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Abstract—Which distribution commonly used to fit a species 

abundance distribution gives the best fit across several area sizes? 
We approach this problem by looking at the moments of the 
distribution and compare these with those the distribution based 
on empirical data on tree species collected in Barro Colorado 
Island, Panama. We conclude that no single distribution gives the 
best fit at all scales.  
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I.  INTRODUCTION 

Any attempt to find an ecological pattern across scales is 
important not only for ecologists but also for managers. It 
allows us to describe the pattern at observable scales and to 
make predictions for larger scales. The species-area 
relationship is one of the oldest pattern in ecology involving a 
scaling relationship, and it is commonly used by ecologists. It 
describes how the number of species (species richness) changes 
as a function of area and it is formulated as a power law. 

Finding a pattern for species abundance distributions (hereafter 
SAD) at a fixed scale has been a central topic in ecology. SADs 
describe how many species in a community have a given 
number of individuals. Fisher et al. [1] suggested that the 
logseries is the theoretical distribution for the relative 
abundance of species. Preston [2], by looking at SADs at 
different scales, proposed, instead, the lognormal as the limiting 
distribution. Bulmer [3] showed that the Poisson lognormal is a 
better alternative to the lognormal. More recently, Engen and 
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Lande [4] also considered the compounded Poisson Gamma 
distribution. May [5] stated that the logseries may be viewed as 
the distribution characteristic of relatively simple communities 
whose dynamics is dominated by some single factor, but, on the 
other hand, if the environment is randomly fluctuating, or if 
several factors become significant the central limit theorem will 
produce the lognormal distribution.  

Although most of the work on SADs has been done by 
looking at a fixed scale, there are exceptions. Hubbell [6] 
developed the neutral theory that seeks to predict SADs in space 
and time across scales. This theory was called neutral because 
it assumed all individuals in a community to be equivalent in 
their rates of reproduction, mortality, dispersal and speciation. 
Two of the speciation modes considered by Hubbell, the point 
mutation and the fission modes, led to SADs that changed 
differently depending on the scale. Although the fission mode 
led to the same type of distribution at different scales, the point 
mutation mode predicted the zero-sum multinomial distribution 
(a distribution introduced by Hubbell [6]) at small scales (the 
local community) and predicted the logseries distribution at 
large scales (the metacommunity). Therefore, neutral theory 
acknowledges that the SAD changes across scales.  

Typically, empirical SADs come from samples that 
represent only a small part of the community, those sizes that 
are practical (or economical) to obtain. If we could find a 
pattern for how SADs scale with area (or other parameter), this 
could enable us to predict the distributions for larger areas, at 
least within some reasonable scales, likely to be dictated by the 
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characteristics, such as the homogeneity of the habitats, of the 
landscape where the community exists.  

Moment functions are used in image analysis and related 
applications, such as pattern recognition, object identification, 
template matching, and pose estimation (see [7, 8, 9]). 
However, their application to the study of SADs have only 
recently been attempted [10, 11]. Here, we define moments, Mn 
(often called raw moments), of a sample x1, x2,…, xS as  

௡ܯ = 1ܵ෍ݔ௜௡,																																						(1)ௌ
௜ୀଵ  

where n defines the order of the moment. For instance, when ݊ = 1 we obtain the mean. Moments are important because 
knowing them is enough to reconstruct the probability density 
function [12]. 

In this work we are interested in the scaling properties of the 
SAD as a function of area, though others variables, such as, 
diameter at breast height (dbh) could have been used. 
Therefore, given an area ܣ, we determine the SAD for several 
subareas ܣ′ ≤  and see how the distributions change as a ܣ
function of area size. In addition, we asked the following 
question: among some commonly used distribution, which 
gives the best fit to empirical data at different scales. 

We used the following distributions: logseries, lognormal, 
Poisson lognormal, and Poisson gamma [13, 14]. For some 
distributions we have simple analytical formulas for the 
moments, in other cases the analytical expressions have to be 
solved using numerical methods. Finally, we compare the 
results obtained with the distributions with those obtained 
empirically from real data. 

In order to estimate the moments from the distributions as a 
function of area, we needed to make some assumption for how 
the number of individuals and the number, ܰ, of species, ܵ, 
scale with area. For the number of individuals we assumed that 
it changes linearly with area, ܣ, such as, ܰ =  For the .[6] ܣߩ
number of species we assumed two different relationships: (i) 
the number of species has a power law relationship with the 
area, ܣ, or, equivalently. 

log(S) = log(c) + z log(A),                      (2) 

where ܿ and ݖ are constants, and (ii) it has a logarithmic 
relationship 

S = c + zlog(A),                                 (3) 

where c and z are constants. We assumed these two different 
expressions because they both give a very good fitting to a large 
number of data sets and are often used [15]. 

We exemplify our methods using data on tropical tree 
species from a 50ha plot in Barro Colorado Island (BCI), 
Panama, using all individuals larger than 10 cm dbh. 

II. PRELIMINARIES 

Because in a typical sample the number of individuals spans 
several orders of magnitude, it is more convenient to work with 
their logarithmic values [5]. Let ݔ௜ be the log of base 2 of the 
total number of individuals of the species ݅ and let ܵ be the total 

number of species in the sample. Then, following eq. 1 the (raw) 
moment of order ݊ is  ܯ௡ = 1ܵ෍ݔ௜௡ௌ

௜ୀଵ , 
or, if the xi occurs with the proportion f(xi) in the sample, 

௡ܯ =෍ݔ௜௡݂(ݔ௜)	௞
௜ୀଵ ,																													(4) 

where k is the number of classes. 
In Fig.1, using BCI data, we plot the moments up to order 

ten as a function of area size in double logarithmic scales, 
starting from area size 65×130 m2. Notice that the curves are 
approximately linear, implying that the moments, Mn, as a 
function of area, A, are well approximated by power laws. 

 
Fig. 1. Moments, estimated from the BCI data, of order 1 up to 10 as a function 

of area from 0.845 ha0 up to 50 ha. Notice that the double logarithmic 
scales. 

III. MOMENTS AS A FUNCTION OF SCALE 

Here, for each area size we assume that the SAD follows one 
of the following distributions: logseries, lognormal, Poisson 
lognormal, and Poisson gamma. For each sub-area we estimate 
the parameters of the distribution and calculate the moments for 
different orders. Here we are mostly interested in the log-
transformed value of the moments as a function of log of the area 
size. In the following, the formulas for moments of the 
distributions were obtained from [16] for the logseries, from [17] 
for the lognormal, from [18] for the mixed Poisson distributions 
together with [19]. 

A. Logseries 

Using the expression of the logseries and the above eq. (4), 
the moments of order ݊ of a sub-area of size A’ of the total area ܣ can be obtained from 

(′ܣ)௡ܯ = ෍ݔ௡ 1− ln൫1 − ൯(′ܣ)ߠ ௫ேᇲ(′ܣ)ߠ
௫ୀ଴ ,												(5) 

where (′ܣ)ߠ is the parameter of logseries, ܰᇱ = logଶہ ۂܰ + 1,  ܰ is the total number of individuals in the sub-area ܣᇱ, and ۂݔہ 
stands for truncation of ݔ. 

In Fig.2, we show in double logarithmic plots the moments, 
as a function of area using formula (5), up to order 10, in plot (a) 
assuming ܵ = ܵ ௭ and in plot (b)ܣܿ (ܣ) = ܿ +  Observe .(ܣ)logݖ
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that in both cases, for larger area sizes the curves are almost 
straight, implying a power law relationship. 

 
Fig. 2. Moments of order 1 up to 10 as a function of area from 0.845 ha up to 

50 ha in double logarithmic scales for the logseries distribution assuming 
in (a) ܵ(ܣ) = (ܣ)ܵ ௭ and in (b)ܣܿ = ܿ +  .(ܣ)logݖ

B. Lognormal 

The moments of order n of a sub-area of size A’ of the total 
area ܣ can be obtained from the following formula ܯ௡((′ܣ)ߤ, ((′ܣ)ߪ

= ௡(′ܣ)ߤ + ∑ ൫௡௜ ൯௡௜ୀଵ ௡ି௜(′ܣ)ߤ ൝0 , ݅)௜(′ܣ)ߪ݀݀݋	ݏ݅	݅ − 1)!! , ൡln(2)௡,݊݁ݒ݁	ݏ݅	݅ , 
where (′ܣ)ߤ and (′ܣ)ߪ are the parameters of the lognormal in 
the area	ܣ′ and the double factorial is defined as follows: 

݊!! =
ەۖۖ
۔ۖ
ෑ(௡ଶۓۖ
௞ୀଵ 2݇) , ݀݀݋	ݏ݅	݊
ෑ(௡ାଵଶ
௞ୀଵ 2݇ − 1) , .݊݁ݒ݁	ݏ݅	݊

 

 

In Fig.3, we plot the moments calculated using the preceding 
formula, up to order ten, as a function of area size in double 
logarithmic scales. Again, in Fig.3, we assumed two expressions 
for the species area relationship, eq. (2) and (3). As we can see, 
a linear pattern only occurs for larger areas, and for small areas 
the curvature is more pronounced than it is for the logseries. 
Note that in the preceding formulas we may obtain negative 
values for the parameter ߪଶ(ܣ′)	implying that for those sub-
areas the lognormal cannot be used. 

 
Fig. 3. Moments of order 1 up to 10 as a function of area from 0.845 ha up to 

50 ha in double logarithmic scales for the lognormal distribution assuming 
in (a) ܵ(ܣ) = (ܣ)ܵ ௭ and in (b)ܣܿ = ܿ +  .(ܣ)logݖ

C. Poisson Lognormal 

The moments of order ݊ of a sub-area of size ܣ′ of the total 
area ܣ can be obtained from the following formula ܯ௡((′ܣ)ߤ, ((′ܣ)ߪ = ∑ ௌ೙ೕసభ (௡,௝)	ெᇲೕ(ఓ(஺ᇱ),ఙ(஺ᇱ))୪୬(ଶ)೙ , 
where ܵ(݊, ݇) denotes the Stirling numbers of the second kind, 
defined as 

ܵ(݊, ݇) = 1݇!෍(௞
௝ୀ଴ − 1)௞ି௝ ൬݆݇൰ ݆௡, (′ܣ)ߤ and (′ܣ)ߪ are the parameters of the Poisson lognormal 

distribution, and ܯ′௝((′ܣ)ߤ, ((′ܣ)ߪ = ௝+෍൬݆݅൰௝(′ܣ)ߤ
௜ୀଵ ௝ି௜(′ܣ)ߤ ൝0 , ݅)௜(′ܣ)ߪ݀݀݋	ݏ݅	݅ − 1)!! ,  .ൡ݊݁ݒ݁	ݏ݅	݅

In Fig.4 we plot the moments, calculated by the preceding 
formula, up to order ten, as a function of the area size in double 
logarithmic scales. 

Note that in the case of Poisson lognormal we do not 
consider different species area relationship, because parameters 
can be extracted directly from the first and the second moments 
and there is no need for extra assumptions. 
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Fig. 4. Moments of order 1 up to 10 as a function of area from 0.845 ha up to 

50 ha in double logarithmic scales for the Poisson lognomal distribution. 

D. Poisson Gamma 

The moments of order ݊ of a sub-area of size ܣ′ of the total 
area ܣ can be obtained from the following formula ܯ௡(ܣ′) =෍ܤ௜,௡௡

௜ୀଵ (ܿଵ(ܣ′), … , ܿ௡ି௜ାଵ(ܣ′)), 
where ܿ௜ 's are the ݅-th cumulant around the mean and ܤ௜,௡(ݔଵ, … ,  ௡ି௜ାଵ) is the incomplete (or partial) Bellݔ

polynomial which is defined as follows: ܤ௜,௡(ݔଵ, … , =(௡ି௜ାଵݔ ∑ ݊!ଵ݆! ݆ଶ!⋯ ݆௡ି௜ାଵ! ቀݔଵ1!ቁ௝భ ቀݔଶ2!ቁ௝మ ⋯ ൬ ݊)௡ି௜ାଵݔ − ݅ + 1)!൰௝೙ష೔శభ, 
where the sum is taken over all sequences ݆ଵ, … , ݆௡ି௜ାଵ of non-
negative integers such that these two conditions are satisfied: ଵ݆ + ݆ଶ + ⋯+ ݆௡ି௜ାଵ = ݅, ଵ݆ + 2݆ଶ + 3݆ଷ + ⋯+ (݊ − ݅ + 1)݆௡ି௜ାଵ = ݊, 
and ܿ௜(ܣ′)'s can be obtained from the following formula: ܿ௜(ܣ′) = ߲௜ߟ)ܦଵ(ܣ′), ௜(′ܣ)ଵߟ߲((′ܣ)ଶߟ , 
where ߟଵ(ܣ′) = (′ܣ)ߙ − (′ܣ)ଶߟ			,	1 =  ,(′ܣ)ߚ−
and ߟ)ܦଵ(ܣ′), ((′ܣ)ଶߟ = ln(ߟ)߁ଵ(ܣ′) + 1)) − (′ܣ)ଵߟ) + 1)ln(−ߟଶ(ܣ′)), 
where (′ܣ)ߙ and (′ܣ)ߚ are the parameters of Gamma 
distribution of a sub-area ܣ′. 

In Fig.5 we plot the moments, calculated by the preceding 
formula, up to order ten, as a function of the area size in double 
logarithmic scales, and, as before, we assumed two expressions 
for the species area relationship, eq. (2) and (3). Similarly to the 
other distributions, the moments exhibit an almost linear 
relationship. 

 
Fig. 5. Moments of order 1 up to 10 as a function of area from 0.845 ha up to 

50 ha in double logarithmic scales for the Poisson gamma distribution 
assuming in (a) ܵ(ܣ) = (ܣ)ܵ ௭ and in (b)ܣܿ = ܿ +  .(ܣ)logݖ

IV. COMPARING RESULTS 

We now compare the change of the moments as a function 
of area using the preceding distributions with the BCI data. To 
better visual the results we show only the moment of order 10, 
Fig.6. A brief inspection of this figure shows that the Poisson 
gamma (PG) is close to the empirical data for small are sizes, 
but that for larger areas the lognormal (LN) provides a better fit. 
Surprisingly, the logseries provides a poor fitting even for small 
area sizes.  

In order to present these results in a different way, we 
developed an approach based on the following result. If the 
moments obtained from a distribution provide a good fit to the 
moments empirically observed, then if we plot the empirical 
moments as a function of the distributions’ moments, their 
points should lie in a straight line going through the origin and 
with slope 1. 

 
Fig. 6. Comparing the moment of order 10 of the real data (black line) with 

the moments estimated using the distributions. 
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Fig.7 shows the slopes of linear regression of ݉ by ݊. Since 
the best fitting appears when the slope is closed to 1 we only plot 
the slopes in the interval 0 and 3.5. In accordance with our 
previous observations, the Poisson lognormal is not a good fit to 
our data, but Poisson Gamma distribution is a good fitting for 
small area sizes. When area increases the lognormal provides the 
best fitting. 

 
Fig. 7. Comparison of the slopes of moments calculated from the 

distributions as a function of moments obtained empirically for areas sizes 
from 0.845 ha up to 50 ha. The closer the slope is to one the better the fit 
provided by the distribution. 

A. Comparing by different sub-areas 

In the previous section, we argued that the closer the slope 
of linear regression of the empirical moments as a function of 
those of the distributions were to one, the better the fit. Here, we 
show the same results explicitly for four different areas 0.98, 
12.5, 25.2 and 50 ha, see Fig.8. According to our previous 
discussion the distribution that provides the best fit is the one 
closer to the line going through zero and has slope one (the black 
line in Fig. 8). 

 
Fig. 8. Comparing linear regression of distribution moments of BCI and the 

real moments of order 1 up to order 10 in log-(double) log scale by 
considering area sizes 0.98, 12.5, 25.205, and 50 ha respectively for (a)-
(d). In each plot, the closer width from the origin is to zero the better fitting 
occurs. 

B. Fitting Distributions 

In Fig.9 we show the fitting of the several distributions to the 
SAD for different area sizes. Observe that for larger areas the 
fitting provided by the lognormal is clearly the best. 
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Fig. 9. Comparing the species abundance distribution of BCI, histogram, 

and the distributions for the area sizes of 0.98, 12.5, 25.205, and 50 ha, 
respectively (a)-(d).  

V. CONCLUSIONS 

None of the distributions considered gave the best fit at all 
areas. For small areas the distribution that gave the best fit was 
the Poisson gamma, and for larger areas the lognormal provided 
the best fit. Surprisingly, the logseries did not give the best fit 
for small areas. Notice, however, that the quality of the fit of 
the logseries kept increasing when area increased, suggesting 
that this distribution may end up providing a good fit for very 
large areas. 

In this work we considered a linear relationship between the 
log of the moments and the log of area size. We could show that 
the better result would have been obtained if, instead, we had 
considered a linear relationship between log of moments and 
double log of area size.  
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