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ABSTRACT

Aims. Sunspot number series are composed from observations of hundreds of different observers that require careful normalization to
standard conditions. Here we present a new normalized series of the number of sunspot groups for the period 1749–1996.
Methods. The reconstruction is based on the active day fraction (ADF) method, which is slightly updated with respect to previous
works, and a revised database of sunspot group observations.
Results. Stability of some key solar observers has been evaluated against the composite series. The Royal Greenwich Observatory
dataset appears relatively stable since the 1890s but is approximately 10% too low before that. A declining trend of 10–15% in the
quality of Wolfer’s observations is found between the 1880s and 1920s, suggesting that using him as the reference observer may lead
to additional uncertainties. Wolf (small telescope) appears relatively stable between the 1860s and 1890s, without any obvious trend.
The new reconstruction reflects the centennial variability of solar activity as evaluated using the singular spectrum analysis method.
It depicts a highly significant feature of the modern grand maximum of solar activity in the second half of the 20th century, being a
factor 1.33–1.77 higher than during the 18 and 19th centuries.
Conclusions. The new series of the sunspot group numbers with monthly and annual resolution is provided forming a basis for new
studies of the solar variability and solar dynamo for the last 250 yr.
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1. Introduction

Sunspots, the dark spots on the Sun, are easily observed even
with a basic optical instrument, and this was done by many gen-
erations of professional and amateur astronomers throughout the
centuries. As a result, the sunspot number forms the longest sys-
tematic scientific series used as a quantitative index of the level
of variable solar activity (Hathaway 2015). Because of its length,
the sunspot number series includes records from hundreds of ob-
servers with different optical instruments, measuring/recording
techniques, habits, etc. This unavoidably calls for a need to re-
duce the data of individual observers to a “standard observer”,
which implies not only a person but material/instrument and con-
ditions. Because of this, the sunspot number is a relative number.

The first consistent sunspot number series was produced
by Rudolf Wolf of Zürich who calibrated different observers
to his own observational conditions. To reduce data from dif-
ferent observers, Wolf used a simple linear scaling of sunspot
counts from each observer to standard observers (the so-called
k−factors). This is often referred to as daisy-chaining, espe-
cially when the number of standard observers is large. Later, the
Wolf sunspot number (WSN) series was continued as the inter-
national sunspot number series (ISN) at the Royal Observatory

? Monthly values of the reconstructed sunspot are available at the
CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)
or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A109

of Belgium and the Solar Influences Data Center, Sunspot Index
and Long-term Solar Observations (SILSO)1). However, several
inhomogeneities have been found in the WSN/ISN, and an up-
dated ISN series (version 2, denoted as ISN_v2) had been re-
leased (Clette et al. 2014). It is important to notice that ISN_v2
uses Adolf Wolfer, not Rudolf Wolf, as a “standard observer”
leading to the higher (by a factor of 1.667) overall ISN values
versus the “classical” WSN/ISN datasets. The ISN_v2 still uses
the k−factor methodology for calibration of different observers.
We also note that the original raw data for the WSN series are
not available in a digital format, making a full revision of this
series currently impossible, although a progress in this direction
is on its way (Friedli 2016).

The WSN/ISN series is based on the counts of both sunspot
groups and individual sunspots, with the former being weighted
with a factor of ten:

R = k · (10 ·G + S ), (1)

where G and S are the numbers of sunspot groups and indi-
vidual sunspots, respectively, and k is a correction factor, char-
acterizing each observer. However, resolving individual spots
may be imprecise with poor instrumentations, and a new se-
ries, based only on sunspot groups, was proposed, called the
group sunspot number, GSN (Hoyt et al. 1994; Hoyt & Schatten
1998). The GSN is more robust than WSN regarding observa-
tional conditions (e.g., Usoskin 2017). There is still a potential
1 http://www.sidc.be/silso/
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problem related to the grouping of individual spots, which may
have been considered by earlier observers in a different manner
to that currently accepted (Clette et al. 2014). This uncertainty
is related to both WSN/ISN and GSN but can be fixed by re-
defining groups in historical sunspot drawings (Arlt et al. 2013).
The GSN series produced by Hoyt & Schatten (1998) also uses
the linear scaling and daisy-chaining method to reduce differ-
ent data to the same reference observer, for which the RGO was
chosen. The GSN is constantly scaled up by a factor 12.08 to
make it comparable with the WSN series. The main advantage
of the GSN series is that Hoyt & Schatten (1998) had collected
and published the original database of raw data, including all the
records of individual observers. This makes it possible to revise
the entire series if needed. Since some corrections and additions
have been recently made to this dataset, a revised database of
the sunspot group numbers, separate for each observer, is pub-
lished (Vaquero et al. 2016, referred to as V16 hereafter). The
GSN series was revised by Svalgaard & Schatten (2016) who
performed a full re-calibration of the observers using a modi-
fied daisy-chaining method with a reduced number of links (the
“backbone” method). The revised backbone GSN series suggests
that the level of solar activity was relatively high in the 18th and
19th centuries, much higher than that implied by the original
GSN series by Hoyt & Schatten (1998) and by WSN.

Thus, all the earlier series were based on the paramet-
ric k−factor calibration method (daisy-chain, linear scaling).
However, it has been shown recently (Lockwood et al. 2016a,b;
Usoskin et al. 2016a) that the linear k−factor methodology may
be inaccurate when applied to sunspot numbers and needs to
be replaced by a modern non-parametric method. Two such
methods have been proposed recently: the active-day fraction
(ADF) method (Usoskin et al. 2016b, referred to as U16 here-
after) and the method based on the ratio of the number of individ-
ual sunspots to that of sunspot groups (Friedli 2016). Both these
methods use absolute calibration of observers to the standard one
and are thus free of daisy-chaining and arbitrary choices.

Here we provide a new sunspot number reconstruction us-
ing the ADF method originally introduced by Usoskin et al.
(2016b), the revised and corrected dataset of the sunspot groups
(Vaquero et al. 2016), a larger set of observers, and a slight re-
fining of the calibration method and estimate of its uncertainties.

2. Data

2.1. The reference dataset

As the reference dataset we used, similarly to U16, the database2

of sunspot groups of the RGO. RGO data is available from 1874
onwards, but the early part of the database may suffer from un-
stable quality. Which period may be affected by this is still de-
bated Cliver & Ling (Cliver & Ling; see Sect. 5), but it is conser-
vatively considered that the series is fairly homogeneous since
1900 (Clette et al. 2014; Usoskin et al. 2016b). Accordingly, we
use the RGO data for the period 1900–1976 as the reference
dataset to calibrate observers, but the whole RGO dataset (1874–
1976) is included in this work as an observer (see below). This
period includes seven complete solar cycles, # 14 through 20. As
the group size we used the observed (uncorrected for foreshort-
ening, viz. as observed from Earth) umbral area of the sunspot
groups in units of msd (millionths of the solar disk). We have
tested the robustness of the results against the exact length of the
reference dataset (Sect. 5.1).
2 Available at http://solarscience.msfc.nasa.gov/
greenwch.shtml

2.2. Observers

Here we considered major observers with long records of
sunspot data covering the periods of the 18th through 20th cen-
turies. We used the same set of observers as in U16, except
for Stark, whose reliability is unsettled (Hoyt & Schatten 1998).
Further, we added 11 more observers for the 20th century, ex-
tending the database up to 1996, which is comparable with
the GSN (Hoyt & Schatten 1998). As data for individual ob-
servers, we used the daily number of sunspot groups collected by
Vaquero et al. (2016). This database3 is based on the initial data
of sunspot group records gathered by Hoyt & Schatten (1998)
but includes important updates and corrections.

Data for Schwabe were taken from a recent compilation
by Arlt et al. (2013)4 based on digitized drawings and notes of
Schwabe. In this compilation, sunspots were re-grouped using
modern definition of sunspot groups which is different from the
original Schwabe grouping (Senthamizh Pavai et al. 2015).

All the observers used in this study are listed in Table 1. Their
data coverage is shown in Fig. 1.

3. Calibration method
3.1. Calibration of observers
Each observer has been calibrated to the reference RGO dataset,
following the ADF method invented by U16. The ADF is the ra-
tio of active days (with at least one sunspot group reported) to
the total number of observational days per month. The method
is based on comparing the ADF statistic of an observer to be
calibrated with that of the reference dataset. The fraction of ac-
tive days within a month is a robust indicator of solar activ-
ity around solar minima and makes it possible to calibrate dif-
ferent observers (Harvey & White 1999; Kovaltsov et al. 2004;
Vaquero et al. 2012; Vaquero et al. 2015). Here we have slightly
refined the original method, in particular in the part related to
the compilation of monthly values (see Sect. 4). We have also
revised the indirect calibration of Staudacher (see Sect. 3.4).

The ADF method used here is slightly modified with respect
to the original one (U16) in the following:

– When computing the ADF for individual observers, we did
not apply here the limitation of considering only months with
the number of observational days n ≥ 3, applied in U16. This
has almost no effect for observers with sufficiently high ob-
servation frequency, in particular in the 19th and 20th cen-
turies, but may distort the statistic for observers with low
data coverage and uneven distribution of observational days.
Accordingly, we have applied this limitation for Derfflinger
and Hershel whose data coverage fraction was 11% and 5%,
respectively.

– When constructing the conversion matrix (Sect. 3.3), we ac-
counted for the uncertainties in the definition of the observa-
tional threshold S s, while only the mean S s values were used
by U16.

– Data of Staudacher were calibrated differently here (see
Sect. 3.4).

– When calculating the monthly mean G−values and their un-
certainties from daily values we used here a Monte Carlo
method, while a weighted averaging method was used by
U16.

The effect of these improvements are discussed in Sect. 6.1.

3 Available at http://haso.unex.es/?q=content/data
4 www.aip.de/Members/rarlt/sunspots/schwabe, version 1.3
from 12 August 2015.
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Table 1. Observers used in this work.

Observer # Tobs Tcal N f (%) ADF(%) S S (msd)
RGO∗ 332 1874–1976 1900–1976 28 124 100 86 0
SEL† 459 1977–1995 1977–1995 6922 100 94 <0
Rome Obs.† 454 1958–1989 1958–1976 4758 69 89 22(26

18)
NAOJ† 447 1949–1993 1954–1976 6243 74 89 <0
Cragg† 736 1947–2009 1954–1976 7015 84 87 20(22

17)
Koyama 445 1947–1996 1953–1976 4727 54 88 3(6

0)
Protitch† 438 1936–1954 1936–1954 3357 48 91 0(2

0)
Madrid Obs.† 435 1935–1986 1935–1976 10 049 66 86 28(32

24)
Brunner† 428 1926–1944 1926–1944 4901 71 88 2(6

0)
Luft† 464 1924–1988 1924–1976 7536 39 87 15(17

12)
Guillaume† 386 1902–1925 1902–1925 6340 72 79 5(11

1 )
Broger† 370 1896–1935 1900–1935 8600 65 78 8(11

5 )
Quimby 352 1889–1921 1900–1921 7428 92 73 23(31

17)
Winkler 341 1882–1910 1889–1910 4813 60 75 60(71

51)
Wolfer 338 1880–1928 1900–1928 7165 68 77 6(11

1 )
Tacchini 328 1871–1900 1879–1900 6256 78 82 18(22

13)
Leppig 324 1867–1881 1867–1880 2463 48 73 50(61

43)
Spoerer 318 1861–1893 1865–1893 5409 51 86 0(2

0)
Weber 311 1859–1883 1859–1883 6983 76 81 25(31

20)
Wolf 298 1848–1893 1860–1893 8122 65 77 45(49

36)
Shea 295 1847–1866 1847–1866 5538 76 80 25(31

20)
Schmidt 292 1841–1883 1841–1883 6970 44 79 10(12

7 )
Schwabe 279 1825–1866 1832–1866 8297 65 86 8(12

4 )
Pastorff 263 1819–1833 1824–1833 1462 40 87 3(9

0)
Derfflinger 246 1802–1824 1816–1824 374 11 69 50(80

40)
Herschel 236 1794–1818 1795–1810 372 5 84 20(40

10)
Horrebow 180 1761–1776 1766–1776 1365 34 74 70(87

54)
Schubert 178 1754–1758 1754–1757 446 31 59 20(23

14)
Staudachera 466 1749–1799 – – 10 – –

Notes. The columns are: the name of the observer; observer’s ID number # in the V16 database; total period of observations T obs (as shown in
Fig. 1); period used for calibration T cal; the number of observational days during the calibration period N; the filling factor f during the calibration
period; the fraction of active days, ADF, during the calibration period; estimate of the observational threshold S S (in msd) along with the 68%
confidence interval. (∗) reference dataset; (†) new with respect to Usoskin et al. (2016b); (a) calibrated indirectly (see Sect. 3.4).

3.2. Assessment of the observer’s quality

The calibration method is based on the idea that the “quality”
of each observer is characterized by his/her observational acuity,
or an observational threshold area S S . The threshold implies that
the observer can see and report all the groups with the area larger
than S S , while missing all smaller groups. Here we assume that
the observational threshold is constant for an observer during the
entire period of his/her observations but a time variability of the
acuity can be considered in subsequent works. In Sect. 5, we
discuss this issue in more detail. The reference dataset of RGO
is assumed to be “perfect” in the sense that RGO does not miss
any spots (viz. S S = 0).

Similarly to U16, we first made “calibration” curves us-
ing the reference dataset. As a calibration curve, we used the
cumulative distribution function (CDF) of the occurrence, in

the reference dataset, of months with the given ADF. A fam-
ily of such curves was produced for different values of S S (all
sunspot groups with an area smaller than that were considered
as not observed). Thus, each calibration curve uniquely corre-
sponds to a value of the observational threshold S S . Calibration
curves were produced for different values of the filling factor f
(the ratio of the number of days with reported observations, in-
cluding no-spot observation, to the total number of days dur-
ing the observation/calibration period), by randomly removing
(1 − f ) fraction of daily values from the RGO reference dataset
to simulate a realistic observer. We performed 100 such random
sub-samplings and calculated the mean and the asymmetric two-
tail 68% confidence intervals for each case.

For each observer, we constructed a CDF curve using his/her
observations during the calibration period. The ADF and the sub-
sequent CDF were calculated for all months with observations;
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Fig. 1. Observational periods of the observers used in this study (see also Table 1). The reference dataset of RGO is shown in orange. We note the
periods used for calibration of the observers may be shorter than the total observational periods shown here.
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Fig. 2. Cumulative distribution function of the reference dataset for
S S = 25 msd and the filling factor f = 0.92 (gray line with 1σ un-
certainties) compared to that for Quimby (dots with error bars).

not only months with three or more observational days, as was
done in U16. This limitation was, however, applied to Derfflinger
and Hershel. An example of the CDF curve for observer Quimby
is shown in Fig. 2. It is important that solar activity during the
calibration period roughly corresponds to that in the reference
dataset (U16). The reference dataset covers a wide range of so-
lar cycles, from moderate cycle 14 to the very high cycle 19,
but weak cycles are not presented there, thus this method can-
not work reliably for the periods of grand minima such as the
Maunder or Dalton minimum. Accordingly, we selected for cali-
bration of each observer periods with a relatively good coverage
by the data and covering full solar cycles (except for the case
of Schubert – see U16). If the observer had a sufficiently long
period of direct overlap with the reference dataset, the period of
overlap was used for calibration. In these cases, the reference
calibration curves were also calculated for the same overlap pe-
riod. The list of the selected observers and their calibration peri-
ods is presented in Table 1.

The observational threshold for each observer was defined
by fitting the family of the calibration curves to the actual CDF
curve of this observer, as shown in Fig. 2. The best-fit value of
S S and its 68% (±1σ) confidence interval were defined by the
χ2 method. The minimum value χ2

0 corresponds to the best-fit
estimate of the observational threshold, while the values of S S
corresponding to χ2

0 + 1 bound the 68% confidence interval.
The values of the acuity observational threshold S S are

shown along with the 68% confidence intervals in the last col-
umn of Table 1 for each observer. One can see that it varies from
very small numbers around zero for good observers up to 60–
70 msd for poorer observers. In the cases of the National Astro-
nomical Observatory of Japan (NAOJ) and Space Environment
Laboratory (SEL), we found that their quality is better than that
of RGO, that is, a formally negative threshold would have been
obtained in the calibration. Since the negative threshold can-
not be defined for the reference dataset, we further consider no
threshold for them, assuming them to be of the same observa-
tional quality as RGO. The negative threshold would lead to a
slight overestimate (1–2%) of the values of the final G−series
during the second half of the 20th century.

3.3. Correction matrix

Once the observational threshold S S has been defined for an ob-
server, a correction matrix can be constructed in the following
way. From the entire reference dataset, a distribution of the daily
values of Gref (the number of sunspot groups of all sizes in the
reference dataset for a given day) as a function of GS (the num-
ber of sunspot groups with the size ≥S s for the same day) is
constructed and normalized to unity in the “vertical” direction
so that it gives a probability to observe the “true” number of
groups Gref for a day when the observer reported GS groups. In
order to account for the uncertainties of the defined value S S ,
the matrix was constructed not only for the best-fit values (as
done by U16) but averaging matrices for all the (integer) val-
ues of S S from the corresponding 68% confidence interval. By
construction, Gref ≥ GS . An example of the correction matrix is
shown in Fig. 3 for Quimby.

Such matrices are further used to correct the actual observa-
tion with a given threshold value to the reference level.
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Fig. 3. Panel a): correction matrix for Quimby giving the probability of
finding the value of Gref in the reference dataset on a day when GQuimby
sunspot groups were reported by Quimby. Panel b): pdf (probability
density function) of Gref to be found in the reference dataset for days
with GQuimby = 10 (the cross-section of panel a at the blue dashed line).

3.4. Calibration of Staudacher

The only observer who cannot be calibrated directly using the
ADF methods is Staudacher since he did not report spotless
days properly (see U16 for more detail). On the other hand,
Staudacher was a key observer covering the second half of the
18th century (although with sparse observations), and it is im-
portant to consider him for that period. Since the data from
Staudacher overlaps with observations of two other observers,
Horrebow and Schubert, who can be calibrated using the ADF
method, we have performed an indirect correction of the Stau-
dacher data via Horrebow and Schubert.

For all the days with reported observations of Staudacher,
we checked Schubert’s and Horrebow’s data for observations on
the same day. If none was found, we checked for observations
on the previous day and, if none was found, on the next day.
If no observations of Schubert or Horrebow were found on the
neighboring days, we checked for the available data two days
before, and finally two days after the day with Staudacher’s ob-
servation. We have checked that each Staudacher’s observation
was used not more than once in the analysis. Although using the
observations from 1–2 neighboring days may introduce a small
uncertainty due to short-living small groups (e.g., Willis et al.
2016), this is outweighed by the improvement of statistics. We
found 138 days, when observations of Staudacher coincided with
data from either Schubert or Horrebow, 120 days when the ob-
servations were separated by one day, and 44 cases when they
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Fig. 4. Correction matrix of Staudacher giving the probability of finding
the value of Gref in the reference dataset on a day when GStaudacher groups
were reported by Staudacher.

were separated by two days, leading to 302 days altogether for
calibration.

Next, for all daily values of Staudacher GStau from the sub-
sample described above, we collected the corresponding daily
values of G∗ for Schubert or Horrebow, already normalized to the
reference level using the ADF method. As a result, we composed
a correction matrix (shown in Fig. 4), which allows us to convert
the number of sunspot groups reported by Staudacher to the ref-
erence observer, in the same way as used for other observers.

4. Construction of the composite series

4.1. Daily values

Using the correction matrices, we first calculated PDFs of the
corrected (to the reference observer) G−values for each observer
and day. An example of such PDFs is shown in Fig. 5b for the
day of 19-Feb.-1869 for three observers whose records are avail-
able for this day: Wolf, Schmidt, and Weber (colored lines in
the figure). Next, we made a sum of all the available individual
PDFs for the day and renormalized it again to the unity. This
makes a composite PDF of all the observers for this day (gray
bars in Fig. 5b). Such composite daily PDFs of the corrected
G−values were made for all days (see an example for the month
of February 1869 in Fig. 5a). This dataset (available from the
authors upon request) makes a basis for further computations of
the monthly time series.

4.2. Monthly series

Using the daily PDF series discussed above, we constructed
the monthly corrected number of sunspot groups using a Monte
Carlo method. Within each month we considered all days with
available observations. For each such day, we randomly took
G−value corresponding to the PDF distribution (an example
is shown in Fig. 5b), and then computed the corresponding
monthly mean G−value as the arithmetic mean. This proce-
dure was repeated 1000 times so that an ensemble of 1000
monthly G values was obtained. From this ensemble, we calcu-
lated the mean and the bounds of the (asymmetric) 68% two-side

A109, page 5 of 12

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201629839&pdf_id=3
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201629839&pdf_id=4


A&A 601, A109 (2017)

0 5 10 15
0.0

0.1

0.2

0.3

0.4

0.5

0.6

 

 

P
D

F

G

 b) 19-Feb-1869

  Composite 

  Wolf

  Schmidt

  Weber

5 10 15 20 25

0

5

10

15

 

 

Days of Feb 1869

G

0

0.2

0.4

0.6

0.8

1.0 a) 

Fig. 5. Panel a): distribution of PDF (gray-scale on the right) for cor-
rected number of sunspot groups for February 1869. Panel b): PDF of
the corrected G values for the day of 19-Feb.-1869 (cross-section of
panel “a)” at the dashed vertical line). The composite PDF is shown by
gray bars, while PDF distributions for Wolf, Schmidt, and Weber are
shown as blue, red, and green lines, respectively.

confidence interval (corresponding to the generally asymmet-
ric ±1σ interval) for the monthly G−value. For the example
shown in Fig. 5a (February 1869) the monthly number of sunspot
groups was found to be 6.10+0.37

−0.36.

There is an uncertainty related to calculation of monthly val-
ues from a small number of sparse daily observations, when a
simple arithmetic average tends to overestimate (by up to 20–
25%) the number of sunspot groups for periods of high activity
if the number of daily observations per month is smaller than
three (Usoskin et al. 2003). This may affect the values for the
18th century and Dalton minimum where data coverage was low,
giving the numbers presented here as a conservative upper limit.
However, this effect does not influence the calibration and cor-
rection procedure since they operate with daily data.

The final composite series is shown in Fig. 6 and is available
in digital format at CDS.

4.3. Annual series

From the monthly values, we computed the annual mean
G−values and their uncertainties using the Monte Carlo method
(with 1000 ensemble members) similar to that applied to com-
pute monthly values from daily ones. The resulting series of the
annual numbers of sunspot groups is shown in Fig. 7a as the
black curve with the 68% confidence intervals shown in gray,
and in Table A.1.
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Fig. 6. Monthly values of the final composite series of number of
sunspot groups. Error bars (68% two-side confidence intervals) are
shown in gray. This series is available at CDS.
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Fig. 7. Panel a): annual mean numbers of sunspot groups. The black
line with gray shading depicts the result of this work with the 68%
confidence interval. Numerical values are given in Table A.1. Other
colored curves with symbols show reconstructions of G by H98
(Hoyt & Schatten 1998), S16 (Svalgaard & Schatten 2016), and U16
(Usoskin et al. 2016b). Panel b): ratio between the colored plots (shown
in panel “a)” and following the same notation) to the result of this work.
The ratio is not shown for years with low activity (G < 3).

5. Consistency of the result

First we computed the monthly series of G−values for each ob-
server using the same method as described in Sect. 4.2 but ap-
plying it to data of only this observer (viz. without construction
of the composite series). The resulting series are shown in Fig. 8.
One can see that there is a good agreement between different ob-
servers, especially in the 19th and 20th centuries. The agreement
is worse around the Dalton minimum, when the reconstructions
based on data of Herschel and Derfflinger diverge, suggesting
that the level of solar activity during that period is relatively un-
certain. On the other hand, we stress that since the ADF method
is free of daisy-chaining and based on a direct calibration of the
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Fig. 8. Monthly series of sunspot group numbers by individual observers.

observers to the reference one, the big uncertainty around the
Dalton minimum does not affect other periods, even before it.

It is difficult to judge the stability of observers and their cal-
ibration from simply over-plotting the series as done in Fig. 8.
We also studied, as the measure of the observer’s stability, the

ratio of the G−values (annually averaged to avoid noisy data),
obtained using only data from this observer, to that of the
composite series constructed using all but this observer’s data.
In order to avoid the ratio of small numbers, we excluded years
when the mean number of sunspot groups G was below three.

A109, page 7 of 12

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201629839&pdf_id=8


A&A 601, A109 (2017)

1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980

0.6

0.8

1.0

1.2

 

 

R
a
ti
o

Years

 RGO 

Fig. 9. Ratio between annual mean G−values obtained using only RGO
data to those from the composite series computed without RGO. Ratios
for the years with low activity (G < 3) are not shown. Error bars depict
the 68% confidence interval for the ratio. Blue stars correspond to the
years of official solar cycle minima.

5.1. RGO data

As an example, Fig. 9 presents the ratio of the annual G−values
only from RGO to that of the composite series without RGO.
One can see that the ratio is close to unity around solar cycle
maxima, as expected if the calibration was done correctly, al-
ways being within ±20%, but there are some systematic fea-
tures. The ratio is systematically too low for the first cycle
covered by RGO data, before ca. 1890. This implies that the
RGO data underestimate the number of sunspot groups by ap-
proximately 10% during that period. This inhomogeneity in
the earlier years of the RGO dataset is relatively well known
(see, e.g., Clette et al. 2014), but its exact extent is still debated
(Cliver & Ling 2016). Most studies (Sarychev & Roshchina
2009; Carrasco et al. 2013; Aparicio et al. 2014; Willis et al.
2016) limit the effect of under-counts to the period before
ca. 1885, which is likely related to the secondary magnifier
installed at Greenwich in 1884 (Cliver & Ling 2016). How-
ever, Cliver & Ling (2016) claim that the inhomogeneity might
have extended until ca. 1915. Clette et al. (2014) stated that
the RGO data is homogeneous at least since 1900. Our re-
sult confirms that the RGO data suffers from the inhomogene-
ity (10–15% under-count of sunspot groups) only before 1890,
while the ratio during the period 1890–1910 is around unity
and fully consistent with that for the period after 1930. Thus,
our choice of the reference period 1900–1976 is safe from
this point of view. We note that while this result is consistent
with others (Sarychev & Roshchina 2009; Carrasco et al. 2013;
Aparicio et al. 2014; Willis et al. 2016), it differs from that of
(Cliver et al. 2015; Cliver & Ling 2016) who proposed a smooth
parabolic “learning curve” of the RGO before 1920.

There is another interesting feature in Fig. 9 related to a
bump during 1910–1930, when the RGO ratio is approximately
10–15% higher than unity, suggesting that the RGO was count-
ing more sunspot groups than other (normalized) observers. Al-
though it may not be excluded that it is not RGO showing higher
values but other observers degrading in quality during that pe-
riod (see an example of Wolfer below), the number of other ob-
servers during these years was five (Fig. 1), and it is unlikely that
they degraded simultaneously. We note that this period was char-
acterized by the change of the observers generations – Wolfer,
Quimby, Broger and Guillaume ceased their observations, while
Luft, Brunner, and, later, the Madrid Observatory started.

The period after 1930 is characterized by the ratio around
unity, implying a good consistency in the RGO data series. Thus,

the RGO series depicts a fair stability and is suitable to be the
reference dataset, especially after 1890.

We have also tested the stability of the results versus the ex-
act choice of the reference dataset period. While the main re-
construction is based on the RGO period 1900–1976, we have
checked other periods as well. The use of the full RGO dataset
1878–1976 as the reference period leads to a systematic de-
crease of the S s values by ≈5 msd in comparison with the val-
ues shown in Table 1 for the calibrated observers. The final
result in this case appears very close to the present one, with
slightly lower G−values, within the error bars. The use of the
RGO dataset for the period 1913–1976, which was stable ac-
cording to Cliver & Ling (2016), leads to slightly poorer statis-
tics and a systematic increase of the S s values by 5–10 msd. The
final series based on this reference period yields slightly higher
G−values but still in agreement with the main result within error
bars. We have also tested the effect of removing the “bump” pe-
riod of 1913–1933 (discussed above) from the reference period.
It appears similar to the previous case, that is, an increase in the
S s values by 5–10 msd and the final series consistent with the
main result within error bars. We also determined that shrink-
ing the reference period even further to 1933–1976 completely
smears the result for two reasons. First, the statistic is low; only
four solar cycles. But even more important is the fact that the
cycles after the 1940s were very active, not being representative
of the normal level of solar activity, which is the basic condi-
tion of the ADF method. For instance, there was not a single
month with ADF = 0 during the period of 1933–1976. This leads
to a formally very strong offset of the obtained S s values being
25–40 msd greater than those in Table 1 and consequently to un-
realistically high G−values. Accordingly, we conclude that the
method is robust against the exact choice of the start of the refer-
ence period in a wide range, from 1878 till 1913, but the use of
only high solar cycles leads to a violation of the basic assump-
tion of the ADF method.

5.2. Wolfer

We performed a similar analysis of the stability also for Wolfer,
who is the reference observer for the ISN_v2 series (Clette et al.
2014) and the primary “backbone” observer for the S16 series.
The result is shown in Fig. 10. One can see that there is a clear
trend implying that the quality of Wolfer as an observer was
slightly degrading in time, meaning that he observed 10% more
groups than others in the 1880s but 5% less than others in the
1910s. Thus, we can conclude that the ability of Wolfer to detect
sunspot groups was slightly degrading, by 10–15%, through his
scientific life, with respect to other observers. We have checked
that this trend is not caused by the putative drift in the RGO data
(Cliver & Ling 2016) by excluding the RGO dataset from the
denominator of the ratio shown in Fig. 10. The trends remains
qualitatively unaltered.

5.3. Wolf

Figure 11 shows the ratios for Wolf, who is the reference ob-
server for the WSN and ISN_v1 series. One can see that there is
a clear enhancement in the beginning of the series around 1850,
when Wolf counted approximately 30% more groups relative
to other observers. This is likely related to the use of another
(larger) telescope by Wolf. However, since circa 1860, his qual-
ity is around unity implying a fair stability, within ±20%. In-
terestingly, for the period of overlap with Wolfer after 1880,
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Fig. 10. Same as in Fig. 9 but for Wolfer.
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Fig. 11. Same as in Fig. 9 but for Wolf.

the ratio for Wolf depicts a downward trend, which was inter-
preted by many as a sign of degradation of Wolf’s eyesight (e.g.,
Clette et al. 2014). However, it may not be the case since the
ratio during the period 1880–1895 is fully consistent with that
during the period of 1857–1875.

5.4. Other observers

We performed a similar analysis for other observers (not shown)
and found no specific features to be mentioned. We note that this
method of using the ratio only works if the number of overlap-
ping observers is high enough. Accordingly, when the number of
regular observers is less than four, it becomes unclear. Unfortu-
nately, because of this, we cannot evaluate the stability of crucial
observers before 1850.

This analysis suggests that for some especially long-
observing observers an assumption on the stability of their ob-
servational quality may not be exactly valid. However, this as-
sumption makes a basis for all the existing sunspot series. It will
be the subject of forthcoming work to assess this issue and to
take it into account.

6. Discussion

The final composite series of the number of sunspot groups con-
structed by the ADF method is shown in Figs. 6 (monthly values)
and 7a (annual) along with the 68% confidence intervals.

6.1. Comparison with other series

In Fig. 7, we compare the results of this work with previously
published annual values of the number of sunspot groups G: the

original GSN series (divided by 12.08 to obtain the values of G)
for the period 1610–1995 by Hoyt & Schatten (1998), H98; the
“backbone” G−series for 1610–2015 by Svalgaard & Schatten
(2016), S16; and the series, also based on ADF method, for the
period 1749–1899 by U16. It is important to note that the H98
series is calibrated to the reference RGO series using a k−factor
method. The normalization is direct for the period of 1874–1976
covered by the RGO data and includes a daisy-chain normaliza-
tion outside this period. The S16 series is based on the “back-
bone” method, which uses key backbone observers, calibrated
to the reference one. The backbone observers were Staudacher,
Schwabe, Wolfer and Koyama, who did not directly overlap with
one another (see Table 1) and thus can be linked together only
via a multi-step daisy-chain procedure of linear normalization
by means of k−factors. Wolfer was selected as the reference ob-
server, and thus the S16 series is free of daisy-chain calibration
only for the period 1880–1928, when direct Wolfer data is avail-
able. For all other periods, it includes a multi-step daisy-chain
normalization. The U16 series uses the RGO dataset for the pe-
riod 1900–1976 as the reference, but presents data only before
1900. Normalization is performed using the ADF method, which
is free of daisy chaining. The present result is also calibrated to
the RGO dataset (1900–1976) using the ADF method. For the
period 1900–1976, we directly applied the ADF method but used
the exact overlap of the observers with the RGO data, while a sta-
tistical comparison forms a basis for normalization outside this
period. This method is also free of daisy chaining.

The series are over-plotted in Fig. 7a, while panel b shows
the ratio of individual series G−values to those of the present
result for years with the annual number of sunspot groups not
smaller than three. Some specific periods can be identified for a
detailed discussion.

After 1910, the present result is fully consistent with the H98
series and the ratio is around unity (1.01 ± 0.04). This is under-
standable since both series are directly calibrated to the RGO
dataset during this period, and the quality and quantity of ob-
servers was high in the 20th century. Accordingly, the number
of groups is most precisely defined for this period. However,
the S16 series is systematically lower by approximately 10%
(0.90 ± 0.04) in the 20th century. This discrepancy is likely
related to the normalization method of Svalgaard & Schatten
(2016), which uses Wolfer and Koyama as “backbones” for
the 20th century. Since these two observers did not overlap,
Svalgaard & Schatten (2016) used cross-normalization, includ-
ing a multi-step daisy-chain procedure to reduce Koyama back-
bone data to the reference Wolfer conditions, that may introduce
additional uncertainties. We note that the data of Koyama agree
with the result of this work (Fig. 8) within 5% for the period
1947–1976 (overlap between Koyama and the RGO reference
dataset). Unfortunately, full information of the calibration for
this backbone is not available from Svalgaard & Schatten (2016)
to investigate this question in full detail.

For the period 1880–1900, the present result is in full agree-
ment with the S16 series (the mean ratio over this period is
r = 0.98±0.05), and we consider it as a good sign, since this was
the period of Wolfer (the reference observer for the S16 series)
observations when no daisy-chain normalization was applied in
the S16 series. On the other hand, the H98 series is too low by
10% (r = 0.89± 0.04), probably related to the inhomogeneity in
the RGO data series in its earlier part (see Sect. 5.1), as noted by
Clette et al. (2014) and Cliver & Ling (2016). The U16 series is
slightly lower than the present one but consistent with the unity
(0.96 ± 0.05).
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The middle of the 19th century (1830–1870) is character-
ized by a great excess of the S16 series by approximately 30%
(r = 1.29 ± 0.08). Keeping in mind that the S16 series agrees
with our reconstruction for the period of the Wolfer observa-
tions (see above), we may propose that this discrepancy is related
to the calibration of the Schwabe backbone to Wolfer via Wolf
in the S16 series. As argued recently (Lockwood et al. 2016b;
Usoskin et al. 2016b,a), the use of the linear k−factor as a con-
version between Wolf and Wolfer data may lead to an overcor-
rection. The H98 series is on average consistent with the present
result (r = 0.96 ± 0.1) but the ratio is inhomogeneous. While it
is around unity before 1848, it is systematically lower by 10%
(r = 0.89 ± 0.05) after that. This implies that the data by Wolf
were likely under-corrected by Hoyt & Schatten (1998) by ap-
proximately 10%. The U16 series is insignificantly lower than
the present result (r = 0.96 ± 0.07), being generally consistent
with it, with the discrepancies related to the slightly updated
methodology used here. This difference may be related to the
different restrictions to the rare observations applied here and in
U16 (see Sect. 3.1) and can serve as an estimate of the corre-
sponding uncertainty.

For the period before the Dalton minimum, the S16 series
is slightly higher than the present result (r = 1.1 ± 0.03), but
the ratio is inhomogeneous. While the G−values of the S16 se-
ries are consistent with our data before 1760, they are approxi-
mately 7% higher than those in the 1760–1780s. This suggests
that the normalization of Horrebow could be a reason for the
discrepancy. The H98 series, on the contrary, is systematically
and significantly lower (r = 0.76 ± 0.03) than the present result
before the Dalton minimum, suggesting that it may be under-
estimated for that period. It is important to note that both the
S16 and H98 series, based on the daisy-chain calibration proce-
dure, dramatically lose quality before the Dalton minimum be-
cause of a lack of high-quality data at the turn of the 18th and
19th centuries. This makes it very difficult, if even possible, to
make a “calibration bridge” across the Dalton minimum to re-
late the observers of the Staudacher era to those of the Schwabe
era. Nevertheless, the uncertainties of the daisy-chain k−factor
calibration grow significantly before the Dalton minimum. The
U16 series is somewhat lower than the present one for the 1750s–
1790s (0.93 ± 0.03), because of the different ways to normalize
the data of Staudacher (Sect. 3.4), who was the key observer for
that period. Although the ADF method is free of daisy-chaining,
uncertainties are also large (10–15%) for the 18th century (see
the shaded areas in Fig. 7b) because of the sparse data. The
present series agrees with the U16 one within these uncertain-
ties, although the latter tends to run systematically over the lower
bound.

To summarize, the level of sunspot group activity yielded by
the new series presented here lies between those for S16 and
U16, but significantly higher (by 24%) than that for the H98 se-
ries, in the second half of the 18th century before the Dalton
minimum. Due to large uncertainties for that period, all the series
except H98 are marginally consistent with each other. The new
series is consistent with U16 and is marginally consistent with
H98 ones during the 19th century, but is significantly lower (by
25–30%) than the S16 one, in particular refuting the high level
of activity during the mid-19th century suggested by the S16 se-
ries. However, the new series agrees with the S16 one during the
1880–1890s, more precisely, during the period of observations
by Wolfer who is the reference observer for the S16 series. In
the 20th century, when the quality and quantity of observational
data was high, the new series is fully consistent with the H98 se-
ries but is significantly (10%) higher than the S16 one.
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Fig. 12. First two components of the SSA analysis of the reconstructed
series (panels A) and B), respectively) The black curves depict the mean
while the shaded area depicts the full range (corresponding to the time
window of 40–80 yr) of the SSA component values. The red and blue
lines represent the first SSA component for the S16 and H98 series,
respectively.

6.2. Centennial variability

Although the sunspot activity is dominated by the 11-yr
Schwabe cycle, centennial variability is also apparent in the
time evolution of the composed series. It is expressed in low
(e.g., during the Dalton minimum around 1800) and high (mid-
dle of the 20th century) solar cycles. There is no established
way to define the centennial variability. Sometimes decadal or
cycle-averaged values are used to represent the centennial evo-
lution in consistency with cosmogenic isotope data (Usoskin
2017), or a linear trend over the envelope of solar cycles is
considered (Clette et al. 2014). Here we use the non-parametric
Singular Spectrum Analysis (SSA; Vautard et al. 1992), which
decomposes a time series into several components with dis-
tinct temporal behaviors and is very convenient to disentangle
long-term trends and quasi-periodic oscillations. The method is
based on the Karhunen-Loeve spectral decomposition theorem
(Kittler & Young 1973) and Mané-Takens embedded theorem
(Mane 1981; Takens 1981).

The two first SSA components of the final composite series
are shown in Fig. 12. We used the range of the time window
for the SSA as 40–80 yr, where the result is stable. If the time
window is too short, the 11-yr cycle leaks into the first SSA com-
ponent, while if it is too long, the pattern becomes smeared. One
can see that the time series is decomposed into a long-term trend
or centennial variability (the first SSA component) and the 11-yr
cycle (the second component). These two components represent
74% of the overall variability of the series.

The series presented here depicts the relatively high activity
in the mid-18th century (G = 4.5 ± 0.5) which decreases to 3.5–
4 during the entire 19th century and then rises to around 6 in
the second half of the 20th century. This implies the significance
of the Modern grand maximum of solar activity (Solanki et al.
2004), meaning that the level of centennial sunspot activity in
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the second half of 20th century was a factor 1.33–1.77 higher
than in the 18th and 19th centuries.

Figure 12a shows the first SSA components also for the H98
and S16 series (the U16 series is close to the one presented here
and is not shown). One can see different patterns of the centen-
nial evolution (the primary SSA component) for these series. The
H98 series yields a monotonic increase of activity by a factor 2.5
between the mid-18th and late 20th century. On the contrary, the
S16 series suggests an approximately constant, slightly oscillat-
ing level in the range of G between four and five, with an approx-
imately 100-yr period, without a clear grand maximum. We note
however, that the existence of the Modern grand maximum is in-
dependently confirmed by data from cosmogenic isotopes (e.g.,
Abreu et al. 2008; Steinhilber et al. 2012; Inceoglu et al. 2015;
Usoskin et al. 2014).

7. Conclusions

A new revisited series of the numbers of sunspot groups is pre-
sented for the period 1749–1996, reconstructed by applying the
active day fraction method to a revised database of sunspot
group observations (Vaquero et al. 2016). The new reconstruc-
tion agrees with the “classic” GSN series by Hoyt & Schatten
(1998) in the 20th centuries but is systematically higher than
that in the 18th century, suggesting solar activity in the mid-
18th century slightly higher than previously believed. On the
other hand, the new series is systematically lower than that by
Svalgaard & Schatten (2016) in the 18th and especially 19th cen-
tury, implying that the latter overestimated the level of activity.

We have estimated the stability of some key solar observers.
The RGO dataset appears relatively stable against all other ob-
servers since the 1890s but is approximately 10% too low before
circa 1885, as proposed earlier (Sarychev & Roshchina 2009;
Carrasco et al. 2013; Aparicio et al. 2014; Willis et al. 2016;
Clette et al. 2014). However, the conclusion by Cliver & Ling
(2016) that the RGO data are of uneven quality before 1915,
is not confirmed. A declining trend of 10–15% in the quality of
Wolfer’s observation is found between the 1880s and 1920s, sug-
gesting that using him as the reference observer may lead to ad-
ditional uncertainties. On the other hand, Wolf (small telescope)
appears fairly stable between the 1860s and 1890s, without an
obvious trend.

The new reconstruction reflects the centennial variability of
solar activity. Using the SSA method, we decomposed different
series into the primary centennial component (Fig. 12a) and
the secondary 11-yr solar cycle. The new series confirms the
existence of the significant Modern grand maximum of solar
activity in the second half of the 20th century, which appears a
factor 1.33–1.77 higher than during the 18th and 19th centuries.
This is different from both the H98 series, which shows a
strong centennial trend with the growth of activity by a factor
of 2.5 between the mid 18th and 20th centuries, and the S16
series, which shows no centennial trend. The existence of the

Modern grand maximum is known independently also from cos-
mogenic isotope data (e.g. Abreu et al. 2008; Steinhilber et al.
2012; Inceoglu et al. 2015).

The new series, available in Table 1 (annual values) and in
CDS (monthly values), forms a basis for new studies of the solar
variability and solar dynamo for the last 250 yr.
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Appendix A: Annual number of sunspot groups

Table A.1. Annual numbers of sunspot groups: the mean, lower and upper 68% quantiles, as shown in Fig. 7.

Year G Glow Gup Year G Glow Gup Year G Glow Gup Year G Glow Gup Year G Glow Gup

1749 7.88 7.25 8.51 1800 2.25 2.58 2.92 1851 5.4 5.29 5.51 1901 0.38 0.35 0.42 1951 4.97 4.89 5.05
1750 7.75 6.98 8.53 1801 4.53 4.64 4.75 1852 4.45 4.34 4.56 1902 0.59 0.54 0.63 1952 2.58 2.53 2.64
1751 4.75 4.26 5.25 1802 3.65 3.82 3.99 1853 3.43 3.34 3.51 1903 2.31 2.24 2.37 1953 1.27 1.23 1.32
1752 4.62 3.97 5.26 1803 2.38 2.52 2.65 1854 1.7 1.63 1.77 1904 4.03 3.95 4.10 1954 0.60 0.56 0.63
1753 2.52 1.45 3.6 1804 2.37 2.52 2.68 1855 0.73 0.68 0.77 1905 5.34 5.25 5.44 1955 3.25 3.19 3.31
1754 1.19 1.06 1.31 1805 2.62 2.80 2.97 1856 0.42 0.39 0.46 1906 4.91 4.82 5.00 1956 10.13 10.04 10.23
1755 0.71 0.63 0.78 1806 1.30 1.55 1.79 1857 1.7 1.64 1.75 1907 5.48 5.39 5.57 1957 12.90 12.80 13.01
1756 1.03 0.93 1.13 1807 2.65 3.25 3.82 1858 3.96 3.88 4.04 1908 4.72 4.64 4.81 1958 13.36 13.26 13.47
1757 2.01 1.82 2.2 1808 1.09 1.55 2.01 1859 6.44 6.34 6.54 1909 4.13 4.05 4.21 1959 11.68 11.57 11.79
1758 3.72 2.99 4.46 1809 0.77 0.98 1.19 1860 7.76 7.63 7.9 1910 1.95 1.89 2.00 1960 8.36 8.27 8.45
1759 5.95 4.44 7.42 1810 0.10 0.40 0.70 1861 6.59 6.46 6.72 1911 0.78 0.74 0.81 1961 4.17 4.10 4.24
1760 6.48 5.71 7.24 1811 −99 −99 −99 1862 4.93 4.83 5.02 1912 0.40 0.37 0.42 1962 2.88 2.82 2.93
1761 7.61 7.29 7.94 1812 0.91 1.19 1.48 1863 3.94 3.83 4.04 1913 0.20 0.18 0.23 1963 2.31 2.25 2.36
1762 6.22 5.86 6.59 1813 1.73 2.06 2.40 1864 3.65 3.56 3.75 1914 1.06 1.02 1.10 1964 1.16 1.12 1.20
1763 4.64 4.24 5.04 1814 3.01 3.98 4.95 1865 2.33 2.26 2.4 1915 4.24 4.16 4.32 1965 1.42 1.37 1.46
1764 3.01 2.65 3.36 1815 −99 −99 −99 1866 1.6 1.55 1.65 1916 5.64 5.56 5.73 1966 3.73 3.66 3.80
1765 0.99 0.62 1.36 1816 3.84 4.32 4.79 1867 1.05 1 1.1 1917 8.53 8.43 8.62 1967 7.98 7.87 8.09
1766 0.96 0.75 1.16 1817 3.76 4.07 4.36 1868 3.6 3.51 3.69 1918 7.15 7.05 7.24 1968 8.00 7.91 8.10
1767 3.27 3.08 3.45 1818 2.12 2.30 2.47 1869 6.79 6.67 6.9 1919 5.65 5.57 5.74 1969 8.05 7.95 8.15
1768 6.96 6.77 7.14 1819 2.17 2.38 2.60 1870 9.81 9.68 9.94 1920 3.48 3.42 3.55 1970 8.75 8.65 8.86
1769 9.31 9.03 9.6 1820 1.73 1.94 2.14 1871 8.78 8.65 8.91 1921 2.41 2.36 2.47 1971 6.00 5.91 6.08
1770 8.77 8.55 8.99 1821 3.06 3.65 4.24 1872 8.06 7.93 8.19 1922 1.42 1.39 1.45 1972 5.99 5.90 6.08
1771 7.89 7.61 8.18 1822 2.45 3.06 3.67 1873 5.49 5.38 5.6 1923 0.74 0.71 0.76 1973 3.43 3.36 3.49
1772 6.21 5.95 6.47 1823 1.12 1.38 1.65 1874 3.24 3.13 3.36 1924 1.52 1.48 1.55 1974 3.02 2.95 3.08
1773 3.44 3.27 3.61 1824 1.65 1.79 1.94 1875 1.66 1.59 1.72 1925 4.23 4.17 4.29 1975 1.46 1.41 1.51
1774 2.61 2.42 2.81 1825 1.9 1.82 1.98 1876 1.13 1.07 1.19 1926 5.84 5.80 5.89 1976 1.36 1.31 1.40
1775 1.28 1.17 1.39 1826 2.56 2.51 2.61 1877 1.09 1.04 1.14 1927 6.28 6.22 6.33 1977 2.64 2.58 2.70
1776 1.79 1.57 2.01 1827 3.67 3.62 3.72 1878 0.51 0.47 0.56 1928 6.81 6.75 6.86 1978 8.66 8.53 8.79
1777 8.41 7.01 9.84 1828 4.89 4.83 4.95 1879 0.64 0.6 0.69 1929 6.21 6.15 6.27 1979 12.70 12.56 12.84
1778 10.31 9.14 11.47 1829 4.87 4.81 4.94 1880 2.66 2.58 2.74 1930 3.69 3.65 3.73 1980 10.56 10.45 10.67
1779 11.17 10.02 12.3 1830 5.37 5.31 5.43 1881 4.38 4.28 4.49 1931 2.15 2.12 2.18 1981 10.50 10.38 10.62
1780 8.89 7.55 10.2 1831 3.64 3.59 3.7 1882 4.67 4.58 4.77 1932 1.29 1.26 1.32 1982 9.13 9.01 9.24
1781 7.05 5.95 8.16 1832 2.11 2.06 2.15 1883 5.16 5.05 5.27 1933 0.62 0.60 0.65 1983 5.70 5.61 5.79
1782 3 1.72 4.27 1833 0.6 0.57 0.63 1884 5.91 5.8 6.03 1934 0.91 0.89 0.93 1984 3.71 3.64 3.77
1783 2.25 1.25 3.23 1834 0.91 0.88 0.94 1885 4.54 4.44 4.64 1935 3.67 3.61 3.72 1985 1.45 1.40 1.50
1784 1.26 0.33 2.2 1835 3.77 3.7 3.85 1886 2.45 2.37 2.52 1936 7.52 7.44 7.60 1986 1.09 1.05 1.13
1785 1.84 1.21 2.47 1836 7.21 7.13 7.29 1887 1.48 1.42 1.54 1937 10.09 9.99 10.18 1987 2.22 2.17 2.28
1786 6.83 6 7.67 1837 7.85 7.77 7.93 1888 1.01 0.96 1.06 1938 9.48 9.37 9.58 1988 6.79 6.69 6.89
1787 9.61 8.77 10.45 1838 5.98 5.92 6.04 1889 0.77 0.72 0.81 1939 7.75 7.69 7.82 1989 11.45 11.32 11.58
1788 10.13 9.17 11.11 1839 5.04 4.98 5.1 1890 0.92 0.87 0.97 1940 5.98 5.92 6.05 1990 11.76 11.63 11.89
1789 8.92 7.47 10.38 1840 3.87 3.82 3.91 1891 3.66 3.57 3.75 1941 4.22 4.16 4.28 1991 11.39 11.26 11.52
1790 8.53 6.9 10.15 1841 2.33 2.28 2.37 1892 6.18 6.06 6.29 1942 2.86 2.82 2.90 1992 7.84 7.74 7.94
1791 5.84 4.83 6.83 1842 1.62 1.58 1.66 1893 7.74 7.61 7.87 1943 1.52 1.48 1.56 1993 4.53 4.47 4.59
1792 3.27 1.51 5.01 1843 0.76 0.72 0.79 1894 7.65 7.53 7.77 1944 1.22 1.17 1.27 1994 3.09 3.04 3.14
1793 1.97 0.36 3.59 1844 1 0.97 1.03 1895 6.2 6.1 6.3 1945 3.45 3.38 3.52 1995 1.78 1.73 1.83
1794 3.28 3.83 4.37 1845 2.49 2.44 2.53 1896 3.75 3.67 3.83 1946 8.15 8.07 8.23 1996 1.11 1.06 1.15
1795 1.14 1.86 2.58 1846 3.52 3.47 3.57 1897 2.99 2.91 3.06 1947 11.36 11.26 11.47 – – – –
1796 0.22 1.77 3.24 1847 4.75 4.67 4.84 1898 2.62 2.55 2.7 1948 10.83 10.71 10.95 – – – –
1797 0.70 1.34 1.98 1848 6.78 6.69 6.88 1899 1.46 1.4 1.52 1949 10.58 10.48 10.68 – – – –
1798 0.38 0.94 1.51 1849 7.18 7.05 7.3 1900 1.18 1.12 1.24 1950 6.35 6.27 6.43 – – – –
1799 0.60 0.96 1.32 1850 5.21 5.1 5.32 1901 0.38 0.35 0.42

Notes. Missing values are denoted by −99.
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