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The quartic and trilinear Higgs field couplings to an additional real scalar are renormalizable, gauge 
and Lorentz invariant. Thus, on general grounds, one expects such couplings between the Higgs and 
an inflaton in quantum field theory. We find that the often omitted trilinear interaction is only weakly 
constrained by cosmology and could stabilize the electroweak vacuum by increasing the Higgs self-
coupling. The consequent Higgs–inflaton mixing can be as large as order one making a direct inflaton 
search possible at the LHC.
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1. Introduction

The current data favor metastability of the electroweak (EW) 
vacuum, although the result is very sensitive to the top quark mass 
[1–6]. Assuming that our vacuum is indeed metastable, we face a 
number of cosmological challenges including why the Universe has 
chosen an energetically disfavored state and why it stayed there 
during inflation despite quantum fluctuations [7,8]. Minimal solu-
tions to these puzzles require modification of the Higgs potential 
during inflation only [8], although introduction of a single extra 
scalar is sufficient to make the electroweak vacuum completely 
stable [9,10].

In this Letter, we suggest another minimal option which does 
not employ any extra fields beyond the usual inflaton. We show 
that the Higgs mixing with an inflaton can lead to a stable EW 
vacuum. A trilinear Higgs–inflaton coupling always leads to such 
a mixing and it is generally present in models describing the re-
heating stage [11]. We find that cosmological constraints on this 
coupling are weak and an order one mixing is possible. In this 
case, the model is effectively described by a single mass scale 
of the EW size making it particularly interesting for direct LHC 
searches.
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SCOAP3.
2. The set up

In quantum field theory, one should include all the couplings 
that are (up to) dimension-4, gauge and Lorentz invariant. Thus, 
on general grounds, we expect a quartic H† Hφ2 and a trilinear 
H† Hφ interaction between the Higgs field and an inflaton φ. The 
presence of the trilinear term can be motivated by the need for re-
heating the Universe after inflation: the inflaton transfers (at least 
in part) its energy to the SM particles through decay and the rel-
evant interactions generate the H† Hφ term at loop level [11]. It 
can only be forbidden if the inflaton is assumed to be stable, for 
instance, due to the φ → −φ symmetry, and constitutes part of 
dark matter [12]. However, it is not clear whether this symmetry 
remains exact in quantum gravity.

Apart from the renormalizable QFT interactions, the Higgs dy-
namics are affected by its coupling to gravity. Although gravity is 
non-renormalizable, one may focus on the coupling of lowest di-
mension H† H R̂ [13], with R̂ being the scalar curvature, assuming 
that the effective field theory expansion applies. In any case, such 
a coupling is generated radiatively [14].

Thus, on general grounds, we expect the following lead-
ing interactions between the Higgs and an inflaton/gravity (see 
also [15]),

−Lhφ = λhφ H† Hφ2 + 2σ H† Hφ ,

−LhR = ξh H† H R̂ . (1)
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

https://doi.org/10.1016/j.physletb.2018.10.074
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:mindaugas.k@ucm.es
https://doi.org/10.1016/j.physletb.2018.10.074
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2018.10.074&domain=pdf


374 Y. Ema et al. / Physics Letters B 789 (2019) 373–377
It is interesting that this setup necessarily leads to the mixing be-
tween the Higgs and the inflaton. This is required by the H† Hφ

term with H developing a vacuum expectation value.
Including an analogous φ coupling to gravity and all renormal-

izable φ-self-interactions, we obtain the following Jordan frame 
action:

S =
∫

d4x
√

−ĝ

[
1

2
�2 R̂ − 1

2
ĝμν∂μφ ∂νφ

− 1

2
ĝμν∂μh ∂νh − V (φ,h)

]
, (2)

where we have set MPl = 1 and used the unitary gauge H =
(0, h/

√
2)T . The frame function �2 and the potential V (φ, h) are 

given by

�2 = 1 + ξφφ2 + ξhh2 ,

V (φ,h) = λh

4
h4 − μ2

h

2
h2 + λhφ

2
h2φ2 + σh2φ

+ λφ

4
φ4 + b3

3
φ3 − μ2

φ

2
φ2 + b1φ , (3)

where we have eliminated the φ R̂ term by field redefinition of φ. 
We take λφ > 0, ξφ � |ξh|, 1 as well as λh > 0 at the inflation 
scale, which we justify later by the Higgs–inflaton mixing. Fur-
ther, we assume that all the dimensionful parameters are far below 
the Planck scale. In a particularly interesting case of a single mass 
scale, these parameters are of electroweak size.

3. Inflation

In what follows, we consider a representative inflation model 
which fits the PLANCK data [16] very well. That is, we assume 
that inflation is driven by the non-minimal φ coupling to grav-
ity ξφφ2 R̂ with ξφφ2 � 1, in analogy with the “Higgs inflation” 
model [17].1 The transition to the Einstein frame, where the 
curvature-dependent term becomes the usual R/2, is achieved by 
the metric rescaling [18]

gμν = �2 ĝμν . (4)

This induces non-canonical kinetic terms for the scalars. Since 
|ξh| � ξφ , h � φ and the dimensionful quantities are far below the 
Planck scale, during inflation one can neglect all the terms apart 
from λφφ4 and ξφφ2. For the canonically normalized variable χ
satisfying

dχ

dφ
=

√
1 + ξφ(1 + 6ξφ)φ2

1 + ξφφ2
, (5)

one finds χ �
√

3
2 ln ξφφ2 in our regime and the potential is given 

by

U (χ) � λφ

4ξ2
φ

(
1 − e−

√
2
3 χ

)2

, (6)

where U ≡ V /�4. At χ � 1, it is exponentially close to a flat po-
tential and thus supports inflation. The CMB normalization [19]

1 Within the parameter range considered in this paper (i.e. ξφ � ξh and λhφ >

λφ ), the Higgs field is heavy during inflation. Thus, it quickly evolves towards the 
minimum of the potential for arbitrary (but sub-Planckian) initial conditions.
requires λφ/ξ2
φ � 0.5 ×10−9. A further constraint on these parame-

ters comes from unitarity considerations. The unitarity cutoff scale 
of our theory is given by ξ−1

φ at which higher dimension operators 
cannot be ignored [20,21], while the energy density during infla-
tion is of order λφ/ξ2

φ . Requiring ξ−4
φ � λφ/ξ2

φ , one finds λφξ2
φ � 1. 

Combining this with the CMB normalization constraint, we get

λφ(
I ) � 2 × 10−5 (7)

and ξφ(
I ) � 2 × 102, where 
I is the inflation scale which can 
be taken to be U 1/4 ∼ (λφ/ξ2

φ )1/4.2 This may be a somewhat con-
servative bound [22]. We further impose the condition that the 
radiative corrections to the inflaton potential, e.g. in the Coleman–
Weinberg form, be small (see, for example, [8]). This gives approxi-
mately λ2

hφ
/16π2 � λφ restricting λhφ to be below 10−2 at the in-

flation scale. On the other hand, the Coleman–Weinberg correction 
induced by the trilinear φh2 term is negligible: it is suppressed by 
(σ /φ)2 which is vanishingly small in the range of interest.

During inflation, the Higgs field is a spectator. For λh > 0 and 
λhφ in the range of interest, it is a heavy field at the inflation scale, 
with mass of order 

√
λhφ/ξφ � H I , stabilized at the origin [23]. 

Since the inflationary dynamics are dictated by the quartic cou-
plings, the Higgs–inflaton mixing is completely negligible at this 
stage.

The inflationary predictions of the model are in excellent agree-
ment with the PLANCK data. In particular, the scalar spectral in-
dex is predicted to be ns � 0.97 and the tensor-to-scalar ratio is 
r � 3 × 10−3 [17]. The latter is within the range of detectability 
by future CMB missions [24]. Due to small inflaton couplings, the 
shape of the inflaton potential at large field values is insensitive to 
loop corrections, at least within the errors of the present and near 
future CMB probes.

4. Preheating and reheating

During inflation the χ field slowly rolls towards smaller values, 
while the Higgs is anchored at the origin by the inflaton-induced 
effective mass. When χ reaches the critical value χ = χend �√

3/2 ln
(

1 + 2/
√

3
)

[25], the slow-roll ends and χ rolls fast to 
the minimum of the potential where it oscillates with a decaying 
amplitude.

In terms of the original variable φ, inflation ends at φ ∼ 1/
√

ξφ . 
As its amplitude decreases further, the regimes relevant for pre-
heating are described by the canonically normalized inflaton χ via 
the relation

χ �
⎧⎨
⎩

φ for φ2 � 1
6ξ2

φ

,

±
√

3
2 ξφφ2 for 1

6ξ2
φ

� φ2 � 1
ξφ

.
(8)

In these regimes, the potential is U (χ) = 1
4 λφχ4 and U (χ) =

λφ

6ξ2
φ

χ2, respectively. The inflaton starts oscillating in the quadratic 

potential with the effective mass-squared μ2 = λφ

3ξ2
φ

, while its am-

plitude decreases as (μt)−1. Thus, after μt ∼ O(6ξφ) the system 
enters the quartic regime and the inflaton becomes massless (at 
the classical level). At this stage, the Universe quickly becomes 
radiation-dominated [26] although that does not imply thermal 
equilibrium. In particular, as shown in the upper panel of Fig. 1, 
the equation of state approaches that of radiation, p = wρ with 

2 For the renormalization group running of the couplings, we take 
I ∼ M Pl to 
simplify numerical computations.
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Fig. 1. Upper: Evolution of the equation of state for representative values of λh(
I )

(lattice simulation). Here μ =
√

λφ/3ξ2
φ , ξφ(
I ) = 102, λhφ(
I ) = 10−3 and at late 

times w = p/ρ approaches 1/3. Lower: Ratio between the Higgs and the infla-
ton energy densities. For λh(
I ) = 10−2, the Higgs quanta are produced efficiently 
through parametric resonance.

w = 1/3, where p and ρ are the pressure and the energy density, 
respectively.3 This is known as the prethermalization phase [27].

The time it takes for the system to reach chemical and finally 
thermal equilibrium depends rather sensitively on the input pa-
rameters. The Higgs quanta can efficiently be produced via para-
metric resonance [28] due to the h2φ2 coupling (Fig. 1, lower 
panel). If the resonance stays active long enough, chemical equi-
librium between the Higgs and inflaton fields sets in earlier. For a 
substantial λh ∼ 1, however, the resonance is shut off by the back-
reaction effects which induce an extra contribution to the Higgs 
mass-squared ∼ λh〈h2〉. In this case, the Higgs quanta are produced 
through perturbative scattering and thermal equilibrium is reached 
much later.

The lower bound on the reheating temperature can be es-
timated by equating the perturbative interaction rate with the 
Hubble rate in the radiation-dominated phase. The scattering is 
expected to be dominated by the φ2h2-interaction, which gives 
Treh � O(λ2

hφ
). For typical coupling values, this results in Treh ∼

1012 GeV.
As the Universe expands and the temperature drops below the 

inflaton mass, the inflaton undergoes the usual “freeze-out”. Owing 
to the trilinear φh2 interaction, it will quickly decay away either 
into Higgs pairs or light particles (at 1-loop). We emphasize that 

3 To produce these figures we performed lattice simulations with initial values 
of homogeneous fields φ = M Pl and h = 0 plus Gaussian random fluctuations. Only 
operators with dimensionless couplings (in the Jordan frame) are taken into ac-
count, since others are suppressed within a given timescale. Terms proportional to 
h/M P are also ignored. The values displayed in the plots are averages over all lattice 
points.
the trilinear term plays a crucial role for consistency of the model: 
the stable inflaton relics would “overclose” the Universe since the 
φ-annihilation cross section is too small to be consistent with the 
dark matter relic abundance. The latter requires larger couplings, 
λhφ ∼ 10−1 − 1 [29].

5. Vacuum stability and low energy constraints

Our next step is to analyze constraints on the model imposed 
by vacuum stability. In this low energy analysis, the dimensionful 
parameters play a crucial role.

Presently, the curvature is so small that the distinction between 
the Jordan and Einstein frames becomes immaterial. Thus, we may 
focus entirely on the potential V (φ, h) of Eq. (3), treating φ and h
as canonically normalized scalars. In general, both the Higgs and 
the inflaton develop vacuum expectation values (VEVs) at the min-
imum of the potential, v ≡ 〈h〉 and u ≡ 〈φ〉. It is convenient, how-
ever, to redefine the inflaton field φ′ = φ − u such that 〈φ′〉 = 0. In 
terms of the primed field, the potential retains the same form (3)
if we define the primed dimensionful parameters as [30,31]

b′
3 = b3 + 3λφu ,

μ′ 2
φ = μ2

φ − 3λφu2 − 2b3u ,

b′
1 = b1 + λφu3 + b3u2 − μ2

φu (9)

σ ′ = σ + λhφu ,

μ′ 2
h = μ2

h − λhφu2 − 2σu .

Note that the dimensionless couplings are not affected by this re-
definition. At the electroweak minimum (〈h〉, 〈φ′〉) = (v, 0), the 
Higgs and the inflaton mix such that the mass eigenstates h1, h2

are given by
(

h1
h2

)
=

(
cos θ sin θ

− sin θ cos θ

)(
h − v

φ′
)

. (10)

The masses m1,2 of h1,2 and the mixing angle θ are related to the 
input parameters by

2λh v2 = m2
1 cos2 θ + m2

2 sin2 θ ,

λhφ v2 − μ′2
φ = m2

1 sin2 θ + m2
2 cos2 θ ,

σ ′v = sin 2θ

4

(
m2

1 − m2
2

)
.

(11)

If we identify the observed 125 GeV Higgs-like boson with h1, 
for m2 > m1 the first relation in (11) implies that the Higgs self-
coupling λh is greater than that in the SM (obtained by setting 
θ = 0). This correction can stabilize the Higgs potential at large 
field values such that λh would never turn negative (see Fig. 2).

It is important to note that a substantial mixing angle θ implies 
that m2 cannot be arbitrarily large. Indeed, if m2 is far above the 
weak scale, the first relation in (11) makes λh non-perturbative. In 
fact, if we require our model to be valid from the electroweak to 
the Planck (or unitarity) scale, all the mass parameters are con-
fined to the TeV region.

Our next step is to identify parameter regions in which our 
model remains perturbative up to the Planck scale and the elec-
troweak vacuum remains global. To do that, we use the renormal-
ization group (RG) equations 4

4 We have computed these equations analytically and verified the result with
SARAH [32].
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Fig. 2. The running of Higgs self-coupling λh for different values of the mixing angle 
θ and mass m2 of the heavy mass eigenstate h2.

16π2 dλh

dt
= 24λ2

h − 6y4
t + 3

8

(
2g4 + (g2 + g′2)2

)

+ (12y2
t − 9g2 − 3g′2)λh + 2λ2

hφ,

16π2 dλhφ

dt
= 8λ2

hφ + 12λhλhφ − 3

2
(3g2 + g′2)λhφ

+ 6y2
t λhφ + 6λφλhφ, (12)

16π2 dλφ

dt
= 8λ2

hφ + 18λ2
φ,

16π2 dσ

dt
= σ

(
12λh + 8λhφ − 3g′2

2
− 9g2

2
+ 6y2

t

)
+ 2λhφb3,

16π2 db3

dt
= 24σλhφ + 18λφb3,

16π2 dyt

dt
= yt

(
9

2
y2

t − 17

12
g′ 2 − 9

4
g2 − 8g2

3

)
,

16π2 dgi

dt
= ci g3

i with (c1, c2, c3) = (41/6,−19/6,−7,

where t = lnμ with μ being the energy scale and gi = (g′, g, g3)

denote the gauge couplings. As the input values at the top quark 
mass scale Mt , we use g(Mt) = 0.64, g′(Mt) = 0.35, g3(Mt) =
1.16 and yt(Mt) = 0.93. Here we omit the RG equations for μ2

i
and b1, which are unimportant for a potential analysis at large field 
values (although taken into account numerically).

Our results are presented in Fig. 3. The upper panel shows pa-
rameter space allowed by perturbativity and positivity of λh at 
all scales up to MPl. This is analogous to the analysis of [33] for 
a Z2-symmetric scalar potential. Here we have cut | sin θ | at 0.3 
which is the upper bound imposed by the Higgs coupling measure-
ments [34]. (Almost all of the white region with m2 > 300 GeV is 
also consistent with the LHC and electroweak constraints [33,35].) 
We conclude that electroweak to TeV values of σ ′ and m2 can lead 
to a stable Higgs potential.

The lower panel shows the {λhφ, b′
3} parameter region in which 

the electroweak vacuum is the global minimum of the scalar po-
tential. The left part of the panel is excluded by the stability con-
straint on the running couplings,

λhφ(μ) > −√
λh(μ)λφ(μ) , (13)

which ensures that there is no unbounded from below direction at 
large field values. Relatively large |λhφ | � 2 × 10−3 lead to a signif-
icant RG contribution to λφ thus violating the unitarity constraint 
(7) at the high scale. This excludes the rightmost part of the panel. 
In the upper and lower shaded regions, there exist further minima 
of the scalar potential at large φ′ ∼ −b′

3/λφ which are deeper than 
the electroweak one. We exclude these regions to be conservative 
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. 3. Upper: Values of sin θ and m2 consistent with Higgs potential stability and 
rturbativity up to MPl (white region). Also displayed are the curves of con-
nt σ ′ . Here λhφ = 10−3, λφ = 10−5 at the EW scale and negative sinθ are ob-
ned by flipping the sign of σ ′ . Lower: The {λhφ, b′

3} parameter region (in GeV) 
which the electroweak vacuum is a global minimum. The other EW scale pa-

meters are fixed to be m2 = 600 GeV, sin θ = 0.144, λφ = 10−5 corresponding to 
= −100 GeV.

though thermal and inflationary effects may stabilize the fields 
 smaller values in the Early Universe.

We find that for u up to 10 TeV, the numerical difference be-
een σ and σ ′ is negligible. In particular, σ � λhφu and accord-

g to Eq. (11) the Higgs–inflaton mixing is governed entirely by 
e trilinear σ -term.

We also note that for negative values of λhφ , the field that 
ives inflation is a combination of φ with a small admixture of 
[23,36,37]. The Early Universe dynamics develops along the lines 
scussed above except the reheating process is expected to be 
ore efficient due to the Higgs interactions.

Our analysis shows that there are interesting prospects for the 
C new physics searches. First of all, the Higgs–inflaton mixing 

anifests itself as a universal reduction in the Higgs couplings to 
uge bosons and fermions. Deviations at a few percent level can 
 detected in the high luminosity LHC phase [38]. Furthermore, 
e mostly-inflaton state h2 can be found directly as a heavy Higgs-
e resonance. This is facilitated by the decay h2 → h1h1 which 
akes m2 in the TeV range with | sin θ | ∼ 10−1 accessible to LHC 
arches [31,33,39,40].

 Conclusions

We have studied the minimal option of stabilizing the EW vac-
m via the Higgs–inflaton mixing, where inflation is driven by a 
n-minimal scalar coupling to curvature. In the presence of the 

ilinear Higgs–inflaton interaction, such a mixing is inevitable and 
n significantly increase the Higgs self-coupling.
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We find that within the parameter range ξh � ξφ ≤ 2 × 102, 
λ < 2 × 10−5 and all dimensionful parameters of the magnitude 
� O (TeV) there is a substantial region where the EW vacuum 
is stable and the model is viable cosmologically from inflation 
through to reheating (see Fig. 3).

Moreover, the model is particularly attractive when it is de-
scribed by a single (TeV) mass scale, in which case the mixing 
angle is substantial. This makes the direct inflaton search at the 
LHC possible.
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