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Abstract

This review focuses on the observed characteristics of atmospheric new particle formation (NPF) in
different environments of the global troposphere. After a short introduction, we will present a
theoretical background that discusses the methods used to analyze measurement data on atmospheric
NPF and the associated terminology. We will update on our current understanding of regional NPF,
i.e. NPF taking simultaneously place over large spatial scales, and complement that with a full review
onreported NPF and growth rates during regional NPF events. We will shortly review atmospheric
NPF taking place at sub-regional scales. Since the growth of newly-formed particles into larger sizes is

of great current interest, we will briefly discuss our observation-based understanding on which
gaseous compounds contribute to the growth of newly-formed particles, and what implications this
will have on atmospheric cloud condensation nuclei formation. We will finish the review with a
summary of our main findings and future outlook that outlines the remaining research questions and

needs for additional measurements.

1. Introduction

Atmospheric new particle formation (NPF) and
growth involves the formation of molecular clusters
and their subsequent growth to larger sizes, first to a
few nm in particle diameter, then to nucleation and
Aitken mode particles in the sub-100 nm size range,
and possibly up to sizes at which these particles may
act as cloud condensation nuclei (CCN). According to
our current understanding, molecular cluster forma-
tion appears to take place almost everywhere and all
the time in the atmosphere, whereas the formation of
growing nanoparticles either by homogeneous or
heterogeneous nucleation requires more specific
atmospheric conditions (Kulmala et al 2014). Simula-
tions using different large-scale modeling frameworks
and different parameterizations for this phenomenon
suggest that NPF is the dominant source of the total

particle number concentration, and an important
contributor to the CCN budget, in the global tropo-
sphere (Spracklen et al 2006, Merikanto et al 2009,
Pierce and Adams 2009, Yu and Luo 2009, Makkonen
etal 2012, Dunne et al 2016, Gordon et al 2017) as well
as in the continental boundary layer (BL) (Reddington
et al 2011, Fountoukis et al 2012, Matsui et al 2013,
Lupascu et al 2015, Posner and Pandis 2015, Cai
et al 2016). The situation in different atmospheric
environments is more diverse, and poorly quantified,
at the moment. This feature seriously hinders our
ability to estimate the climate and health effects of
atmospheric aerosol particles, and especially the role
of human actions in those effects.

During the past decade or so, a number of scien-
tific reviews, or compilation studies, on atmospheric
NPF has been written (Kulmala et al 2004, O’Dowd
and Hoffmann 2005, Curtius 2006, Holmes 2007,
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Enghoff and Svensmark 2008, Kazil et al 2008, Kul-
mala and Kerminen 2008, Hegg and Baker 2009,
Bzdek and Johnston 2010, Kerminen et al 2010, Hir-
sikko et al 2011, Kulmala et al 2012, Vehkamiki and
Riipinen 2012, Zhang et al 2012, Kulmala et al 2014, Li
et al 2015b, Kulmala et al 2016b, Wang et al 2017a,
Nieminen et al 2018). These papers have focused on
varying aspects of atmospheric NPF, typically covering
one or more of the following topics: (1) the observed
character of NPF in different atmospheric environ-
ments, including the particle formation and growth
rates (GRs) during NPF and frequency at which NPF
occurs, (2) the chemistry of atmospheric NPF, (3) the
thermodynamics and kinetics of NPF, (4) atmospheric
NPF mechanisms, including the role of ions in this
process, (5) analysis of the factors favoring, or dis-
favoring, atmospheric NPF, and (6) instrumental
issues related to investigating NPF.

In the review presented here, we will focus on the
observed characteristics of atmospheric NPF in differ-
ent tropospheric environments. There are several rea-
sons for doing that. First, no comprehensive review on
this topic has been published since Kulmala et al
(2004). Second, there has been plenty of work in this
research field during the past few years, with a large
number of new observational results published in dif-
ferent scientific journals. Third, the published work on
atmospheric NPF relies on a vast variety of different
approaches that have not been properly reviewed, or
even discussed, earlier. Fourth, while it has become
obvious that atmospheric NPF occurs frequently in
very different tropospheric environments ranging
from remote polar areas to heavily-polluted mega-
cities, only few comparisons between contrasting
environments in terms of atmospheric NPF have been
conducted. Finally, the scientists dealing with atmo-
spheric NPF, including those working with large-scale
atmospheric models and those making laboratory
experiments or field measurements, are clearly in need
for the kind of information to be discussed in this
review.

Since the methodology used to analyze measure-
ment data on atmospheric NPF, and even the asso-
ciated terminology, varies greatly between the
individual studies, we will first present a theoretical
background that discusses these issues (section 2).
After that, we will provide a short update on our cur-
rent understanding of regional NPF, i.e. NPF taking
place simultaneously place over spatial scales of tens to
hundreds of km, and complement that with a full
review on reported NPF and GRs during regional
NPF, along with reported NPF event frequencies
(section 3). Atmospheric NPF taking place at sub-
regional scales will be reviewed in section 4. Since the
growth of newly-formed particles into larger sizes is of
great current interest, we will also discuss our observa-
tion-based understanding on which gaseous com-
pound contribute to the growth of newly-formed
particles, and what implications this will have on
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atmospheric CCN formation (section 5). We will end
this paper with a future outlook that discusses the
remaining research questions and needs for additional
measurements (section 6).

The nucleation mechanism and initial steps of
atmospheric NPF is left out from this paper because
this topic was reviewed relatively recently (Kulmala
etal 2014), and because this research branch is under a
very fast development phase at the moment. Partly for
the same reason, we constrain our analysis to sizes lar-
ger than about 3 nm in particle diameter, unless other-
wise mentioned. This constraint is important to the
theoretical background presented in section 2, since
many of the methods and concepts discussed in that
section become increasingly inaccurate at particle dia-
meters smaller than 2—3 nm. In order to keep the
length of this paper within reasonable limits, we will
not discuss the rich instrumentation currently applied
in studying atmospheric NPF. Modeling and labora-
tory studies on NPF will be mentioned only if needed
for complementing the analysis presented below.

2. Theoretical background

2.1.Identifying, characterizing and classifying
atmospheric NPF

From the observational point of view, atmospheric
NPF and subsequent particle growth are seen as an
emergence of new aerosol particles into the lower end
of the measured particle size spectrum, followed by the
growth of these particles into larger sizes. If this
phenomenon is taking place regionally, i.e. over a
minimum distance of a few tens of km in radius, a
contour plot displaying measured particle number size
distributions as a function of time at a fixed location
often reminds a banana (figure 1(a)). These so-called
‘banana plots’ are idealizations of real NPF and growth
taking place in the atmosphere: any inhomogeneity in
the measured air masses, and more specifically in
processes modifying particle number size distribu-
tions in these air masses, causes irregularities in the
shapes of banana-like features. When NPF and particle
growth are taking place sub-regionally, i.e. over
distances of a few km or less, measurements at a fixed
location tend to capture only a limited part of this
process. In a contour plot displaying measured particle
number size distributions as a function of time, NPF
taking place in sub-regional scales may be visualized in
a variety of shapes, one example of which is illustrated
in figure 1(b).

When estimating the importance of atmospheric
NPF in different environments, one needs to know
how frequently this phenomenon occurs and how
strong it is when taking place. A useful concept in this
regard is the co-called ‘NPF event’ which starts when
NPF is first observed to take place and ends when no
more new particles enter the measured particle size
range (see figure 1(a)). The number of individual NPF
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Time

Figure 1. (Top) An example of a regional NPF event day, as measured by a differential particle mobility sizer (DMPS) in Hyytiila,
Finland, on 8 April 2017. The data is presented in UTC + 2 (Finnish winter time). The time in the x-axis refers to the time of day,
whereas the color indicates the number density of particles of different size (particle diameter, y-axis). One may see that the newly-
formed particles appear into the measured size distribution at around the noon, after which they grow in size reaching diameters
between about 15 and 50 nm by midnight. (Bottom) An example of alocal NPF event day, as measured by an air ion spectrometer
(AIS) at Dome C, Antarctica, on 19 March 2011. The data are presented in UTC (local time in UTC + 8). Unlike the feature in the
regional NPF event, no clear growth in size is observed in the local NPF event after the appearance of a new mode between 2 and 10 nm
in the measured size distribution. The presence of this new mode lasts for several hours.

dN/dlogdp [cm ™3]

dN/dlogdp [cm'a]

events recorded over a longer period of time (e.g.
month, year) then defines the frequency of atmo-
spheric NPF. In case of regional NPF, one rarely
observes more than one NPF event per day (see
section 3.1.2 for a more detailed discussion), so a con-
venient way to express the frequency of NPF is to cal-
culate the fraction of days having a NPF event. The
frequency of NPF is not a well-defined quantity for
sub-regional NPF, since measurements conducted at a
fixed location tend to capture a rather random subset
of small-scale NPF events occurring upwind of the
measurement site.

The strength of an individual NPF event is char-
acterized by its duration, the rate at which new parti-
cles are formed during the event, and the GR of these
particles into larger sizes. For regional NPF taking
place homogeneously over large distances, all these
quantities can be determined in a relatively straight-
forward manner from continuous particle number
size distribution measurements (see section 2.3). In
the real atmosphere, however, spatial heterogeneities
in the processes affecting particle number size dis-
tribution may preclude a reliable determination of one
or more of these quantities. Determining the strength

of a NPF event becomes increasingly difficult when the
spatial extent of this phenomenon gets smaller, so
quantities like the particle formation and GR can only
seldom be determined for sub-regional NPF events.

A proper analysis of NPF from atmospheric obser-
vations, as well as comparisons between different data
sets and studies, require consistent criteria for identi-
fying and classifying this phenomenon. In this regard,
Dal Maso et al (2005) defined ‘NPF event days’ as those
days during which (1) a distinct new mode of particles
appears in the particle number size distribution, (2)
this mode is located initially below 25 nm of the parti-
cle diameter, (3) the mode prevails for more than an
hour, and (4) the mode shows signs of growth. The rest
of the days were defined either as ‘non-event days’
during which no NPF was observed to take place, or
‘undefined days’ for which determining whether NPF
had been taken place or not was ambiguous. Accord-
ing to Dal Maso et al (2005), NPF event days can be
further categorized into sub-classes based on the
amount and accuracy of information that could be
derived to characterize the NPF event. Also undefined
days can be divided into a few sub-classes based on the
method introduced by Buenrostro Mazon et al (2009).
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Particle Diameter

Figure 2. Growth of individual aerosol particles (open circles) and a particle population (all open circles inside the dashed region).
Individual particles grow by the net flux of vapor molecules (black small circles) or their clusters into them, illustrated by thin one-
headed arrows. Thick one-headed arrows represent the coagulation scavenging of particles in this population onto larger particles.
The two-headed arrows represent self-coagulation within this particle population.

While the classification scheme introduced by Dal
Maso et al (2005) and its later refinements (e.g. Kul-
mala et al 2012) have been widely used in analyzing
various characteristics of regional-scale NPF, a proper
application of this scheme requires continuous mea-
surements of particle number size distributions over a
relatively wide particle diameter range, preferably at a
fixed location. Since such measurements are not
always available, a number of alternative methods for
identification or classification of atmospheric NPF
events have been developed and applied in the scien-
tific literature. These include approaches aiming to
identify whether NPF had been occurred or not using
total particle number concentration measurements in
some specific size range using a moving platform (e.g.
Stratmann et al 2003, Siebert et al 2004, Junkermann
et al 2011a), and methods classifying NPF and growth
events based on ion spectrometer measurements (e.g.
Hirsikko et al 2007, Venzac et al 2007, Manninen
et al 2010, Rose et al 2013, Leino et al 2016) or combi-
nations of ion spectrometer and total particle mea-
surements (e.g. Yli-Juuti et al 2009). In addition to
these examples, different identification and classifica-
tion criteria are commonly needed when analyzing
NPF events that are spatially limited, or of short dura-
tion, and in cases when the growth of newly-formed
particles to larger sizes is substantially suppressed.

2.2. Quantities relevant for analyzing NPF and GRs

The two most important quantities describing atmo-
spheric NPF events are the particle formation rate (J)
and the particle GR. In the scientific literature, some-
what different definitions for both J and GR can be
found depending on (1) whether a microscopic or
macroscopic approach to analyzing NPF and growth is
assumed, and (2) which kind of experimental informa-
tion is available for determining these two quantities.
The microscopic approach considers explicitly the
dynamics of molecular clusters of different sizes using
a kinetic equation to describe the collision of mole-
cules (monomers) with the clusters and the evapora-
tion of monomers from them, whereas the
macroscopic approach is based on the assumption that
the particle number size distribution can be

approximated to be a continuous function of the
particle size (Holten and van Dongen 2009). In this
paper, we will adopt the macroscopic approach to
characterize the NPF and growth process. While this
approach becomes highly inaccurate when approach-
ing the sizes at which particles or clusters contain only
few molecules (e.g. Wang et al 2013, Olenius
et al 2015), it appears to perform reasonably well for
the >3 nm particle diameter range focused on here.

2.2.1. Definition of relevant quantities
In the macroscopic view of NPF, the particle forma-
tion rate is defined as the flux of growing nanoparticles
through a certain particle size barrier, described
usually by the particle diameter, dp. This flux is
denoted as Jg, , and a widely-used unit for it is
cm > s~ (or particlescm > s~ ). Two other quantities
related to the particle formation rate are the clustering
rate and nucleation rate. The clustering rate refers to
the net formation rate of small clusters consisting of a
small number of cluster building blocks, usually
molecules, being an essential quantity in the micro-
scopic description of NPF. In case there is a well-
defined energy barrier that the clusters need to over-
come in order to produce growing nanoparticles, the
formation rate of clusters passing this barrier is called
the nucleation rate. In the scientific literature, the
terms particle formation rate and nucleation rate are
used sometimes synonymously, even though it should
be kept in mind they are two separate theoretical
concepts that should not be mixed with each other.
When analyzing particle GRs, it is important to
distinguish between the growth of an individual aero-
sol particle and the growth of a particle population
(figure 2). The conservation of mass defines directly
the GR of an individual aerosol particle, GR;,q =
ddp/dt, as:

dmp d(pp‘/p) pp 1
- = Ty 4 - dp?
dt dt P dr TopP
ddp 1
X — =~ — d 2GRin . 1
P d ey

Here m,,, V}, and p,, are the particle mass, volume
and density, respectively, ¢ is the time, and the term
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dm,,/dt represents the net mass flux of new material
into the particle. The last form of the equation
includes the approximation that the addition of new
mass into the particle changes little the particle den-
sity. The net mass flux into the particle can be caused
by condensation of low-volatile (LVOC) vapors into
the particle, by heterogeneous formation of low-vola-
tility substances on the surface or inside the particle
from more volatile vapors, or by coagulation of small
clusters with the particle (Seinfeld and Pandis 1998,
Riipinen et al 2012, Lehtipalo et al 2016).

By a growing particle population we mean a rea-
sonably well-separated mode of particles undergoing a
growth into larger sizes, typically nucleation or Aitken
mode particles formed during the past few hours by
NPEF. The mean size of such a mode increases not only
by the growth of individual aerosol particles (GR;,q),
but also by self-coagulation (GRycoag) and coagulation
scavenging (GRy.,y). In self-coagulation, some of the
particles inside the growing mode collide with each
other (figure 2), which increases the mean size of the
mode and simultaneously decreases the total particle
number concentration of this mode. In coagulation
scavenging, some of the particles in the growing mode
collide with larger particles, i.e. with particles clearly
outside the growing mode (figure 2). Since such colli-
sions are most efficient for the smallest particles in the
growing mode (see section 2.2.2), this process increa-
ses the mean size of the mode although no real particle
growth is taking place inside the mode. The overall GR
of the mode is roughly the sum of the three contribu-
tions mentioned above

GR =~ GRjng + GRscoag + GRcay- 2

Determining the value of each term in in
equation (2), and especially separating the contrib-
ution of GRyoag from those of GRiyq and GRycys
requires knowledge about the lower and upper bor-
ders of the growing particle mode. Determining this
information can be very difficult for atmospheric par-
ticle number size distributions. The contribution of
GRcoag to GR is only important at very high con-
centrations (>10° cm ) of particles in the growing
mode (Kerminen et al 2004, Anttila et al 2010). The
most practical unit of GR in atmospheric applications
isnmh™",

Two additional concepts that are commonly used
in analyzing atmospheric NPF are condensation sink
(CS) and coagulation sink (CoagS) defined by Kulmala
etal (2001):

CS = 27D fo " BWdp) x dp n(dp)ddp,  (3)

CoagS(dp) = fo ~ K(dp, dp)n(dphddp.  (4)

Here ((dp) is the transition-regime correction fac-
tor for condensation onto a particle with a diameter of
dp (Fuchs and Sutugin 1971), D is the vapor diffusion
coefficient, n(dp) is the continuous particle number
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size distribution function, and K(dp, dp’) is the Brow-
nian coagulation coefficient between particles of dia-
meters dp and dp’. The CS represents the average rate
at which a non-volatile gaseous compound condenses
into the entirely aerosol particle population, so the
inverse of CS is equal to the average lifetime of a non-
volatile compound in the gas phase. Similarly, Coag$S
(dp) can be viewed as the average rate at which parti-
cles of a diameter dp coagulate with the whole particle
population, and its inverse represents the average par-
ticle lifetime against coagulation scavenging. It should
be noted that, due to limitations in atmospheric parti-
cle number size distribution measurements, the inte-
gration over particle diameters in equations (3) and (4)
is always cut from both lower and upper ends of the
particle size spectrum. Leaving out the particles smal-
ler than a few nm in diameter is usually well justified
because such particles rarely make important con-
tributions to either CS or CoagS. Contrary to this, in
environments influenced heavily by dust, sea salt or
primary biogenic particles, particles larger than a few
hundred nm in diameter could substantially increase
both CS and Coags.

When investigating the role of gas-phase chem-
istry in the particle formation and growth, useful con-
cepts are the total concentration of non-volatile
gaseous compounds, C, and their production rate in
the gas phase, Q (e.g. Kulmala et al 2001). These two
quantities are highly idealized descriptions of a real
atmosphere, where a large number of compounds of
different volatility is simultaneously present. In order
to deal with this issue, Donahue et al (2011) suggested
to group organic compounds into a few volatility clas-
ses to describe their gas-particle partitioning: extre-
mely low-volatile (ELVOC), LVOC, semi-volatile,
intermediate-volatile and volatile (VOC) organic
compounds. In many applications, C can be approxi-
mated as the sum of gaseous sulfuric acid and ELVOC
concentration, even though it should be kept in mind
that none of the gaseous compounds present in the
atmosphere is strictly non-volatile. Likewise, it has
been shown that the growth of atmospheric aerosol
particles is affected not only by the least volatile com-
pounds, but also by low- and semi-volatile com-
pounds (e.g. Trostl et al 2016).

2.2.2. Connections between the quantities

The formation of new atmospheric aerosol particles
and their growth to larger sizes are coupled closely to
each other, as well as to the concentrations of aerosol
precursor compounds and properties of a pre-existing
particle population. Understanding these couplings is
essential when analyzing NPF using atmospheric
observations. In the following we will summarize some
of the most important couplings between the relevant
variables (J, GR, CS, Coag$, C, Q, particle number size
distribution function), keeping in mind that the
derived equations become increasingly inaccurate
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when approaching the cluster regime as discussed in
the previous sub-section.

Mathematically, the particle formation and GRs
are connected to each other via the continuous particle
number size distribution function, n(dp):

Jap = n(dp) x GR(dp). )

The GR defined by equation (5) was recently
named as the flux-equivalent GR, since the GR of a
particle population can be determined in different
ways (Kontkanen et al 2016b; see also section 2.3.2). It
should be noted that equation (5) is strictly valid only
when the particle number concentration around the
size dp is conserved, i.e. when n(dp) is affected solely
by the growth of individual aerosol particles. In its pre-
sent form, equation (5) should not be applied for cases
in which either self-coagulation or coagulation
scavenging give a large contribution to the growth of a
particle population.

Condensation and coagulation sinks describe
essentially the same phenomenon, the only difference
being that in CS one of the colliding parties is a gas
molecule while in Coag$ it is a molecular cluster or
small aerosol particle, the other colliding party being
the pre-existing particle population in both cases. Leh-
tinen et al (2007) showed that the CoagSs of particles
with diameters dp; and dp, can be related to each
other via the following approximate formulae:

d m
CoagS(dp,) ~ CoagS(dp,) x (d—pl) , (6)

2

where the exponent m (typically in the range 1.6—1.8)
depends on the shape of the pre-existing particle
population. A direct consequence of equation (6),
together with the similarity between the condensation
loss of a gas molecule and coagulation scavenging of a
small aerosol particle, is that also CS and Coag$ are
connected with each other:

CoagS(dp) ~ CS x (%) , 7)

where dg is the diameter of the condensing gas
molecule. In practical applications, CS is often calcu-
lated by assuming the condensing vapor to be sulfuric
acid, in which case dg should be the diameter of a
sulfuric acid hydrate (dg ~ 0.71 nm, see Lehtinen
etal2007).

Equation (6) indicates that the probability by
which an aerosol particle is lost by coagulation decrea-
ses relatively rapidly with an increasing particle size, so
the survival probability of a growing particle is deter-
mined by the competition between its GR and its
scavenging rate by coagulation with larger particles.
For a growing particle population, the formation rates
of different-size particles can be related to each other
via (Lehtinen et al 2007):

V-M Kerminen et al

dp, dp, "
= Jup e 122
Jap, = Jap, Xp[m n 1[ [dpl

y CoagS(dp,) )’

GR )
where the competition between the particle growth
and coagulation scavenging appears as the ratio
CoagS/GR. Equation (8) assumes implicitly that the
particle GR is constant over the diameter range [dp;,
dp.], and that GR is not affected by self-coagulation.
The first of these assumptions is usually not valid (see
section 5.1). Korhonen et al (2014) derived a modified
version of equation (8), in which the particle GR is
allowed to change linearly with an increasing particle
size. Self-coagulation does not affect the accuracy of
equation (8), except at high formation rates of new
particles, and an iterative procedure that takes this into
account the effect of self-coagulation was introduced
by Anttila et al (2010). Based on equation (7), Kermi-
nen and Kulmala (2002) showed that the relation
between Jg,1 and Jgp, can also be written using CS
instead of CoagS. Finally, a generalized numerical
method for relating J4p; and J4p, from experimental
data was recently introduced by Kiirten et al (2015).

The concentration of any non-volatile compound
in the gas phase (C) is determined by the balance
between its production rate and its loss rate by con-
densation into pre-existing particles:

ac _ Q—-CSxC. )
dt
In the atmosphere, C evolves towards a pseudo-

steady state given by:

_Q
csS’

The accuracy of equation (10) depends on the
magnitude of CS and the rate at which Q is changing
over time (Kerminen et al 2004). Excluding very clean
environments (small CS) and environments with
exceptionally rapid changes in Q (e.g. fresh pollution
plumes), equation (10) can be considered as a good
approximation to the value of C. Equation (10) offers a
simple means to estimate C when this quantity cannot
be measured directly. The application of this concept
had led to the derivation of the widely-used proxy for
the gas-phase sulfuric acid concentration (Petiji
et al 2009), and the recent proxy for the concentration
of oxidized organic compounds in the gas phase
(Kontkanen etal 2016¢).

The GR of individual aerosol particles can be writ-
tenas

GRind = Y GReond,i + 2 GRperi + GRom»  (11)

C (10)

where GRong,; is the GR due to net condensation of
vapor i into the particle, GRy; is the GR due to some
heterogeneous reaction of vapor i on the surface or
inside the particle, and GR,, represents other growth
processes such as collisions of molecular clusters with
the particle. The condensational growth term can
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further be written into the following form:
GReond,i = A % [Ci = Cio x Ke(dp)], (12)

where C; and C; are concentration of vapor i in the
gas phase over a flat surface having the same composi-
tion as the particle, A takes into account the collision
rate between vapor molecules and the particle, and Ke
is the Kelvin term which increases rapidly with the
decreasing particle size for particles smaller than a few
nm in diameter (e.g. Wang et al 2013). For a non-
volatile compound, C;p = 0 and A is relatively con-
stant over the particle diameter range of 3—10 nm
(Nieminen et al 2010), such that GReong,; is directly
proportional to both C; and Q; (see equations (10) and
(12)).This means that the contribution of any non-
volatile compound to the particle GR can be estimated
relatively easily once either its gas-phase concentration
or its production rate in the gas-phase is known. In
practical applications, sulfuric acid and ELVOCs can
usually be treated as if they were non-volatile, whereas
for more volatile vapors the term C;, x Ke(dp) needs
to be taken into account when estimating the value of
GRcond,i-

2.3.Determining particle formation and GRs from
atmospheric measurements

In the scientific literature, a large variety of methods
have been developed and applied for determining the
particle formation and GRs from measurement data.
We will not make a full review on these methods here,
but rather concentrate on cases where information on
the time evolution of the particle number size distribu-
tion is available. The vast majority of the particle
formation and GRs published so far are based on those
kinds of measurements.

2.3.1. Particle formation rate

Let us consider a measurement device that provides
data on particle number concentrations, Nj, in several
size bins i over the diameter range [dp i, dPmax and
with a temporal resolution of At. From such measure-
ments, one can determine the particle formation rate
at the lower boundary of any of the size bin i, dp;, that
belongs to the diameter range [dpmin> dPmax]- Thisisin
practice done by looking at the temporal behavior of
the total particle number concentration over some
number (n) of size bins starting from the bin i
N=N;+ N1 + ... Niy,_1, where dp;y, < dpmax
(figure 3). The time evolution of N can be related to the
particle formation rate at dp; via the following balance
equation:

AN 1i+n—l 5
j&;‘*ﬁﬁmi"hmﬂ1"§'%; K(dp;, dp)N;
i+n—1 i+n—1 i+n—1
— > CoagS(dp)sap, N+ > B~ > vN:
j=i j=i j=i
(13)

Here P; is the rate of primary particle emissions
into the size bin j, v; is the loss rate of particles in this
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size bin by deposition, and the subscript j + 1 in
Coag$ means that only particles in the size binsj + 1,
j + 2 +... are considered when calculating the CoagS.
The third term in equation (13) takes into account
coagulation between the particle in the diameter range
[dp; dpiynl, called self-coagulation. Equation (13)
does not include the flux of particles into, nor the flux
of particles out from, the size range [dp;, dp;,,] due to
particle self-coagulation. Another, rather minor
approximation made in equation (13) is that the coa-
gulation terms are calculated at the lower boundary of
each size bin.

For sizes at which atmospheric particle formation
rates are usually determined (<10—20 nm diameter),
dry deposition of particles is usually negligible com-
pared with the particle removal rate by coagulation
scavenging (Kerminen et al 2004). By neglecting the
last term in equation (13) and rearranging, we obtain:

i+n—1 i+n—1
Jap, A AA—I;] + % Z K(dp;, dpj)N]-2 + Z Coag$
j=i j=i
i+n—1
X (dpj)>dpi+ll\]j + ]dpi+” - Z P,
J=1

(14)

While the approximations made above are not
always valid, equation (14) can be considered as a gen-
eral expression for the particle formation rate at the
diameter dp; in the atmosphere. Of the five terms on
the right hand side of equation (14), the first one is
obtained directly from the size distribution measure-
ments, the second term can be calculated from the
same measurements, and so can the third term when
dpmax is large enough so that the measured size range
includes the dominant fraction of the CoagS (see
equation (4)). The fourth and last terms are the trick-
iest ones and require a special attention in data ana-
lyses. Below we discuss shortly how equation (14) has
commonly been used, and how it should be used,
when analyzing atmospheric NPF events.

One way to use equation (14) is to consider a rela-
tively narrow size range [dp;, dp;. ], with dp;,, well
below 10 nm. The main advantage of this approach is
that the last term of equation (14) representing pri-
mary particle emissions can usually be considered to
be negligible. The drawback is that the flux of particles
growing out of the size range [dp;, dp;;.], ie. the
fourth term on the right hand side of equation (14),
needs to be taken into account. Determining this flux
requires making approximations on the particle
number size distribution and GR at dp;,, (see
equation (5)), which causes potentially large errors in
the calculated particle formation rate at dp; (Vuolle-
koski et al 2012). Another way to use equation (14) is to
consider a broader size range [dp;, dp; ], with dp;
being in the range 20—30 nm. In this case, neglecting
the fourth term on the right hand side of equation (14)
is usually a reasonable approximation. A potential
problem, however, are primary particle emissions:
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1t
dp; {} dpi,

Particle diameter

Figure 3. [llustration of the various terms in the balance equation of the particle number concentration in the size range [dp;, dp;- ]
(see the text). One-headed arrows represent coagulation scavenging of particles, and the sum of the frequencies at which a particlein a
certain size bin collides with all larger-size particles is equal to the coagulation sink of those particles. Two-headed arrows illustrate
particle self-coagulation within each size bin, the corresponding coagulation coefficient being equal to K.

J(dpi+n)

{} dpisn :

especially in urban environments, vehicular exhaust
may be a substantial source of sub-20-30 nm particles
(Ban-Weiss et al 2010, Brines et al 2015, Paasonen
et al 2016), and these particles should be included in
the fourth term of equation (14).

An issue worth noting is how the second and third
terms on the right hand side of equation (14), repre-
senting coagulation losses, should be treated. Firstly, it
is important to make a difference between these two
terms, since for self-coagulation (the second term) the
resulting aggregate will usually remain in the size range
[dp;, dp; ] while for coagulation with larger particles
(the third term) it will not. Secondly, due to the rela-
tively strong dependence of the Coag$S on the particle
size (see equation (6)), the third term on the right-
hand side of equation (14) should be calculated sepa-
rately for all the size bins belonging to the size range
[dp;, dp;. ], rather than using a single ‘representative’
diameter in this size range. Accurate determination of
the coagulation terms in equation (14) is especially
important in highly-polluted environments where
these terms may give a significant contribution to AN/
At(Caiand Jiang 2017).

2.3.2. Particle GR

The particle GR can be determined from particle
number size distribution measurements either with
(e.g. Kuang et al 2012, Pichelstorfer et al 2018) or

without (e.g. Kulmala et al 2012) considering the
general dynamic equation for the growing particle
population. The latter approach relies on two funda-
mentally different methods. In the first of these,
termed the mode-fitting method (Dal Maso et al 2005,
Kulmala et al 2012), a log-normal distribution func-
tion is fitted to a growing particle population, and
some particle diameter characterizing this mode
(number median diameter, mode peak diameter) is
then determined. This procedure is repeated for
successive time steps determined by the temporal
resolution of the measurements, resulting in a series of
particle diameter-time pairs (d;, t; i = 1 ... n). In the
second method, termed the appearance time method
(Lehtipalo et al 2014), a series of particle diameter-
time pairs is determined as well, but with a different
logic: d;is chosen to be some characteristic diameter of
each measured size bin, while ¢; is the time when the
measured particle number concentration in this size
bin reaches some pre-defined limit, typically its overall
maximum or some fraction of that maximum.

In both the mode-fitting and appearance time
method, the particle growth rate, GR, is obtained from
the slope of a curve fitted to the obtained series of the
particle diameter-time pairs (d;, t; i = 1 ... n). This
procedure provides typically a single value, and at
most a few values, of GR for each NPF event. The
resulting GR can therefore be interpreted as NPF
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event-average particle GR over a given particle dia-
meter range. It should be noted that the size range, of
which the obtained values of GR are representative,
may vary considerably between different studies as
well as between individual NPF events in a single
study.

Estimating how the particle GR varies with time
and particle size during a single NPF event involves
large uncertainties, and is usually not possible without
solving the general dynamic equation in combination
with measurement data. The general principles of such
approach, along with some examples on its applica-
tion for measurement data, have been discussed in
detail by Verheggen and Mozurkewich (2006), Kuang
et al (2012), Yu et al (2016) and Pichelstorfer et al
(2018), and thus will not be repeated here.

There is no method for the treatment of measure-
ment data that can accurately reproduce the flux-
equivalent particle GR defined by equation (5). For
example, it has been shown using numerical simula-
tions that the appearance time method discussed
above systematically gives values of GR that exceed the
corresponding flux-equivalent particle GR, and that
this difference increases rapidly when going to sub-3
nm particle sizes (Olenius et al 2014, Kontkanen
etal2016b).

2.3.3. Formation and GRs of charged particles

There are several field measurement sites, for which
no total particle number size distribution data are
available, yet corresponding data for the charged
fraction of the particle population exist. From such
data, one can determine the formation rate of charged
particles by using an equation that is otherwise similar
to equation (14) but has two additional terms: a
term that takes into account the loss of charged
particles by ion—ion recombination, and a term that
takes into account the attachment of small ions to
neutral (uncharged) aerosol particles (see Manninen
et al 2010, Kulmala et al 2012). Because of these two
additional processes, the formation rate of charge
particles is sensitive not only to the formation rate of
charged clusters but also to the ambient ion concen-
tration, the particle GR, and the size at which the
formation rate is being determined (Kerminen
etal 2007). As aresult, one should be extremely careful
in interpreting measurement data on the formation
rate of charged particles, especially for sizes larger
than about 2—3 nm in particle diameter, and in
comparing such data between different environmen-
tal conditions.

Determining particle GRs from measured size dis-
tributions of charged particles can be done using the
same procedures as outlined in section 2.3.2 for mea-
sured size distributions of total particle populations.
When doing this, however, one needs to remember
that the growth of a charged particle population differs
somewhat from that of the total particle population.
First, the condensation growth of charged aerosol
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particles is expected to be enhanced compared with
similar-size neutral particles (Yu and Turco 2000,
Nadykto and Yu 2003, Lushnikov and Kulmala 2004).
Existing evidence suggest, however, that this effect is
important only to the very smallest aerosol particles,
being probably negligible for particles larger than 3 nm
in diameter (e.g. Lehtipalo et al 2016). Second, coagu-
lation losses of charged particles may be up to a factor
of two higher than corresponding losses of neutral
particles (Leppd et al 2011). This feature may affect cal-
culated particle GRs in cases where coagulation losses
give a significant contribution to the apparent particle
GR (see equation (2)). Finally, the GR of charged parti-
cles might be affected by ion—ion recombination and
ion-aerosol attachment (Gonser et al 2014). Only few
field studies have compared the observed GRs of
charged particles to those of the total particle popula-
tion (Yli-Juuti et al 2009, Vakkari et al 2011, Yli-Juuti
etal 2011, Hirsikko et al 2012, Gonser et al 2014). The
overall message from these studies is that these two
GRs typically compare relatively well with each other
for particles larger than a few nm in diameter, while
larger differences are occasionally seen for smaller par-
ticles. It is unclear to which extent these differences
reflect real aerosol dynamical differences between the
charged and neutral particles, and to which extent they
arise from possible biases associated with different
measurements or GR analysis methods.

3. Regional NPF

3.1. General character of regional NPF

3.1.1. Factors influencing the occurrence of NPF

The intensity of solar radiation reaching the Earth’s
surface is perhaps the most important factor in
determining whether atmospheric NPF takes place or
not. In practically all the measurement sites from
where at least a few months of measurement data are
available, the average solar radiation intensity was
found to be higher during the NPF event days
compared with non-event days (Birmili and Wieden-
sohler 2000, Vehkamiki et al 2004, Hamed et al 2007,
Kristensson et al 2008, Jeong et al 2010, Guo et al 2012,
Hirsikko et al 2012, Jun et al 2014, Kanawade et al
2014, Pierce et al 2014, Qi et al 2015, Wonaschiitz
et al 2015). No clear radiation threshold needed to
initiate a regional NPF event has been identified,
except at one study site (Lee et al 2008). The presence
of clouds, by attenuating the solar radiation intensity
below the cloud layer, decreases the probability of NPF
to occur (Baranizadeh et al 2014, Dada et al 2017). An
ongoing NPF event can be interrupted by the appear-
ance of clouds (Hirsikko et al 2013), or by the
occurrence of a solar eclipse (Jokinen et al 2017).

By acting as a sink for LVOC vapors and small
clusters, a higher pre-existing aerosol loading is expec-
ted to hinder the occurrence of NPF. Existing observa-
tions confirm this expectation, since at most
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measurement sites the average value of CS was found
to be lower on NPF event days compared with non-
event days (Birmili et al 2003, Dal Maso et al 2007,
Wu et al 2007, Asmi et al 2011, Pikridas et al 2012,
Wang et al 2013, Young et al 2013, Kanawade
et al 2014, Qi et al 2015, Salma et al 2016a, Dada
etal 2017, Dai et al 2017). An exception to this pattern
was the study by Birmili and Wiedensohler (2000)
made in Melpitz, Germany, where the average pre-
existing particle surface areas was somewhat higher on
NPF event days compared with all the other days. In a
couple urban locations, a threshold for CS, or aerosol
surface area, above which NPF is very unlikely, was
identified (e.g. Salma et al 2016a, Cai et al 2017). How-
ever, occurrences of NPF at very high values of CS have
been observed (Nie et al 2014, Xiao et al 2015, Kulmala
etal2017).

The average ambient relative humidity (RH) tends
to be lower on NPF event days than on non-event days
in both clean and polluted environments (Birmili and
Wiedensohler 2000, Birmili et al 2003, Vehkamiki
et al 2004, Hamed et al 2007, Wu et al 2007, Lee et al
2008, Suni et al 2009, Guo et al 2012, Jun et al 2014,
Kanawade et al 2014, Pierce et al 2014, Qi et al 2015,
Zhao et al 2015, Salma et al 2016a, Dada et al 2017).
Several possible reasons for this apparently close con-
nection between the ambient RH and occurrence of
NPF have been proposed, including the typically nega-
tive feedback of high RH on the solar radiation inten-
sity, photochemical reactions and atmospheric
lifetime of aerosol precursor vapors (e.g. Hamed
et al 2011). In reality the situation is likely to be more
complicated than this, since in many locations also air
masses originating from very different source areas
tend to be characterized by different levels of RH (e.g.
Birmili et al 2003, O’Halloran et al 2009, Suni
etal 2009, Dada et al 2017).

The effect of the ambient temperature (T) on NPF
is ambiguous, showing very different responses
between different studies. This feature is probably
related to the simultaneous presence of several temp-
erature-dependent processes that may either enhance
or suppress NPF. Such processes include biogenic
emissions of aerosol precursor vapors into the atmos-
phere and their oxidation to low-volatility vapors (e.g.
Grote and Niinemets 2008), accumulation of aerosol
particles which increases CS (e.g. Paasonen et al 2013),
formation of molecular clusters and nanoparticles
from various precursor vapors (e.g. Dunne et al 2016,
Kiirten et al 2016), and the diurnal evolution of the BL.
Further complications arise from the strong seasonal
cycle of the ambient temperature in many continental
locations. For example, Dada et al (2017) found that in
Hyytidld, Finland, NPF is more frequent at higher
values of T during the cold part of the year, while the
opposite is true during the warm part of the year.

A close connection between the formation rate of
new atmospheric aerosol particles and gas-phase sul-
furic acid (H,SO,) concentration has been reported
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for a number of measurement sites (Weber
et al 1995, 1996, 1997, Birmili et al 2003, Kulmala
et al 2006a, Sihto et al 2006, Riipinen et al 2007, Kuang
et al 2008, Nieminen et al 2009, Petdji et al 2009, Paa-
sonen et al 2010, Wang et al 2011, Yao et al 2018).
Much less information is, however, available on how
H,SO, affects the occurrence of NPF, and even fewer
studies have reported higher measured H,SO, con-
centrations on NPF event days than on non-event days
(Birmili et al 2003, Boy et al 2008, Wang et al 2011).
Several studies have attempted to look at the relation
between NPF and H,SO, concentration by using some
proxy variable for the gas phase H,SO,4 concentration.
Such analyses are subject to large uncertainties due to
the scarcity of studies investigating the validity of these
proxies in different environments (Petéji et al 2009,
Mikkonen et al 2011), and therefore will not be dis-
cussed here in more detail.

The main gaseous precursor for H,SO, is sulfur
dioxide (SO,). Being also a major atmospheric pollu-
tant that has undergone strict air quality regulations
over the years, the potential connection between
atmospheric NPF and SO, concentration has been of
great interest. Observations in this regard are incon-
clusive: NPF event days have been reported to have
both higher (Birmili and Wiedensohler 2000, Woo
et al 2001, Dunn et al 2004, Boy et al 2008, Young
et al 2013, Zhao et al 2015) and lower (Wu et al 2007,
Dai et al 2017) ambient SO, concentrations, as com-
pared with SO, concentrations measured during the
non-event days or outside the periods of active NPF.
In one study, the relation between the occurrence NPF
and SO, concentration was found to be inconsistent
between different seasons (Qi et al 2015). These con-
trasting observations can be understood by the deli-
cate balance between the factors that favor (a higher
gas-phase H,SO, production rate) and disfavor (a lar-
ger sink for LVOC vapor and molecular clusters) NPF
downwind major SO, sources. The potential influence
of SO, emission reductions, driven mostly by past air
quality regulations in United States and Europe, on the
NPF event frequency will be discussed shortly in
section 3.1.2.

Organic vapors, especially highly-oxygenated
and extremely low-volatility organic compounds
(ELVOC), have been speculated to participate actively
into atmospheric NPF (e.g. Kulmala er al 1998,
2013,2014, Ehn et al 2014, Jokinen et al 2015, Bianchi
et al 2016). Since long-term ELVOC measurements
are lacking at the moment, little can be said about how
these compounds influence the occurrence of atmo-
spheric NPF events. Dada et al (2017) showed, using
20 years of measurement data from Hyytidl4, Finland,
that a proxy for the concentration of oxidized organic
compounds in the gas phase (see section 2.2.2) was, on
average, higher on NPF event than on non-event days
in every month of the year. This observation gives
some confidence that the ELVOC concentration
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might be among the most important variables affect-
ing occurrence of NPF in the continental atmosphere.

In a number of studies, the probability by which
NPF events occur has been found to depend strongly
on the wind direction or, more specifically, on the ori-
gin of measured air masses (e.g. Hamed et al 2007,
Sogacheva et al 2007, Suni et al 2009, Asmi et al 2011,
Shen et al 2011, Vakkari et al 2011, Nieminen
et al 2014, Qi et al 2015, Mordas et al 2016, Kolesar
etal 2017). Such dependency is quite expected, since in
most locations air masses coming from different
directions tend to be affected by different levels of bio-
genic emissions and anthropogenic pollutants, and
exposed to different meteorological conditions prior
to their arrival at the measurement site.

The above discussion summarizes our current
understanding on how different atmospheric variables
are related to the occurrence of NPF. Over the years,
people have also searched for more general criteria to
predict whether NPF takes place or not under given
atmospheric conditions. Based on the pioneering
theoretical work by McMurry and Friedlander (1979)
and McMurry (1983), McMurry et al (2005) developed
a parameter ‘L’ to distinguish the days with NPF from
those without NPF in a sulfur-rich environment.
Kuang et al (2010) extended this work to more diverse
environments with a parameter ‘L’ and demonstrated
the value of this parameter to be a good predictor for
the occurrence of NPF. Kulmala et al (2017) intro-
duced a dimensionless survival parameter ‘P’, a vari-
able closely related to Ly, and pointed out that we are
still lacking a general understanding on why NPF
occurs under extremely-polluted conditions. The
main problem in applying L, Lr- or P to predicting the
occurrence of NPF is that determining their values
requires knowing either the cluster GR or gas-phase
concentration of vapors causing this growth. Such
information is rarely available from atmospheric mea-
surements. By relying on some combination of vari-
ables known to either favor or disfavor NPF, people
have developed such NPF predictors that can relatively
easily be derived from routine measurement data (e.g.
Clement et al 2001, Boy and Kulmala 2002, Hyvonen
et al 2005, Mikkonen et al 2006, Jayaratne et al 2015,
Nieminen et al 2015). While many of these NPF pre-
dictors seem to work well for limited data sets, or con-
strained atmospheric conditions, none of them has
been shown to have a universal predictive power in the
continental troposphere.

3.1.2. Temporal characteristics

Regional NPF is typically a daytime phenomenon. The
studies covering at least two full years of measure-
ments have reported that the starting times of NPF
formation events are confined almost exclusively
between the sunrise and sunset (Vehkamaiki et al 2004,
Hamed et al 2007, Wu et al 2007, Asmi et al 2011, Qi
et al 2015). Furthermore, the active period of NPF
tends to end before sunset (Hamed et al 2007,
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Wuetal2007, Qietal 2015). Nighttime NPF have been
reported in a few locations, including a boreal forest
and its surroundings (Vehkamiki et al 2004, Junninen
et al 2008, Svenningsson et al 2008, Buenrostro Mazon
et al 2016, Rose et al 2018), a pine forest in France
(Kammer et al 2018), an Eucalypt forest in Australia
(Suni et al 2008), a Mediterranean Island (Kalivitis
et al 2012), a rural site affected by orographic cloud
processing (Wiedensohler et al 1997), an industrial
complex in South Africa (Hirsikko et al 2012), and an
urban site in Australia (Salimi et al 2017, Pushpawela
et al 2018). In some of these locations the particle
growth following nighttime NPF was very limited (e.g.
Kalivitis et al 2012, Buenrostro Mazon et al 2016, Rose
et al 2018), while in some locations such growth could
be very intense, producing particles of several tens of
nm in diameter (Suni et al 2008, Svenningsson
et al 2008). Two aircraft studies have reported indica-
tions of nighttime NPF in the free troposphere (FT)
(Lee et al 2008, Rose et al 2015a). All these features,
together with findings related to the solar radiation
intensity (see section 3.1.1), tend to imply a very
crucial role of atmospheric photochemistry in main-
taining regional NPF and growth.

The duration of a NPF event refers to the length of
the period during which active NPF is taking place or,
in a more practical sense, the length of the period dur-
ing which very small particles enter the measured par-
ticle size range. Very few publications report the
duration of the observed NPF events, even though
such information is essential when determining the
event-average NPF rates.

A typical feature of regional NPF events is that the
newly-formed particles grow gradually into larger
sizes. In theory, this growth continues until the parti-
cles are removed from the atmosphere by deposition
or coagulation processes. In practice, however, one
can track the growth of newly-formed particles from a
few hours up to a day or two when using measure-
ments conducted at a fixed location. Several factors
contribute to our inability to follow the particle
growth further in time, including the diurnal evol-
ution of the continental BL and associated mixing,
limited spatial extent of NPF (see section 2.3.3), and
general difficulties in separating ‘aged’ particles of dif-
ferent origin using routine measurements. In a vast
majority of cases, the growth of newly-formed parti-
cles appears to be irreversible. However, there are a
few locations where the newly-formed particles first
grow in size for a few hours and then, occasionally,
appear to shrink to various extents (Yao et al 2010,
Cusack et al 2013, Young et al 2013, Skrabalova
et al 2015, Lihavainen et al 2016, Salma et al 2016b,
Zhang et al 2016, Alonso-Blanco et al 2017). For a
more detailed discussion on this phenomenon, we
refer to a recent paper by Alonso-Blanco et al (2017).

In a few locations, the occurrence of two or more
NPF events during the same day have been reported
(Suni et al 2008, Svenningsson et al 2008, Hirsikko
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et al 2013, Kyr6 et al 2013, Rose et al 2015b, Salma
et al 2016a). Such phenomenon, while rather rare, has
several possible causes. First, the presence of clouds
can interrupt an ongoing NPF event for a while, after
which either the same event will continue or a new
event will begin (e.g. Hirsikko et al 2013). Second, it is
possible that due to changing air masses or evolving
chemical composition in the same air mass being mea-
sured, two different types of regional NPF events are
being initiated at different times of the same day (e.g.
Salma et al 2016a). Finally, sometimes a ‘local’ NPF
event may emerge on top of a regional NPF event (e.g.
Kyro etal 2013).

The frequency of NPF occurrence varies over the
course of a year, since most of the variables influencing
NPF have a pronounced seasonal variation. In a vast
majority of the sites, NPF is more frequent in summer
compared with winter (Qian et al 2007, Dall’Osto
et al 2018, Nieminen et al 2018). The season with the
highest NPF event frequency tends to change from
summer in polar and many high-latitude regions
(Heintzenberg et al 2017, Nieminen et al 2018) toward
the spring or autumn in most other regions (e.g. Jeong
et al 2004, Stanier et al 2004, Dal Maso et al 2005, Hus-
sein et al 2008, Pryor et al 2010, Asmi et al 2011, Kyro
et al 2014, Asmi et al 2016, Mahish and Collins 2017,
Wang et al 2017b, Nieminen et al 2018). This pattern
is, however, by no means universal, and the overall
ranking order of the seasons in terms of their NPF fre-
quency shows a substantial variability between indivi-
dual measurements sites (e.g Wu et al 2007, Meija and
Morawska 2009, Manninen et al 2010, Shen et al 2011,
Vakkari et al 2011, Hirsikko et al 2012, Qi et al 2015,
Wonaschiitz et al 2015, Dall’Osto et al 2018). Very few
studies have found NPF to be most frequent during
the wintertime (Lee et al 2008, Pikridas et al 2012).
Although the NPF frequency has varying seasonal
characteristics at different sites, the GRs of newly-
formed particle display almost exclusive a summer
maximum (e.g. Nieminen et al 2018). This feature ori-
ginates from higher biogenic emissions and typically
stronger atmospheric photochemistry during the
summertime, both of them enhancing the production
of LVOC vapors responsible for the particle growth,
while there is practically nothing during summer
(except perhaps extreme temperatures) that would be
expected to suppress the particle growth.

Changes in anthropogenic emissions, along with
climate change, are expected to affect the probability
of occurrence of atmospheric NPF. Unfortunately,
very few observational data on long-term changes in
the NPF event frequency exist. Hamed et al (2010)
showed that both the intensity and frequency of NPF
decreased considerably between two time periods
(1996—1997; 2003—2006) at a rural site in Melpitz,
Germany, and hypothesized that this decrease was
mainly due to the major decline in gas-phase SO, con-
centrations over the same time period. Wang et al
(2017b) demonstrated a further decline in NPF and
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SO, concentrations from 2003 to 2011, so that that
annual NPF event frequency decreased from 40%
—50% in 1996—1997 down to <20% during 2007
—2011 in Melpitz. Saha et al (2018) reported that the
regional NPF event frequency decreased from about
30% during 2001—2002 to about 10% during 2016
—2017 In Pittsburg, Pensylvania, in United States,
accompanied by a strong decline in the SO, con-
centration of about 90% between these two time peri-
ods. Kyro et al (2014) observed a strong decline
(—3.7% yr~ ') in the NPF event frequency at Virri6 in
Northern Finland over the time period of 1998—2011,
and attributed this decline to decreasing sulfur emis-
sions from the nearby industrial sources in the Kola
Peninsula. Pallas, a site about 300 km west from Vir-
rio, however, displayed no trend in the NPF event fre-
quency during 2000—2010 (Asmi et al 2011). The
study by Asmi et al (2011) did not report the temporal
behavior of the SO, concentration in Pallas, but
it is known that compared with Virrig, Pallas is
considerably less affected by SO, emissions from
the Kola Peninsula. In Hyytidld, Finland, particle
formation and GRs show a slight positive trend
(0.2%—0.5% yr ') since 1996 (Nieminen et al 2014),
whereas no clear trend but a prominent inter-annual
variability can be seen for the NPF event frequency
(Nieminen et al 2014, Dada et al 2017). Finally, Kalivi-
tis et al (2018) reported a slight increase in the NPF
event frequency over the period 2008-2015 at Crete,
Greece, in the eastern Mediterranean.

3.1.3. Spatial characteristics

Several studies have attempted to estimate the spatial
extent of regional NPF. For this purpose, various
methods based on single-site measurements have been
developed (e.g. Birmili et al 2003, Hussein et al 2009,
Crippa and Pryor 2013, Kristensson et al 2014,
Nemeth and Salma 2014). A more detailed view on the
spatial extent and variability of NPF can be obtained
by using simultaneous measurements from two or
more stations, and such analyses have been performed
for Northern (Tunved et al 2003, Vana et al 2004,
Komppula et al 2006, Hussein et al 2009) and Central
Europe (Wehner et al 2007), the Carpathian Basin
(Salma et al 2016a), the Mediterranean atmosphere
(Berland et al 2017), Eastern North America (Crippa
and Pryor 2013), Ontario, Canada (Jeong et al 2010,
Jun et al 2014), the Korean Peninsula (Kim et al 2016),
North China Plain (Wang et al 2013) and Eastern
China (Shen ef al 2018). The general conclusion from
these studies is that the spatial extent of regional NPF
is typically a few hundreds of km, and possibly
exceeding 1000 km in some environments.

Despite the usually relatively large spatial extent of
regional NPF, most of the studies mentioned above
observed a notable variability in the timing, duration
and intensity of NPF events across the study region.
This spatial variability appears to be larger for particle
formation rates compared with particle GRs. Paired
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Table 1. Statistics (median, 5th and 95th percentiles) of the particle formation rates (J) and growth rates (GR) based
on literature data. Mountain sites include studies conducted in China. For each site type, N refers to the number of
sites from which the median values of J and GR were determined. As an example, the median GR of 2.7 nm h~!for
boreal forest sites is the median value of the 17 study-average (or median if mean was not reported) values of GR
reported in each individual study. It should be noted that the size range used in calculating J and GR varied from
study to another (e.g. ] could refer to J3, ] etc), and we had no way of harmonizing the results in this respect.

J(em™s™h

GR(nmh™)

Site type N 5th Median 95th N 5th Median 95th
Boreal 12 0.13 0.4 0.92 17 0.49 2.7 5.3
Remote and rural 6 0.59 4.1 11.0 22 2.0 3.5 9.6
Urban 17 1.2 2.9 13.7 26 4.0 5.9 12
Arctic 2 — 0.51 — 6 0.23 2.3 4.1
Antarctica 2 — 0.05 — 4 1.4 4.5 5.5
Mountain 10 0.2 0.79 3.9 11 1.2 4.0 13
China: rural 11 1.8 49 19.7 13 3.8 6.2 9.8
China: suburban 4 14 33 3.6 9 3.5 7.4 13
China: urban 8 1.8 7.9 12.9 16 4.1 6.4 12
China: marine and coastal 1 — 0.3 — 5 2.9 45 7.1

urban and rural locations display interesting features
in this regard: in comparison with rural sites, NPF in
the nearby urban sites tend to be less frequent (Yue
et al 2013, Jun et al 2014, Salma et al 2016a), yet more
intense in terms of observed particle formation and
GRs (Wang et al 2013, Salma et al 2016a). Further-
more, when occurring, regional NPF may start, on
average, either later (Wehner et al 2007, Salma
etal2016a) or earlier (Jung et al 2013, Yue et al 2013) at
the urban site than at the nearby rural site. Observa-
tions indicate that the spatial variability of regional
NPF is apparent not only between the urban and rural
locations, but also within an urban area (e.g. Siaka-
varas et al 2016) and over a rural or sea areas (e.g Cru-
meyrolle et al 2010, Crippa and Pryor 2013, Berland
et al 2017). Challenges in distinguishing between
regional and local NPF events at sub-regional scales
makes it difficult to perform detailed analyses of small-
scale variabilities in regional NPF.

The vertical extent of regional NPF has been inves-
tigated in rather few studies. Airborne observations
suggest that in some regions NPF and subsequent par-
ticle growth seem to be confined into the BL (O’Dowd
et al 2009, Crumeyrolle et al 2010), while in other
regions this phenomenon may also take place in the
FT (Rose et al 2015a, Bianchi et al 2016, Berland
et al 2017) or at the interface between the BL and FT
(Siebert et al 2004, Dadashazar et al 2018). In Beijing,
China, the height in the atmosphere having the stron-
gest NPF was observed to move from within the BL at
low aerosol loadings to the top of the BL or to the
lower FT at high aerosol loadings (Quan et al 2017).
Observations in several mountain-top locations indi-
cate a relatively frequent occurrence of seemingly
regional NPF
section 3.2.5). It is unclear how big fraction of these
NPF events is truly of free tropospheric origin, and
whether they are related to a recent transport of aero-
sol precursors from the BL.

events at high altitudes (see

It would be tempting to conclude that the spatial
extent and variability of regional NPF is affected solely
by spatial inhomogeneities in the sources of aerosol
precursor compounds. However, the delicate balance
between the factors that favor atmospheric NPF on
one hand, and the factors that suppress it on the other
hand, changes this picture. Tunved et al (2006) showed
that in originally clear air entering a boreal forest zone,
atmospheric NPF is first initiated after the air mass
have traveled some time over the forested area, and
then maintained until the increasing pre-existing
aerosol loading kills it. In this case, the spatial extent of
NPF as well as its temporal characteristics at any fixed
location are dictated by the rate at which the trans-
ported air masses accumulate aerosol precursor com-
pounds. Another example of the dynamic nature of
regional NPF comes from Beijing, China, where the
occurrence of NPF was found to be tied to a multi-day
cycle of air pollutant accumulation (Guo et al 2014).
These examples demonstrate the complex interplay
between the spatial extent and temporal character-
istics of regional NPF—a feature that is rarely taken
into account when analyzing NPF observations made
at fixed locations.

3.2. Observed particle formation and GRs and NPF
event frequencies

In this section we summarize the literature results on
reported intensities and frequencies of regional NPF in
the following types of environments: rural and remote
continental areas, urban environments, Arctic region
and Antarctica, marine areas, as well as FT and
mountain sites. Table 1 summarizes the main features
of observed particle formation and GRs in these
environments, while more detailed information on
the reported character of NPF in each individual study
and location can be found in the supplementary tables
is available online at stacks.iop.org/ERL/13/103003/
mmedia. Figure 4 displays the geographic location of
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Boreal
Rural/remote

O  Mountain
O  Urban

O  Arctic/Antarctic %  China:suburban
%  China:urban % China:rural/remotd

conducted in the People’s Republic of China.

Figure 4. Geographical locations of measurement sites in different environments. The map contains 183 sites. This plot is made from
all available coordinates reported in the literature collected in the supplementary tables. The Chinese sites are collected from studies

all the measurement sites included in the supplemen-
tary tables and in our analysis.

3.2.1. Rural and remote continental areas
Published analyses of regional NPF events in rural and
remote continental areas cover a wide range of
environments, including boreal and other forested
areas, agricultural regions, grasslands and various types
of environments located at different distances from
major urban centers. In the following we consider
boreal forest sites separately from other types of sites,
mainly because the boreal forests are the only environ-
ment having long-term measurements of atmospheric
NPF from several different sites. Arctic and polar
continental environments, as well as mountains sites,
will be considered separately in sections 3.2.3 and 3.2.5.
The SMEAR II station (Hari and Kulmala 2005),
located in a boreal forest environment in Hyytiils,
Finland, was the first field site from where regional
NPF events were reported in a scientific literature
(Mikelid et al 1997), and the same site has so far the
longest published times series of such events (Niemi-
nen et al 2014). The observed particle formation and
GRs span roughly an order of magnitude between the
different boreal forest sites, the median values being
0.4 cm s~ ' and 2.7 nm h™", respectively (table 1).
The annual frequency of NPF event varies between
about 10% and 30%, with lowest frequencies corresp-
onding to the northern edge of the boreal forest zone
and the Siberian part of this region. The NPF event fre-
quency has often a maximum in spring, possibly
another maximum in late summer or autumn, and is
typically very low during the wintertime (Dal Maso

et al 2007, 2008, Kristensson et al 2008, Asmi
etal2011, Nieminen et al 2014, Kyro etal 2014).

Particle formation rates in rural and remote loca-
tions other than boreal forest sites span over a rela-
tively large range of values (table 1), as one might
expect due to the variable characteristics of these
environments. The median value of J from these envir-
onments is about ten times higher than that from the
boreal forest sites, and the same concerns the high-
and low-end values of this quantity between the rural
China and boreal forest environment. Compared with
J, smaller differences exist in GR between the rural and
remote locations, and the median value of this quan-
tity outside China is only slightly higher than that in
boreal forests. Typical particle GRs in Chinese rural
sites are about twice those in rural sites elsewhere in
the world.

The frequency of regional NPF in rural and remote
locations varies a lot. At one extreme, NPF event fre-
quencies between about 70% and 90% were reported
in South Africa (Vakkarietal 2011, Hirsikko et al 2012,
Vakkari et al 2015). At the other extreme, NPF was
found to be quite rare around a forested location in
Siberia (Heintzenberg et al 2011), and almost non-
existent in the Amazonian rainforest (Martin et al
2010, Wimmer et al 2018, Andreae et al 2018, Rizzo
etal2018).

3.2.2. Urban environments

Since the last review that concentrated on observed
atmospheric NPF (Kulmala et al 2004), a large number
of studies have investigated NPF in various types of
urban environments. The median particle formation
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rates are the lowest in Antarctica, followed Arctic and
boreal forest sites, and still higher in other remote and
rural environments as well as in urban areas (table 1).
In China, high particle formation rates tend to be
observed in almost all the sites.

The median particle GR from the urban sites is
1.5-2 times that from the non-Chinese rural and
remote locations (table 1). Somewhat larger differ-
ences can be seen at the low-end values of this quan-
tity, mainly because observed particle GRs smaller
than about 1 nm h™" are rare in urban environments.
It could be mentioned that particle GRs >10 nm h™'
are common in many urban locations, especially in
China, but seemingly also in some other polluted
environments (Ménkkonen et al 2005, Wu et al 2007,
Iida et al 2008, Kalafut-Pettibone et al 2011, Peng
et al 2014, Qi et al 2015, Xiao et al 2015, Zhao
etal2015).

Typical frequencies of regional NPF events in urban
environments are in the range of 10%-30% (Stanier
et al 2004, Qian et al 2007, Dall’Osto et al 2013, Brines
et al 2015, Wonaschiitz et al 2015, Hofman et al 2016,
Salma et al 2016a). Higher NPF event frequencies were
observed in Po Valley, Italy (36%, Hamed et al 2007),
London, United Kingdom (36%, Hofman et al 2016),
Beijing, China (40%, Wu et al 2007), and Nanjing,
China (44%, Qi et al 2015). NPF event frequencies as
low as 5% were reported in Birmingham, United King-
dom (Alam et al 2003) and in Helsinki, Finland (Hus-
sein et al 2008). No consistent pattern in the seasonal
variability of the NPF event frequency in urban areas
can be identified.

3.2.3. Arctic areas and Antarctica

Particle number concentration and size distribution
measurements conducted in the Arctic suggest that
this region is an active area of NPF during the
summertime (Leaitch et al 2013, Tunved et al 2013,
Freud et al 2017). This view is supported by the few
published regional NPF event frequencies, reaching
values between about 30% and 40% in Tiksi, northern
Russia, and in Station Nord, northeast Greenland
(Asmi et al 2016, Nguyen et al 2016). Summertime
NPF was found to be frequent also in air masses
measured at the Zeppelin station, Svalbard (Dall’Osto
et al 2017, Heintzenberg et al 2017), as well as in
Canadian Arctic marine and coastal environments
(Collings et al 2017). Interestingly, the summertime
NPF event frequencies in the Arctic seem to be clearly
higher than those reported at a few sub-Arctic sites at
the edge of the boreal forest zone at the same time of
the year. The frequency of NPF during the winter is
very low in most Arctic locations. Dall’'Osto et al
(2017) reported an anti-correlation between the NPF
event frequency in Svalbard and both monthly and
annual extent of Arctic sea ice area, suggesting that
future reductions in the Arctic sea ice extent might
lead to enhanced NPF over the Arctic.

V-M Kerminen et al

Although cases of regional NPF have been
observed throughout the Arctic, data on NPF and GRs
are available from few sites only (table 1). Based on
these rather limited data, particle formation and GRs
in the Arctic atmosphere appear to be comparable to
those observed in boreal forest environments.

It should be noted that in addition to NPF taking
place inside the Arctic BL, sources of nucleation and
small Aitken mode particles might also be the entrain-
ment from the FT (e.g. Tunved et al 2013, Croft
etal 2016, Igel et al 2017, see also section 3.2.4), or pri-
mary particles emitted from the Arctic Ocean (Leck
and Bigg 1999, 2005, Orellana et al 2011, Karl
etal 2013). Heintzenberg et al (2017) applied three dif-
ferent types of search algorithms for NPF and particle
growth events in the Svalbard region over a 10 year
measurement period, partly reflecting the different
sub-60 nm particle sources, and found evidence on
varying and relatively complex marine biological
source processes for these particles.

Over Antarctica, a prominent feature of the aero-
sol system is the very pronounced annual cycle of the
total particle number concentration, being up to
20-100 times higher during the austral summer than
during the winter (Shaw 1988, Gras 1993, Ito 1993,
Hara et al 2011, Weller et al 2011, Jarvinen et al 2013,
Fiebig et al 2014, Kim et al 2017). The magnitude of
this seasonal cycle appears to be higher on the upper
plateau of Antarctica than at the coastal Antarctic sites,
whereas overall particle number concentration levels
are clearly higher at the coastal Antarctica. Particle
number size distribution measurements suggest that
the summer maximum in particle concentrations can,
to a large extend, be explained by NPF taking place in
the Antarctic atmosphere. The vertical location of
Antarctic NPF has not been well quantified, even
though there are some indications that NPF takes
more preferably place in the Antarctic FT than in the
BL (Koponen et al 2002, Hara et al 2011, Humphries
etal2016).

Regional NPF has been investigated mainly during
the summertime in Antarctica, and there are too few
data to estimate the frequency of occurrence of this
phenomenon. The available information suggests,
however, that regional NPF events observed at the sur-
face level are probably less common in the summer
Antarctica than they are in the summer Arctic atmos-
phere (Koponen et al 2003, Park et al 2004, Pant
et al 2011, Jarvinen et al 2013, Kyro et al 2013, Weller
et al 2015). A study conducted on the upper plateau of
Antarctica demonstrates that also wintertime regional
NPF is possible in this environment (Jirvinen
et al 2013). Typical particle formation rates associated
with regional NPF in Antarctica are about an order of
magnitude lower than those in the Arctic or boreal for-
est environments, whereas the corresponding particle
GRs are comparable to those in other environments
(see table 1). In the Antarctic atmosphere, also cases
displaying very low particle GRs between about 0.1

15



10P Publishing

Environ. Res. Lett. 13 (2018) 103003

and 1 nm h™! were reported (e.g. Park et al 2004,
Weller eral 2015).

3.2.4. Marine areas

When discussing NPF in marine areas, it is important
to distinguish between remote marine areas with
minimal anthropogenic influence, continental out-
flow regions with potentially large anthropogenic
effects on NPF (e.g. McNaughton et al 2004), and
coastal regions which may have their own NPF
mechanisms (see section 4.2). Below we discuss shortly
NPF taking place in the remote marine areas, with an
emphasis on the marine boundary layer (MBL). This
region has been of great research interest after the
proposed feedback mechanisms between marine sul-
fur emissions and climate (Charlson et al 1987), in
which increased ocean temperatures in a warming
climate would cause larger dimethyl sulfide (DMS)
emissions to the atmosphere and subsequently
increased CCN production due to more efficient NPF
and particle growth. Higher CCN concentrations
would then result in higher albedos of MBL clouds,
causing a cooling effect that would partly compensate
for the initial climate warming. The various steps and
overall importance of this climate feedback mech-
anism have been investigated, and debated, a lot
during the past three decades (e.g. Ayers and Cai-
ney 2007, Woodhouse et al 2010, Quinn and
Bates 2011, Thomas et al 2011, Mahajan et al 2015).

Indications on NPF inside the MBL have been
reported from several marine locations (e.g. Covert
et al 1992, Hegg et al 1993, Clarke et al 1998a, Weber
et al 1999, Petters et al 2006). However, excluding
high-latitude marine areas (see section 3.2.3), this
phenomenon appears to be sporadic in nature (Covert
et al 1996, Heintzenberg et al 2004), requiring quite
specific conditions to occur like a very low pre-existing
aerosol loading. Regional NPF with subsequent parti-
cle growth to larger sizes have been observed only out-
side tropical MBL, and the reported particle GRs are
relatively low, of the order of 1 nm h™' (O’Dowd
etal2010, Uedaetal 2016).

Following the observations by Bigg et al (1984) and
Clarke (1993), Raes (1995) suggested that, instead of
NPF inside the MBL, entrainment of particles formed
initially in the FT would be the main source of second-
ary aerosol particles in the remote MBL. Strong sup-
port for this hypothesis was later obtained from
compilations of ship cruises and aircraft missions
(Covert et al 1996, Clarke and Kapustin 2002), as well
as from field campaigns combining different types of
measurements (Raes et al 1997, Kamra et al 2003,
Clarke et al 2013, Quinn et al 2017). The view that
regional NPF does not commonly occur in mid- and
low-latitude remote MBLs, and that both ultrafine
particle and CCN populations in these regions are
maintained by a combination of sea-spray emissions
from the ocean surface and entrainment from the FT,
is further supported by models simulating processes
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determining the MBL aerosol particle budget
(Capaldo et al 1999, Katosheveski et al 1999, Pirjola
et al 2000), as well as by large-scale model simulations
(e.g. Korhonen efal 2008, Woodhouse et al 2010).

3.2.5. FT and mountain sites

The near absence of primary particle sources and
longer aerosol particle lifetimes in the FT compared
with the BL make this environment an interesting
location from the atmospheric NPF point of view.
Furthermore, as discussed is section 3.2.4, FT has been
identified as a potentially important source of newly-
formed particles into the BL. The characteristics of
NPF in different regions and heights of the FT have
been investigated with airborne measurements and by
conducting measurements at fixed locations on
mountains. Below we discuss shortly our current
understanding on NPF in the FT based on these two
experimental approaches.

By relying on high-altitude aircraft measurements
in the FT, Clarke (1993) found an inverse relation
between the sub-15 nm particle concentration and
aerosol surface area, and concluded that the upper part
of the FT provides conditions favorable for NPF. Later
measurements confirmed the upper FT as an active
area of NPF, especially in the tropics but also
in the northern-hemispheric mid-latitudes (Zaizen
et al 1996, de Reus et al 2001, Clarke and Kapus-
tin 2002, Singh et al 2002, Heintzenberg et al 2003,
Hermann et al 2003, Weigelt et al 2009, Takegawa
et al 2014). Several studies reported associations
between NPF in the upper FT and convective uplifting,
possibly accompanied with emissions from con-
tinental surface sources (e.g. Wang et al 2000, Heint-
zenberg et al 2003, Benson et al 2008, Koppe
et al 2009). In many studies, the outflow regions of
convective clouds were identified as an active location
of NPF (see section 4.3), but there is no proof that the
presence of clouds would be a necessary condition for
free-tropospheric NPF. In addition to convection, tro-
popause folds were observed to initiate NPF in the
upper FT (Young et al 2007).

Measurements at mountain stations make it possi-
ble to investigate regional NPF in the FT, and its
connection with FT-BL interactions. Continuous mea-
surements at mountain sites reveal variable frequencies
of NPF event days: 64% with a maximum close to 100%
during the dry season at Chacaltaya (5240 m a.s.l) in
Bolivia (Rose et al 2015b), >35% with a maximum
close to 50% during the monsoon and post-monsoon
seasons at Pyramid station (5079 m a.s.l) in Nepal
(Venzac et al 2008), 15% with moderate spring and late
summer maxima at Jungfraujoch (3580 m a.s.l) in Swit-
zerland (Herrmann et al 2015), 52% with a spring max-
imum and summer minimum at Storm Peak
Laboratory (3210 m a.s.l) in Colorado, United States
(Hallar et al 2011, 2016), 30% with a summer max-
imum of about 50% at Izana (2373 m a.s.]) in Tenerife
island (Garcia et al 2014), 65% with an autumn
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maximum of about 90% at Maido observatory (2150 m
a.s.]) on Reunion Island (Foucart et al 2018), 11% with
a spring maximum of about 20% at Mukteshwar (2180
m a.s.]) in India (Neitola et al 2011), 32% with a spring
maximum of 75% at Mount Tai (1534 m a.s.l) in China
(Shen et al 2016a), and 23% with no clear seasonal pre-
fence at Puy de Dome (1465 m a.s.) in central France
(Rose et al 2013). Signs of frequent NPF were also
reported from three other high-altitude sites: Mount
Saraswati (4520 m a.s.l) in the Trans-Himalayan region
(Krishna Moorthy et al 2011), Mount Waliguan (3816
m a.s.]) in China (Kivekis et al 2009) and Mount Lem-
mon (2790 m a.sl) in Arizona, United States
(Shaw 2007).

In several mountain sites, NPF was found to be
strongly associated with upslope valley winds bringing
air from lower altitudes, plausibly from the BL (Weber
et al 1995, Shaw 2007, Nishita et al 2008, Venzac
et al 2008, Rodrigez et al 2009, Shen et al 2016a). In
Mukteshwar, a low-altitude mountain site in India,
NPF was common only during the spring months
when the site was located within the BL (Neitola
et al 2011). In Jungfraujoch, Switzerland, NPF was
found to be restricted to air masses that had been in
contact with the BL within the last couple of days
(Bianchi et al 2016). These observations give further
support for the important role of surface emissions in
causing NPF in the FT.

Reported particle formation rates from different
mountain sites span over a relatively large range of
values, with the median value being slightly larger than
that in the boreal forest environment yet considerably
lower than that in other remote or rural environments
(table 1). Reported particle GRs at mountain sites are
relatively high, comparable to those in many of the
sites in the continental BL.

4. NPF taking place at sub-regional scales

4.1. Plumes from ground-based point sources
Coal-fired power plant plumes were among the first
places in the atmosphere where extensive NPF was
observed to take place (e.g. Dittenhoefer and de
Pena 1978, Whitby et al 1978, Hobbs et al 1979, Van
Valin and Pueschel 1981, Wilsonand McMurry 1981).
The formation rates of new aerosol particles in
these plumes were reported to reach values larger
than 1000 cm > s, and the particle production was
typically found to be the strongest near plume edges.
In many cases, signs of NPF could be observed at
distances of several tens of km downwind from the
source. Later studies reported active NPF in many
other types of plumes originating from anthropo-
genic point sources. Such sources include various
kinds of power plants, refineries, smelters and other
industrial complexes (e.g. Brock et al 2003, Banic
et al 2006, Junkermann et al 2011a, Junkermann and
Hacker 2015).

V-M Kerminen et al

Biomass burning is one of the largest sources of
aerosol particles and many trace gases in the global
atmosphere (Andreae and Merlet 2001, Van Marle
et al 2017). Laboratory experiments conducted by
Hennigan et al (2012) demonstrated that biomass
burning plumes have a great potential for NPF and
subsequent particle growth, yet there are very few field
studies on this phenomenon. Indirect evidence of NPF
has been reported in plumes originating from vastly
different biomass burning sources (Hobbs et al 2003,
Bougiatioti et al 2016, Laing et al 2016). By segregating
alarge number of savannah fire plumes of different age
together, Vakkari et al (2014) observed intense NPF
followed by a rapid growth of newly-formed particles
in these plumes during daytime. The above studies
indicate that, in addition to studying trace gas and pri-
mary particle emissions from biomass burning,
emphasis should also be put on investigating NPF tak-
ing place in plumes from different biomass burning
sources.

Several studies have reported rapid conversion of
SO, to sulfate aerosol in power plant plumes
(Hewitt 2001), as a result of which existing para-
meterizations on NPF associated with power plant and
other sulfur-rich plumes tend to rely heavily on the
amount of SO, emitted by these plumes (see Stevens
and Pierce, 2013, and references therein). Compared
with older power plants, modern coal-fired power
plants have substantially reduced SO, and primary
particle emissions, yet their plumes seem to be very
active in producing new aerosol particles that grow in
size (Junkermann et al 2011b, Mylliri et al 2016). It is
clear that more attention should be paid not only to
sulfur, but also to other low-volatility compounds
capable of contributing to NPF and subsequent parti-
cle growth in various point-source plumes.

4.2, Coastal zones and sea-ice regions
Coastal zones, i.e. the regions between the open oceans
and continents or islands, display a very specific kind
of local atmospheric NPF. The most thoroughly-
studied coastal zone in this regard is Mace Head in the
western coast of Ireland, where the most intense NPF
was observed to take place in the simultaneous
presence of a low tide and solar radiation (O’Dowd
et al 1998, 1999). These NPF events were estimated to
occur over the spatial scales of <100 m, and were
believed to produce initially very rapidly-growing
particles that reached sizes from a few nm up to
10-20 nm by the time they arrived at the measurement
station (O’Dowd et al 1998, Dal Maso et al 2002, Ehn
et al 2010). The coastal NPF around Mace Head was
ascribed to photochemical reactions involving iodine
compounds emitted by the algae exposed to air and
sunlight in a narrow region near the coastline
(O’Dowd et al 2002, Sipild et al 2016).

In addition to Mace Head, intense coastal NPF
have been observed in a few other locations: Bodega

17



10P Publishing

Environ. Res. Lett. 13 (2018) 103003

Bay in California (Wen et al 2006), Cape Grim in Tas-
mania (Grose et al 2007), Great Barrier Reef on the east
coast of Australia (Modini et al 2009), Roscoff in the
northwest of France (Whitehead et al 2009, McFiggans
et al 2010), and O Grove on the northwest coast of
Spain (Mahajan et al 2011). In Cape Grim, Roscof and
O Grove, coastal NPF was confirmed to be associated
with iodine emissions, while low-tide conditions
seemed to favor NPF in Roscoff and O Grove. In Bod-
ega Bay, ocean upwelling bringing nutrients from sub-
surface waters seemed to be the most influential factor
for NPF.

Another kind of environment next to a coastline
with a high potential to produce new aerosol particles
is sea ice, especially melting sea ice. Evidence for, or
indications of, atmospheric NPF associated with air
masses originating from partly sea-ice covered regions
were found in measurements conducted over the
Greenland Sea and in Svalbard, Arctic (Allan
et al 2015, Dall’Osto et al 2017), as well as during sev-
eral measurement campaigns made in and around
Antarctica (Davison et al 1996, Atkinson et al 2012,
Kyr6 et al 2013, Roscoe et al 2015). In many of these
studies, NPF was speculated to be initiated by iodine
emissions from the melting sea ice.

4.3. Cloud-induced NPF

Indicative of NPF associated with clouds, several
studies that were conducted already a couple of
decades ago reported elevated total (Hegg et al 1990,
Hegg et al 1991, Hudson and Frisbie 1991, Radke and
Hobbs 1991) or sub-10 nm (Keil and Wendisch 2001,
Weber et al 2001) particle number concentrations near
cloud edges as compared with regions further away
from cloud or inside the cloud. These observations
were made in both marine and continental atmos-
phere, and for clouds ranging in altitude from the BL
up to several km in the FT. The most common, but not
exclusive, near-cloud regions for NPF seemed to be
the air just above cloud tops. Several explanations for
this phenomenon were suggested, including enhanced
UV irradiance and turbulence in the vicinity of clouds
(e.g- Wehner et al 2015).

Besides cloud edges, outflow regions of mainly
convective clouds were found to be locations with
active NPF (Perry and Hobbs 1994, Clarke et al 1998b,
1999, Strom et al 1999, Clement et al 2002, Twohy
et al 2002, Waddicor et al 2012). Weigelt et al (2009)
measured upper-troposphere particle number size
distributions over different regions around the world,
and found a frequent presence of nucleation mode
particles whenever the measured air masses had been
in recent contact with deep convective cloud systems.
Similar observations had already been reported over
the Indian and Pacific Oceans (de Reus et al 2001,
Clarke and Kapustin 2002), and over the Amazon
Basin (Andreae et al 2018). Theoretical analysis and
model simulations support the view that clouds
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associated with deep convection provide favorable
conditions for NPF, however the precursors, nuclea-
tion mechanisms and exact location of NPF with
respect to clouds remain to be quantified (Kulmala
etal 2006b, Ekman et al 2008, Waddicor et al 2012).

Finally, there is some evidence on NPF taking
place in cirrus clouds (Lee et al 2004, Weigel
et al 2011). Although the large CS inside any cloud is
expected to strongly disfavor NPF, Kazil et al (2007)
showed that conditions inside cirrus clouds allow the
occurrence of sulfur-derived NPF.

4.4. NPF associated with transportation

Emissions associated with transportation are an
important source of ultrafine aerosol particles into the
atmosphere (Kumar et al 2013, Paasonen et al 2016).
In emission inventories, all these particles are usually
counted as primary aerosol particles, even though
some fraction of them are small (<30 nm diameter)
and volatile when heated up to 100 °C—300 °C, i.e.
presumably formed by NPF in the atmosphere rapidly
after the exhaust emissions are cooled and diluted into
the ambient air. Below we discuss shortly the observed
characteristics of NPF associated with three major
transport sectors: ships, aircraft and motor vehicles.

Particle size distribution measurements in ship
plumes show frequently the presence, and sometimes
dominance, of volatile nucleation mode particles (e.g
Petzold et al 2008, Lack et al 2009, Jonsson et al 2011,
Pirjola et al 2014). The contribution of these particles
to the total particle number concentrations seems to
depend on the overall composition of the ship plume
and its aging time in the atmosphere. Due to the
potentially large adverse health effects caused by ship
traffic near coastal zones, air quality regulations are
gradually changing the properties of ship emissions
(Corbett et al 2007, Fuglestvedt et al 2009, Liu et al
2016). While these changes will evidently reduce parti-
cle mass concentrations resulting from ship traffic, the
corresponding influences on particle number con-
centrations are more complicated with even a possibi-
lity to increase the number of volatile (by heating)
nucleation mode particles (Lack et al 2011, Petzold
etal2011).

Airplanes have been known to emit volatile
nucleation mode particles into the lower troposphere
and lower stratosphere for quite some time (Fahey
et al 1995, Pueschel et al 1998, Schroder et al 1998,
Anderson et al 1999). More recently, aviation was
found to increase substantially total particle number
concentrations in the vicinity of several major airports
(e.g. Hudda et al 2016, Masiol et al 2017, Shirmo-
hammadi et al 2017), and several studies reported clear
evidence on NPF in the associated aircraft plumes
(Herndon et al 2008, Mazaheri et al 2009, Kinsey
et al 2010, Buonanno et al 2012, Timko et al 2013,
Hudda and Fruin 2016). The relative importance of
primary soot particle and volatile nucleation mode
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particles in the surface air affected by aviation opera-
tions remains, however, poorly quantified.

Motor vehicle traffic is an example of extremely
localized NPF, mainly because the newly-formed par-
ticles are typically tied to the presence of individual
vehicles. Particle number size distributions measured
at traffic-impacted sites show frequently a dominant
peak at particle diameters below 30 nm (see Vu
etal 2015 and references therein), which indicates that
motor vehicle traffic is a very strong source of nuclea-
tion mode particles in the urban atmosphere. Field
and laboratory experiments have demonstrated that
the presence and properties of nucleation mode parti-
cles in vehicle emissions depend on multiple factors,
including the vehicle engine and emission after-treat-
ment technologies, driving conditions, used fuels and
lubricant oils, and ambient meteorological conditions
(e.g. Lee et al 2015, Karjalainen et al 2016b, 2016¢, Sal-
iba et al 2017, Timonen et al 2017). A further compli-
cation arises from the observations that the nucleation
mode particles associated with motor vehicle emis-
sions may contain a non-volatile core (Sgro et al 2008,
Lihde et al 2009). This means that some of these parti-
cles are formed inside the engine, not by NPF in the
diluting exhaust plume. Finally, Ronkké et al (2017)
observed a frequent presence of a large number of sub-
3 nm particles in locations exposed to road traffic.
These nanocluster aerosol particles not only give an
additional contribution to ultrafine particle popula-
tions, but they could also act as nucleating cores for
particles causing a NPF and growth event in urban
environments.

5. Growth of newly-formed particles to
larger sizes

5.1. General features
Analyses of regional NPF events based on ion spectro-
meter measurements in different environments have
revealed a clear size dependency in the GR of sub-20
nm diameter particles (Hirsikko et al 2005, Virkkula
et al 2007, Suni et al 2008, Yli-Juuti et al 2009,
Manninen et al 2010, Vakkari et al 2011, Yli-Juuti et al
2011, Hirsikko et al 2012, Gonser et al 2014, Dos
Santos et al 2015, Rose et al 2015b, Kontkanen et al
2016a, Vana et al 2016). Most of these studies have
considered three size ranges (1.5—3 nm, 3—7 nm and
7—20 nm) and observed that the average particle GR is
the lowest in the sub-3 nm size range and the largest in
the 7—20 nm size range. Exceptions for this pattern
have been reported at two slightly elevated measure-
ments sites (Hohenspessenberg in Germany and Pallas
in Northern Finland; see Manninen et al 2010) and at a
semi-clean site in Southern Africa (Vakkarietal 2011).
Apart from the almost universal summer max-
imum in average particle GRs (see section 3.2.2), there
are some indications that also the size dependency of
the GR might be at its strongest during the summer
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time (Yli-Juuti et al 2011, Vakkari et al 2011, Hikkinen
et al 2013). These observations suggest that biogenic
emissions play an important role in the growth of
newly-formed particles, at least in the continental BL,
and that most of the compounds contributing to the
particle growth prefer larger particles over the small
(<a few nm) ones. Such a size-selectivity could be
explained by (1) different volatilities of the gas-phase
oxidation products of biogenic vapors, so that only the
least volatile ones are capable of condensing onto the
smallest particles, or (2) by differences in the size
dependency of the different particle growth processes,
such as condensation growth and heterogeneous reac-
tions either on particle surfaces or inside them (e.g.
Pierce et al 2011, Riipinen et al 2012, Donahue
etal 2013, Hikkinen et al 2013, Trostl et al 2016, Apso-
kardu and Johnston 2018). These two explanations are
not mutually exclusive, but might act simultaneously.
Getting more insight into this issue would benefit
from field data on whether and how the particle GR
depends on the particle size above 20 nm diameter.
Unfortunately, with the exception of a couple of recent
studies indicating that Aitken and accumulation mode
particles may growth faster than nucleation mode par-
ticles (Burkart et al 2017, Paasonen et al 2018), practi-
cally no data on this subject is available at the moment.

A few field studies have investigated in detail how
the particle GR behaves in the sub-3-5 nm size range.
While most of these studies report a strong increase in
the particle GR with increasing particle size at this size
range (Kuang et al 2012, Kulmala et al 2013, Xiao
et al 2015), also more complicated patterns of this size
dependency have been suggested (Yu et al 2016). More
information on the GRs of the smallest newly-formed
particles is needed for modeling purposes because
these particles are most susceptible to coagulation
scavenging (see section 2.1.2), and for understanding
why NPF is possible even under extremely polluted
conditions (Kulmala et al 2017).

5.2. Chemical compounds contributing to the
particle growth

5.2.1. Direct particle composition measurements
Observations of aerosol particle chemical composition
combined with simultaneous measurements of aerosol
particle size distributions have been used to identify the
chemical composition of the compounds responsible
for particle growth in NPF events. Direct observations
of nucleation-mode particle chemical composition
have been made with thermal desorption chemical
ionization mass spectrometer (TDCIMS) (Smith
et al 2004) and with nano aerosol mass spectrometer
(NAMS) (Wang et al 2006). Of these two instruments,
NAMS, measures the atomic composition of the
particles, while TDCIMS utilizes a softer ionization
method and can identify the chemical composition of
the particles in more detail (e.g. Smith et al 2010).
However, as most studies do not report detailed
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composition of the condensable vapors, we will group
the identified growth channels into growth by con-
densation of organic compounds (organic aerosol,
OA), sulfate (SO,), ammonium (NH,) and nitrate
(NO3).

In addition to chemical composition measure-
ments of the nucleation mode, also size-resolved che-
mical composition measurements for >30 nm with
aerosol mass spectrometer (AMS) (Jayne et al 2000)
and non-size resolved submicron aerosol chemical
composition measurements with aerosol chemical
speciation monitor (ACSM) (Ng et al 2011) have been
utilized. In the AMS-based studies two approaches
have been used to infer the chemical composition of
the growth. If concentrations of the measured com-
pounds are high enough to have good signal levels, the
composition of <60 nm particles can be considered to
represent the chemical composition once the newly-
formed particles have grown above the AMS detection
limit (e.g. Zhang et al 2004). On the other hand, the
time evolution of the chemical composition of the
bulk submicron aerosol can be used to infer the source
rate for different chemical compounds if it can be
assumed that changes in the submicron aerosol com-
position are dominated by condensation during the
NPF event (e.g. Pierce et al 2011). In most cases, if the
size time evolution of the number size distribution is
smooth enough to derive formation and GRs during
NPF event, also the source rates of OA, SO,, NH, and
NOj can be derived from the time derivative of the
respective. AMS mass concentrations (e.g. Vakkari
etal2015).

When comparing chemical composition measure-
ments between the nucleation mode and larger sizes,
the effect of volatility needs to be taken into account.
This means that as particles grow into larger sizes,
(organic) compounds with higher saturation vapor
pressure are able condense onto them (Donahue
etal2011). A direct consequence of this is that estimat-
ing the growth of nucleation mode particles based on
chemical composition measurements of Aitken and
accumulation mode particles with an AMS causes an
overestimation on the contribution of organic com-
pounds to this growth (e.g. Ehn et al 2014). However,
measuring Aitken and accumulation mode particles
can be interpreted to represent the composition
responsible for the particle growth to CCN-sizes.

Measurements of the composition of compounds
contributing to growth have been carried out in
diverse environments ranging from urban to remote
continental areas. At urban locations, studies have
been carried out at Pittsburgh, US (Zhang et al 2004),
Beijing, China (Wiedensohler et al 2009, Zhang
et al 2011), Bakersfield, US (Ahlm et al 2012), Wil-
mington, US (Bzdek et al 2012) and Brisbane, Aus-
tralia (Crilley et al 2014). Additionally, Setyan et al
(2014) reported observations made in the urban out-
flow of Sacramento, US, and Vakkari et al (2015)
reported observations made in the urban outflow of
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Johannesburg, South Africa. All urban studies utilized
AMS measurements combined with number size dis-
tribution measurements, except Bzdek et al (2012)
where a combination of NAMS and number size dis-
tributions was used, and Vakkari et al (2015) where a
combination of ACSM and number size distributions
was used. An overview of the chemical composition of
the growth at urban locations is given in figure 5. Two
of the above-mentioned urban studies (Wiedensohler
et al 2009, Crilley et al 2014) did not report quantita-
tive composition, and are therefore not included in
figure 5, nevertheless both these studies concluded
that the growth was dominated by inorganic species.

Observations at regional background locations,
representing typically a mixture of anthropogenic and
biogenic sources, include Tecamac, Mexico (Smith
et al 2008), Lewes, US (Bzdek et al 2012, 2013, 2014)
and Welgegund, South Africa (Vakkari et al 2015). The
study at Tecamac is based on TDCIMS measurements,
the studies at Lewes on NAMS measurements and the
study at Welgegund on ACSM measurements. Similar
to urban locations, the two main constituents of parti-
cle growth at regional sites are OA and SO, (figure 5).
Likewise, a study utilizing AMS measurements at Mel-
pitz, Germany (Wu et al 2015) identified SO,, NH,
and OA as the main compounds responsible for the
particle growth, but the fractional contribution of each
compound was not estimated. A recent study with
TDCIMS at Southern Great Plains, US (Hodshire
et al 2016) determined the contributions of OA, SOy,
NH, and amines to the particle growth.

In contrast with urban and regional studies, mea-
surements in the environments with least anthro-
pogenic influence indicate the growth dominated by
OA (‘rural’ in figure 4). In this category, we consider
observations from Hyytiils, Finland (Allan et al 2006,
Pierce et al 2011, Riipinen et al 2012, Pennington
etal2013), Egbert, Canada (Pierce et al 2011), Whistler
Mountain, Canada (Pierce et al 2012) as well as the
clean sectors at Cool, US (Setyan et al 2014) and at
Welgegund, South Africa (Vakkari et al 2015). Also
Han et al (2014) report OA-dominated growth from
Wakayama, Japan. Except for Pennington et al (2013)
all studies from the rural locations are based on AMS
or ACSM measurements.

In summary, the chemical composition of the
growing particles depends on the mixture of precursor
compounds present at the time of the NPF event. Con-
sequently, as more and more pristine environments
are considered, the fraction of OA increases. This is
seen clearly at sites that have distinct clean sectors: ata
single location the growth can vary from fully OA to
SO,-dominated depending on the air mass origin (Set-
yan et al 2014, Vakkari et al 2015, Hodshire et al 2016).
Finally, it is worth noting that amines have been
observed in nucleation and Aitken mode particles
at several locations, even though their fractional
contribution to the particle growth has not been
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Figure 5. Mean chemical composition of the growth reported for urban, regional background and rural locations (see the text in
section 5.2.1 for a complete set of references). The number of analyzed NPF events is indicated for each location. For Lewes and
Hyytidld, several papers report direct chemical composition measurements of particle growth; these records have been averaged in this
graph. Note that some studies (Pierce etal 2011, Zhang et al 2011, Setyan et al 2014) report only the source rates of OA and SO,, that on
average 8% of the elemental composition of the nucleation mode was left unapportioned at Wilmington (Bzdek et al 2012), and that
on average 3% of nucleation mode composition was apportioned to SiO, at Lewes with a smaller fraction left unapportioned (Bzdek
et al 2014). For this comparison, SO, in these studies is assumed to be fully neutralized by NH,.

quantified (Mikeld et al 2001, Smith et al 2010, Hod-
shire etal 2016).

5.2.2. Indirect observations
The two most widely used indirect approaches to get
information on the compounds responsible for the
particle growth during atmospheric NPF are to
measure the particle hygroscopicity or volatility, or
some combination of these two. Hygroscopicity mea-
surements reveal the particle mixing state with respect
to their water uptake and are useful in distinguishing
between totally water-insoluble material, highly-
hygroscopic substances like sulfuric acid or ammo-
nium sulfate, and less-hygroscopic material like a big
fraction of secondary organic compounds. Volatility
measurements provide additional insight into this
chemistry, as compounds with different vapor pres-
sures are expected to be evaporated from particles at
different temperatures. Both hygroscopicity and vola-
tility measurements can be conducted with a good
time resolution and for several pre-selected particle
sizes (e.g. Swietlicki et al 2008, Villani et al 2008).
Hygroscopicity and volatility measurements made
in forested environments indicate that both highly-
and less-hygroscopic material condense onto particles
formed by atmospheric NPF, and that the contrib-
ution of highly-hygroscopic material is more impor-
tant for smaller particles and during the photo-
chemically active time of the day (Hameri et al 2001,
Petdjd et al 2005, Ehn et al 2007a, Ristovski et al 2010,

Wu et al 2013, Jung and Kawamura 2014). In urban
environments, the relative contributions of highly-
and less-hygroscopic material to the particle growth
seem to vary, in addition to which nucleation mode
particles show occasionally an external mixture indi-
cative of two very different sources for these particles
(Vakevd et al 2002b, Sakurai et al 2005, Petiji
et al 2007, Park et al 2009). The few measurements
made in coastal environments show a relatively high
contribution of highly-hygroscopic material in
nucleation mode particles and indications of almost
insoluble material in the smallest particles (Vikevd
etal 2002a, Johnson et al 2005, Park et al 2009). Finally,
an investigation conducted at a high-latitude Arctic
site, Svalbard, suggests a very large fraction of ammo-
nium sulfate in particles originating from atmospheric
NPF (Giamarelou et al 2016).

In a couple of locations, particle volatility mea-
surements have revealed the presence of a practically
non-volatile core in growing nanoparticles (Wehner
et al 2005, Ehn et al 2007b, Wang et al 2017b). This
core was found to occupy about 20%—40% of the par-
ticle volume, with no apparent size dependency for
this fraction. The origin of the non-volatile core is
somewhat unclear but was hypothesized to result from
either photochemical or heterogeneous processes that
produce extremely non-volatile material into the
growing particles (Wang et al 2017b).

In addition to particle hygroscopicity and volatility
measurements, a few other experimental techniques
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have been developed and applied over the years to get
information about the chemical composition of
nucleation mode particles in the atmosphere. Such
techniques include the transition electron microscopy
which provides morphological information of parti-
cles (e.g. Mikela et al 2002, Leck and Bigg 2005, Karl
et al 2013), pulse height analyzer ultrafine condensa-
tion particle counter used in parallel with mobility size
distribution measurements (O’Dowd et al 2003),
ultrafine organic tandem differential mobility analyzer
which provides an estimate on the organic fraction of
particles of pre-selected sizes (Vaattovaara et al 2005,
Laaksonen et al 2008), and condensation particle
counter battery which reveals the water-affinity of
sub-20 nm particles (Kulmala et al 2007, Riipinen
et al 2009). While providing some new insight into this
topic, the information obtained using these approa-
ches has, in most cases, remained rather qualitative.

A few studies have measured gas-phase concentra-
tions of one or more LVOC compounds and, by
assuming their irreversible condensation onto aerosol
particles, then estimated how big fraction of the
observed particle growth can be explained by these
compounds. In case of gaseous sulfuric acid, this frac-
tion was found to be below 10%, on average, at two
forested European sites with very different levels of
exposure to anthropogenic pollutants (Boy et al 2005,
Fiedler et al 2005). A much higher contribution by sul-
furic acid, between about 30% and 60%, was reported
for the particle growth in Beijing, China (Yue
et al 2010). Since the pioneering studies by Ehn et al
(2012, 2014), people have gradually started to measure
gas-phase concentrations of a subset of highly oxyge-
nated (organic) molecules (HOMs), or their clusters,
under field conditions (Mutzel et al 2015, Jokinen
et al 2016, Bianchi et al 2017, Frege et al 2017, Mohr
et al 2017). HOMs include both ELVOCs and LVOCs
(Trostl et al 2016), so they are very good candidates for
the organic compounds that give a major contribution
to the growth of newly-formed particles in the atmos-
phere. Quantitative estimates on how big fraction of
the observed particle growth can be explained by dif-
ferent HOMs, or groups of HOMs, do not yet exist for
real atmospheric aerosol systems. Finally, it should be
noted that a number of studies have estimated the gas-
phase concentration of sulfuric acid or (extremely)
LVOC organic compounds from direct measurements
of their precursor compounds in the gas phase using
either available proxies for this purpose (e.g. Petiji
et al 2009, Mikkonen et al 2011, Kontkanen
et al 2016¢) or by simulating explicitly the precursor
gas-phase chemistry, and then used these values to fur-
ther estimate the particle GR. Most of these studies
agree in a broad sense with the results presented above
but, because of the inherently large uncertainties asso-
ciated with these analyses, will not be reviewed here.
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5.3. Implications for the particle number and CCN
budgets

In addition to the data obtained using various model-
ing frameworks mentioned in section 1, the contrib-
ution of atmospheric NPF to the total or ultrafine
particle number concentration, or to the CCN budget,
can be estimated from atmospheric measurement
data. Below we summarize shortly the main results
obtained from such measurements.

Rodriguez and Cuevas (2007) introduced a
method by which one can estimate the contribution of
NPF to the total particle number concentration based
on simultaneous aerosol black carbon and particle
number concentration or size distribution measure-
ments. This method was applied to several urban areas
in Europe, and the average contribution by NPF was
found to vary between about 20% and 70% with most
values being slightly above 50% (Rodriguez and Cue-
vas 2007, Fernandez-Camacho et al 2010, Reche
et al 2011, Hama et al 2017). Kulmala et al (2016b)
refined the approach proposed by Rodriguez and Cue-
vas (2007) and investigate separately the different par-
ticle size modes and associated uncertainties. They
estimated that on average, NPF contributes about 70%
and 80% to the total particle number concentration in
a heavily-polluted urban site and rural forested site,
respectively. At both sites, these contributions were
estimated to be the lowest in the accumulation mode,
somewhat higher in the Aitken mode and clearly the
highest in the nucleation mode. All these numbers
should be interpreted with some caution due to the
inherent uncertainties in the applied method. For
example, the method classifies a large fraction of such
primary particles that contain little or no BC as parti-
cles formed by NPF, which can be questionable for
small combustion sources like emissions from indivi-
dual vehicles (see section 4.4).

By using various kinds of source apportionment
methods, the average contribution of photochemical
NPF to the total particle number concentration was
estimated to be 3% at an urban background site in Bar-
celona, Spain (Pey et al 2009), 8% in urban St. Louis,
Missouri, US (de Foy and Schauer 2015), 4% and 25%
in Ausburg, Germany, and Rochester, New York, US,
respectively (Vu et al 2015), 17% in central Los
Angeles, US (Sowlat et al 2016), and 11% (2001—2002)
and 6% (2016—2017) in Pittsburg, Pennsylvania, US
(Saha et al 2018). These values are lower than those
obtained using the approach presented in the previous
paragraph, and at this stage it is impossible to judge
whether this feature is real or a sign of problems in one
of the used approaches. Finally, three studies esti-
mated the contribution of NPF to the ultrafine particle
number concentration by applying sophisticated
methods to a diurnal evolution of the particle number
size distribution: Ma and Birmili (2015) reported this
contribution to be 7%, 14% and 30% for roadside,
urban background location and regional background
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Table 2. Studies estimating the strength at which atmospheric NPF produce CCN based on long-term
observations. Three different methods have been used to determine CCN concentrations: CCN counter
measurements (CCNC), particle number size distribution measurements (SD) and combined particle
number size distribution and hygroscopicity measurements (SD + H). The probability gives the fraction
of NPF events that were estimated to produce CCN in these studies. EF is the reported average
enhancements factors in CCN concentrations due to individual NPF and growth events. The range of
values in EF reflect different water vapor supersaturations for CCN (CCNC) or effective cut-off diameters
above which all larger particles have been assumed to be CCN (SD and SD + H).

References Site(s) Method Probability EF
Lihavainen et al (2003) Remote SD 18% 4.1-11
Kuangetal (2009) 2 urban + rural SD — 3.8
Asmietal (2011) Remote SD — 1.5-3.8
Sihto etal (2011) Rural CCNC — 0.7—1.1
Yueetal (2011) Urban SD + H — 0.4—6
Laakso etal (2013) Rural SD — >0.5
Wangetal (2013) Urban SD — 5.5—-7.8
Yuetal (2014) Rural SD — 4.7
Shen etal (2016b) Rural SD 17% 3.9—-4.7
Mountain SD 12% 3.0-3.8
Regional background SD 15% 2.6—3.7
Dameto de Espana et al (2017) Urban CCNC ~40% <1l.4
Roseetal (2017) Mountain SD 61% —

site, respectively in Leipzig, Germany, while Salma et al
(2017) reported it to be 13% and 37% in the city center
and near-city background site, respectively, in Budab-
est, Hungary. Nemeth et al (2018) found that com-
pared with central Budabest, the contribution of NPF
to the ultrafine particle number concentrations is
probably slightly lower at an urban background site in
Vienna, Austria, but clearly larger at an urban back-
ground site in Prague, Czech Republic.

From the climate point of view, the importance of
atmospheric NPF manifests itself in the growth of
newly-formed particles to the sizes at which they can
act as CCN. Kerminen et al (2012) reviewed the avail-
able literature on this subject and concluded that,
depending on the cloud maximum water vapor satur-
ation ratio and chemical composition of the growing
particles, they need to reach sizes between about 50
and 150 nm in diameter to participate in cloud droplet
activation. Particles smaller than 50 nm can only be
activated at exceptionally high water vapor saturation
ratios, such as those encountered in deep convective
cloud systems (Fan et al 2018). The growth of newly-
formed particles up to a few tens of nm can be com-
pleted within a few hours, but commonly such growth
requires more than a day of atmospheric ageing. Over
such time scales, it is observationally very challenging
to separate between CCN originating from atmo-
spheric NPF and CCN originating from the growth of
small primary aerosol particles (Kerminen et al 2012).

A number of papers have analyzed case studies on
observed CCN production associated with atmospheric
NPE. Such studies cover forested areas in Canada
(Leaitch et al 1999, Pierce et al 2012, Shantz et al 2012)
and Japan (Han et al 2013), other rural areas in central
Europe (Wu et al 2015) and United States (Creamean
etal2011, Levin et al 2012), high-altitude mountain site
(Friedman et al 2013), Arctic Archipelago and Ocean

(Willis et al 2016, Burkart et al 2017), Mediterranean
environment (Kalivitis et al 2015) and sites experien-
cing different degrees of anthropogenic influence in
China (Wiedensohler et al 2009, Leng et al 2014, Li
etal 2015a, Ma et al 2016, Yue et al 2016, Li et al 2017).
These studies, while focusing on varying aspects of this
phenomenon, illustrate that atmospheric NPF can lead
to CCN formation in vastly different atmospheric
environments.

Using long-term observations, several studies have
attempted to estimate how frequently atmospheric
NPF leads to CCN production and/or how much NPF
events enhance CCN concentrations. Table 2 sum-
marizes these studies and shows that, depending on
the location, from about 10% to 60 % of the observed
NPF events led to the production of new CCN. Fur-
thermore, compared with the situation before a NPF
event, CCN concentrations were found to be
enhanced by up to several hundred per cent after the
newly-formed particles had grown to larger sizes. Peng
et al (2014) combined observations from several sites
in China and found that the fraction of NPF events
leading to CCN production was clearly the highest in
summer and close to zero in winter. The increase in
CCN concentrations caused by NPF seem to have a
complicated seasonal pattern, as demonstrated by
Kerminen et al (2012) for three rural/remote sites in
Europe and a rural site in South Africa. A couple of
studies estimated the contribution of NPF to the over-
all CCN budget, being about 30% for a polluted rural
site in Europe (Laaksonen et al 2005) and about 50%
for a forested site in Canada (Pierce et al 2014).

Very few studies have compared observed atmo-
spheric CCN production resulting from NPF to that
obtained from model simulations (Laakso et al 2013,
Westervelt et al 2013, Cui et al 2014). While these stu-
dies demonstrated some success in simulating the
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growth of newly-formed particle into CCN, they also
brought up several deficiencies in our current under-
standing on this phenomenon. Noting this and the
observational challenges in estimating the role of
atmospheric NPF in the CCN budget, as discussed
above, we conclude that it would be essential to per-
form studies that combine model simulations with
information obtained from both field measurements
and laboratory experiments.

6. Summary and outlook

6.1. Main findings

While the spatial and temporal coverage of atmo-
spheric NPF evidently varies over several orders of
magnitude, it has become customary to divide this
phenomenon into two broad categories: regional and
sub-regional NPF. Regional NPF takes simultaneously
place over distances of several tens to hundreds of
kilometers, even though with a variable intensity in
both time and space. The large spatial coverage of
regional NPF makes it often possible to determine
several quantities characterizing the timing and inten-
sity of this phenomenon by using continuous mea-
surements made at a fixed location within the zone of
NPF. Ideally, these quantities include the starting time
and duration of NPF that together define a so-called
NPF event, the frequency of occurrence of NPF events,
as well as the formation and GRs of particles during a
NPF event. The spatial extent of sub-regional NPF
varies from a few meters in vehicle plumes to about a
few kilometers, or even tens of kilometers, in plumes
from major point sources, such as power plants and oil
refineries. For sub-regional NPF, atmospheric mea-
surements can usually provide only rather limited
information about the timing and intensity of this
phenomenon.

Atmospheric NPF is very strongly a daytime
phenomenon, as observations of nighttime NPF have
been reported from less than 10 measurement sites so
far. The typical duration of a regional NPF event is a
few hours, and usually no more than one NPF event
per day is being observed. The frequency of occur-
rence of NPF varies over the course of the year, with
the tendency of its maximum to shift from summer in
polar and many high-latitude regions toward spring or
autumn in most other regions. Only few long-term
NPF observations exist, and the existing data seems to
indicate a substantial inter-annual variability in the
NPF frequency. A notable decline in the frequency of
occurrence of NPF events over the years was reported
for a few sites that had experienced substantial reduc-
tions in the ambient SO, concentration.

Regional NPF seems to take place across all con-
tinental environments in the lower troposphere, even
though with a highly varying frequency. The observed
factors that favor the occurrence of regional NPF
include a high intensity of solar radiation, low RH,
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high gas-phase sulfuric acid concentration, and low
pre-existing particle loading, i.e. low CS and CoagS.
The ambient temperature and SO, concentration
appear to be important quantities as well, but their
roles remain ambiguous because they influence both
the factors that enhance NPF and the factors that sup-
press it. Sub-regional NPF has been observed to take
place in anthropogenic plumes originating from var-
ious ground-based point sources, in biomass burning
plumes, near cloud edges and in cloud outflow
regions, as well as in some coastal areas and ice-melt-
ing regions. Small-scale NPF is also common in vehi-
cle, ship and aircraft plumes, even though in emission
inventories aerosol particles originating from these
sources are commonly considered as primary parti-
cles. The occurrence and intensity of sub-regional
NPF depends, in addition to the same factors that
influence regional NPF, also on atmospheric disper-
sion conditions and on fuels or burning materials as
well as combustion conditions in the case of combus-
tion sources.

Up to the present, particle formation rates (J) and
GRs associated with regional NPF have been reported
for more than 200 measured sites. We determined the
statistics of these quantities separately for the follow-
ing site categories: boreal forests, Arctic regions, Ant-
arctica, mountain sites, other remote and rural areas,
urban environments, as well as rural, suburban, urban
and marine/coastal areas in China. We found that,
within these site categories, the median value of ] is
about 0.05 cm >s™' in Antarctica, slightly below
1 cm~? s7!in both Arctic and boreal regions, between
about 3 and 5 cm s~ ' in other rural and remote
environments as well as in urban areas outside China,
and about 8 cm s~ ' in urban China. The median
value of GR has a much smaller variability between
the different site categories, being in the range of
2.3—7.4nmh".

The rate at which newly-formed particles grow to
larger sizes has been observed to increase with an
increasing particle size in the sub-20 nm particle size
range, especially during summer, and there are some
indications that this pattern may continue for larger
particle sizes. At most of the measurement sites, the
growth of particles to larger sizes, along with the size
dependency of this GR, appears to be dominated by
the uptake of organic vapors by these particles. In rur-
al environments sulfuric acid and associated bases like
ammonia have been estimated to explain a few per
cent or less of the observed particle growth. On the
other hand, in urban environments sulfuric acid and
ammonia may explain up to 70% of the observed par-
ticle growth.

An increasing number of observational studies
have been dedicated to estimate the contribution of
atmospheric NPF to number concentrations of total
aerosol particles, ultrafine particles or CCN. The vast
majority of the studies focusing on the ultrafine parti-
cle number budget have been conducted in urban
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areas, where from a few per cent up to about 70% of
ultrafine particles were estimated to originate from
NPF. It remains, however, still unclear to which
extend this value range can reflect a true variability of
particle sources between different urban environ-
ments, and to which extend it is affected by the appli-
cation of different approaches to estimate the
contribution of NPF. Observational studies on CCN
production associated with atmospheric NPF cover a
broad range of environments. These studies indicate
that typically between about 10% and 60% of the
observed NPF events can lead to a production of new
CCN and, once this occurs, the CCN number con-
centration may increase by up to several folds. Alto-
gether, atmospheric observations support the current
view, obtained from large-scale model simulations,
that atmospheric NPF is an important source of CCN
in the global troposphere.

6.2. Future outlook

The interest in atmospheric NPF lies in the potential
ability of this phenomenon to increase ultrafine
particle number and CCN concentrations in spatial
scales ranging from urban air to the global atmos-
phere. In order to quantify the contribution of NPF to
ultrafine particle number or CCN budgets, one has to
(i) understand which factors determine the occurrence
of NPF, as well as its spatial and temporal extent, in
different atmospheric environments, and (i) have
predictive models by which one can estimate the
strength of NPF, more specifically the NPF and GR, in
these environments. Atmospheric observations, when
combined with suitable theoretical frameworks and
information obtained from laboratory experiments,
are crucial components in working toward improved
understanding and predictive models. Below we
summarize shortly our view on future needs for such
observations and their analyses.

The apparent ubiquity and heterogeneity of atmo-
spheric NPF requires long-term continuous observa-
tions at fixed locations that would ideally cover all the
continents and major ecosystem types, different urban
centers and mountain regions, as well as remote
islands surrounded by different oceanic areas. In this
regard, we are still lacking suitable observational data
from large continental areas in Africa, Southern
America, Asia and Australia, as well as from the vast
majority of oceanic areas (figure 4). Without going
into any details in the required instrumental techni-
ques, continuous observations should include particle
number size distribution measurements down to at
least a few nm, and preferably down to 1-2 nm, in par-
ticle diameter as well as measurements of basic
meteorological variables, including solar radiation
intensity. To the extent possible, it would be useful to
measure concentrations of the vapors that potentially
participate in NPF and subsequent particle growth
(H,SO,4, ELVOCs, LVOC, ammonia and amines),
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concentrations of the precursor compounds for these
vapors (SO,, VOCs) as well as relevant oxidants. It
should be kept in mind that in order to take the best
possible advantage of continuous observations of
NPEF-related variables in further analyses, these obser-
vations should cover at least one full annual cycle in
time. However, also longer time series of such obser-
vations are needed, since observed trends in the char-
acteristics of atmospheric NPF are currently available
from very few sites only (see section 3.1.2).

Urban areas have emerged as environments where
atmospheric NPF needs to be considered because of its
potentially important contribution to the ultrafine
aerosol population and related health effects of ambi-
ent aerosol particles. As discussed in section 3.2.2, the
frequency, intensity and seasonal timing of NPF vary a
lot between different urban environments. This fea-
ture is understandable when considering that different
urban areas probably have very distinct mixtures of
vapors from each other that potentially participate in
NPF and subsequent particle growth, as well as differ-
ent combinations of the factors that tend to suppress
NPF (e.g. high pre-existing particle loading). Another,
yet poorly understood feature in this regard is the
occurrence of regional NPF under highly-polluted
conditions, which should not be possible based on our
current theoretical understanding on atmospheric
NPF (Kulmala et al 2017, see also section 3.1.1). The
challenge for future work arising from these features is
that, without more observational data from different
urban areas and improved theoretical understanding,
it may be difficult to generalize NPF-related findings
from one urban area to another. The heterogeneous
nature of sources for aerosol particles and their pre-
cursor compounds within any individual urban area,
as well as the existence of many other sources produ-
cing ultrafine particles into urban air, lead to addi-
tional research questions that need to be answered in
future work: how do we separate particles associated
with NPF in urban air from ultrafine particles coming
from other sources?, how should we deal with the fact
that both local and regional NPF can be simulta-
neously taking place in urban air?, and how all this
should be taken into account when categorizing and
analyzing NPF events in urban environments?

The upper FT appears to be an active source of new
aerosol particles into both FT and BL (sections 3.2.4
and 3.2.5). There are several research questions con-
cerning NPF in the upper FT that have not been fully
answered yet: how frequent and widespread is this
phenomenon outside tropical areas?, what is the role
of clouds in free-tropospheric NPF?, does it require
ingredients from surface emissions to take place?, and
if it does, how sensitive is it to the chemical character-
istics of surface emissions and to the way these emis-
sions are transported to the upper FT? Even less is
known about NPF taking place at the interface
between the FT and BL. Although this phenomenon
has been observed to be common at several mountain
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sites, whether and to which extent it occurs outside the
mountainous areas, as well as its overall contribution
to regional and global aerosol populations, are yet to
be explored.

The methods used for analyzing atmospheric NPF
require further developments. First, the large fraction
of measurement days categorized as ‘undefined’ in
many of the published data sets on regional NPF indi-
cates that we may need to rethink how to classify
bursts of atmospheric NPF. This concerns all the
environments, but is particularly important for NPF
taking place in urban areas. Second, instead of deter-
mining event-average particle formation and GRs, we
clearly need means to determine these quantities at a
maximum time resolution of a few minutes during
NPF and the subsequent particle growth. Third, since
atmospheric NPF is evidently an important source of
CCN in different environments, we need methods
capable of determining size-dependent particle GRs
from sub-3 nm sizes up to 100-200 nm in particle dia-
meter. Finally, although this review does not discuss
the initial steps of NPF, it is clear that understanding
processes that take place in the sub-3 nm size range is
very important and requires further refinements of
methods used to characterize these processes.
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