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A B S T R A C T

Monitoring temporal changes in phytoplankton dynamics in high latitude lakes is particularly timely for un-
derstanding the impacts of warming on aquatic ecosystems. In this study, we analyzed 33-years of high re-
solution (30m) Landsat (LT) data for reconstructing seasonal patterns of chlorophyll a (chl a) concentration in
four lakes across Finland, between 60°N and 64°N. Chl a models based on LT spectral bands were calibrated
using 17-years (2000–2016) of field measurements collected across the four lakes. These models were then
applied for estimating chl a using the entire LT-5 and 7 archives. Approximately 630 images, from 1984 to 2017,
were analyzed for each lake. The chl a seasonal patterns were characterized using phenology metrics, and the
time-series of LT-based chl a estimates were used for identifying temporal shifts in the seasonal patterns of chl a
concentration. Our results showed an increase in the length of phytoplankton growth season in three of the lakes.
The highest increase was observed in Lake Köyliönjärvi, where the length of growth season has increased by
28 days from the baseline period of 1984–1994 to 2007–2017. The increase in the length of season was mainly
attributed to an earlier start of phytoplankton blooms. We further analyzed surface temperature (Ts) and pre-
cipitation data to verify if climatic factors could explain the shifts in the seasonal patterns of chl a. We found no
direct relationship between Ts and chl a seasonal patterns. Similarly, the phenological metrics of Ts, in particular
length of season, did not show significant temporal trends. On the other hand, we identify potential links be-
tween changes in precipitation patterns and the increase in the phytoplankton season length. We verified a
significant increase in the rainfall contribution to the total precipitation during the autumn and winter, ac-
companied by a decline in snowfall volumes. This could indicate an increasing runoff volume during the be-
ginning of spring, contributing to an earlier onset of the phytoplankton blooms, although further assessments are
needed to analyze historical streamflow values and nearby land cover data. Likewise, additional studies are
needed to better understand why chl a patterns in some lakes seem to be more resilient than in others.

1. Introduction

Monitoring phytoplankton dynamics in inland waters is critical for
understanding environmental changes in aquatic ecosystems. At the
base of the food web, phytoplankton provides energy for the entire
aquatic trophic system by fixing carbon through photosynthesis
(Wetzel, 2001). Phytoplankton further play a fundamental role in the
biogeochemical cycles with high ecological importance (Behrenfeld and
Boss, 2014). Similarly, changes in phytoplankton biomass can lead to

profound environmental impacts. Most freshwater systems on the
planet experience undesirable increases in planktonic and benthic
biomass, mostly caused by anthropogenic eutrophication (Smith et al.,
2006; Vincent et al., 2004). Such changes may lead to reduced dis-
solved oxygen, increased fish mortality, and potential health risks due
to the release of toxins (Oliver et al., 2017; Padedda et al., 2017;
Rabalais et al., 2009).

In general, satellite data offers an online data possibility, and rela-
tively cheaper way to assess changes than in-situ estimates. Moreover, it
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offers a possibility to understand the temporal patterns of phyto-
plankton blooms, which is particularly interesting for assessing the
ecological status of aquatic ecosystems. Information on phytoplankton
phenology can provide scientific support for policies related to water
resources management and environmental impacts mitigation
(Anderson, 2009; Mitrovic et al., 2011). Furthermore, understanding
the phytoplankton seasonal patterns helps identifying drivers of en-
vironmental changes in aquatic ecosystems. The timing of the onset of
phytoplankton blooms is mainly driven by the physicochemical con-
ditions of the water column, such as thermal stratification and water
column mixing conditions, variation in solar radiation and the extent of
the possible ice cover (Adrian et al., 1999; Bleiker and Schanz, 1989;
Vehmaa and Salonen, 2009). Phytoplankton blooms have been shown
to be closely associated with climatic variables, the surrounding land
use and nutrients flow (Gittings et al., 2018). Nonetheless, currently the
temporal and spatial dynamics of phytoplankton blooms across inland
waters has not yet been comprehensively studied.

Due to the phenomenon of Arctic amplification, climate change is
happening faster at high-latitudes (Cohen et al., 2014; Yamanouchi,
2011). Studies indicate that the Arctic region has warmed more than
twice as fast as the global average (Screen and Simmonds, 2010). High
latitude lakes are thus particularly interesting for studying environ-
mental changes in aquatic ecosystems. Furthermore, in northern
countries, such as Finland, we can observe lakes with vast range of
trophic states distributed along a large latitudinal gradient.

However, the impacts of climate change on the temporal dynamics
of phytoplankton in lakes are not well understood and poorly mon-
itored. Although several studies using time-series analysis of Earth
observation data have been undertaken in the marine environment
(Blondeau-Patissier et al., 2014; Ji et al., 2013; Racault et al., 2012),
much less has been done over inland waters (e.g. Thackeray et al.,
2008; Palmer et al., 2015). Many factors contribute for the lack of
multi-temporal assessments of phytoplankton dynamics over lakes, in-
cluding scarce information on the spatial variability of phytoplankton
concentration and limited time series of field data (Oliver et al., 2017).

Remote sensing (RS) can provide a powerful tool for improving
phytoplankton monitoring, given its ability to collect data over large
areas and the existence of multi-decadal imagery archives. Several sa-
tellite sensors can collect data at spectral wavelengths that allow esti-
mating chlorophyll a (chl a) concentrations in aquatic ecosystems. All
phytoplankton species contain chl a as the key photosynthetic pigment,
which is used as the most common proxy for monitoring phytoplankton.
For instance, ocean colour satellite instruments, such as the NASA's Sea-
viewing Wide Field-of-view Sensor (SeaWiFS, 1997–2010) and
Moderate Resolution Imaging Spectroradiometer (MODIS, 1999-), on-
board Aqua satellite, collect(ed) data at wavelengths spanning from
0.44 to 0.67 μm, supporting widely used algorithms for chl a estimates
particularly in ocean water (Bailey and Werdell, 2006; Hu et al., 2012;
Werdell and Bailey, 2005). More recently, in 2016, the European Space
Agency launched the Ocean and Land Colour Instrument (OLCI) on-
board the Sentinel-3A satellite. The OLCI collects data in 21 spectral
bands, from 0.4 to 1.02 μm, allowing the development of products such
as estimates of phytoplankton biomass and total suspended matter
concentrations.

Nonetheless, the application of the above mentioned tools in lakes
remains challenging due to the coarse spatial resolution of the longer-
run missions (e.g. MODIS: 500–1000m, MERIS 300m) and/or the short
time-series of the new generation of satellites (e.g. Sentinel-3A, Sentinel
2A and B). In northern countries (e.g. Finland, Sweden, and Norway),
the complex shapes and often small size of lakes require the use of high
spatial resolution sensors. However, high spatial resolution often comes
at the expense of coarser temporal resolutions, requiring the acquisition
of images throughout longer periods to reliably capture the seasonal
patterns of chl a. In this context, the sensors onboard the Landsat (LT)
satellites family presents an interesting alternative. The LT sensors
provide a long and continuous time series, running from 1972 (LT-1) to

the present date (LT-8). Since the launch of LT-4, in 1982, the program
provides high spatial resolution data at 30m.

Although LT sensors have relatively low spectral resolution, several
studies have been successful in assessing chl a concentration using LT
imagery. Vincent et al. (2004) applied LT data for mapping cyano-
bacterial blooms in Lake Erie. Using linear models, they were able to
estimate phycocyanin concentration with accuracy up to 77%. Allan
et al. (2011) used LT data for estimating chl a concentrations in central
North Island lakes of New Zealand, reporting classification accuracies
up to 95%. Also applying LT data, Isenstein et al. (2014) used multi-
variate models to retrieve chl a concentrations, reporting that models
accounted for 72 to 83% of the variability in chl a observations.

Although recent studies have used LT time-series for assessing
phytoplankton long-term trends in lakes (Ho et al., 2017; Tan et al.,
2017), it is still broadly unknown how the temporal dynamics of lake's
chl a (i.e. seasonality, phenology) have changed over time. Similarly,
the temporal trends of chl a concentration in high latitude lakes, where
climate change is reportedly occurring faster, remain poorly under-
stood.

Some challenges still exist in using LT imagery for assessing chl a
seasonal dynamics. The low temporal resolution of LT (e.g. 16 days for
LT-5 and -7) makes it difficult for obtaining cloud free observations in
some seasons of the year. In some cases it can be difficult to precisely
capture the temporal characteristics of chl a blooms. In addition to the
above-mentioned technical bottlenecks, the natural variability and
patchy distribution of phytoplankton communities further present a
challenge in detecting patterns in chl a concentration. However, as the
first LT satellite was launched in 1972, we now have available an ex-
tensive archive of imagery, which combined, can provide a dense time-
series for observing seasonal patterns. Yet, the high spatial resolution of
LT imagery results in relatively large file sizes, and analyzing over
30 years of data is computationally intensive. Until now this has been
an important bottleneck in using high resolution RS data for time-series
assessments. The dissemination of high performance computational
tools for geospatial analysis, such as Google Earth Engine (Gorelick
et al., 2017), has largely facilitated the usage of so called “big-data” in
environmental assessments, leading to new and unprecedented oppor-
tunities for assessing long time-series of satellite data (Pekel et al.,
2016).

In this study we use the extensive LT imagery archive and high
performance computational tools for addressing the following objec-
tives: a) to characterize seasonal patterns of phytoplankton phenology
at high latitude Finnish lakes; b) to identify shifts or trends in the
temporal dynamics of phytoplankton phenology during the past
30 years, and c) to examine the role of climatic variation on phyto-
plankton seasonal patterns.

2. Material and methods

2.1. Study areas and field data

We carried out analysis in four Finnish lakes: Haapajärvi,
Kuortaneenjärvi, Köyliönjärvi and Tuusulanjärvi (Fig. 1). The lakes are
spread across a latitudinal gradient varying from 60° to 64° north. All
studied lakes are medium sized (5–25 km2) with moderate to high
concentrations of chromophoric dissolved organic matter, typical to
boreal lakes. Haapajärvi is a shallow humic-rich lake with a maximum
depth of 8.5m. Kuortaneenjärvi is humic-rich with an average depth of
3.3 m and a maximum depth of 16m. Köyliönjärvi is an eutrophic nu-
trient-rich lake with an average depth of 2.6m and a maximum depth of
12.8 m. Tuusulanjärvi is a hypereutrophic lake, with a mean depth of
3.2 m and one main basin reaching 10m depth. Tuusulanjärvi is
naturally eutrophic, and with the predominant clay soils in the catch-
ment the water is greyish-brown in colour.

Here we use 17-years (2000–2016) of chl a field measurements
collected in each of the four lakes (see Fig. 1 for samples location). The
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field measurements (in-situ knowledge) were mostly collected between
May and October, without a fixed interval. The number of field mea-
surements varied between lakes, being 42 for Lake Haapajärvi, 68 for
Lake Kuortaneenjärvi, 89 for Lake Köyliönjärvi and 255 for Lake Tuu-
sulanjärvi.

All the lakes belong to the intensively monitored lakes of the na-
tional routine monitoring network of Finland. Chl a concentrations
were determined from water samples taken by a tube sampler from 0 to
2m. The concentration of chl a was measured in laboratory with a
spectrophotometer after extraction with hot ethanol (ISO10260, 1992).

2.2. Landsat imagery

All imagery from the LT-5 and 7 archives, until December 2017,
were analyzed in this study. All pre-processing procedures, as well as
data extraction, were carried out using the high performance cloud
computing tools offered by Google Earth Engine (Gorelick et al., 2017).
The LT-5 collection contains images collected from Jan 1, 1984 to May
5, 2012, while LT-7 imagery were obtained from Jan 1, 1999 – De-
cember 30, 2017. Approximately 630 images were analyzed for each
lake. For both, LT-5 and 7, we used the USGS Surface Reflectance Tier 2
product. This dataset contains surface reflectance imagery from the LT-
5 Thematic Mapper (TM) and LT-7 Enhanced Thematic Mapper Plus
(ETM+) sensors. The images contain 4 visible and near-infrared bands
and 2 short-wave infrared bands. In this study, we used bands 1 (blue,
0.45–0.52 μm), 2 (green, 0.52–0.60 μm), 3 (red, 0.63–0.69 μm), 4 (near-
infrared, 0.77–0.90 μm) and 5 (shortwave infrared 1.55–1.75 μm). All
bands were processed to orthorectified surface reflectance. The imagery
of both, LT-5 and LT-7, have spatial resolution of 30m, radiometric
resolution of 8-bits, as well as consistent spectral resolution in the bands
used for this study.

The images were atmospherically corrected using the LEDAPS
(Landsat Ecosystem Disturbance Adaptive Processing System) method,
providing radiometrically consistent surface reflectance data (Masek
et al., 2012). We carried out quality control assessment in every image
using cloud, shadow, water and snow masks produced using CFMASK
(Foga et al., 2017; Zhu et al., 2015), as well as a per-pixel saturation
mask. However, the CFMASK has difficulties to operate over bright
targets such as snow/ice, and optically thin clouds have a higher
probability of being omitted by the algorithm. Hence, to further elim-
inate pixels containing artifacts associated to cloud or ice, we removed
outliers in the surface reflectance values extracted for each lake, using
the 25th and 75th percentiles as threshold.

To extract the surface reflectance values at each site, we averaged
all (quality controlled) pixels inside a 500m radius buffer around the
location where the in-situ samples were collected. To certify that only
open water pixels were contained inside the 500m buffer, we use the
high-resolution Global Surface Water Data (Pekel et al., 2016) to mask
out any land surface inside the buffers.

2.3. Chlorophyll a modeling

Estimates of chl a concentration based on LT imagery were obtained
using linear multi-variate models. Individual models were created for
each lake. The explanatory variables used for the models were the
surface reflectance values from LT bands 1 to 5, and two spectral in-
dices designed specifically for assessing chl a concentration in aquatic
ecosystems. The first index is the normalized difference chlorophyll
index (NDCI), developed by (Mishra and Mishra, 2012). The NDCI is
calculated as follow:

=
+

NDCI NIR B red B

NIR B red B

( 4) ( 3)

( 4) ( 3) (1)

where ρ is the surface reflectance for the respective spectral band. It is
important to note that the NDCI was initially developed using MERIS
spectral bands (i.e. 660–670 nm and 704–714 nm), which differ in lo-
cation and width from those of LT bands (i.e. 630–690 nm and
770–900 nm). The second spectral index, based on the red, blue and
green reflectance bands, was defined as follow (Brivio et al., 2001):

=BRG blue B red B

gree B

( 1) ( 3)

n ( 2) (2)

Although the BRG index was initially developed to be used in ocean
waters, it has been successfully applied by Brivio et al. (2001) in Lake
Garda, Italy, achieving an R2=0.818. The same index led to satisfac-
tory results for other small water bodies as in the Malilangwe Reservoir,
Zimbabwe with R2= 0.81 (Dalu et al., 2015).

Given that LT bands were not originally designed for assessing chl a
in inland waters, most lake studies applying LT data used empirical or
semi-empirical approaches (e.g. Vincent et al., 2004; Allan et al., 2011;
Isenstein et al., 2014). Generally, there is no single solution available
for defining the explanatory variables of the empirical models. For in-
stance, Tan et al. (2017) have tested simple linear models based on four
different spectral indexes (band arithmetic and band ratios) and a
multi-linear regression using LT bands 1, 2 and 4. They found that the
best accuracies were achieved using the multi-linear regression, with an
R2 of up to 0.78. Isenstein et al. (2014) also compared different com-
bination of bands and indexes, and found the best results applying a
multi-linear regression model composed of two band ratio (B2/B1 and
B3/B1). Hence, given the lack of a common solution in the literature,
we chose to test all the five LT bands and two indexes described in Eqs.
(1) and (2). For each lake, we tested the significance and explanatory
power of the variables.

The models were firstly tested using a 5-fold cross validation, and
later all samples were used to generate the final model used for pre-
diction. The models were tested and developed using the in situ data,
which were merged with the LT data using an interval of± 8 days. That
is, for each in-situ sample, we searched for LT images obtained 8 days
before or after the sample acquisition. A previous study has shown that,
in comparison with smaller time-windows, the 8 days interval increases
the chances of matching a LT observation with the field sample, without
significantly affecting the model performance (Tan et al., 2017). Our
preliminary assessments have confirmed these results, showing that a
time-windows below 8 days reduces significantly the number of
matching observations, consequently decreasing the model perfor-
mance (see Fig. S2, supplementary material). In case more than one
image was available during this time-window, we considered the
average of the surface reflectance values.

Fig. 1. Geographical distribution of the in-situ chlorophyll a observations.
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2.4. Climate variables

Although a full assessment of the drivers of chl a phenology goes
beyond the scope of this study, we carry out preliminary assessments on
key climate variables over the studied lakes. We used remotely sensed
estimates of daytime and nighttime land surface temperature obtained
by the Moderate resolution Imaging Spectroradiometer (MODIS), on-
board the TERRA satellite. The MODIS land surface temperature has
been successfully applied to estimate lake surface water temperature
(Ts) (Wan et al., 2017). The product used in our study was the
MOD11A2, collection 6, which offers daytime and night-time Lake
Surface Temperature (LST) data stored on a 1 km sinusoidal grid as the
average values of clear-sky LSTs during an 8-day period (Wang et al.,
2008). MODIS Ts represents the radiometric temperature related to the
thermal infrared radiation emitted from the lake surface observed by an
instantaneous MODIS observation. The daytime Ts corresponds to
measurements acquired around 10:30 am, while night-time Ts ob-
servations are acquired around 10:30 pm (local solar time). Analyzing
both, daytime and night-time Ts, can provide information on the intra-
daily variability, which is relevant to assess, for instance, the periods
when the lakes surface is more likely to be frozen. MODIS land surface
temperature products have been validated over a broad range of re-
presentative conditions and extensively tested using comparisons with
in situ values and radiance-based validation (Wan et al., 2017; Wang
et al., 2008). We certified that only good quality data were used by
applying filters based on the MOD11A2 quality control layer and,
therefore, excluding pixels contaminated by clouds or with unreliable/
unquantifiable quality. All MOD11A2 data from March 5, 2000 to De-
cember 30, 2017 were analyzed.

Furthermore, we analyzed rainfall [kgm−2 s−1], snowfall
[kg m−2 s−1] and total precipitation [kgm−2 s−1] data obtained from
the Global Land Data Assimilation System (GLDAS), version 2.1. This
dataset ingests satellite and ground-based observational data products
and, using advanced land surface modeling and data assimilation
techniques, it generates optimal fields of land surface states and fluxes
(Rodell et al., 2004). The spatial resolution is 0.25° and the original
temporal resolution is 3 h. However, to make this dataset consistent
with the MODIS Ts data, we aggregate all GLDAS data into 8-day
averages, using the same dates as the MODIS composites. Here, we
analyzed all GLDAS data from January 1, 2000 to December 30, 2017.

2.5. Time-series analysis

This study focused on assessing chl a intra-annual patterns between
April and October (warm months), given that during the remaining
months (cold months) the lakes are often frozen and LT imagery have
high frequency of cloud coverage. As demonstrated in Fig. S3 (sup-
plementary material), the availability of images is significantly reduced
during the cold months. Because of the low temporal resolution of the
LT sensors, obtaining a dense enough time-series to reconstruct the chl
a seasonal patterns requires aggregating several years of data. In this
study, we used a 10-year sliding window, with 1 year incrementing
steps. In other words, for the interval between years n and n+9, we
aggregated all available LT imagery to reconstruct the average chl a
seasonal pattern during this period, while the next interval would
comprise the data between years n+1 and n+ 10. This approach re-
sults in a temporal series with irregular steps between observations (i.e.
the date of the observations are defined based on the individual ob-
servations of each year inside the sliding window), but with a higher
density, allowing a more robust description of the chl a phenological
patterns.

The analysis of the seasonal patterns followed a similar approach as
proposed in Forkel et al. (2015), which was initially developed to assess
land surface phenology and trends. The approach consisted in four main
steps: i) filling of permanent gaps in the time-series (i.e. cold months),
ii) time-series smoothing and interpolation, iii) detection of phenology

metrics and iv) identification of temporal trends in the phenology
metrics.

The first step consisted in filling the values from the cold months
with a baseline value. The baseline value for each lake was defined as
the minimum chl a concentration observed in the in-situ time-series. In
the second step, we used the Local Polynomial Regression Fitting
(LOESS) method to perform a time-series smoothing. This procedure is
necessary for removing high-frequency noise and optimize the calcu-
lation of the phenological metrics. Simple linear interpolation was used
to fill eventual data gaps.

In the third step, we used the resulting smoothed time-series for
extracting three chl a phenology metrics: start of chl a season (SOS),
end of chl a season (EOS) and length of season (LOS). We also calcu-
lated the position of chl a peak (POP) and position of chl a trough
(POT), but given the large uncertainties in these two variables, we do
not analyze them thoroughly in this study. The POP can be affected by
remaining high frequency noise, while the POT is affected by the arti-
ficial temporal limits imposed to define the warm months and cold
months. The SOS and EOS were calculated using 50% thresholds on the
seasonal chl a curve (White et al., 1997), which is based on the defi-
nition of SOS and EOS as the mid-points of spring chl a bloom
(equivalent to greening in land vegetation phenology) and autumn se-
nescence, respectively (Forkel et al., 2015). Finally, after applying the
phenology metrics for each 10-year window period, we evaluated if
significant temporal trends could be observed. The significance of the
trends were assessed using the modified version of the Mann-Kendall
trend test (Mann, 1945), as proposed by Hamed and Ramachandra Rao
(1998). This modified version of the Mann-Kendall trend test reduces
the chances of false positives by accounting for serial correlation, often
present in time-series data due to sub-sequent observations. The mag-
nitude of the trends were assessed using the Sen's slope (Sen, 1968),
which is less vulnerable to errors in comparison with least squares es-
timator of a regression coefficient β, as well as less sensitive to non-
normality of the parent distribution and outliers.

A similar procedure for calculating phenology metrics was applied
to the Ts time-series, aiming to evaluate if any trends observed in the
chl a temporal dynamics could be explained by surface temperature
changes. However, in the case of Ts, the metrics were calculated for
each year, from 2001 to 2017, given that the higher temporal resolution
of the MODIS sensor allows a solid delineation of the Ts intra-annual
variation. The Mann-Kendall trend test was also applied to evaluate
trends in rainfall, snowfall and total precipitation, between 2000 and
2017. However, the seasonality metrics were not calculated for the
precipitation variables, given the lack of consistent seasonal patterns in
this region (as will be demonstrated later in the results).

3. Results

The LT models for estimating chl a, fitted individually for each lake,
showed satisfactory performance. The 5-fold cross validation of the
models showed Mean Absolute Errors (MAE) of 2.39 μg l−1

(Haapajärvi, n=30), 1.43 μg l−1 (Kuortaneenjärvi, n=47),
5.61 μg l−1 (Köyliönjärvi, n=61) and 2.76 μg l−1 (Tuusulanjärvi,
n=121). All final models used for the predictions were statistically
significant (p < 0.01), with R2 varying from 0.37 to 0.63. The relative
importance and statistical significance of each explanatory variable
varied between lakes. The BRG index and the blue reflectance did not
show significant influence in any of the models (p > 0.05), which is
explained by the high chromophoric dissolved organic matter (CDOM)
absorption, which shadows the optical signature of phytoplankton in
the blue spectrum. Please refer to the supplementary material for de-
tailed statistical summary of all models.

Fig. 2 shows the seasonal pattern of chl a estimated using the LT
model, in comparison with the observations for the same period. The
red lines show the interpolation of in situ chl a concentrations observed
from 2000 to 2016, without a regular temporal resolution. All models
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were able to capture the magnitude and seasonal variation of chl a. A
perfect fit between the field samples and the satellite estimates is not
expected, given the large range of fluctuations and uncertainties in-
herent to each acquisition level. The uncertainties and variation mainly
stem from a better detection accuracy of the chl a measurements from
water samples compared to satellite detected ones, differences in the
spatial scale of detection, patchy distribution of phytoplankton assem-
blages in lakes, and the variation in the optical properties of the lakes.
Furthermore, the number of satellite observations were considerably
higher in comparison with field samples for the same period, which
leads to slightly smoother curves for the modeled chl a dataset. For
instance, for Lake Köyliönjärvi, there were 222 satellite observations
between 2000 and 2016, while only 89 in situ observations during the
same period. In some cases (e.g. Haapajärvi and Kuortaneenjärvi), there
were no chl a field observations available before mid-May, which al-
lowed the modeled chl a values to cover a larger period of the year.

Considering the in situ values, average chl a concentration were the
highest in lake Köyliönjärvi (53.8 μg l−1), followed by Haapajärvi
(41.1 μg l−1), Tuusulanjärvi (29.1 μg l−1), and Kuortaneenjärvi
(μg l−1). Likewise, the largest seasonal range was observed in Lake
Köyliönjärvi, where we observed a 58 μg l−1variation between the
lowest and highest average chl a concentration. In comparison, the
seasonal range in the lakes Kuortaneenjärvi and Tuusulanjärvi were
much lower (20 and 25 μg l−1 respectively).

The results of the seasonal chl a curve fitting using the LOESS
method, as well as the average phenological metrics for each lake, are
presented in Fig. 3. These results show estimates for the POP, POT, SOS,
EOS and LOS. Nonetheless, we hereafter focus on assessing the LOS,
SOS and EOS, as these metrics can be robustly estimated in our given
conditions.

The average (1984–2017) SOS was observed between June and

beginning of July (DOY 154-189), with small variations between lakes.
The average EOS took place around September, also with slight varia-
tions between lakes. The mean LOS in all lakes was 85 days. The
smallest LOS was observed in Lake Tuusulanjärvi (83 days), and the
larger in Lake Köyliönjärvi (90 days).

The analysis of the temporal trends of the chl a phenological metrics
is presented in Fig. 4 and Table 1. We observed significant (p < 0.01)
increasing trends in the LOS across Lakes Kuortaneenjärvi, Köyliönjärvi
and Tuusulanjärvi. Comparing the average LOS from 1984 to 1994 with
the period of 2007–2017, we observed an increase in LOS of 26.5 days
in Kuortaneenjärvi, 28.5 days in Köyliönjärvi, and 14 days in Tuusu-
lanjärvi (Table 1). The increasing trend in LOS was mostly explained by
a decreasing trend in the SOS, while no significant trends were seen in
the EOS. In Lake Kuortaneenjärvi, the SOS during the period
1984–1994 was in average observed around 16 of June (DOY 167),
while during the period 2007–2017, it has shifted to 14 of May (DOY
134), that is, 32 days earlier. In Lake Köyliönjärvi, the SOS has de-
creased 23 days during the same period (from June 29 to June 6).

In Lake Haapajärvi, we report a decreasing, but not significant trend
in the LOS. Such decrease was mostly caused by an increase in the SOS.
Nonetheless, although the trend in EOS was significant considering the
entire time-series, we observe that the EOS increase took place between
1984 and 2004, after which, the EOS remained stable.

To better understand the factors driving the changes in the chl a
seasonal patterns observed in Fig. 5, we further examine the Ts and
precipitation over the studied lakes. The seasonal patterns of Ts, be-
tween 2001 and 2017, are presented in Fig. 5 and Table 2. Both daytime
and nighttime Ts showed a clear and consistent seasonal pattern, with
relatively small inter-annual variability. On average, the warm season
started in April and ended in October in all four lakes. The maximum Ts
was generally observed during July, for both daytime and nighttime Ts.

Fig. 2. Chl a seasonal variation estimated using Landsat data and from field measurements from 2000 to 2016. The gray lines represent the modeled chl a values
within a 10-year time window, with time steps of one year. The solid black line is the average chl a values modeled using Landsat data for the same period, and the
solid red line shows the weekly average chl a concentration estimated using field samples. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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The peak of Ts did not coincide with the peak of chl a concentration in
any lake, as other factors are likely to drive the timing of chl a peak (as
will be discussed later).

We did not observe statistically significant trends in average Ts, or
in any of the phenological metrics. The time-series of the length of
warm season is presented in Fig. 6. The standard deviation of the length
of warm season between 2001 and 2017 varied from 9 to 15 days in the
four lakes. Hence, the seasonal patterns were shown to be consistent
and stable during this period and, therefore, cannot be attributed as a
cause for the changes in the chl a LOS previously reported.

The intra-annual precipitation patterns for the four lakes are illu-
strated in Fig. 7. Although the total precipitation did not present clear
seasonality, some temporal patterns could be observed in the rainfall
and snowfall components. In average (2000–2017) the snowfall rate
tended to zero after April, increasing again after October. The rainfall
seasonality showed inverse pattern, with average peak occurring
around July. Nonetheless, rainfall showed very high inter-annual
variability, and its seasonal dynamics cannot be robustly characterized.

These results show that the beginning of the phytoplankton bloom
generally takes place after the snowfall contribution to the total pre-
cipitation has vanished (Fig. 7). This is explained by higher runoff vo-
lumes at the end of winter, when melting snow and rainfall carry se-
diments and nutrients to the lakes, contributing for increasing
productivity. Phytoplankton blooms end usually in September with
decreasing temperature and light. Once again, multiple other factors
are likely to contribute to the temporal dynamics of blooms.

The temporal trends in precipitation from 2000 to 2017 are pre-
sented in Fig. 8 and Table 3. We report a strong consistent decrease in
snow rates in all lakes during winter months (Oct-Dec and Jan-Mar).
With the decrease in snow rates, we see an increase in the relative
rainfall contribution to the total precipitation, although rainfall did not
show significant trends during winter. On the other hand, changes in

rainfall were observed mostly during spring (Apr-Jun), with significant
increasing rates in lake Köyliönjärvi.

4. Discussion

Our results indicate a tendency for increasing length of phyto-
plankton growth season in high latitude lakes in Finland. The magni-
tude of these temporal trends was, however, not consistent between
lakes. To better understand these discrepancies, further studies are
necessary to clarify the biophysical drivers of environmental changes
across these lakes and the sources of temporal variation in their optical
properties. Currently there are only few studies on the temporal trends
of phytoplankton blooms in lakes. A study using long-term
(1955–2003) physical, chemical and biological data from the North
Basin of Windermere, UK, reported an advancing trend on spring peak
biomass of two diatom taxa, Asterionella formosa and Cyclotella spp
(Thackeray et al., 2008). They concluded that phytoplankton pheno-
logical shifts can be caused by local processes, as well as by climate
change. While changes in Cyclotella spp. seasonal patterns were a result
of earlier thermal stratification, the advancement of the Asterionella
formosa spring peak was linked with both progressive nutrient enrich-
ment and lake warming (Thackeray et al., 2008). Our results did not
show evidences of a linkage between lake surface temperature and
long-term trends of phytoplankton phenology. However, these results
cannot discard an underlining process related to temporal changes in
the thermal stratification of lakes. Moreover, challenges persist for se-
parating climate driven changes in primary production dynamics from
other anthropogenic forcing, such as changes in land-use and nutrient
runoff (Moss, 2011).

Shifts in phytoplankton phenology associated with changes in the
thermal stratification of lakes were reported by Winder and Schindler
(2004), who investigated the effects of climatic and biotic drivers on

Fig. 3. Time-series of chl a smoothing (solid black lines) and phenology metrics calculated using the average for the entire baseline period (1984–2017). Gray lines
show the average seasonal variation of chl a, for the same baseline period, without smoothing.
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lake processes using a historical dataset of 40 years from Lake Wa-
shington, USA. They reported that, in 2002, phytoplankton spring
bloom occurred about 19 days earlier than it did in 1962. These changes
were tightly linked to an increase in the thermal stratification period
(by 25 days over the last 40 years), which was mainly caused by an
earlier spring stratification (Winder and Schindler, 2004). In this as-
pect, our results confirm previous evidences indicating that shifts in
lakes' phytoplankton phenology are being mostly driven by an early

spring onset. A study over New England shelf, between 2003 and 2016,
has shown that phytoplankton blooms in this area now occur 20 days
earlier than at the start of observations (Hunter-Cevera et al., 2016).
They concluded that earlier springtime warming stimulates cell division
earlier each year. Nonetheless, the drivers of phytoplankton dynamics
over coastal waters can differ significantly from those in high latitude
lakes.

An earlier onset of phytoplankton blooms and longer growing

Fig. 4. Trends for length of season (LOS), start of season (SOS), end of season (EOS) and position of peak (POP), from 1994 to 2017 for lakes Haapajärvi (row 1),
Kuortaneenjärvi (row 2), Köyliönjärvi (row 3) and Tuusulanjärvi (row 4). The metrics were calculated considering a 10-year window. The p-value of the modified
Mann-Kendall test, as well as the Sen's slope indicating the magnitude of the trends, are displayed in each panel.

Table 1
Temporal changes in the seasonality metrics extracted from the chlorophyll a time-series.

Lake Start of Season [DOY] End of Season [DOY] Length of Season [days]

1984–1994 2007–2017 1984–1994 2007–2017 1984–1994 2007–2017

Haapajärvi 123
(May 3)

141
(May 21)

248
(Sep 5)

257
(Sep 14)

125 116

Kuortaneenjärvi 167
(June 16)

134.5
(May 14)

256
(Sep 13)

250
(Sep 7)

89 115.5

Köyliönjärvi 179
(June 28)

156
(June 5)

258
(Sep 15)

263.5
(Sep 20)

79 107.5

Tuusulanjärvi 147
(May 27)

135
(May 15)

259.5
(Sep 16)

252.5
(Sep 9)

103.5 117.5
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season may potentially result in higher biomass (De Senerpont Domis
et al., 2013). Variation in the timing of phytoplankton blooms in lakes
affects the species composition by favoring certain taxa (Sommer and
Lengfellner, 2008) and further has an impact on competition within the
phytoplankton community as well as on trophic interactions with other
organisms. Combined with the increased nutrient loading from an-
thropogenic sources, a longer phytoplankton growth season may fur-
ther have an impact on the recreational values provided by lakes, with
possible implications of toxic phytoplankton species on human health
(Lam et al., 1995).

Our results also present evidence that, at higher latitudes, the earlier
spring onset is likely to suffer influence from changes in precipitation
patterns. In particular, we observed a decrease in snow rates during
winter, and consequent increase in the relative rainfall contribution to
the total precipitation. We also show significant increase in rainfall
during spring. These changes in the precipitation pattern can impact the
hydrological regime in the basins draining to the lakes, strongly

affecting the timing and magnitude of nutrients discharge. In fact,
Thackeray et al. (2008) have shown that, over the North Basin of
Windermere, UK, nutrient enrichment explained more variation in
phytoplankton phenology than water temperature. Hence, more de-
tailed studies will help to assess the complexity of the interacting fac-
tors driving phytoplankton phenology in inland waters, including land
use change and geomorphological characteristics of the basins.

The discrepant results between lakes observed in our study are
likely associated with different basin characteristics, such as sur-
rounding land cover, temporal variation in nutrient runoff, and dif-
ferent phytoplankton assemblages. Natural bodies of water present high
temporal variation in their chemical characteristics due to the runoff
they receive from both anthropogenic and natural sources, as well as
the temperature stratification and water mixing. While the examined
lakes present different optical characteristics that challenge modeling
chl a dynamics accurately, our approach provides a new insight into in
examining phytoplankton phenologies in boreal lakes that could not be
captured by snapshot water sampling by monitoring programmes.

4.1. Model performance and uncertainties

Studies aiming to estimate phytoplankton/Chl a concentration in
lakes using LT imagery have reported a large range of model perfor-
mances, with R2 varying from 0.30 to 0.95 (Allan et al., 2011; Isenstein
et al., 2014; Tan et al., 2017; Vincent et al., 2004). Some of these ac-
curacies are higher than those obtained in our study (0.37 to 0.63),
particularly considering our results for mesotrophic lakes (Tuusu-
lanjärvi, Kuortaneenjärvi). Nonetheless, we highlight that there are
fundamental differences in the design of our study. More importantly,
in some of the previous studies reporting high model accuracies, models
were developed to assess the spatial variability of chl a within lakes, but
did not account for temporal variability (Allan et al., 2011; Vincent

Fig. 5. Seasonal patterns of daytime and nighttime lake surface temperature estimated by the MODIS sensor. The mean values from 2001 to 2017 are represented by
the dark red (daytime) and dark blue (nighttime) lines, while the light red and light blue lines represent the individual observations of daytime and nighttime surface
temperatures, respectively. The in-situ and modeled Chlorophyll a are shown in the green and black lines, respectively. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Table 2
Average phenological metrics for daytime surface temperature (Ts) estimated
using the MODIS sensor, considering the baseline period between 2001 and
2017.

Haapajärvi Kuortaneenjärvi Köyliönjärvi Tuusulanjärvi

Start of warm
season [DOY]

100
(Apr 10)

97
(Apr 7)

91
(Apr 1)

93
(Apr 3)

End of warm
season [DOY]

290
(Oct 17)

290
(Oct 17)

300
(Oct 27)

290
(Oct 17)

Length of warm
Season [days]

190 190 210 200

Position of
maximum Ts
[DOY]

190
(Jul 9)

190
(Jul 9)

190
(Jul 9)

180
(Jun 29)
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Fig. 6. Trends on the time-series of the length of warm season calculated using the lake daytime surface temperature obtained from the MODIS sensor.

Fig. 7. Average intra-annual patterns of rainfall (dark red) and snowfall (dark blue) obtained from the Global Land Data Assimilation System (GLDAS), version 2.1.
Data from January 1, 2000 to December 30, 2017. The light red and light blue lines represent the monthly rainfall and snowfall observations, respectively. In-situ
values of Chlorophyll a are shown in the green. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 8. Trends in precipitation from 2000 to 2017. The columns from left to right represent, rainfall, snowfall, total precipitation and rainfall contribution to total
precipitation, respectively.

Table 3
Sen's slope estimate of the precipitation time-series presented in Fig. 8. ***p < 0.01; **p < 0.05; *p < 0.1.

Lake Jan–Mar Apr–Jun Jul–Sep Oct–Dec

Haapajärvi Rainfall [kgm−2 day−1/year] −0,005 0,010 0,019*** 0,014
Snowfall [kgm−2 day−1/year] −0,050*** −0,003 0,000 −0,023
Total precipitation [kgm−2 day−1/year] −0,057*** 0,007 0,018*** −0,003
Rainfall contribution [%/year] 0,442 0,261 0,000 0,648

Kuortaneenjärvi Rainfall [kgm−2 day−1/year] −0,017 0,029 0,006 0,021
Snowfall [kgm−2 day−1/year] −0,035** −0,005 0,000 −0,020**
Total precipitation [kgm−2 day−1/year] −0,036 0,023 0,006 −0,001
Rainfall contribution [%/year] 0,226 0,277* 0,000 0,986

Köyliönjärvi Rainfall [kgm−2 day−1/year] −0,002 0,029** −0,020 0,001
Snowfall [kgm−2 day−1/year] −0,039** −0,005** 0,000 −0,033*
total precipitation [kgm−2 day−1/year] −0,044 0,025* −0,020 −0,024
Rainfall contribution [%/year] 0,788 0,162** 0,000 0,847

Tuusulanjärvi Rainfall [kgm−2 day−1/year] 0,006 0,003 −0,028* −0,014
Snowfall [kgm−2 day−1/year] −0,053*** −0,003* 0,000 −0,031*
total precipitation [kgm−2 day−1/year] −0,035* 0,001 -0,028* -0,038
Rainfall contribution [%/year] 0,590 0,295*** 0,000 0,988
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et al., 2004). On the other hand, the goal of our models was to estimate
chl a temporal variability (i.e. how chl-a concentrations varied
throughout time in a same location). This latter task is technically more
challenging, given that the spectral differences between sampling dates
can be quite subtle, particularly in oligotrophic and mesotrophic lakes.
A recent study by Tan et al. (2017), in which LT models were created to
assess phytoplankton temporal variability, has reported R2 from 0.39 to
0.7, which is consistent with our results.

Including a temporal dimension in the analysis impedes making
absolute estimates of the chl a concentration due to natural variation in
chl a per cell. The fundamental assumption for the measurement of chl
a by satellites is that signal per unit chl a is constant. However, the
chlorophyll a content by cell varies between species (Strickland, 1968),
light intensity (Vincent, 1980, 1979), and the physiological state of the
cells (Babin et al., 1996). Another important factor is the patchy dis-
tribution of phytoplankton assemblages in natural waters. In boreal
lakes, cyanobacterial blooms are frequent. These blooms are constituted
by filamentous or colonial cyanobacteria, which form dense aggregates
of different size and shape, mostly located in surface water. During
large cyanobacterial blooms during summer, the mismatch of satellite
observed chl a and field samples can be substantial.

We therefore emphasize that our approach may not be applicable to
lakes with low chl a concentration. In oligotrophic lakes, the seasonal
changes in phytoplankton biomass are considerably smaller, so that the
spectral and radiometric resolution of LT5 and 7 are likely to be too
coarse to capture this temporal variability. In such cases, newer high
resolution sensors as the Sentinel-2 multi-spectral instrument (MSI),
with 13 spectral bands and 12-bits radiometric resolution, is likely to
provide more promising results in the longer run, when a more dense
time-series archive becomes available. MSI includes the bands
0.646–0.684 μm and 0.695–0.714 μm, which are close to the MERIS
bands 0.660–0.670 μm and 0.704–0.714 μm used in the original NDCI
index (Mishra and Mishra, 2012). These MERIS bands have been shown
to be optimal for the estimation of Chl a by band ratio algorithms in
lakes in Finland (e.g. Kallio et al., 2005; Kallio, 2012). Chl a was esti-
mated with good accuracy from Sentinel 2 data in Estonian lakes
(Toming et al., 2016) with trophic status ranging mainly from meso-
trophic to eutrophic. The algorithm was based on the height of the
705 nm reflectance peak. The new OLI sensor (Operational Land Im-
ager), onboard LT-8, also offers important improvements in comparison
with its predecessors. The LT-8 OLI sensor includes additional bands
that allow a more confident assessment of data quality, and the radio-
metric resolution has been improved to 12-bits (in comparison to 8-bits
in LT-5 and 7).

As pointed out by Oliver et al. (2017), assessments on environ-
mental changes over lakes are often limited by temporal and spatial
availability of observation data. The capability of remote sensing to
overcome such bottlenecks is limited by sensors' resolution or the
length of time-series. As exemplified in our study, solving these pro-
blems requires dealing with high computation costs, and a careful
management of uncertanties, such as cloud contamination and the low
spectral signal over fresh water bodies. Here, we used the high per-
formance cloud computing tools offered by Google Earth Engine
(Gorelick et al., 2017) to process and analyze over 30-years of high
resolution satellite data. The processing involved using imagery con-
verted from top-of-atmosphere irradiance to surface relectance using
stated-of-the-art atmospheric correction (Masek et al., 2012), as well as
cloud, cloud shadow, and snow/ice masking in each image, using al-
gorithms based on decision trees (Foga et al., 2017; Zhu et al., 2015).

5. Conclusions

In this study we evaluated 33-years of satellite data for character-
izing the phytoplankton phenology and long-term trends across four
lakes in Finland. Our approach could successfully characterize the
average chl a seasonal patterns in all lakes, providing a novel baseline

for evaluating environmental changes. We present evidences of in-
creasing length in phytoplankton bloom seasons in high latitude Finnish
lakes, mostly caused by an earlier onset of phytoplankton growth. We
report an increase up to 28 days in the length of chl a season (Lake
Köyliönjärvi) over the past three decades. Nonetheless, the magnitude
of changes in the chl a seasonal patterns varied between lakes, with one
of the lakes showing no significant changes. The observed changes in
chl a temporal patterns are unlikely to be explained by changes in
surface temperature (Ts), as we could not detect significant trends on
average Ts, or in the Ts phenological metrics from 2001 to 2017.
However, changes in the thermal stratification of the lakes cannot be
discarded. We also point out for important shifts in the precipitation
patterns over the past decades that could potentially drive the observed
changes in chl a seasonal patterns. In particular, our results show a
significant decrease in snowfall rates during winter, with a consequent
increase in the rainfall contribution to total precipitation. Finally, we
suggest that further studies will decrease the uncertainties related to the
biophysical factors driving the temporal patters in chl a, allowing a
robust explanation for the shifts in chl a seasonality reported here.
Particularly, it is crucial for climate variables to be accounted in com-
bination with a comprehensive assessment of the hydrological char-
acteristics of the drainage basins contributing to the lakes' influx.
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