telescopes T1 and T2 to detect charged particles com-
ing from inelastic pp collisions and the Roman Pot detec-
tors (RP) to detect elastically scattered protons at very small
angles. The inelastic telescopes are placed symmetrically on
both sides of Interaction Point 5 (IP5): the T1 telescope is
based on cathode strip chambers (CSCs) placed at ±9 m and
covers the pseudorapidity range 3.1 ≤ |η| ≤ 4.7; the T2
telescope is based on gas electron multiplier (GEM) cham-
bers placed at ±13.5 m and covers the pseudorapidity range
5.3 ≤ |η| ≤ 6.5. The pseudorapidity coverage of the two
telescopes at

√
s = 13 TeV allows the detection of about

92% of the inelastic events, including events with diffractive
mass down to 4.6 GeV. As the fraction of events with all final
state particles beyond the instrumented region has to be esti-
mated using phenomenological models, the excellent accep-
tance in TOTEM minimizes the dependence on such mod-
els and thus provides small uncertainty on the inelastic rate
measurement.

The Roman Pot (RP) units used for the present measure-
ment are located on both sides of the IP at distances of
±213 m (near) and ±220 m (far) from IP5. A unit consists
of 3 RPs, two approaching the outgoing beam vertically and
one horizontally. The horizontal RP overlaps with the two
verticals and allows for a precise relative alignment of the
detectors within the unit. The 7 m long lever arm between
the near and the far RP units has the important advantage
that the local track angles in the x and y-projections per-
pendicular to the beam direction can be reconstructed with a
precision of 2 μrad. A complete description of the TOTEM
detector is given in [9,11].

Each RP is equipped with a stack of 10 silicon strip detec-
tors designed with the specific objective of reducing the
insensitive area at the edge facing the beam to only a few
tens of micrometers. The 512 strips with 66 μm pitch of
each detector are oriented at an angle of + 45◦ (five planes)
and − 45◦ (five planes) with respect to the detector edge
facing the beam [36].

2 Data taking and analysis

The analysis is performed on two data samples (DS1 and
DS2) recorded in 2015 during a special LHC fill with β∗ =
90 m optics. This special optics configuration is described in
detail in [10,14,16,31].

The RP detectors were placed as close as 5 times the trans-
verse beam size (σbeam) from the outgoing beams. The col-
lected events have been triggered by the T2 telescope in either
arm (inelastic trigger), by the RP detectors in a double-arm
coincidence (elastic trigger), and by random bunch cross-
ings (zero-bias sample used for calibration). In DS2 there
are no zero-bias data recorded, and the closest run with zero-
bias data is used for calibration; the time dependence of the
zero-bias trigger rate is taken into account with a scale factor
measured on the physics data of DS2 itself and the closest
run.

2.1 Elastic analysis

2.1.1 Reconstruction of kinematics

The horizontal and vertical scattering angles of the proton at
IP5 (θ∗

x , θ∗
y ) are reconstructed in a given arm by inverting the

proton transport Eq. [16]

θ∗
x = 1

dLx
ds

(
θx − dvx

ds
x∗

)
, θ∗

y = y

L y
, (1)

where s denotes the distance from the interaction point, y
is the vertical coordinate of the proton’s trajectory, θx is its
horizontal angle at the detector, and x∗ is the horizontal vertex
coordinate reconstructed as

x∗ = Lx,far · xnear − Lx,near · xfar

d
, (2)

where d = (vx,near · Lx,far − vx,far · Lx,near). The scattering
angles obtained for the two arms are averaged and the four-
momentum transfer squared is calculated

t = −p2θ∗2 , (3)

where p is the LHC beam momentum and the scattering angle

θ∗ =
√

θ∗
x

2 + θ∗
y

2.
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The coefficients Lx , Ly and vx of Eqs. (1) and (2) are
optical functions of the LHC beam determined by the accel-
erator magnets. The β∗ = 90 m optics is designed with a
large vertical effective length Ly ≈ 263 m at the RPs placed
at 220 m from IP5. Since the horizontal effective length Lx

is close to zero at the RPs, its derivative dLx/ds ≈ −0.6 is
used instead. The different reconstruction formula in the ver-
tical and horizontal plane in Eq. (1) is also motivated by their
different sensitivity to LHC magnet and beam perturbations.

2.1.2 RP alignment and beam optics

After applying the usual TOTEM alignment methods the
residual misalignment is about 10 μm in the horizontal coor-
dinate and about 150 μm in the vertical [17,18]. When
propagated to the reconstructed scattering angles, this leads
to uncertainties of about 3.4 μrad (horizontal angle) and
0.6 μrad (vertical angle). The beam divergence uncertainty
has been convoluted with the vertical alignment for the error
propagation.

The nominal optics has been updated from LHC magnet
and current databases and calibrated using the observed elas-
tic candidates. The uncertainties of the optical functions are
estimated with a Monte Carlo program applying the optics
calibration procedure on a sophisticated simulation of the
LHC beam and its perturbations. The obtained uncertainty is
about 1.2 0/00 for dLx/ds and 2.1 0/00 for Ly [16,31].

The statistical uncertainty of the scattering angles, obtai-
ned from the data, is 1.9±0.1 μrad vertically (mainly due to
the beam divergence) and 4.9 ± 0.1 μrad horizontally (due
to the beam divergence and sensor pitch).

2.1.3 Event selection

The analysis is similar to the procedure performed for the
measurement of the elastic cross section at several other LHC
energies: 2.76 TeV, 7 TeV and 8 TeV [10,12,13,18,21,32].
The measurement of the elastic rate is based on the selection
of events with the following topology in the RP detector sys-
tem: a reconstructed track in the near and far vertical detectors
on each side of the IP such that the elastic signature is sat-
isfied in one of the two diagonals: left bottom and right top
(Diag. 1) or left top and right bottom (Diag. 2).

Besides, the elastic event selection requires the col-
linearity of the outgoing protons in the two arms, the sup-
pression of the diffractive events and the equality of the hori-
zontal vertex position x∗ reconstructed from the left and right
arms.

Figure 1 shows the horizontal collinearity cut imposing
momentum conservation in the horizontal plane with 1 0/00

uncertainty. The cuts are applied at the 4σ level, and they
are optimized for purity (background contamination in the
selected sample less than 0.1%) and for efficiency (uncer-
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Fig. 1 Analysis cut in the horizontal scattering angle θ∗
x . The blue and

black dashed lines represent the mean and the 4σ cuts, respectively
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Fig. 2 The distribution of the horizontal scattering angle difference
reconstructed from the left and the right arm. The distribution is shown
before any analysis cut (black solid line) and after each analysis cut

tainty of true elastic event selection 0.5%). Figure 2 shows
the progressive selection of elastic events after each analysis
cut.

2.1.4 Geometrical and beam divergence correction,
unfolding

The acceptance of elastically scattered protons is limited by
the RP silicon detector edge and by the LHC magnet aper-
tures. The proton acceptance correction is calculated taking
into account the azimuthal symmetry of elastic scattering,
experimentally verified on the data

A(θ∗) = 2π

Δφ∗(θ∗)
, (4)

where Δφ∗ is the visible azimuthal angle range, defined by
the acceptance cuts. The t-range of the analysis is constrained
to |t |min = 1.2 ·10−2 GeV2 and |t |max = 0.2 GeV2, a region
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Table 1 The t-dependent analysis uncertainties and corrections to the
differential elastic rate and to the optical point for both diagonals

|t |min |t |max

Alignment uncertainty ±1.3% ±3.4 %

Optics uncertainty ±10/00 ±10/00

A(θ∗) 5.96 ± 3 × 10−2 2.31 ± 1 × 10−2

D(θ∗
y ) 1.03 ± 2 × 10−2 1.00 ± 1 × 10−3

U(θ∗) 1.002 ± 5 × 10−5 1.04 ± 8 × 10−4

where the acceptance correction factor A(θ∗) is below six in
order to limit the systematic error on the final cross section.

Close to the acceptance edges the assumed azimuthal sym-
metry has to be corrected due to the beam divergence. This
additional acceptance loss is modelled with a Gaussian dis-
tribution, with experimentally determined parameters, and
taken into account as a function of the vertical scattering
angle D(θ∗

y ).
The unfolding of resolution effects is estimated with a

Monte Carlo simulation whose parameters are obtained from
the data, see Sect. 2.1.2. The angular spread of the beam is
determined with an uncertainty 0.1 μrad by comparing the
scattering angles reconstructed from the left and right arm,
therefore the unfolding correction factor U(θ∗) can be calcu-
lated with a precision better than 0.1%. The event-by-event
correction factor due to acceptance corrections and resolu-
tion unfolding is

C(θ∗, θ∗
y ) = A(θ∗)D(θ∗

y )U(θ∗) , (5)

see Table 1.

2.1.5 Inefficiency corrections

The proton reconstruction efficiency of the RP detectors is
evaluated directly from the data. The strip detectors are not
able to resolve multiple tracks, which is the main source of
detector inefficiency. The additional tracks can be caused
by interactions of the protons with the sensors or the sur-
rounding material or by the pileup with non-signal pro-
tons.

The inefficiency corrections are calculated for different
categories: “uncorrelated” (I3/4) when one RP out of four
along a diagonal has no reconstructed track; this inefficiency
includes the loss of the track due to nuclear interaction,
shower or pile-up with beam halo and is calculated as a func-
tion of θ∗

y per RP [17]. The inefficiency is called “correlated”
(I2/4) when both RP of one arm have no reconstructed tracks.
The case when two RPs have no reconstructed track in two
different arms (I2/4 diff.) is derived with a probability formula
from the “uncorrelated” inefficiency. The numerical values
of these corrections are listed in Table 2.

Table 2 Corrections to the differential and total elastic rate for the
different datasets and diagonals. The “uncorrelated” inefficiency cor-
rection (I3/4) is θ∗

y dependent, in the table its effect on the elastic rate
is provided

Correction [%] DS1 DS2

Diag. 1 Diag. 2 Diag. 1 Diag. 2

I3/4 25.86 ± 0.2 22.04 ± 0.2 20.34 ± 0.1 21.37 ± 0.1

I2/4 19.91 ± 0.2 16.16 ± 0.2 16.09 ± 0.2 17.11 ± 0.2

I2/4 diff. 2.38 ± 0.05 1.61 ± 0.04 1.33 ± 0.02 1.5 ± 0.02

ηd 80.93 ± 0.01 99.95 ± 0.01

ηtr 99.9 ± 0.1 99.9 ± 0.1

The total correction factor per event is

f (θ∗, θ∗
y ) = 1

ηdηtr
· C(θ∗, θ∗

y )

1 − I · 1

Δt
, (6)

where the track reconstruction inefficiencies are summed
I = I3/4(θ

∗
y )+I2/4 +I2/4 diff since they are mutually exclu-

sive, Δt is the bin width and ηd, ηtr are the DAQ and trigger
efficiency, respectively. The data sample DS1 had a lower
DAQ efficiency compared to DS2 due to the inclusion of the
T1 detector in the DAQ that limited the data taking rate. The
observed Nel,obs and the fully corrected elastic rate Nel is
summarized for the two data sets in Table 4, together with
their optical point dNel/dt |t=0 .

2.2 Analysis of inelastic scattering

The analysis procedure is similar to the ones for the inelastic
event rate measurements at 2.76, 7 and 8 TeV [12,15,21,32]
and starts from the number of T2 triggered events as the
observed inelastic rate. The events are classified according
to their topology: events with tracks in T2 in both hemi-
spheres (“2h”), dominated by non-diffractive minimum bias
and double diffraction, and events with tracks in one hemi-
sphere only (“1h”), dominated by single diffraction. Due to
the non-operational half-arm of T2 on the negative side, for
the 1h category each of the three half-arms are treated sepa-
rately in the analysis to avoid biases and then the two half-
arms on the positive side are combined.

To evaluate the total inelastic rate, several corrections have
to be applied. First, to obtain the T2 visible inelastic rate
(NT2vis), the observed rate is corrected for beam gas back-
ground, trigger, reconstruction efficiency and the effect of
pileup. Next, the rate corresponding to the events with at least
one final state particle in |η| < 6.5 (N|η|<6.5) is derived by
assessing topologies which can cause an undetected event in
T2. These are events detected only by T1, central diffractive
events with all final state particles outside the T2 acceptance
and events with a local rapidity gap covering T2. Finally, to
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Table 3 Corrections and
systematic uncertainties of the
inelastic rate measurement. The
second column shows the size of
the correction, the third column
the systematic uncertainty
related to the source

Source Correction Uncertainty Effect on

Beam gas −0.4% 0.2% All rates

Trigger efficiency 1.2% 0.6% All rates

Pile up 3.6% 0.4% All rates

T2 event reconstruction 0.9 (1.6)% 0.45 (0.8)% Ninel, N|η|<6.5 (NT2vis)

T1 only 1.7% 0.4% Ninel, N|η|<6.5

Central diffraction 0.5% 0.35% Ninel, N|η|<6.5

Local rapidity gap covering T2 0% 0.4% Ninel, N|η|<6.5

Low mass diffraction seen − 0.6% 0.3% Ninel, N|η|<6.5

Low mass diffraction 7.1% 3.55% Ninel

Table 4 The observed elastic
Nel,obs and inelastic rate
Ninel,obs, the fully corrected
elastic Nel and inelastic rate
Ninel and the optical point
dNel/dt |t=0 of the two data sets
(errors where quoted are
statistical and systematic)

Data set Unit DS1 DS2

Nel,obs 105729 216825

Ninel,obs 773000 1488343

Nel 4.273 · 105 ± 0.5% ± 2.3% 6.660 · 105 ± 0.5% ± 2.3%

dNel/dt |t=0 [GeV−2] 8.674 · 106 ± 0.4% ± 1.6% 1.356 · 107 ± 0.4% ± 1.6%

Ninel 1.097 · 106 ± 0.1% ± 3.7% 1.708 · 106 ± 0.1% ± 3.7%

estimate the total inelastic rate (Ninel), the contribution of low
mass diffraction with only final state particles at |η| > 6.5 is
evaluated. The corrections leading to the total inelastic rate
measurement are described below and quantified in Table 3
together with their systematic uncertainties, summing up to
3.7%. The observed Ninel,obs and fully corrected inelastic rate
Ninel is shown in Table 4.

2.2.1 Beam gas background

The beam gas background is estimated from events triggered
with T2 on the non-colliding bunches and affects only the 1h
category. The intensity difference between the colliding and
non-colliding bunches is taken into account. Conservatively,
half the size of the correction to the overall inelastic rate is
taken as systematic uncertainty.

2.2.2 Trigger efficiency

The trigger efficiency is determined from zero bias triggered
events, separately for the different event topologies and inte-
grated over all T2 track multiplicities. The systematic uncer-
tainty is evaluated as the variation required on the 1h trigger
efficiency to give compatible fractions for left and right arm
(after correcting for the non-operational half arm of T2).

2.2.3 Pileup

The pileup correction factor is determined from the zero bias
triggered events. The probability to have a bunch crossing

with tracks in T2 is about 0.07 from which the probability
of having more than two inelastic collisions with tracks in
T2 in the same bunch crossing is derived. The systematic
uncertainty is assessed from the variation of the probability,
within the same dataset, to have a bunch crossing with tracks
in T2 and the uncertainty due to the T2 event reconstruction
efficiency.

2.2.4 T2 event reconstruction

The T2 event reconstruction inefficiency is estimated using
Monte Carlo (MC) generators (PYTHIA8-4C [25], QGSJET-
II-04 [35]) tuned with data to reproduce the measured frac-
tion of 1h events, 0.195 ± 0.010. The systematic uncertainty
is taken to be half of the correction. In these runs, they are
mostly due to events with tracks only in the non-operational
T2 half-arm with some additional events due to only neutral
particles within the T2 acceptance. A large fraction of the
events missed due to T2 reconstruction inefficiency are recu-
perated with the T1 detector reducing the correction sizably
for Ninel and N|η|<6.5.

2.2.5 T1 only

The T1-only correction takes into account events with no
reconstructed particles in T2 but tracks reconstructed in T1.
The systematic uncertainty is equal to the precision to which
this correction can be calculated from the zero-bias sample.
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Fig. 3 Differential elastic rate dNel/dt at
√
s = 13 TeV (full physics corrections included) of dataset DS2 with the exponential fit between |t |min

and |t |max. The right panel shows the data in the dip region. The uncertainties shown and quoted are only statistical

2.2.6 Central diffraction

The central diffraction correction, based on the PHOJET and
MBR event generators [22,27], takes into account events
with all final state particles outside the T1/T2 pseudora-
pidity acceptance. Both generators are underestimating the
low mass resonance contribution. Therefore, the total central
diffractive contribution is assumed to be twice the generator
estimates. Since the uncertainties of the central diffractive
cross-section and the low mass resonance contribution are
large, the systematic uncertainty is assumed to be equal to
the largest difference of the correction with and without low
mass resonance contribution.

2.2.7 Local rapidity gap covering T2

The correction due to local rapidity gap over T2 considers
single diffraction events with a rapidity gap of the diffrac-
tive system extending over the entire T2 η-range and with no
tracks in T1. It is estimated from data, measuring the proba-
bility of having a single diffractive-like topology with a gap
covering T1 and transferring it to the T2 region correcting
for the different conditions (average charged multiplicity, pT
threshold, gap size and surrounding material) between T1 and
T2. As a cross-check the correction is also estimated from
MC generators (PYTHIA8-4C, QGSJETII-04). The two esti-
mates differ sizably and therefore only a systematic uncer-
tainty equal to the largest estimate is applied, without making
any correction.

2.2.8 Low mass diffraction

The T2 acceptance edge at |η| = 6.5 corresponds to a diffrac-
tive mass of about 4.6 GeV (at 50 % efficiency). The low mass
diffraction correction, i.e. the contribution of events with all
final state particles at |η| > 6.5, is estimated with QGSJET-

II-03 [33] after correcting the fraction of 1h events in the
MC to the one of the data. At 7 TeV, the estimated correction
using this procedure was consistent with the value estimated
from data [15]. To account for the large uncertainty of the low
mass diffraction contribution and to cover also other predic-
tions [25,29,34], the systematic uncertainty is taken to be
half of this correction.

3 Cross sections

3.1 Differential elastic rate and extrapolation to t = 0

After unfolding and including all systematic corrections, the
physics differential elastic rate dNel/dt is described with an
exponential and fitted using the propagated statistical uncer-
tainties in the range between |tmin| and |tmax|, see Fig. 3. The
normalized χ2/ndf for the statistical fit is 50.8/36 = 1.4
as to be expected due to the non-inclusion of the system-
atic uncertainties. The t-dependent sources of the bin-to-
bin correlated systematic uncertainties (described starting
from Table 1) are not used in the fit due to their partially
non-Gaussian nature and their non-treated interdependen-
cies. This is allowed since their t-dependence is monotonic
with the same trend as the statistical errors, thus not changing
significantly the relative weight of the bins in the fit and con-
sequently not also the central values for the fitted variables.
As a cross-check, the effect of including the systematic uncer-
tainties in the fit has been checked for the extreme points of
the range to be sufficient and necessary to bring the χ2/ndf
below 1.

The t-dependent and correlated systematic uncertainties
have been propagated from the sources (Table 1), to the mea-
sured quantities (Table 4) and the physics results (Table 5)
using full MC-based numerical methods, assuring to take in
all cases an upper bound in case of unknown interdepen-
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Table 5 The nuclear slope B, the cross sections and their systematic and
statistical uncertainty. The physics quantities are the weighted average
of the DS1 and DS2 measurements

Physics quantity Value Total uncertainty

ρ = 0.14 ρ = 0.1

B [GeV−2] 20.36 5.3 · 10−2 ⊕ 0.18 = 0.19

σtot [mb] 109.5 110.6 3.4

σel [mb] 30.7 31.0 1.7

σinel [mb] 78.8 79.5 1.8

σel/σinel 0.390 0.017

σel/σtot 0.281 0.009

dencies. As can be noted from the Tables referenced above,
such uncertainties are significantly larger, in particular for the
slope and the intercept at t = 0, than the variation induced
by the choice of the fit range, the inclusion of the correlated
systematic uncertainties in the χ2, or due to the deviation
of the slope from a pure exponential [17,20]. In fact, even
the statistical uncertainties alone are an order of magnitude
larger than what is needed to have sensitivity to the expected
deviations from the purely exponential.

Assuming that the exponential parameterization holds
also for |t | < |tmin| the value of dNel/dt |t=0 can be used
to determine the total cross-section using Eq. (7).

The magnitude of the systematic effects at |t | < |tmin| for
the deviations from the pure exponential functional form and
for the Coulomb-nuclear interference, onto the total cross-
section, are known from [17–20] and are well contained in
the quoted systematic uncertainty in the present paper.

The dip region is shown in the right panel of Fig. 3.

3.2 The total cross section

The measurements of the total inelastic rate Ninel and of the
total nuclear elastic rate Nel (with its extrapolation to t = 0,
dNel/dt |t=0) are combined via the optical theorem to obtain
the total cross section in a luminosity independent way

σtot = 16π(h̄c)2

1 + ρ2 · dNel/dt |t=0

Nel + Ninel
, (7)

where the parameter ρ is the ratio of the real to the imaginary
part of the forward nuclear elastic amplitude.

The total cross section measurements of the DS1 and DS2
data sets have been averaged according to their raw inelastic
rate Ninel,obs, which yields

σtot = (110.6 ± 3.4) mb , (8)

when ρ = 0.1 is assumed. The choice of ρ = 0.1 in the
present analysis is motivated by the results given in [19].

From the measured (and fully corrected) ratio of Nel to
Ninel the luminosity- and ρ-independent ratios

σel

σinel
= 0.390 ± 0.017,

σel

σtot
= 0.281 ± 0.009 , (9)

The luminosity independent elastic and inelastic cross sec-
tions are derived by combining their ratio and sum

σel = (31.0 ± 1.7) mb, σinel = (79.5 ± 1.8) mb . (10)

Fig. 4 Overview of
elastic (σel), inelastic (σinel),
total (σtot) cross section for pp
and pp̄ collisions as a function
of

√
s, including TOTEM

measurements over the whole
energy range explored by the
LHC [1–5,7,8,12–
14,17,18,21,23,24,28,30,32].
Uncertainty band on theoretical
models and/or fits are as
described in the legend. The
continuous black lines (lower
for pp, upper for pp̄) represent
the best fits of the total cross
section data by the COMPETE
collaboration [26]. The dashed
line results from a fit of the
elastic cross section data. The
dash-dotted lines refer to the
inelastic cross section and are
obtained as the difference
between the continuous and
dashed fits
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Fig. 5 Focus on the 7–8 TeV
range showing the comparison
of the pairs of TOTEM
measurements which represent
the broadest exploration of
different methods, data sets,
t-range (with or without
Coulomb-nuclear interference)
and descriptions of the nuclear
slope with the ATLAS-ALFA
measurements
[2,4,13,14,17,18]

Fig. 6 The elastic to total cross
section ratio for pp and pp̄
collisions as a function of√
s [2,4,12,13,21,30,32]

The precise inelastic cross-sectionσinel measured by TOTEM
is compatible with the ATLAS and LHCb results within their
uncertainties [1,6].

The measured physics quantities are also calculated for
the COMPETE prediction at

√
s = 13 TeV ρ = 0.14 [26].

The values obtained for all the physics quantities are summa-
rized in Table 5. Their systematic uncertainties are derived
from a full numerical propagation of the individual source of
correlated systematic uncertainties shown in Tables 1 and 2.

Figure 4 is the compilation of all the previous pp and
pp̄ total, elastic and inelastic measurements, together with
a selected set of TOTEM measurements. Figure 5 shows a

more detailed plot of the measurements in the range between
7 and 8 TeV including TOTEM values for σtot obtained with
different methods.

With the present measurement TOTEM has covered a
range from

√
s = 2.76 to 13 TeV obtaining a variation of

total cross-section from (84.7±3.3) to (110.6±3.4) mb and
a variation of the nuclear slope B from (17.1 ± 0.3) GeV−2

to (20.36 ± 0.19) GeV−2 [10,12,13,18,21,32].
The evolution of the elastic to total cross section ratio and

the nuclear slope B as function of
√
s are shown in Figs. 6

and 7. The elastic to total cross section ratio increases with
√
s

as shown by Fig. 6. In particular, the deviation at LHC ener-
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Fig. 7 The nuclear slope B for
pp and pp̄ elastic scattering as a
function of

√
s. It should be

understood that while B is
defined at t = 0, the
experimental measurements are
actually averaging the slope,
hence they depend on the chosen
t-range and on the deviations of
the data from a pure
exponential. While fluctuations
beyond the experimental error
bars should thus be expected,
the deviation for

√
s > 3 TeV

from the linear extrapolation is
highly significant [2,4,12,14,
21,28,30,32]

gies of the nuclear slope from the low energy linear extrap-
olation is clearly visible in Fig. 7.
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