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Abstract
Background Currently available simulators are supposed to allow young neurosurgeons to hone their technical skills in a safe
environment, without causing any unnecessary harm to their patients caused by their inexperience. For this training method to be
largely accepted in neurosurgery, it is necessary to prove simulation efficacy by means of large-scale clinical validation studies.
Methods We correlated and analysed the performance at a simulator and the actual operative skills of different neurosurgeons
(construct validity). We conducted a study involving 92 residents and attending neurosurgeons from different European Centres;
each participant had to perform a virtual task, namely the placement of an external ventricular drain (EVD) at a neurosurgical
simulator (ImmersiveTouch). The number of attempts needed to reach the ventricles and the accuracy in positioning the catheter
were assessed.
Results Data suggests a positive correlation between subjects who placed more EVDs in the previous year and those who get
better scores at the simulator (p = .008) (fewer attempts and better surgical accuracy). The number of attempts to reach the
ventricle was also analysed; senior residents needed fewer attempts (mean = 2.26; SD = 1.11) than junior residents (mean = 3.12;
SD = 1.05) (p = .007) and staff neurosurgeons (mean = 2.89, SD = 1.23). Scoring results were compared by using the Fisher’s
test, for the analysis of the variances, and the Student’s T test. Surprisingly, having a wider surgical experience overall does not
correlate with the best performance at the simulator.
Conclusion The performance of an EVD placement on a simulator correlates with the density of the neurosurgical experience for that
specific task performed in theOR, suggesting that simulators are able to differentiate neurosurgeons according to their surgical ability.
Namely this suggests that the simulation performance reflects the surgeons’ consistency in placing EVDs in the last year.
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Abbreviations
ACGME Accreditation Council of Medical Education
CT Computed tomography
EVD External ventricular drain
ENSSG European Neurosurgery Simulation Study Group
EWTD European Working Time Directive

OR Operative room
PGY Post graduate year

Introduction

The reduction of resident work hours established by the
Accreditation Council of Medical Education (ACGME) in
2003 and by the European Working Time Directive (EWTD)
issued in 1993 by the European Union [1] resulted in the
reduction of surgical caseload for neurosurgical residents;
with the increasing focus on patient safety, it has become
evident that simulation could play a decisive role in neurosur-
gical education [2, 3]. Placing an external ventricular drain
(EVD) is a “simple”, although not trivial surgical procedure,
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where complications may arise, leading to potentially devas-
tating outcomes. In this regard, virtual reality simulators—
with haptic feedback technology—might be able to create a
realistic and safe environment, where both residents and sur-
geons could train and practice, in order to perform this proce-
dure better and more safely [4]. To date, it has not been clearly
demonstrated if training with simulation determines a
better neurosurgical performance; this is a very difficult ques-
tion to answer, since many factors contribute to the final out-
come [5].

The first important step is to assess how simulation can be
useful as a training tool by substantiating its construct validity,
which is defined as the simulator’s ability to differentiate be-
tween less and more experienced surgeons [6]. If validated,
simulation could be adopted to teach junior neurosurgeons,
and to assess their level of competency before they perform
a real operation on patients [7]. Content validity has been
demonstrated for some neurosurgical simulation exercises
[8–10], but construct validity has been more difficult to estab-
lish. Data comparing neurosurgical experience and simulation
performances is less reported in the literature, in which all the
reported studies are on single-centre experiences with very
small numbers of participants [4]. The purpose of this study
is to assess whether it is possible to find a correlation between
the real neurosurgical experience and virtual performance,
when performing a ventriculostomy and placing an external
ventricular catheter.

Methods

This study was conducted during the National Congress of the
Italian Society of Neurosurgeons (Vicenza, Italy, 2014), dur-
ing the XVII Italian Hands-On Microsurgery Course
(L’Aquila, Italy, 2014), during the “Skull-Base Workshop:
Posterior Fossa Approaches, (Naples, Italy, 2014) and during
the EANS training courses in Sofia (Bulgaria, 2016) and
Vilnius (Lithuania, 2017).

Based on data from existing literature and from collected
unpublished data, we hypothesised an effect size f = 0.35, with
similar variance between groups. Considering α = 0.05, a
sample size equal to 90 was appropriate to obtain a power
(1-β) = 85%.

The simulated task consisted of performing an EVD place-
ment using a high-resolution and high-performance virtual
reality platform with haptic feedback technology
(ImmersiveTouch Inc., University of Illinois at Chicago
Medical Center, Chicago, IL, USA). The platform includes a
library of different cases built from patients’ data provided by
the University of Illinois at the Chicago Medical Center. The
data was pre-segmented and assembled from a CT DICOM
data set, after removing patients’ personal information. We
evaluated the number of attempts needed to reach the ventricle

with the catheter; the case we used for all the participants was
“Case A”, with a normal ventricle size (see Fig. 1d, e).
Moreover, the accuracy of a simulated ventriculostomy cath-
eter placement was evaluated by measuring the distance (in
millimetres) between the tip of the catheter and the Foramen
of Monro: this distance represents the score—namely a lower
score indicates a more accurate performance. Before entering
the study, all participants signed an informed consent form.
Once the task was completed, the participants filled out a
questionnaire about their surgical career and a content validity
questionnaire about the simulator and the specific simulated
task (Fig. 1). Results were analysed using Microsoft Excel
2013 (Microsoft, Redmond, WA, USA) SPSS 20.0 (IBM
Corp., Armonk, NY, USA), (Analyst Soft Inc., Walnut, CA,
USA) and Jasp (University of Amsterdam, Amsterdam, NL)
according to the participants’ level of training, years of expe-
rience and number of EVDs placed throughout careers.
Scoring results were compared by using the Fisher’s test, for
the analysis of the variances, and the Student’s T test. Results
were considered significant at a p value lower than 5%.

Results

Ninety-two participants [47 males and 45 females; average
age of 32 years old (min 26; max 53); 25 junior residents
(PGY1–3), 49 senior residents (PGY 4–6) and 18 staff neuro-
surgeons] from different European countries were involved in
the study.Wemeasured whether the right frontal ventricle was
reached (yes/no) by the catheter at the simulator and the num-
ber of attempts needed to do so (the candidate had a maximum
of three attempts to reach the ventricle). If the catheter was
inside the ventricle, we recorded the distance from the tip of
the tool to the homolateral foramen of Monro. We correlated
each participant’s performance at the simulator with their sur-
gical experience in regard to EVD placement; this was mea-
sured with the overall number of EVDs placed (throughout
their career) and with the number of EVDs positioned during
the last year (Table 1).

First, we analysed the performance at the simulator when
positioning an EVD according to the candidates’ curricula:
mean number of attempts to reach the ventricle was 2.62
(SD = 1.18); we correlated this parameter with the number of
EVDs positioned by the candidate throughout his/her career
but no statistical correlation was found (p = .079) (Fig. 2a). On
the other hand, a negative correlation was shown when com-
paring the number of attempts to reach the ventricle at the
simulator and the number of EVDs placed during the last year
(p = .008) (Fig. 2b).

We then divided all the participants into three groups, ac-
cording to their level of training. Based on the retrieved data,
junior residents (PGY 1–3) placed an average of 20.3 EVDs
overall during their neurosurgical training (max = 100; min =
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5; SD = 20.01); senior residents (PGY 4–6) 54.0 (max = 200;
min = 5; SD = 41.84), whereas staff neurosurgeons positioned
104.7 EVDs throughout their careers (max = 250; min = 20;
SD = 70.90) (Fig. 3a), confirming that the cumulative number
of positioned EVDs will increase during the career of a neu-
rosurgeon (Fig. 3a).

The number of attempts to reach the ventricle was also
analysed; senior residents needed fewer attempts (mean =
2.26; SD = 1.11) than junior residents (mean = 3.12; SD =
1.05) (p = .007) and staff neurosurgeons (mean = 2.89, SD =
1.23) (Fig. 3b).

We focused on the density of experience, looking at the
number of EVDs that were positioned by the study partici-
pants during the last year of their practice; junior residents had

a mean EVD/year ratio of 8.1 (max = 13.33; min = 0; SD =
6.49), senior residents 12.7 (max = 33; min = 1; SD = 7.26)
and staff neurosurgeons 8.1 (max = 25; min = 0; SD = 5.95)
respectively (Fig. 3c). Senior residents are those who have
the highest number of EVDs per year, indicating that the best
results at the simulator were recorded among those residents
who placed more EVDs/year (Fig. 3b, c). This is also con-
firmed by the fact that—regardless of any subgroup analy-
sis—having positioned more EVDs during the last year of
surgical activity correlates with a better performance at the
simulator for any study participant (Fig. 2b). This result
was also confirmed by the fact that those participants who
reached the ventricle at the simulator (regardless of the
number of attempts) where those who positioned more

Fig. 1 Simulated EVD Task. a Identification of the Kocher point. The
virtual head can be rotated in any direction by pressing the button on the
haptic device. This helps identify important landmarks and understand
the anatomy. The marker tool allows the trainee to take exact
measurements on the skin (in millimetres). b Drilling the bone in order
to expose the dura mater. Please note that the drilling tool is endowedwith
haptic feedback, so it reproduces the feeling and vibrations of a real
driller. c Inserting the catheter. The catheter is inserted through the burr

hole, aiming at the Monro’s foramen. Thanks to haptic feedback, the
trainee can have the feeling of passing through different structures (dura
mater, brain parenchyma, ependymal layer). d Ventricle missed. The
candidate positioned the catheter too laterally and far away from the
Monro’s foramen (red sphere). The red colour tells the candidate he/she
failed. e Ventricle reached. The candidate positioned the catheter inside
the ventricle, close to theMonro’s foramen (red sphere). The green colour
of the catheter indicates to the candidate that the procedure was successful
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EVDs during the last year of their career (p < .001)
(Fig. 3d).

Moreover, the outcomes were analysed according to their
video-game and instrument playing habits: all the analyses
showed no statistically significant correlation between those
who play videogames habitually or those who play any musi-
cal instrument.

At the end, each participant completed a post-simulation
survey with a 5-item Likert scale questionnaire. The partici-
pants found that the difficulty (2.9/5.0) and realism (3.3/5.0)
of the task were acceptable; the sensory realism with the hap-
tic feedback technology was found to be appropriate (3.4/5.0).
Overall, the participants were satisfied with the experience

(3.3/5.0) and they agreed that this type of simulation would
be truly useful if made available at their institution (3.7/5.0);
82 participants out of 92 would implement this kind of simu-
lation within their own department.

Discussion

After implementing resident work hour restrictions [11], medical
errors have not decreased and patient safety has not increased
[12–14]. Besides, a decrease in surgical caseload and surgical
exposure might negatively impact neurosurgical residents [3]
and the continuity of care [15]. Hence, a plausible support to
better train junior residents has been found in simulation; in fact,
there are several reports on the possible utility of simulation in
training neurosurgeons with fewer risks for the patients [2, 16,
17]. Unfortunately, at this moment, data on the construct validity
of neurosurgical simulators is inconsistent.

Therefore, we focused on the relationship between the real
surgical experience level and the performance when doing a
ventriculostomy at a simulator. Our hypothesis was that the
older (and more experienced) the neurosurgeon, the better the
performance would have been. Interestingly, the results
showed that the most experienced neurosurgeons did not get
the best scores at the simulator. As a matter of fact, PGY 4–6
residents performed better (Fig. 3b). Data showed that the
participants who positioned more EVDs in the most recent
period were those who needed fewer attempts to reach the
ventricle at the simulator (Fig. 2b). A possible explanation
for this lies in the fact that senior neurosurgeons may be offset
because they tend to perform this procedure less frequently
than residents, even though they have placed more EVDs
throughout their careers, as if senior neurosurgeons were
deskilled for this specific task.

It would be important to correlate the data we collected
with each participant’s success rate when positioning a real
EVD in the OR; unfortunately, in order to obtain this informa-
tion, it would be necessary to follow every neurosurgeon dur-
ing their practice and record the number of attempts anytime
an EVD is inserted, along with the ventricles’ size, the pres-
ence of brain shift and haemorrhage at the preoperative CT
scan. This would demand a more complex study, which is
beyond the goal of this research.

In a recent systematic review [4] that analysed six previ-
ously published simulated ventriculostomy studies with out-
come data, five using ImmersiveTouch [8, 18–21] and one
using the EasyGuide Neuronavigation System [22], the rela-
tionship between experience and performance was reported
and analysed. In some cases, there were no differences in the
performances according to the participants’ year of practice
[8]; in others, optimal performances were obtained from be-
ginning or mid-residency students [21]. This is in line with
what Kang et al. found in different surgical specialties: their

Fig. 2 a Correlation between the number of attempts needed to reach the
ventricle (In = catheter that reached and stayed inside the ventricle; Out =
catheter outside the ventricle) and number of EVDs placed during the
entire career of a resident/neurosurgeon; having placed more EVDs
overall does not correlate with fewer attempts when positioning a
virtual EVD at the simulator. b Correlation between the number of
attempts needed to reach the ventricle and number of EVDs placed
during the previous year of practice of a resident/neurosurgeon; having
placed more EVDs in the last year of time correlates with fewer attempts
when positioning a virtual EVD at the simulator
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results concurred with ours as they too demonstrated how only
a precise and continuous training scheme would permit the
finest acquisition of all quintessential neurosurgical skills
[23]. In line with our findings, the mixed-reality
ventriculostomy simulator described by Hooten et al. demon-
strated a strong relationship between the scores and the partic-
ipant’s level of training [24]. However, our study differs from
the others in literature since it presents the largest series of
neurosurgeons (both staff and residents) who practiced and
were assessed at a virtual reality simulator: all the existing
studies in this field were conducted in a single institution or
on very small cohorts of residents/attending neurosurgeons
[4]. The present study analysed a large group of participants
coming from different European countries, residency pro-
grams and hospitals, and with different ways of performing
this neurosurgical procedure: on the one hand, this

population’s heterogeneity represents a plus because it allows
us to extend the validity of these results to a wider community;
on the other hand, it limits the power of the study since it
increases the inter-individual variability.

This is the only multi-centric study that correlates
European neurosurgeons’—both residents and attending—ex-
perience in positioning an EVD (measured as PGY, total num-
ber of EVD placed during their career and number of EVD
positioned during the last year of practice) with their perfor-
mance at a simulator. All the existing literature in the field has
never measured the impact of practice density (No. of EVD/
last year of practice) on performance [4]. Yudkozsky et al.
attempted to correlate simulator performance with OR perfor-
mance for this surgical task [21]; in this prospective/
interventional single-center study, they enrolled only 16 resi-
dents (no attending neurosurgeon) at different levels of

Fig. 3 a Overall number of EVDs placed. Participants were divided into
junior residents (PGY 1–3), senior residents (PGY 4–6) and staff
(attending neurosurgeons). Groups were statistically different, with the
older surgeons having placed more EVDs compared to both senior and
junior residents. bNumber of attempts needed to reach the ventricle while
positioning a virtual EVD. Note that senior residents performed better
compared to junior residents and to attending neurosurgeons (staff). c

Number of EVDs placed during the last year according to participants’
experience. Please note that senior residents positioned more EVDs
compared to their junior colleagues. d Number of EVDs placed in the
last year and access to the lateral ventricle. Note that if you have put more
EVDs during the previous year, it is easier to reach the ventricle with a
catheter at the simulator
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training within a 7-year program in the USA. Only 12 resi-
dents provided partial data about the EVD success rate in the
OR (no data about patients’ ventricle size, pre-existing brain
swelling/hematoma/shift on the CT scan, to weight their per-
formance) [21]. Unfortunately, the small study population and
the existing biases hamper the scientific relevance of their
findings, so that a large prospective study is needed to answer
this important question.

We have not noticed a positive correlation between
video-games and/or musical instrument habits with the
performance at a virtual reality simulator; this is not in
line with the existing literature [4]. Most likely, playing
video-games and musical instruments does not improve
the skills of a neurosurgeon, since psychomotor skill de-
velopment is very task-dependent, as indicated by the fact
that attending neurosurgeons seem to have “lost” their
fine ability to perform an EVD, even though they can
conduct more sophisticated procedures [25]. Younger par-
ticipants (who incidentally are more likely to play video-
games) usually consider surgical simulators more serious-
ly than senior attending surgeons, due to their self-
motivated need to learn, and enthusiasm for new technol-
ogies. Besides, it is worth mentioning that the simulator
does not allow you to firmly place the non-dominant hand
over the patient’s head while the catheter is being intro-
duced with the dominant hand. In real life, this two-
handed technique provides the operator with a good idea
of the 3D spatial relationship between the patient’s anat-
omy (on the one hand) and the catheter (on the other
hand). If the candidate is not fully familiar or comfortable
enough with the simulated depth perception provided by
the stereo monitor, it might hamper the performance at the
simulator (since the surgeon has already learnt to perform
this procedure following that by-manual approach on real
patients).

In the future, the use of virtual reality simulation might be
more widespread in neurosurgery [26, 27], particularly in the
realm of education. This idea is further supported by the first
introduction in 2010 of a national simulation boot camp for
PGY-1 neurosurgical trainees [28, 29]. Simulation could also
be useful for medical students interested in pursuing neurosur-
gery as a career in order to better understand if they are fit for
this specialty: thanks to this technology, they could compre-
hend which key technical skills are required for this discipline
[29]. For neurosurgeons, as in the field of aviation, where
airplane pilots are continuously assessed bymeans of different
simulation scenarios [30], simulation could become the mean
of evaluation of all neurosurgeons, with the ultimate goal of
assessing and refining technical abilities throughout one’s ca-
reer and potentially reducing the risks of committing errors
during neurosurgical procedures.

However, future developments in technologymay renovate
the way in which surgery is taught to young residents: detailed

immersive 3D pre-surgical planning or simulated surgery
could possibly improve the surgeon’s performance and thus
patient care. While it is difficult to assign a statistically proven
value to the benefit of this technology, more studies are nec-
essary to further assess the usefulness of this approach in order
to standardise and make neurosurgical training safer.

In the near future, we would like to conduct a large, pro-
spective, controlled, randomised trial with all European neu-
rosurgery residents who are interested in simulation to define
the impact of an intense, standardised virtual reality neurosur-
gery training on residents’ surgical skills compared to a more
traditional “apprenticeship” surgical training.

Conclusion

This is the first transnational European study on simulation in
neurosurgery. ImmersiveTouch, a virtual reality platform with
haptic feedback technology, has already demonstrated to im-
prove EVD placement skills. Our data suggests that the scores
obtained by assessing a ventriculostomy in this virtual reality
environment could differentiate participants by their actual
skills’ level. Results do not correlate with the operator’s gen-
eral experience in this type of procedure or with their level of
training but with one’s daily practice of this surgical proce-
dure, therefore suggesting that the habitual practice of EVD
placement is what makes a neurosurgeon’s EVD performance
better. This study adds a relevant portion to the construct va-
lidity of simulated ventriculostomy with the ImmersiveTouch
platform, enforcing its value as a possible assessing and train-
ing tool. Starting from medical school and throughout a neu-
rosurgeon’s career, this simulator could be used to reduce
surgical risks and thereby improve patient’s outcome.
Further research studies are necessary to eliminate some of
the current biases and to better understand the real relationship
between virtual and real OR. In the future, virtual reality plat-
forms may be regarded as an important and valuable tool to
standardise medical education, neurosurgical assessment and
training, possibly improving surgical skills and clinical
outcomes.
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