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Abstract: The study of the neural code aims at deciphering how the nervous system maps external
stimuli into neural activity—the encoding phase—and subsequently transforms such activity into
adequate responses to the original stimuli—the decoding phase. Several information-theoretical
methods have been proposed to assess the relevance of individual response features, as for example,
the spike count of a given neuron, or the amount of correlation in the activity of two cells.
These methods work under the premise that the relevance of a feature is reflected in the information
loss that is induced by eliminating the feature from the response. The alternative methods differ
in the procedure by which the tested feature is removed, and the algorithm with which the lost
information is calculated. Here we compare these methods, and show that more often than not,
each method assigns a different relevance to the tested feature. We demonstrate that the differences
are both quantitative and qualitative, and connect them with the method employed to remove the
tested feature, as well as the procedure to calculate the lost information. By studying a collection of
carefully designed examples, and working on analytic derivations, we identify the conditions under
which the relevance of features diagnosed by different methods can be ranked, or sometimes even
equated. The condition for equality involves both the amount and the type of information contributed
by the tested feature. We conclude that the quest for relevant response features is more delicate than
previously thought, and may yield to multiple answers depending on methodological subtleties.

Keywords: neural code; representation; decoding; spike-time precision; discrimination;
noise correlations; information theory; mismatched decoding

1. Introduction

Understanding the neural code involves, among other things, identifying the relevant response
features that participate in the representation of information. Different studies have proposed several
candidates, for example, the spiking rate [1,2], the response latency [3], the temporal organisation
of spikes [4], the amount of synchrony in a given brain area [5], the amount of correlation between
the activity of different neurons [6], or the phase of the local field potential at the time of spiking [7],
to cite a few. One way of evaluating the relevance of each candidate feature is to assess how much
information is lost by ignoring that feature. This strategy involves the comparison of the mutual
information between the stimulus and the so-called full response (a collection of response features
including the tested one) and the same information calculated with a reduced response, obtained by
dropping the tested feature from the full response. If the tested feature is relevant, the information
encoded by the reduced response should be smaller than that of the full response.
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The procedure is fairly straightforward when the response features are defined in terms of
variables that take definite values in each stimulus presentation, as for example, the spike count C fired
in a fixed time window, or the latency L between the stimulus and the first spike. The full response in
this case is a two-component vector [C, L], the value of which is uniquely defined for each stimulus
presentation—let us assume that in this example, C is never equal to 0, so L is always well defined.
The reduced response is a one-component vector, either C or L, depending whether we are evaluating
the relevance of the latency or the spike count, respectively. If the latency or the spike count are
relevant, then the information encoded by C or L, respectively, should be smaller than that of the
pair [C, L]. Throughout this paper, we often use C and L as examples of response features that take a
precise value in each trial, to contrast with other features that are only defined in the whole collection
of trials, as discussed below.

The method becomes more controversial when applied to response properties that can only be
defined in multiple stimulus presentations, as for example, the amount of correlation in the activity
of two or more neurons, or the temporal precision of the elicited spikes. These properties cannot be
calculated from single responses, so more sophisticated methods are required to delete the tested
feature. There are several alternative procedures to perform such deletion, and several are also the
ways in which the lost information can be calculated. Interestingly, the lost information depends
markedly on the chosen method, implying that the so-called relevance of a given feature is a subtle
concept, that needs to be specified precisely. When assessing the relevance of noise correlations,
two different sets of strategies have been proposed by the seminal works of Nirenberg et al. [8] and
Schneidman et al. [9]. The first proposal evaluated the role of noise correlations in decoding the
information represented in neural activity, whereas the second, in the amount of encoded information.
Quite surprisingly, the contribution of correlations to the decoded information was shown to sometimes
exceed the amount of encoded information [9], seemingly contradicting the intuitive idea that
the encoded information constitutes an upper bound to the decoded information. The apparent
inconsistency between the two measures has not been observed in later extensions of the technique,
where the relevance of other response aspects was evaluated, such as spike-time precision, spike-counts
or spike-onsets. Moreover, it has even been argued that the inconsistency was exclusively observed
when assessing the role of noise correlations [10–13].

In this paper, for the first time, the different methods used in the literature to delete a given
response feature are distinguished, and the implications of each method are discussed and compared.
We show that the data processing inequality, stating that the decoded information cannot surpass the
encoded information, can only be invoked with some - and not all - deletion procedures. The distinction
between such procedures allows us to identify the conditions in which the decoded information can
exceed the encoded information, and to demonstrate that there was no logical inconsistency in
previous studies. We also show explicit examples where the decoded information surpasses the
encoded information also when assessing the role of other response aspects different from noise
correlations. In order to explain why such behaviours have not been identified until now, we scrutinise
the arguments given in the literature to claim that only noise correlations could exhibit such syndrome.
We conclude that although the measures employed to assess the relevance of individual response
features initially distinguished clearly between the relevance for encoding and the relevance for
decoding, this distinction was eventually lost in later modifications of the measures. By diagnosing the
confusion, we prove that indeed, the response features for which the decoded information can surpass
the encoded information are not restricted to noise correlations.

More generally, we discuss a wide collection of strategies employed to assess the relevance
of individual response features, ranging from those encoded-oriented to those decoded-oriented.
This distinction is related to the way the tested feature contributes to the performance of decoders,
which can be mismatched or not. The relevance of the tested feature obtained with some of the
measures is always bounded by the relevance of another measure. Yet, not all measures can be ordered
hierarchically. There are examples where the relevance of a feature obtained with one method may
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surpass or be surpassed by the relevance of another, depending on the specific values taken by the prior
stimulus probability and the conditional response probabilities. We analyse a collection of carefully
chosen examples to identify the cases where this is so. In certain restricted conditions, however,
the hierarchy, or even the equality, can be ensured. Here we establish these conditions by means of
analytic reasoning, and discuss their implications in terms of the amount and type of information
encoded by the tested feature.

We also present examples in which the measures to assess the relevance of a given feature can be
used to extract qualitative knowledge about the type of information encoded by the feature. In other
words, we assess not only how much information is encoded by an individual feature, but also what
kind of information is provided, with respect to individual stimulus attributes. Again, we prove that
the type of encoded information depends on the method employed to assess it.

Finally, given that one important property of measures of relevance hinges on whether they
represent the operation of matched or mismatched decoders, we also explore the consequences of
operating mismatched decoders on noisy responses, instead of real responses. We conclude that it
may be possible to improve the performance of a mismatched decoder by adding noise. From the
theoretical point of view, this observation underscores the fact that the conditions for optimality for
matched decoders need not hold for mismatched decoders. From the practical perspective, our results
open new opportunities for potentially simpler, more efficient and more resilient decoding algorithms.

In Section 2.1, we establish the notation, and we introduce some of the key concepts that will
be used throughout the paper. These concepts are employed in Section 2.2 to determine the cases
where the data-processing inequality can be ensured. In Section 2.3 we introduce 9 measures of feature
relevance that were previously defined in the literature, and briefly discuss their meaning, similarities
and discrepancies. A numeric exploration of a set of carefully chosen examples is employed in
Section 2.4 to detect the pairs of measures for which no general hierarchical order exists. In Section 2.5
we discuss the consequences of employing measures that are conceptually linked to matched or
mismatched decoders. Later, in Section 2.6, we explore the way in which different measures of feature
relevance arrogate different qualitative meaning to the type of information encoded by the tested
feature. In Section 2.7 we discuss the conditions under which encoding-oriented measures provide the
same amount of information as their decoding-oriented counterparts, and also the conditions under
which the equality extends also to the content of that information. Then, in Section 2.8, we observe
that sometimes, mismatched decoders may improve their performance when operating upon noisy
responses. We discuss some relations of our work with other approaches and to the limiting sampling
problem in Section 3, and we close with a summary of the main results of the paper in Section 4.

2. Results

2.1. Definitions

2.1.1. Statistical Notation

When no risk of ambiguity arises, we here employ the standard abbreviated notation of statistical
inference [14], denoting random variables with letters in upper case, and their values, in lower case.
For example, the symbol P(x|y) always denotes the conditional probability of the random variable
X taking the value x given that the random variable Y takes the value y. This notation may lead to
confusion or be inappropriate, for example, when the random variable X takes the value u given that
the random variable Y takes the value v. In those cases, we explicitly indicate the random variables
and their values, as for example P(X = u|Y = v).
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In the study of the neural code, the relevant random variables are the stimulus S and the response
R generated by the nervous system. In this paper, we discuss the statistics of the true responses
observed experimentally, and compare them with a theoretical model that describes how responses
would be, if the encoding strategy were different. To differentiate these two situations, we employ
the variable Rex for the experimental responses (the real ones), and Rsu for the surrogate responses
(the fictitious ones). The associated conditional probability distributions are Pex(Rex = r|S = s) and
Psu(Rsu = r|S = s), which are often abbreviated as Pex(r|s) and Psu(r|s), respectively. Once these
distributions are known, and given the prior stimulus probabilities P(s), the joint probabilities Pex(r, s)
and Psu(r, s) can be deduced, as well as the marginals Pex(r) and Psu(r). When interpreting the
abbreviated notation, readers should keep in mind that Pex governs the variable Rex, and Psu, Rsu. If a
statement is made about a distribution P or a response variable R that has no sub-index, the argument
is intended for both the real and surrogate distributions or variables.

2.1.2. Encoding

The process of converting stimuli S into neural responses R (e.g., spike-trains, local-field potentials,
electroencephalographic or other brain signals, etc.) is called “encoding” [9,15]. The encoding process
is typically noisy, in the sense that repeated presentations of the same stimulus may yield different
neural responses, and is characterised by the joint probability distribution P(s, r). The associated
marginal probabilities are

P(s) = ∑
r

P(s, r),

P(r) = ∑
s

P(s, r),

from which the conditional response probability P(r|s) = P(s, r)/P(s), and the posterior stimulus
probability P(s|r) = P(s, r)/P(r) can be defined.

The mutual information that R contains about S is

I(S; R) = ∑
s,r

P(s, r) log2
P(s|r)
P(s)

. (1)

More generally, the mutual information I(S; X) about S contained in any random variable X,
including but not limited to R, can be computed using the above formula with R replaced by X.
For compactness, we denote I(S; X) as IX unless ambiguity arises.

2.1.3. Data Processing Inequalities

When the response R2 is a post-processed version of the response R1, the joint probability
distribution P(s, r1, r2) can be written as P(s, r1) P(r2|r1). This decomposition implies that R2 is
conditionally independent of S. In these circumstances, the information about S contained in R2

cannot exceed the information about S contained in R1 [16]. In addition, the accuracy of the optimal
decoder operating on R2 cannot exceed the accuracy of the optimal decoder operating on R1 [17].
These results constitute the data processing inequalities.

2.1.4. Decoding

The process of transforming responses r into estimated stimuli ŝ is called “decoding” [9,15].
More precisely, a decoder is a mapping r→ŝ defined by a function ŝ = D(r). The inverse of this
function is D−1, and when D is not injective, D−1 is a multi-valued mapping. The joint probability
P(s, ŝ) of the presented and estimated stimuli, also called “confusion matrix” [12], is

P(s, ŝ) = ∑
r∈D−1(ŝ)

P(s, r) , (2)
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where the sum runs over all responses r that are mapped onto ŝ by D. The information that Ŝ preserves
about S is IŜ, and can be calculated from the confusion matrix of Equation (2). The decoding accuracy
above chance level is here defined as

A = ∑
s

P(S=s, Ŝ=s)−max
s

P(s) . (3)

2.1.5. Optimal Decoding

Although all mappings D are formally admissible as decoders, not all are useful. The aim of a
decoder is to make a good guess of the external stimulus S from the neural response R. It is therefore
important to be able to construct decoders that make good guesses, or at least, as good as the mapping
from stimuli to responses allows. Optimal decoders (also called Bayesian or maximum-a-posteriori
decoders, as well as ideal homunculus, or observer, among other names) are defined as [18,19]

ŝ = Dopt(r) = arg max
s

P(s|r) = arg max
s

P(s, r) . (4)

This mapping selects, for each response r, the stimulus ŝ that most likely generated r. It is optimal
in the sense that any other decoding algorithm yields a confusion matrix with lower decoding accuracy.
Equation (4) depends on P(s, r), so the decoder cannot be defined before knowing the functional shape
of the joint probability distribution between stimuli and responses. The process of estimating P(s, r)
from real data, and the subsequent insertion of the obtained distribution in Equation (4) is called the
training of the decoder. The word “training” makes reference to a gradual process, originally stemming
from a computational strategy employed to estimate the distribution progressively, while the data was
being gathered. However, in this paper we do not discuss estimation strategies from limited samples,
so for us, “training a decoder” is equivalent to constructing a decoder from Equation (4).

2.1.6. Extensions of Optimal Decoding

The study of Ince et al. [20] introduced the concept of ranked decoding, in which each response r
is mapped onto a list of K stimuli ŝ = (ŝ1, . . . , ŝK) ordered according to their posterior probabilities
so that P(ŝk|r) ≥ P(ŝk+1|r) (with 1 ≤ k < K, and K ≤ the total number of stimuli in the experiment).
Ranked decoding can provide useful models for intermediate stages in the decision pathway, and the
information loss induced by ranked decoding was computed recently [17]. The joint probability
associated with ranked decoding is

P(s, ŝ) = ∑
r∈D−1(ŝ)

P(s, r) , (5)

where the sum runs over all response vectors r that produce the same ranking ŝ. Although P(s, ŝ) can
be used to compute the information IŜ between S and Ŝ, it cannot be used to compute the decoding
accuracy above chance level because the support of Ŝ (i.e., the set of stimulus lists) is not contained in
the support of S (i.e., the set of stimuli).

2.1.7. Approximations to Optimal Decoding

For given probabilities P(r|s) and P(s), Equation (4) defines a mapping between each response
r and a candidate stimulus ŝ. In the study of the neural code, scientists often wonder what would
happen if responses were not governed by the experimentally recorded distribution Pex(r|s), but by
some other surrogate distribution Psu(r|s). If we replace Pex(r|s) by Psu(r|s) in Equation (4), we define
a new decoding algorithm

ŝ = Dsu(r) = arg max
s

Psu(s|r) = arg max
s

Psu(s, r) . (6)

which, as discussed below, may or may not be optimal, depending on how the decoder is used.
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2.1.8. Two Different Decoding Strategies

One alternative, here referred to as “decoding method α” is that, for each response r obtained
experimentally, one decodifies a stimulus ŝ using the new mapping of Equation (6). In this case,
the chain s→r→ŝ gives rise to the confusion matrix

Pα(s, ŝ) = ∑
r∈D−1

su (ŝ)

Pex(s, r) , (7)

where the sum runs over all response vectors r that are mapped onto ŝ by the new decoding algorithm
Dsu, and the probability Pex(r, s) appearing in the right-hand side is the real one, since responses r
are generated experimentally. It is easy to see that in this case, the decoding accuracy of the new
algorithm is suboptimal, since responses r are generated with the original distribution Pex(r|s), and for
that distribution, the optimal decoder is given by Equation (4) with P = Pex. In the literature, training a
decoder with a probability Psu(r|s) and then operating it on variables that are generated with Pex(r|s)
is called mismatched decoding. In what follows, information values calculated from the distribution
of Equation (7) are noted as Iα

Ŝ
.

A second alternative, “decoding method β,” is that, for each stimulus s, a surrogate response Rsu

is drawn using the new distribution Psu(r|s). If the sampled value is Rsu = r, the stimulus ŝ = Dsu(r)
is decoded. In this case, the confusion matrix is

Pβ(s, ŝ) = ∑
r∈D−1

su (ŝ)

Psu(s, r) , (8)

where as before, the sum runs over all response vectors r that are mapped onto ŝ by the decoding
algorithm Dsu(r), but now the probability Psu(r, s) appearing in the right-hand side is the surrogate
one, since responses Rsu are not generated experimentally. In this case, there is no mismatch between
the construction and operation of the decoder, and Dsu is optimal, in the sense that no other algorithm
decodes Rsu with higher decoding accuracy. One should bear in mind, however, that the surrogate
responses are not the responses observed experimentally, that they may well take values in a response
set that does not coincide with the set of real responses, and that Rsu is not necessarily obtained by
transforming the real response Rex with a stimulus-independent mapping (see below). In what follows,
information values calculated from the distribution of Equation (8) are noted as Iβ

Ŝ
. Methods α and β

can be easily extended to encompass also ranked decoding, mutatis mutandis.
The two alternative decoding methods yield two different decoding accuracies. To distinguish

them, we use the notation AR2
R1

. The superscript indicates the variable whose probability distribution is
used to construct the decoder in Equation (4), and consequently, determines the set of r ∈ D−1

su (ŝ) that
contribute to the sums of Equations (7) and (8). The subscript indicates the variable upon which the
decoder is applied, and its probability distribution is summed in the right-hand side of Equations (7)
and (8). That is, AR2

R1
is computed through Equation (3) with

PR2
R1
(s, ŝ) = ∑

r∈D−1
R2

(ŝ)

P(S = s, R1 = r) , (9)

so that Pα(s, ŝ) = PRsu
Rex

(s, ŝ) and Pβ(s, ŝ) = PRsu
Rsu

(s, ŝ).

2.2. The Applicability of the Data-Processing Inequality

Assessing the relevance of a response feature typically involves a subtraction ∆I=I − I′, where I
and I′ represent the mutual information between stimuli and a set of response features containing or not
containing the tested feature, respectively. The magnitude of ∆I is often interpreted as the information
provided by the tested feature. This interpretation requires ∆I to be positive, since intuitively,
one would imagine that removing a response feature cannot increase the encoded information.
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As shown below, a formal proof of this intuition may or may not be possible invoking the data
processing inequality (see Section 2.1.3 and reference [16]), depending on the method used to eliminate
the tested feature. As a consequence, there are cases in which ∆I is indeed negative (see below).
In these cases, the tested feature is detrimental to information encoding [9].

2.2.1. Reduced Representations

There are several procedures by which the tested feature can be removed from the response. The
validity of the data-processing inequalities (see definition in Section 2.1.3) depends on the chosen
procedure. In order to specify the conditions in which the inequalities hold, we here introduce
the concept of reduced representations. When the response feature under evaluation is removed
from Rex by a deterministic mapping Rsu = f (Rex), we call the obtained variable Rsu a reduced
representation of Rex. A required condition for a mapping to be a reduced representation is that
the function f be stimulus-independent, that is, that the value of Rsu be conditionally independent
from s. Mathematically, this means that P(rsu, s|rex) = P(rsu|rex) P(s|rex). If the mapping f and
the conditional response distribution Pex(r|s) are known, the distribution Psu(r|s) can be derived
using standard methods. The data processing inequality ensures that for all reduced representations,
IRex ≥ IRsu .

Reduced representations are usually employed when the response feature whose relevance is to
be assessed takes a definite value in each trial, as happens for example, with the number of spikes in a
fixed time window, the latency of the firing response, or the activity of a specific neuron in a larger
population of neurons. In these cases it is easy to construct Rsu simply by dropping from Rex the tested
feature, or by fixing its value with some deterministic rule.

Reduced representations can also be used in other cases, for example, when the relevance of the
feature response accuracy is assessed. This feature does not take a specific value in each trial; only by
comparing multiple trials can the response accuracy be determined. A widely-used strategy is to
represent spike trains with temporal bins of increasing duration, and to evaluate how the amount of
information decreases as the representation becomes coarser. A sequence of surrogate responses is
thereby defined, by progressively disregarding the fine temporal precision with which spike trains
were recorded (Figure 1).

Several studies have reported an information IRsu that decreases monotonically with the duration
δt of the time bin (for example [21–23]). If there is a specific temporal scale in which spike-time
precision is relevant—the alleged argument goes—a sudden drop in IRsu(δt) appears at the relevant
scale. It should be noted, however, that the data processing inequality does not ensure that IRsu(δt) be
a monotonically decreasing function of δt. In the example of Figure 1, representations R1

su and R2
su

are defined with long temporal bins, the durations of which are integer multiples of the bin used for
Rex. Hence, R1

su and R2
su are reduced representations of Rex, and the data processing inequality does

indeed guarantee that IRex ≥ IR1
su

and IRex ≥ IR2
su

. However, R2
su is not a reduced representation of R1

su,
so there is no reason why IR2

su
should be smaller than IR1

su
, and indeed, Figure 1b shows an example

where it is not. The representation constructed with bins of intermediate duration, namely 10 ms,
does not distinguish between the two stimuli, whereas those of shorter and longer duration, 5 and
15 ms, do. A similar effect can be observed in the experimental data (freely available online) of
Lefebvre et al. [24], when analysed with bins of sizes 5, 10 and 15 ms in windows of total duration
60 ms. Although these examples are rare, they demonstrate that there is no theoretical substantiation
to the expectation of IRsu to drop monotonically with increasing δt.



Entropy 2018, 20, 879 8 of 33

Time scale (ms)
Stimulus

Spike counts    Rex 1

� � � �

30

10 000 1 10 00 1 10 0 0 1 10 000 1 1
1 1 0 1 1 0 1 1 1
2 0 1 1 2 11 2

1 1 1

Spike counts Rex 1
Rsu

1

Rsu2

0 000 10 0 10 0 0 0 000 1
1 0 1
1 0

1
0
0

0 0
0

1 0
0

0 000
1
1 10

0 0
0
0 0

a

Rsu
1

Rsu2

b

Figure 1. Assessing the relevance of response accuracy by varying the duration of the temporal bin.
(a) Hypothetical intracellular recording of the spike patterns elicited by a single neuron after presenting
in alternation two visual stimuli, and , each of which triggers two possible responses displayed in
columns 1 and 3 for , and 2 and 4 for . Stimulus probabilities and conditional response probabilities
are arbitrary. Time is discretized in bins of 5 ms. The responses are recorded within 30 ms time-windows
after stimulus onset. Spikes are fired with latencies that are uniformly distributed between 0 and
10 ms after the onset of , and between 20 and 30 ms after the onset of . Responses are represented
by counting the number of spikes within consecutive time-bins of size 5, 10 and 15 ms starting from
stimulus onset, thereby yielding discrete-time sequences Rex, R1

su and R2
su, respectively; (b) Same as a,

but with stimuli producing two different types of response patterns composed of 2 or 3 spikes.

2.2.2. Stochastically Reduced Representations

When the response feature under evaluation is removed from the response variable Rex

by a stochastic mapping Rex→Rsu, the obtained variable Rsu is called a stochastically reduced
representation of Rex. A required condition for a mapping to be a stochastically reduced representation
is that the probability distribution of each Rsu be dependent on Rex, but conditionally independent
from s. In these circumstances, the data processing inequality ensures that IRex ≥ IRsu . If the
statistical properties of the noisy components of the mapping are known, as well as the conditional
response probability distribution Pex(r|s), the distribution Psu(r|s) can be derived using standard
methods. Formally, stochastic representations Rsu are obtained through stimulus-independent
stochastic functions of the original representation Rex. After observing that Rex adopted the value
rex, these functions produce a single value rsu for Rsu chosen with transition probabilities Q(rsu|rex)

such that
Psu(rsu|s) = ∑

rex

Pex(rex|s) Q(rsu|rex) . (10)

To illustrate the utility of stochastically reduced representations, we discuss their role in providing
alternative strategies when assessing the relevance of spike-timing precision, not by changing the bin
size as in Figure 1, but by randomly manipulating the responses, as illustrated in Figure 2.
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□

○

a

S Rex

J ittering Discrimination

Rsu Rex Rsu Rex Rsu

b c

Figure 2. Examples of stochastic codes. Alternative ways of assessing the relevance of spike-timing
precision. (a) Stochastic function (arrows on the left) modeling the encoding process. The elicited
response rex is turned into a surrogate response rsu with a transition probability Q(rsu|rex) given
by Equation (11). This function turns Rex into a stochastic representation Rsu by shuffling spikes
and silences within bins of 15 ms starting from stimulus onset; (b) Responses rex in panel (a) are
transformed by a stochastic function with Q(rsu|rex) given by Equation (12), which introduces jitter
uniformly distributed within 15 ms windows centered at each spike; (c) Responses rex in panel (a)
are transformed by a stochastic function with Q(rsu|rex) given by Equation (13), which models the
inability to distinguish responses with spikes occurring in adjacent bins, or equivalently, with distances
d spike[q = 1]≤1 or d interval[q = 1]≤1 (see [25,26] for further remarks on these distances). Notice that
Rsu samples the same response set as Rex.

The method of Figure 2a yields the same information IRsu and response accuracy as the method
producing R2

su in Figure 1. Each method yields responses that can be related to the responses of the
other method through a stimulus-independent deterministic or stochastic function. Both methods
suffer from the same drawback: They treat spikes differently depending on their location within the
15 ms time window. Indeed, both methods preserve the distinction between two spikes located in
different windows, but not within the same window, even if the separation between the spikes is the
same. The mapping illustrated in Figure 2a has transition probabilities

Q(rsu|rex) =
1
3

[
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 1 1 1

]
, (11)

where rows enumerate the elements of the ordered setRex={[2], [3], [4]} from where Rex is sampled,
and columns enumerate the elements of the ordered setRsu={[1], [2], [3], [4], [5], [6]} from where Rsu

is sampled.
A third method, jittering, consists in shuffling the recorded spikes within time windows centered

at each spike (Figure 2b). The responses generated by this method need not be obtainable from the
responses generated by the mappings of Figure 2a or Figure 1 through stimulus-independent stochastic
functions. Still, the method of Figure 2b inherently yields a stochastic code, and, unlike the methods
discussed previously, treats all spikes in the same manner. The mapping illustrated in Figure 2b has
transition probabilities

Q(rsu|rex) =
1
3

[
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1

]
, (12)

where rows enumerate the elements of the ordered setRex={[2], [3], [4]} from where Rex is sampled,
and columns enumerate the elements of the ordered set Rsu={[1], [2], [3], [4], [5]} from where Rsu

is sampled.
As a fourth example, consider the effect of response discrimination, as studied in the seminal

work of Victor and Purpura [25]. There, two responses were considered indistinguishable when
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some measure of distance between the responses was less than a predefined threshold. However,
neural responses were transformed through a method based on cross-validation that is not guaranteed
to be stimulus-independent. Depending on the case, hence, this fourth method may or may not be a
stochastically reduced representation. The case chosen in Figure 2c is a successful example, and the
associated matrix of transition probabilities is

Q(rsu|rex) =
1
6

[ 3 3 0
2 2 2
0 3 3

]
, (13)

where rows and columns enumerate the elements of the ordered set Rex=Rsu={[2], [3], [4]} from
where both Rex and Rsu are sampled.

Other methods exist which merge indistinguishable responses, thereby yielding reduced
representations. These methods, however, are limited to notions of similarity that are transitive,
a condition not fulfilled, for example, by those based on Euclidean distance, edit distance, or by the
case of Figure 2c.

Stochastically reduced representations include reduced representations as limiting cases. Indeed,
when for each rex there is a rsu such that Q(rsu|rex) = 1, stochastic representations become reduced
representations (Figure 3). The possibility to include stochasticity, however, broadens the range of
alternatives. Consider for example the hypothetical experiment in Figure 3a, in which the neural
responses Rex=[L, C] can be completely characterized by the first-spike latencies (L) and the spike
counts (C). The importance of C can be studied for example by using a reduced code that replaces all
C-values with a constant (Figure 3b). In this case,

Q(rsu|rex) =

 1 0 0
0 1 0
0 1 0
0 0 1

 , (14)

where rows enumerate the elements of the ordered setRex={[2, 1], [3, 1], [3, 2], [4, 2]} from where Rex

is sampled, and columns enumerate the elements of the ordered set Rsu={[2, 1], [3, 1], [4, 1]} from
where Rsu is sampled.

Another alternative is to assess the relevance of C by means of a stochastic code that shuffles the
values of C across all responses with the same L (Figure 3c). In this case,

Q(rsu|rex) =

 1 0 0 0
0 a ā 0
0 a ā 0
0 0 0 1

 (15)

where rows enumerate the elements of the ordered setRex={[2, 1], [3, 1], [3, 2], [4, 2]} from where Rex

is sampled, and columns enumerate the elements of the ordered set Rsu={[2, 1], [3, 1], [3, 2], [4, 2]}
from where Rsu is sampled. The parameter a is arbitrary, as long as 0 < a < 1. We use the notation
ā = 1− a.

A third option is to use a stochastic code that preserves the original value of L but chooses the
value of C from some possibly L−dependent probability distribution (Figure 3d), for which

Q(rsu|rex) =

 b 0 0 b̄ 0 0
0 c 0 0 c̄ 0
0 c 0 0 c̄ 0
0 0 d 0 0 d̄

 (16)

where rows enumerate the elements of the ordered set Rex={[2, 1], [3, 1], [3, 2], [4, 2]}
from where Rex is sampled, and columns enumerate the elements of the ordered set
Rsu={[2, 1], [3, 1], [4, 1], [2, 2], [3, 2], [4, 2]} from where Rsu is sampled. The parameters a, b, c
and d are arbitrary, as long as 0<a, b, c, d<1; and we have used the notation x̄=1−x for any number x.
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Figure 3. Stochastically reduced representations include and generalize deterministically reduced
representations. (a) Analogous description to Figure 1a, but with responses characterized using a
representation Rex = [L, C] based on the first-spike latency (L) and the spike-count (C); (b) Deterministic
transformation (arrows) of Rex in panel a into a reduced code Rsu = [L̂, 1], which ignores the additional
information carried in C by considering it constant and equal to unity. This reduced code can also
be reinterpreted as a stochastic code with transition probabilities Q(rsu|rex) defined by Equation (14);
(c) The additional information carried in C is here ignored by shuffling the values of C across all
trails with the same L, thereby turning Rex in panel a into a stochastic code Rsu=[L̂, Ĉ] with transition
probabilities Q(rsu|rex) defined by Equation (15); (d) The additional information carried in C is here
ignored by replacing the actual value of C for one chosen with some possibly L-dependent probability
distribution (Equation (16)).

2.2.3. Modification of the Conditional Response Probability Distribution

When the response feature under evaluation is removed by altering the real conditional response
probability distribution Pex(r|s), and transforming it into a surrogate distribution Psu(r|s), the obtained
response model is here said to implement a probabilistic removal of the tested feature. Probabilistic
removals are usually employed when assessing the relevance of correlations between neurons in a
population, since correlations are not a variable that can be deleted from each individual response.
For example, if R=(R1, . . . , Rn) represents the spike count of n different neurons, the real distribution
Pex(r1, . . . , rn|s) is replaced by a new distribution Psu(r1, . . . , rn|s) in which all neurons are conditionally
independent, that is,

Psu(r|s) = PNI(r|s) =
n

∏
i=1

Pex(ri|s), (17)

where, following the notation introduced previously [17], the generic subscript “su” was replaced by
“NI” to indicate “noise-independent”.

The probabilistic removal of a response feature may or may not be describable in terms of a
deterministically or a stochastically reduced representation. In other words, there may or may not
exist a mapping Rex→Rsu, or equivalently, a matrix of transition probabilities Q(rsu|rex), that captures
the replacement of Pex(r|s) by Psu(r|s). It is important to assess whether such a matrix exists, since the
data processing inequality is only guaranteed to hold with reduced representations, stochastic or not.
If no reduced representation can capture the effect of a probabilistic removal, the data processing
inequality may not hold, and IRsu may well be larger than IRex .
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In order to determine whether a stochastically reduced representation exists, the first step is
to discern whether Equation (10) constitutes a compatible or an incompatible linear system for the
matrix elements Q(rsu|rex). If the system is incompatible, there is no solution. In the compatible case,
which is often indeterminate, a solution entirely composed of non-negative numbers that sum up to
unity in each row is required. Given enough time and computational power, the problem can always
be solved in the framework of linear programming [27]. In practical cases, however, the search is
often hampered by the curse of dimensionality. To facilitate the labour, here we list a few necessary
(though not sufficient) conditions that must be fulfilled for the mapping to exist. If any of the following
properties does not hold, Equation (10) has no solution, so there is no need to begin a search.

Property 1. Let µ(s) be a probability distribution defined in the set of stimuli that may or may not be equal to the
actual distribution with which stimuli appear in the experiment under study. For any stimulus s, the inequality
Iµ(Rsu; S = s) ≤ Iµ(Rex; S = s) between stimulus-specific informations [28,29] must hold, where

Iµ(R; S = s) = ∑
r

P(r|s) log2
P(r|s)

∑s′ P(r|s′) µ(s′)
. (18)

Proof. If Q(rsu|rex) exists, then Equation (10) can be inserted in Equation (18). Using the log-sum
inequality [16], Property 1 follows.

If we multiply both sides of the inequality by µ(s′) and sum over s′, we obtain an inequality
between the mutual informations Iµ(Rsu; S) ≤ Iµ(Rex; S). If µ(s) = P(s), this result reduces to the
data-processing inequality IRsu ≤ IRex .

Property 2. If Q(rsu|rex) exists, then Q(rsu|rex) = 0 whenever Pex(s, rex) > 0 and Psu(s, rsu) = 0 for at
least some s.

Proof. Suppose that Q(rsu|rex) > 0 when Pex(s, rex) > 0 for some s. Then, Equation (10) yields
Psu(rsu|s) > 0, contradicting the hypothesis that Psu(rsu|s) = 0. Hence, Q(rsu|rex) must vanish.

For example, in Figure 4a, we decorrelate first-spike latencies (L) and spike counts (C) by replacing
the true conditional distribution Pex(r|s) (left panel) by its noise-independent version Psu = PNI(r|s)
defined in Equation (17) (middle panel). Before searching for a mapping Rex→Rsu, we verify that the
condition IRex > IRsu holds. Moreover, for several choices of µ( ) and µ( ), one may confirm that
Iµ(Rex; S = ) > Iµ(Rsu; S = ), as well as Iµ(Rex; S = ) > Iµ(Rsu; S = ). These results motivate
the search for a solution of Equation (10) for Q(rsu|rex). The transition probability must be zero at
least whenever Rsu∈{[1, 3]; [2, 3]; [3, 3]; [3, 2]; [3, 1]} and Rex∈{[1, 2]; [2, 1]} (Property 2). One possible
solution is

Q(rsu|rex) =
1
2


2b b̄c c̄b̄ b̄c 0 0 c̄b̄ 0 0
ā 2a 0 0 ā 0 0 0 0
a 0 0 2ā a 0 0 0 0
0 b 0 b 2b̄c c̄b̄ 0 c̄b̄ 0
0 0 b 0 0 b̄c b b̄c 2c̄b̄

 . (19)

where each response is defined by a vector [L, C], and rows and columns
enumerate the elements of the ordered sets Rex = {[1, 1], [1, 2], [2, 1], [2, 2], [3, 3]} and
Rsu = {[1, 1], [1, 2], [1, 3], [2, 1], [2, 2], [2, 3], [3, 1], [3, 2], [3, 3]} from where Rex and Rsu are sampled,
respectively. In Equation (19), a = Pex([1, 2]| ); b = Pex([1, 1]| ); and c = Pex([2, 2]| )/b̄.
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Figure 4. Relation between probabilistic removal and stochastic codes. (a) Cartesian coordinates
depicting: on the left, responses Rex of a neuron for which L and C are positively correlated
when elicited by , and negatively correlated when elicited by ; in the middle, the surrogate
responses Rsu = RNI that would occur should L and C be noise independent (middle); and on the
right, a stimulus-independent stochastic function that turns Rex into Rsu with Q(rsu|rex) given by
Equation (19); (b) Same description as in (a), but with L and C noise independent given , and with
the stochastic function depicted on the right turning Rex into RNI given but not .

However, stochastically reduced representations are not always guaranteed to exist. For example,
in Figure 4b, it is easy to verify that the condition Iµ(Rex; S = ) < Iµ(Rsu; S = ) holds for any
µ( ) 6= 0. Therefore, no stochastic mapping can transform Rex into Rsu in such a way that Pex(r|s) is
converted into Psu(r|s). Schneidman et al. [9] employed an analogous example, but involving different
neurons instead of response aspects. The two examples of Figure 4 motivate the following theorem:

Theorem 1. No deterministic mapping Rex→Rsu exists transforming the conditional probability Pex(r|s) into
its noise-independent version Psu=PNI(r|s) defined in Equation (17). Stochastic mappings Rex→Rsu may or
may not exist, depending on the conditional probability Pex(r|s).

Proof. See Appendix B.2.

In addition, when a stochastic mapping Rex→Rsu exists, the values of the probabilities Q(rsu|rex)

may well depend on the discarded response aspect, as well as on the preserved response aspects.
We mention this fact, because when assessing the relevance of noise correlations, the marginals
Pex(ri|s) suffice for us to write down the surrogate distribution Psu(r|s) = PNI(r|s), with no need
to know the full distribution Pex(r|s) containing the noise correlations. One could have hoped that
perhaps also the mapping Rex→Rsu (assuming that such a mapping exists) could be calculated with
no knowledge of the noise correlations. This is, however, not always true, as stated in the theorem
below. Two experiments with the same marginals and different amounts of noise correlations may
require different mappings to eliminate noise correlations, as illustrated in the the example of Figure 5.
More formally:
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Theorem 2. The transition probabilities Q(rsu|rex) of stochastic codes that ignore noise correlations may
depend both on the marginal likelihoods (preserved at the output of the mapping), and on the noise correlations
(eliminated at the output of the mapping).

Proof. See Appendix B.3.

The solution of Equation (10) for the example of Figure 5 is

Q(rsu|rex) =
1
2

 ā 2a 0 ā 0 0 0
a 0 2ā a 0 0 0
0 0 0 b 2b̄ 0 b
0 0 0 b̄ 0 2b b̄

 , (20)

where each response is defined by a vector [L, C], and rows and columns enumerate the elements of
the ordered setsRex = {[1, 2], [2, 1], [2, 3], [3, 2]} andRsu = {[1, 1], [1, 2], [2, 1], [2, 2], [2, 3], [3, 2], [3, 3]}
from where Rex and Rsu are sampled, respectively. In Equation (20), a = P(Rex = [1, 2]|S = );
and b = P(Rex = [3, 2]|S = ). The fact that the matrix in Equation (20) bears an explicit dependence
on these parameters–and not only on Pex(L|S) and Pex(C|S)–implies that the transformation between
Rex and Rsu depends on the amount of noise correlations in Rex.

DecorrelationSurrogate Encoding

1

2

3

C

1 2 3 L

1

2

3

C

1 2 3 L

1

2

3

C

1 2 3 L

a b c

Rex RexR
NI

R
NI

Figure 5. Stochastically reduced representations that ignore noise correlations may depend on
them.(a) Cartesian coordinates representing a hypothetical experiment in which two different stimuli,

and , elicit single neuron responses (Rsu = RNI) that are completely characterized by their
first-spike latency (L) and spike counts (C). Both L and C are noise independent; (b) Cartesian
coordinates representing a hypothetical experiment with the same marginal probabilities Pex(l|s) and
Pex(c|s) as in panel (a), with one among many possible types of noise correlations between L and C;
(c) Stimulus-independent stochastic function transforming the noise-correlated responses Rex of panel
(b) into the noise-independent responses Rsu = RNI of panel (a). The transition probabilities Q(rsu|rex)

are given in Equation 20, and they bear an explicit dependence on the amount of noise correlations.

2.3. Multiple Measures to Assess the Relevance of a Specific Response Feature

The importance of a specific response feature has been previously quantified in many ways
(see [17,30] and references therein), which have oftentimes led to heated debates about their merits and
drawbacks [9,11,12,17,31–33]. Here we consider several measures, to underscore the diversity of the
meanings with which the relevance of a given feature has been assessed so far. They are mathematically
defined as
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∆IRsu= IRex − IRsu (21)

∆IŜ = IRex − Iβ

Ŝ
(22)

∆IŜ = IRex − Iβ

Ŝ
(23)

∆ARsu = ARex
Rex
− ARsu

Rsu
(24)

∆ID = ∑
s,r

Pex(s, r) ln
Pex(s|r)
Psu(s|r)

(25)

∆IDL = min
θ

∑
s,r

Pex(s, r) ln
Pex(s|r)

Psu(s|r, θ)
(26)

∆ILS = IRex − Iα
Ŝ (27)

∆IB = IRex − Iα
Ŝ (28)

∆AB = ARex
Rex
− ARsu

Rex
(29)

Equations (22)–(24) are based on matched decoders, that is, decoders operating on responses
governed by the same probability distribution involved in their construction (method β). Instead,
Equations (25)–(28) are based on the operation of mismatched decoders (method α). Each measure
of Equations (21)–(24) has one or two homologous measures in Equations (25)–(29), as illustrated
in Figure 6.

∆IRsu ∆ID

en
c

∆IDL

∆IŜ ∆ILS

∆IŜ ∆IB

β
de

c

∆ARsu ∆AB

α
de

c

Figure 6. Relations between the measures defined in Equations (21)–(29). The four measures on
the left are either encoding-oriented (∆IRsu , on a pink background), or half-way between encoding-
and decoding-oriented (the last three, gray background). The five measures on the right are all
decoding-oriented (light-blue background). Each measure on the left has a conceptually related
measure on the right on the same line, except for ∆IRsu , which has two associated decoding-oriented
measures: ∆ID and ∆ILD. The distinction between the measures on pink and on gray background
relies on the fact that ∆IRsu does not involve a decoding process. Instead, ∆IŜ, ∆IŜ and ∆ARsu decode a
stimulus (or rank the stimuli) with decoding method β. This decoding is not meant to be applicable to
real experiments, since (as opposed to the truly decoding-oriented measures on the right, that operate
with method α) the decoding is applied to the surrogate responses Rsu, not the real ones Rex.

We here describe the measures briefly, and refer the interested reader to the original papers.
In Equation (21), IRex and IRsu are the mutual informations between the set of stimuli and a set of

responses governed by the distributions Pex(r|s) and Psu(r|s), respectively. Thus, ∆IRsu is the simplest
way in which the information encoded by the true responses can be compared with that of the surrogate
responses. This comparison has been employed for more than six decades in neuroscience [34,35]
to study, for example, the encoding of different stimulus features in spike counts, in synchronous
spikes, and in other forms of spike patterns, both in single neurons and populations (see [30] and
references therein).

The measure ∆ID defined in Equation (25) was introduced by Nirenberg et al. [8] to study the role
of noise correlations, and was later extended to arbitrary deterministic mappings [10,12,13]. Here we
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use the supra-script D to indicate that the measure is the “divergence” (in the Kullback-Leibler sense)
between the posterior stimulus distributions calculated with the real and the surrogate responses,
respectively. In [10], Nirenberg and Latham argued that the important feature of ∆ID is that it represents
the information loss of a mismatched decoder trained with Psu(r|s) but operated on the real responses,
sampled from Pex(r|s). Not before long, Schneidman et al. [9] noticed that ∆ID can exceed IRex .
The interpretation of ∆ID as a measure of information loss would imply that decoders trained with
surrogate responses can lose more information than the one encoded by the real response. In fact,
∆ID tends to infinity if Psu(s|r)→ 0 when P(s|r) > 0 for some s. In the limit, ∆ID becomes undefined
when Psu(r) = 0 and Pex(r) >0 . To avoid this peculiar behavior, Latham and Nirenberg generalized
the theoretical framework used to derive ∆ID [11], giving rise to the measure ∆IDL of Equation (26).
Here, the supra-script DL makes reference to “Divergence Lowest”, since the measure was presented
as the lowest possible information loss of a decoder trained with Psu(r|s). In the definition of ∆ILD,
the parameter θ is a real scalar. The distribution Psu(s|r, θ) was defined by Latham and Nirenberg [11]
as proportional to P(s) Psu(r|s)θ . This definition has several problems, as discussed in [11,17,36–39].
In Appendix B.1 we demonstrate a theorem that resolves the issues appearing in previous definitions,
and justifies the use of

Psu(s|r, θ) ∝

{ P(s) if ∃ŝ, r̂ such that Pex(r̂|ŝ)>Psu(r̂|ŝ)=0
0 if Psu(r|s)=Pex(r|s)=0 for some but not all s
P(s) Psu(r|s)θ otherwise

(30)

From the conceptual point of view, ∆IDL represents the information loss of a mismatched decoder
trained with Psu(r|s) and operated on Rex. Latham and Nirenberg [11] showed that, unlike ∆ID, it is
possible to demonstrate that ∆IDL≤ IRex . Hence, ∆IDL never yields a tested feature encoding more
information than the full response. The proof in [11] ignored a few specific cases that we discuss in the
Theorem A1 of Appendix B.1. Still, even in those additional cases, the inequality ∆IDL≤ IRex holds.

In Equations (22) and (23), Ŝ and Ŝ denote a sorted stimulus list and the most-likely stimulus,
respectively, both decoded by evaluating Equation (6) (or its ranked version) on a response r sampled
from the surrogate distribution Psu(r|s) (method β). Estimating mutual informations using decoders
can be traced back at least to Gochin et al. [40], and comparing the estimations of two decoders that
take different response features into account, at least to Warland et al. [41].

The measures ∆IŜ and ∆IŜ are paired with ∆ILS and ∆IB, respectively, since the latter are obtained
from the former when replacing the decoding method from β to α. The measure ∆ILS was introduced
by Ince et al. [20], and quantifies the difference between the information in Rex, and the one in the
output of decoders that, after observing a variable r sampled with distribution Pex(r|s) (method α),
produce a stimulus list sorted according to Psu(s|r). The supra-script LS indicates “List of Stimuli”.
Similarly, ∆IB, quantifies the difference between the information encoded in Rex and that encoded in
the output of a decoder trained by inserting Psu(s|r) into Equation (6), and operated on r sampled with
distribution Pex(r|s) (method α). The supra-script B stands for the “Bayesian” nature of the involved
decoder. The use of these measures can be traced back at least to Nirenberg et al. [8], although in
that case, decoders were restricted to be linear. The measure ∆IŜ of Equation (22) is new, and we
have introduced it here as the homologous of ∆ILS. When the number of stimuli is two, ∆IŜ=∆IŜ,
since selecting the optimal stimulus is (as a computation) in one-to-one correspondence with ranking
the two candidate stimuli.

The accuracy loss ∆ARsu defined in Equation (24) entails the comparison between the performance
of two decoders, one trained with and applied on Rex, and one trained with and applied on Rsu.
Such comparisons have also a long history in neuroscience [42,43] (see [9,12] for further discussion).
The accuracy loss ∆AB also compares two decoders. The first, is the same as for ∆ARsu , but the second
is trained with Rsu and applied on Rex.

The measures ∆ILS, ∆IB, and ∆AB are undefined if the actual responses Rex are not contained
in the set of surrogate responses Rsu. In other words, a decoder constructed with Psu(r|s) does not
know what output to produce when evaluated in a response r for which Psu(r) = 0. This situation
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never happens when evaluating the relevance of noise correlations with Psu = PNI , but it may well be
encountered in more general situations, as for example, in Figure 3B.

2.4. Relating the Values Obtained with Different Measures

If a mapping Rex→Rsu exists transforming Pex(r|s) into Psu(r|s), we may use the decoding
procedure of Equation (6) to construct the transformation chain Rex→Rsu→Ŝ→Ŝ [17,44].
Consequently, ∆IRsu , ∆IŜ and ∆IŜ can be interpreted as accumulated information losses after the
first, second and third transformations, respectively, and ∆ARsu , as the accuracy loss after the
first transformation. The data processing theorems (Section 2.1.3) ensure that these measures
are never negative. This property, however, cannot be guaranteed in the absence of a reduced
transformation Rex→Rsu, stochastic or deterministic. Indeed, in the example of Figure 4b,
if both stimuli are equiprobable, and both responses Rex associated with are equiprobable,
then ∆IRsu = ∆IŜ = ∆I Ŝ ≈− 79 % of IRex ≈ 0.31 bits, implying that the surrogate responses encode
more information about the stimulus than the original, experimental responses. Removing the
correlations between spike count and latency, hence, increases the information, so correlations can be
concluded to be detrimental to information encoding.

Irrespective of whether a (deterministic or stochastic) mapping Rex→Rsu exists, the data
processing inequality guarantees that ∆IRsu ≤ ∆IŜ ≤ ∆IŜ, since Ŝ is a deterministic function of Rsu,
and Ŝ is a deterministic function of Ŝ. The inequality holds irrespective of the sign of each measure.

All decoder-oriented measured are guaranteed to be non-negative. The very definitions of ∆ID

and of ∆IDL imply they cannot be negative, since they are both Kullback-Leibler divergences between
two probability distributions. The sequence of reduced transformations Rex → Ŝ → S, in turn,
guarantees the non-negativity of ∆ILS, ∆IB and ∆AB, through the Data Processing Inequalities.

In order to assess whether decoding-oriented measures are always larger or smaller than
their encoding (or gray) counterparts, we performed a numerical exploration comparing each
encoding/gray-oriented measure with its decoding-oriented homologue. The exploration was
conducted by calculating the values of these measures for a large collection of possible stimulus prior
probabilities P(s), and response conditional probabilities Pex(r|s) in the examples of Figures 2–4 and 7.
The details of the numerical exploration are in Appendix A. The measures in the first group were
sometimes greater and sometimes smaller than those of the second group, depending on the case and
the probabilities (Table 1). Consequently, our results demonstrate that there is no general rule by which
measures of one type bound the measures of the other type.

The exploration also included the example of Figure 7a. In panel (a), the transition probabilities are

Q(rsu|rex) =

 0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 , (31)

where rows and columns enumerate the elements of the ordered sets Rex = Rsu = {[1], [2], [3], [4]}
from where both Rex and Rsu are sampled. For panel b,

Q(rsu|rex) =
1
2

 2 ā a a 0 0 0
0 b b 2 b̄ 0 0
0 0 0 2 b̄ b b

2 ā 0 0 0 a a

 , (32)

with 0 < a, b < 1, rows enumerating the elements of Rex = {[2], [3], [5], [6]}, and columns those of
Rsu = {[1], [2], [3], [4], [5], [6]}.
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Figure 7. Stochastic codes may play different roles in encoding and decoding. (a) Hypothetical
experiment with two stimuli and , which are transformed (solid and dashed lines) into neural
responses containing a single spike (C = 1) fired at different phases (Φ) with respect to a cycle of
20 ms period starting at stimulus onset. The phases have been discretized in intervals of size π/2
and wrapped to the interval [0, 2π). The encoding process is followed by a circular phase-shift
that transforms Rex=Φ into another code Rsu=Φ̂ with transition probabilities Q(rsu|rex) defined by
Equation (31). The set of all Rsu coincides with the set of all Rex; (b) Same as (a), except that stimuli are
four (A, A, B , and B ), and phases are measured with respect to a cycle of 30 ms period and discretized
in intervals of size π/3. The encoding process is followed by a stochastic transformation (lines on
the right) that introduces jitter, thereby transforming Rex=Φ into another code Rsu=Φ̂ with transition
probabilities Q(rsu|rex) defined by Equation (32).

Table 1. Numerical exploration of the maximum and minimum differences between several measures
of information and accuracy losses. The values are expressed as percentages of IRex (the information
encoded in Rex) or ARex

Rex
(the maximum accuracy above chance level when decoders operate on Rex).

All examples involve two stimuli, so ∆IŜ=∆IŜ and ∆ILS=∆IB. The absolute value of ∆ARsu−∆AB can
become extremely large when ARsu

Rsu
≈0. Dashes represent cases in which decoding-oriented measures

are undefined, as explained in Section 2.4.

Cases Figure 4a Figure 2b Figure 2c Figure 3d Figure 2a Figure 3b Figure 7a

∆IR̂−∆ID min −79 −51 −34 0 0 — ≤999
max 26 32 51 0 0 — −20

∆IR̂−∆IDL min −34 −32 −16 0 0 −100 −100
max 59 41 98 0 0 0 0

∆IR̂−∆IB min −67 −62 −46 −63 −87 — −100
max 57 81 96 0 0 — 0

∆IŜ−∆ID min −79 −48 −34 0 0 — ≤999
max 67 92 93 63 87 — 70

∆IŜ−∆IDL min −34 −27 −16 0 0 -100 −100
max 91 92 99 63 87 0 97

∆IŜ−∆IB min −51 −31 −17 0 0 — −100
max 59 91 98 0 0 — 100

∆AR̂−∆AB min −386 −200 −150 0 0 — ≤999
max 95 67 100 0 0 — 0

An important issue is to identify the situations in which ∆IRsu gives exactly the same result as
either ∆ID or ∆IDL. It is not easy to determine the conditions for the equality between ∆IRsu and ∆IDL.
Yet, for the equality between ∆IRsu and ∆ID, and in the specific case in which Psu(r|s) = PNI(r|s) as
given by Equation (17), the following theorem holds.
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Theorem 3. When assessing the relevance of noise correlations, ∆ID=∆IRsu if and only if

λ = ∑
r
[Pex(r)− Psu(r)] log2[Psu(r)] = 0. (33)

Moreover, λ ≶ 0 implies that ∆ID ≶ ∆IRsu .

Proof. See Appendix B.4.

Equation (33) implies that neither the prior stimulus probabilities P(s) nor the conditional
response probabilities Pex(r|s) intervene in the condition for the equality, beyond the effect they
have in fixing the value of Pex(r) and Psu(r). Each response r makes a contribution to the value
of λ, which favours ∆ID whenever Psu(r) > Pex(r), and IRex in the opposite case. As pointed out
by [10], all responses r for which Pex(r) = 0 and Psu(r) > 0 give a null contribution to ∆ID, and a
negative contribution to IRex , implying that correlations in such responses are irrelevant for decoding,
and detrimental to encoding.

The fact that encoding-oriented measures neither bound nor are bounded by decoding-oriented
measures is a daunting result. If, when working in a specific example, one gets a positive value
with one measure and a negative value with another, the interpretation must carefully distinguish
between the two paradigms. One may wonder, however, if such distinction is also required when
correlations are absolutely essential for one of the measures, in that they capture the whole of the
encoded information. Could the other measure conclude that they are irrelevant? Or that they are only
mildly relevant? Luckily, in this case, the answer is negative. In other words, when the tested feature
is fundamental, then ∆ID and ∆IRsu coincide, and no conflict arises between encoding and decoding,
as proven by the following theorem:

Theorem 4. ∆IDL=IRex if and only if ∆IRsu=IRex , regardless of whether stochastic codes exist that map the
actual responses Rex into the surrogate responses Rsu=RNI generated assuming noise independence.

Proof. See Appendix B.5.

The conclusion is that if a given feature is 100% relevant for encoding, then it is also 100% relevant
for decoding, and vice versa. Hence, although ∆IRsu and ∆IDL often differ in the relevance they
ascribe to a given feature, the discrepancy is only encountered when the tested feature is not the only
informative feature in play. When the removal of the feature is catastrophic (in the sense that it brings
about a complete information loss), then both ∆IRsu and ∆IDL diagnose the situation equally.

2.5. Relation between Measures Based on Decoding Strategies α and β

The results of Table 1 may seem puzzling because decoding happens after encoding.
Therefore—one may naively reason—the data processing theorems should have forbidden both
∆IRsu to surpass ∆ID, ∆IDL, or ∆IB, as well as ∆ARsu to surpass ∆AB. However, even though decoding
indeed happens after encoding, the data processing theorem is not violated. The theorem certainly
ensures that ∆IRsu and ∆ARsu constitute lower bounds for measures related to decoders that operate
on responses generated by Psu(r|s), but not for measures related to decoders that operate on responses
generated by Pex(r|s), such as happens with ∆ID, ∆IDL, ∆IB, and ∆AB.

This observation about the validity of the data processing inequality is different from the one
discussed in Section 2.2. There, we discussed the conditions under which ∆IRsu could be guaranteed to
be non-negative, the crucial factor being the existence of a stochastic mapping Rex→Rsu. Now we are
discussing a different aspect, regarding whether decoding-related measures can or cannot be bounded
by encoding-oriented measures. The conclusion is that in general terms, the answer is negative,
because decoding-related measures operate with decoding strategy α, a strategy never addressed by
the encoding measures. The surrogate variable Rsu participating in the encoding measure ∆IRsu is not
the response decoded by the measures of Equations (25)–(28), so the data processing inequalities need
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not hold. That being said, there are specific instances in which both types of measures coincide, two of
them discussed in Theorems 3 and 4 and a third case later in Theorem 5.

Other explanations have been given in the literature for the fact that sometimes, decoding
oriented measures surpass their encoding counterparts. For example, it has been alleged [10]
that when ∆ID, ∆IDL or ∆IB are smaller than ∆IRsu , this is either due to (a) the impossibility to
define a stimulus-independent reduction Rex→Rsu that yields Pex(r|s)→Psu(r|s) (and therefore the
data-processing inequality is not guaranteed to hold), or due to (b) the fact that surrogate responses
often sample values of response space that are never reached by real responses (and therefore, the losses
of matched decoders may be larger than the ones of mismatched ones). However, Figure 2c constitutes
a counterexample of both arguments, since there, the stimulus-independent stochastic reduction exists,
and the response set of Rex and Rsu coincide.

One could also wonder whether the discrepancy between the values obtained with
encoding-oriented measures and decoding-oriented measures only occurs in examples where a
stochastic reduction Rex→Rsu exists, and the involved transition matrix Q(rsu|rex) depends on the joint
probabilities Pex(r, s), and not only on the marginals, as discussed in Theorem 2. However, Figure 2b,c
provide examples in which Q(rsu|rex) does not depend on P(r, s), and yet, the discrepancies are
still observed.

The distinction between decoding strategies α and β is also crucial when using the measure
∆ID. This measure was introduced by Nirenberg et al. [8] for the specific case in which the tested
feature is the amount of noise correlations, that is, when Psu(s|r)=PNI(s|r). The measure was later
extended to arbitrary deterministic mappings Rsu= f (Rex) [10,12,13], with the instruction to use an
expression like Equation (25), but with Psu(s|r) replaced by P(s|Rsu = f (r)) = Psu(s| f (r)). It should
be noted, however, that as soon as this replacement is made, ∆ID becomes exactly equal to ∆IRsu .
Specifically, the measure ∆ID now describes the information loss of a decoder that operates on a
response variable generated with the surrogate distribution Psu(r|s) (decoding method β). If we want
to keep the original spirit, and associate ∆ID with a decoder that operates on a response variable
generated with the real distribution Pex(r|s) (decoding method α), in Equation 25, Psu(s|r) should not
be modified. Only the evaluation of the surrogate variable Rsu in the experimentally observed value
Rex = r describes a mismatched decoder constructed with Psu(r|s) and operated on Rex (mathematical
details in Appendix C).

2.6. Assessing the Type of Information Encoded by Individual Response Features

When the stimulus contains several attributes (as shape, color, sound, etc.), by removing a specific
response feature it is possible to assess not only how much information is encoded by the feature,
but also, what type of information. Identifiying the type of encoded information implies determining
the stimulus feature represented by the tested response feature. As shown in this section, the type
of encoded information is as dependent on the method of removal as is the amount. In other words,
the different measures defined in Equations (21)–(29) sometimes associate a feature with the encoding
of different stimulus attributes.

In the example of Figure 8, we use four compound stimuli S=[SF, SL], generated by choosing
independently a frame (SF = or ) and a letter (SL = A or B), thereby yielding A, A, B , and B .
Stimuli are transformed into neural responses R = [L, C] with different number of spikes (1 ≤ C ≤ 5)
fired at different first-spike latencies (1 ≤ L ≤ 4; time has been discretized in 5 ms bins). Latencies
are only sensitive to frames whereas spikes counts are only sensitive to letters, thereby constituting
independent-information streams: P(s, r) = P(sF, l) P(sL, c) [33]. The equality in the numerical value of
two measures does not imply that both measures assign the same meaning to the information encoded
by the tested response feature. Indeed, the two measures may sometimes report the tested response
feature to encode two different aspects of the set of stimuli. Consider a decoder that is trained using
the noisy data Rsu shown in Figure 8a, but it is asked to operate on either the same noisy data with
which it was trained (strategy β), or with the quality data Rex of Figure 8b (strategy α). The information
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losses ∆IRsu , ∆ID, and ∆IDL are all equal to 50 % of I(S, Rex) = 2 bits. Therefore, the information loss
is independent of whether, in the operation phase, the decoder is fed with responses generated with
Psu(r|s) or with Pex(r|s).
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Figure 8. Assessing the amount and type of information encoded by . (a) Noisy data Rsu = [L, C]
recorded in response of the compound stimulus S = [SF, SL]; (b) Quality data Rex = [L, C] recorded
in the case of panel (a), but without noise; (c) Stimulus-independent stochastic transformation with
transition probabilities Q(rsu|rex) given by Equation (34), that introduces independent noise both in
the latencies and in the spike counts, thereby transforming Rex into Rsu and rendering Rsu a stochastic
code; (d) Degraded data R̆ obtained by adding latency noise to the quality data; (e) Representation
of the stimulus-independent stochastic transformation Rex→R̆ with transition probabilities Q(r̆|rex)

given by Equation (35) that adds latency noise in panel (d).

The transformation Q(rsu|rex) causes some responses Rsu to occur for all stimuli, so when
decoding with method β, some information about frames is lost (that is, I(SF, Rsu) ≈ 33 %
of I(SF, Rex) = 1 bit), as well as some information about letters (that is, I(SL, Rsu) ≈ 67 % of
I(SL, Rex) = 1 bit). In other words, decoding Rsu causes a partial information loss ∆IRsu that is
composed of both frame and letter information. Instead, when decoding Rex with method α, there is no
information loss about letters: For the responses Rex that actually occur, the decoder trained with Rsu

can perfectly identify the letters, because Psu(C = 2|SL = A) = Psu(C = 4|SL = B) = 1. The information
about frames, on the other hand, is completely lost, since Psu(l| ) = Psu(l| ) whenever l adopts a
value that actually occurs in Rex, namely 2 or 3. This example shows that the fact that two decoding
procedures give the same numerical loss does not mean that they draw the same conclusions regarding
the role of the tested feature in the neural code. Ananalogous computations yield analogous results for
the hypothetical experiment shown in Figure 7b.
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If responses rex and rsu are written as vectors [L, C], and the values of Q(rsu|rex) are arranged in a
rectangular structure, in Figure 8c the transition probabilities are

Q(rsu|rex) =
1
9

 1 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0
0 1 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 0
0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1

 , (34)

where rows and columns indicate the ordered sets Rex={[2, 2], [3, 2], [2, 4], [3, 4]} and
Rsu={1, 2, 3, 4}×{1, 2, 3, 4, 5}, where × denotes the Cartesian product with colexicographical
order, that is, ordered as [1, 1], [2, 1], [3, 1], [4, 1], [1, 2], etc. In Figure 8e

Q(r̆|rex) =
1
3

 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0

 , (35)

with rows and columns with the same convention as in Equation (34).
Finally, the noisy data (Figure 8a) can be obtained by transforming the degraded data (Figure 8d)

with the transition matrix

Q(rsu|r̆) =
1
3



1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1

 . (36)

with rows and columns indicating the ordered sets {[1, 2, 3, 4]× [2, 4]} and {1, 2, 3, 4}×{1, 2, 3, 4, 5},
respectively, where × denotes the Cartesian product with colexicographical order.

2.7. Conditions for Equality of the Amount and Type of Information Loss Reported by Different Measures

We now derive the conditions under which encoding/gray-oriented measures coincide with their
decoding-oriented counterparts, as observed in Figures 2a and 3d. That is, we derive the conditions
under which the following equalities hold:

∆IRsu=∆ID=∆IDL , (37)

∆IŜ=∆ILS , (38)

∆IŜ=∆IB , (39)

∆ARsu=∆AB . (40)

The example in Figure 7a showed that the existence of deterministic mappings does not suffice for
a qualitative and quantitative equivalence of different measures. Furthermore, the example of Figure 3b
showed that the equalities require the space of Rsu to include the space of Rex, or else the decoding
method α may be undefined. We demonstrate that the Equations (37)–(40) arise, and moreover,
that there is no discrepancy in the type of information assessed by these different measures, whenever
the mapping from Rex into Rsu can be described using positive-diagonal idempotent stochastic
matrices [45]. Specifically, we prove the following theorem:

Theorem 5. Consider a stimulus-independent stochastic function f from a representation Rex into another
representation Rsu, such that the range R of Rsu includes that of Rex, and with transition probabilities
Q(rsu|rex) that can be written as positive-diagonal idempotent right stochastic matrices with row and column
indices that enumerate the elements ofR in the same order. Then, Equations (37)–(40) hold.

Proof. See Appendix B.6.
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The theorem states that the equalities of Equations (37)–(40) can be guaranteed whenever the
removal of the tested response feature involves a (deterministic or) stochastic mapping Rex→Rsu

that induces a partition within the set of real responses Rex, and Rsu is obtained by rendering
all responses inside each partition indistinguishable (but not across partitions). To sample Rsu,
the probabilities of individual responses inside each partition are re-assigned, rendering their
distinction uninformative [30].

This theorem provides sufficient but not necessary conditions for the equalities to hold.
The important aspect, however, is that it ensures that the equalities hold not only in numerical value,
but also, in the type of information that different measures ascribe to the tested feature. Two different
methods preserve or lose information of different type if, when decoding a stimulus, the trials with
decoding errors tend to confound different attributes of the stimulus, as in the example of Figure 8.
The conditions of Theorem 5, however, ensure that the strategies α and β always decode exactly
the same stimulus (see Appendix B.6), so there can be no difference in the confounded attributes.
Pushing the argument further, one could even argue that responses (real or surrogate) encode more
information than the identity of the stimulus that originated them. For a fixed decoded stimulus, the
response still contains additional information [46], that refers to (a) the degree of certainty with which
the stimulus is decoded, and (b) the rank of the alternative stimuli, in case the decoded stimulus was
mistaken [20]. Both meanings are embodied in the whole rank of a posteriori probabilities Psu(s|r),
not just the maximal one. Yet, under the conditions of the theorem, the entire rankings obtained with
methods α and β coincide (see Appendix B.6). Therefore, even within this broader interpretation,
there can be no difference in the qualitative aspects of the information preserved or lost by one and the
other.

For example, in Figure 7b, we found that all information losses are equal (that is, ∆IR̂, ∆IŜ, ∆IŜ,
∆ID, ∆IDL, ∆ILS, and ∆IB are all 50 %), and both accuracy losses are equal (that is, ∆AR̂ and ∆AB are
both ≈67 %). However, the conditions of Theorem 5 do not hold. The matrix of Equation (32) is
not block-diagonal, nor it can be taken to that shape by incorporating new rows (to make it square),
and permuting both rows and columns, in such a way that the response vectors are enumerated in the
same order by both indices. For this reason, the losses are not guaranteed to be of the same type.

Instead, the transition probabilities of Equations (15) and (16) can be turned into positive-diagonal
idempotent right stochastic matrices. Equation (15) is already in the required format. To take
Equation (16) to the conditions of Theorem 5, two new rows need to be incorporated, associated
to the responses [4, 1] and [2, 2], that do not occur experimentally. Those rows can contain arbitrary
values, since the condition Pex([4, 1]|S) = Pex([2, 2]|S) = 0, ∀ S renders them irrelevant. Arranging the
columns so that both rows and columns enumerate the same list of responses, Equation (16) can be
written as

Q(rsu|rex) =


b b̄ 0 0 0 0
b b̄ 0 0 0 0
0 0 c c̄ 0 0
0 0 c c̄ 0 0
0 0 0 0 d d̄
0 0 0 0 d d̄

 , (41)

withRex=Rsu={[2, 1], [2, 2], [3, 1], [3, 2], [4, 1], [4, 2]}. Hence, in these two examples, both the amount
and type of information of encoding and decoding-based measures coincide.

2.8. Improving the Performance of Decoders Operating with Strategy α

In a previous paper [17], we demonstrated that neither ∆ID nor ∆IDL constitute lower bounds on
the information loss induced by decoders constructed by disregarding the tested response feature.
This means that some decoders may exist, that perform better than Dsu(r) defined in Equation (6).
In this section we discuss one possible way in which some of these improved decoders may be
constructed, inspired in the example of Figure 8. Quite remarkably, the construction involves the
addition of noise to the real responses, before feeding them to the decoder of Equation (6). Panel (a)
shows a decoder constructed with noisy data (Rsu), and then employed to decode quality data (Rex;



Entropy 2018, 20, 879 24 of 33

Figure 8b), thereby yielding information losses ∆ID = ∆IDL= 50 %. These losses can be decreased by
feeding the decoder with a degraded version R̆ of the quality data (Figure 8d) generated through a
stimulus-independent transformation that adds latency noise (Figure 8e). Decoding Rex as if it were
Rsu by first transforming Rex into R̆ results in ∆ID = ∆IDL≈ 33 %, thereby recovering 33 % of the
information previously lost. On the contrary, adding spike-count noise will tend to increase the losses.
Thus, adding suitable amounts and type of noise can increase the performance of approximate decoders,
and the result is not limited to the case in which the response aspect is the amount of noise correlations.
In addition, this result also indicates that, contrary to previously thought [47], decoding algorithms
need not match the encoding mechanisms for performing optimally from an information-theoretical
standpoint. All these results are a consequence of the fact that decoders operating with strategy α are
not optimal, so it is possible to improve their performance by deterministic or stochastic manipulations
of the response. In practice, our results open up the possibility of increasing the efficiency of decoders
constructed with approximate descriptions of the neural responses, usually called approximate or
mismatched decoders, by adding suitable amounts and types of noise to the decoder input.

3. Related Issues

3.1. Relation to Decomposition-Based Methods

Many measures of different types have been developed to assess how different response features
of the neural code interact with each other. Some are based on direct comparisons between the
information encoded by individual features, or collections of features (see for example [48–50], to cite
just a few among many). Others distinguish between two or more potential dynamical models of
brain activity [51], for example, by differentiating between conditional and unconditional correlations
between neurons in the frequency domain [52]. Yet others, rely on decompositions or projections
based on information geometry. In those, the mutual information between stimuli and responses
IR is broken down as IR = ∑i I′Ri

+ Synergy Terms + Redundancy Terms, where I′Ri
represents the

information contributed by the individual response feature Ri, and the remaining terms incorporate the
synergy or redundancy between them. In the original approaches [53–57], the terms I′Ri

represented the
information I(Ri; S) encoded in single response aspects irrespective of what be encoded in other aspects.
In later studies, [58–62], these terms accounted for the information that is only encoded in individual
aspects, taking care of excluding whatever be redundant with other aspects. The approach discussed
in this paper is in the line of the studies Nirenberg et al. [8] and Schneidman et al. [9] and all their
consequences. This line has some similarities and some discrepancies with the decomposition-based
studies. We here comment on some of these relations.

- First, the measure ∆IRsu quantifies the relevance of a given feature with the difference IRex − IRsu .
When the surrogate response Rsu is equal to the original response Rex with just a single component
Ri eliminated, ∆IRsu is equal to I(Ri; s|R̄i), where R̄i is the collection of all response aspects except
Ri. In this case, ∆IRsu coincides with the sum of the unique and the synergistic contributions of
the dual decompositions in the newest set of methods [63].

- Second, when assessing the relevance of a given response feature, we are often inclined to draw
conclusions about the cost of ignoring the tested feature when aiming to decode the original
stimulus. As shown in this paper, those conclusions depend not only on how stimuli are encoded,
but also, on how they are decoded. The decomposition-based methods are mainly focused in the
encoding problem, so they are less suited to draw conclusions about decoding.

- Finally, as discussed in Figure 8, not only the amount of (encoded or decoded) information
matters, but also, what type. Decomposition-based methods, although not yet reaching a full
consensus in their formulation, provide a valuable attempt to characterize how both the type
and the amount of information is structured within the set of analyzed variables, in a way that
is complementary to the present approach, specifically in analyzing the structure of the lattices
obtained by associating different response features [58,63].
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3.2. The Problem of Limited Sampling

Throughout the paper we assumed that the distribution Pex(s, r) is known, or is accessible to
the experimenter. In the examples, when we calculated information values, we plugged the true
distributions into the formulas, without discussing the fact that such distribution may not be easily
estimated with finite amounts of data. Whichever method is used to estimate Pex(s, r), to a larger or
lesser degree, the outcome is no more than an approximation. Hence, even IRex (which is supposed to
be the full information) is estimated approximately. Since Psu(s, r) is a modified version of Pex(s, r),
also Psu(s, r) can only be estimated approximately. Information measures, including Kullback-Leibler
divergences, are highly sensitive to variations in the involved probabilities [20,32,64–69], and the latter
are unavoidable in high-dimensional response spaces. The assessment of the relevance of a given
feature, hence, requires experiments that contain sufficient samples so as to ensure that the correcting
methods work. When the response space is large, the measures ∆IS, ∆IB and the loss of accuracies are
less sensitive to limited sampling than ∆IRsu , ∆ID and ∆ILD.

In addition, the problem of finite sampling can also be formulated as an attempt to determine the
relevance of the feature “Accuracy in the estimation of Pex(r|s)”. This feature is not a property of the
nervous system, but rather, of our ability to characterise it. Still, the framework developed here can
also handle this methodological problem. The estimated distribution can be interpreted as a stochastic
modification Psu(r|s) of the true distribution Pex(r|s). As long as the caveats discussed in this paper
are taken into account, the measures of Equations (21)–(29) may serve to evaluate the cost of modeling
Pex(r|s) out of finite amounts of data.

4. Conclusions

Several measures have been proposed in the literature to assess the relevance of specific response
features in the neural code. All proposals are based on the idea that by removing the tested feature from
the response, the neural code deteriorates, and the lost information is a useful measure of the relevance
of the feature. In this paper, we demonstrated that the neural code may or may not deteriorate when
removing a response feature, depending on the nature of the tested feature, and on the method of
removal, in ways previously unseen. First, we determined the conditions under which the data
processing inequality can be invoked. Second, we showed that decoding-oriented measures may result
in larger or smaller losses than their encoding (or gray) counterparts, even for response aspects that,
unlike noise correlations, can be modeled as stimulus-independent transformations of the full response.
Third, we demonstrated that both types of measures coincide under the conditions of Theorem 5.
Fourth, we showed that evaluating the role of a response feature in the neural code involves not only
an assessment of its contribution to the amount of encoded information, but also, to the meaning of
that information. Such meaning is as dependent as the amount on the measure employed to assess
it. Finally, our results open up the possibility that simple and cheap decoding strategies, based on
the addition of an adequate type and amount of noise, be more efficient and resilient than previously
thought. We conclude that the assessment of the relevance of a specific response feature cannot be
performed without a careful justification for the selection of a specific method of removal.
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Appendix A. On the Information and Accuracy Differences

Each value in Table 1 (except for those associated with Figures 3b; see below) was computed using
the Nelder-Mead simplex algorithm for optimization, as implemented by the function fminsearch
of Matlab 2016. For accuracy reasons, only examples in which IRex ≥ 10−6 bits and ARex

Rex
≥ 10−6

were considered. Furthermore, parameters defining the joint stimulus-response probabilities and
the transition matrices were restricted to the interval [0.05, 0.95]. Each difference between two
measures defined in Equations (21)–(29) was computed repeatedly, with random initial values for the
stimulus-response probabilities and the transition matrices, until the value of the difference failed to
increase or decrease in 20 consecutive runs.

The values in Table 1 for Figure 3b were computed analytically with Pex([3, 2]) > 0 or
Pex([4, 2]) > 0, but not both. In those cases, the measures ∆ID, ∆IB, and ∆AB are undefined,
whereas ∆IDL= 100 %, for the reasons given in Section 2.4. However, ∆IRsu and ∆IŜ can vary between
0 % and 100 %, for example, attaining 0 % when Pex([3, 1])→0, and 100 % when Pex([2, 1])→0 and
Pex([4, 2])→0. The information IRex equals the stimulus entropy, regardless of the response probabilities.
The values in Table 1 for Figure 3d were computed by setting b = c = d = 0.5 in Equation (16).
The values in Section 2.4 for Figure 7b were obtained by setting Pex(s, r) = 1/4 for the stimulus-response
pairs shown in the figure, and are valid for any transition probability matrix set as in Equation (32)
with b=a. The values in Section 2.4 for Figure 8 were obtained by setting Pex(s, r) = 1/4 for the
stimulus-response pairs shown in the figure.

Appendix B. Proofs

Appendix B.1. Derivation of Equation (30)

The definition of ∆IDL involves the probability Psu(s|r̂, θ) defined in [11,36,38] as proportional to
P(S)∏i Pθ(Ri|S), where the exponent θ is chosen so as to maximize ∆IDL. This definition has been
recently shown to be invalid when ∃ r,s such that Psu(r|s) = 0 for a stimulus s or a response r for which
Pex(r|s) 6= 0 [17]. This problem never appears when evaluating the relevance of noise correlations with
Psu(r|s) = PNI(r|s) as stated by Equation (17). Yet, it may well appear in more general cases, including
those arising from stochastically reduced codes. To overcome it, we prove the theorem

Theorem A1. The probability P(s|r, θ) that appears in the definition of ∆IDL is

Psu(s|r, θ) ∝

{ P(s) if ∃ŝ, r̂ such that Pex(r̂|ŝ)>Psu(r̂|ŝ)=0
0 if Psu(r|s)=Pex(r|s)=0 for some but not all s
P(s) Psu(r|s)θ otherwise

Proof. According to Latham and Nirenberg [11], the probability Psu(s|r, θ) is the one that minimizes
the Kullback-Leibler divergence DKL[P∗(r, s)||p(r)p(s)] with respect to the distribution P∗(r, s), subject
to the constraints

〈log2 Psu(r|s)〉P∗(r,s) = 〈log2 q(r|s)〉P(s,r) (A1)

∑
s

P∗(r, s) = P(r). (A2)

The minimization problem can be formulated in terms of an objective function to be minimized,
in which the constraints appear with Lagrange multipliers, and θ is the one accompanying
Equation (A1). Using the standard conventions that 0 log 0 = 0 and x log 0 = ∞ for x > 0, Equation (A1)
is fulfilled if ∃ r̂,ŝ such that P(ŝ|r̂, θ) > 0 if Pex(r̂, ŝ) > Psu(r̂|ŝ) = 0. The first part of the theorem
immediately follows by solving Equation (B15) in [11] as there indicated with β = 0. If @ r̂,ŝ such that
Pex(r̂, ŝ)> Psu(r̂|ŝ) = 0, then Equation (A1) is fulfilled only if P(s, r|θ) = 0 when Psu(r|s) = Pex(r, s) = 0.
The second and third parts of the theorem immediately follows using Bayes’ rule.
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Appendix B.2. Proof of Theorem 1

Proof. The second part is proved by the two examples in Figure 4. The first part was proved in [9],
at least for cases in which the set of the surrogate responses Rsu = RNI differ from the set of the
real responses Rex. When they both coincide, we can prove the first part by contradiction, assuming
that a deterministic mapping exists from Rex into RNI . If both variables sample the same response
space, the deterministic mapping must be one-to-one, otherwise the variable RNI would sample a
smaller set. Therefore, both RNI and Rex maximize the conditional entropy given S over the probability
distributions with the same marginals, since one-to-one mappings do not modify the entropy, and RNI
is defined as the distribution with maximal conditional entropy with fixed marginals. Because the
probability distribution achieving this maximum is unique [16], Psu(r|s) and Pex(r|s) must be the same,
thereby proving the theorem.

Appendix B.3. Proof of Theorem 2

Proof. We prove the dependency on the marginal likelihoods by computing Q(rsu|rex) for the
hypothetical experiment of Figure 4a, and observing that the result depends on the marginal likelihood
Pex(L|s). To that end, we rewrite Equation (10) for Rsu = [1, 2] as

Psu([1, 2]| ) = Pex([1, 2]| ) Q([1, 2]|[1, 2]) + Pex([2, 1]| ) Q([1, 2]|[2, 1]) .

Note that Pex([1, 2]| )=1−Pex([2, 1]| )=Pex(L=1| ) and Psu([1, 2]| )=Pex(L=1| )2.
Using this and rearranging the terms, we obtain the quadratic equation

Pex(L=1| )2 + Pex(L=1| ) {Q([1, 2]|[2, 1])−Q([1, 2]|[1, 2])} −Q([1, 2]|[2, 1]) = 0 ,

that is solved by

Pex(L=1| ) = 0.5
[

δq +
(

δq2 + 4 Q([1, 2]|[2, 1])
)0.5

]
,

where δq=Q([1, 2]|[1, 2])− Q([1, 2]|[2, 1]). Hence, any change in Pex(L = 1| ) must be followed by
some change in Q(rsu|rex), thereby proving the first part.

We prove the dependency on the noise correlations by computing Q(rsu|rex) for the hypothetical
experiment of Figure 5, and observing that the result not only depends on the marginal likelihoods
Pex(L|s) and Pex(C|s), but in many cases, it also depends on the joint distributions Pex(L, C|s). Hence,
varying the amount of noise correlations, even if keeping the marginals fixed, yields a variation in the
mapping Q(rsu|rex).

We proceed by reductio ad absurdum. If Q(rsu|rex) does not depend on the amount of noise
correlations in Pex(r|s), we may assume that if we vary Pex(r|s) but keep the marginals Pex(ri|s) fixed,
the transition probabilities Q(rsu|rex) remain unchanged. Under this hypothesis, Equation (10) is valid
for many choices of Pex(r|s). In this context, consider the set of all response distributions with the same
marginals as Pex(r|s) that can be turned into Psu(r|s) through Q(rsu|rex). This set includes Psu(r|s),
and therefore, Q(rsu|rex) should be able to transform Psu(r|s) into itself. In addition, Property 2 requires
that Q(rsu|[2, 2]) = 0 when rsu 6= [2, 2] because either P(rsu| ) = 0 or P(rsu| ) = 0 for those responses.
Normalization yields Q([2, 2]|[2, 2]) = 1. Furthermore, computing Equation (10) for Rsu = [2, 2] yields

0 = Pex([1, 1]| ) Q([2, 2]|[1, 1]) + Pex([1, 2]| ) Q([2, 2]|[1, 2]) + Pex([2, 1]| ) Q([2, 2]|[2, 1]) ,

which shows that Q([2, 2]|rex)=0 when rex ∈ {[1, 1], [1, 2], [2, 1]}. Consequently, the resulting Q(rsu|rex)

yields through Equation 10 that Psu([2, 2]| ) = Pex([2, 2]| ). After noticing that

Psu([2, 2]| )=Pex(L = 2| ) Pex(C = 2| ) ,

and that
Pex([2, 2]| ) = Pex(L = 2| )−Pex([1, 2]| ) = Pex(C = 2| )−Pex([2, 1]| ) ,
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we can show that, after some straightforward algebra, Equation (10) only holds if Psu(r| ) = Pex(r| )

for all r. Thus, the initial hypothesis yields a transition matrix Q(rsu|rex) that is unable to transform
Rex into Rsu when Rex is noise correlated, and thus Q(rsu|rex) necessarily depends on the amount of
noise correlations in Rex.

Appendix B.4. Proof of Theorem 3

Proof. The condition ∆ID = ∆IRsu implies that

∑
sr

Pex(s, r) log
[

Pex(s|r)
Psu(s|r)

]
= IRex − IRsu . (A3)

However,

∆ID = IRex −∑
sr

Pex(s, r) log
[

Psu(r|s)
Psu(r)

]
.

Hence, Equation (A3) becomes

−∑
sr

Pex(s, r) log
[

Psu(r|s)
Psu(r)

]
= −IRsu (A4)

In addition, when evaluating the relevance of noise correlations, Psu(r, s) = P(s) PNI(r|s) as
established by Equation (17). Hence,

−∑
sr

Pex(s, r) log
[

Psu(r|s)
Psu(r)

]
= ∑

j
H(Rj|s) + ∑

sr
Pex(r, s) log[Psu(r)] (A5)

−IRsu = ∑
j

H(Rj|s) + ∑
sr

Psu(s, r) log[Psu(r)]. (A6)

Replacing Equations (A5) and (A6) in Equation (A4),

∑
sr

Pex(s, r) log[Psu(r)] = ∑
sr

Psu(s, r) log[Psu(r)].

Summing in s, and rearranging,

∑
r
[Pex(r)− Psu(r)] log[Psu(r)] = 0.

If instead of an equality, we start with an inequality, that same inequality can be kept all through
the proof.

Appendix B.5. Proof of Theorem 4

Proof. Consider a neural code Rex = [R1, . . . , RN ] and recall that the range of RNI includes that of Rex.
Therefore, ∆IDL= IRex implies that the minimum in Eqution (26) is attained when θ = 0. In that case,
Equation (B13a) in [11] yields

∑
s,rn

P(s, rn) log2 P(rn|s)= ∑
s,rn

P(s) Pex(rn) log2 Pex(rn|s), ∀ 1≤n≤N, ∀ n.

After some more algebra and recalling that the Kullback-Leibler divergence is never negative,
this equation becomes IRn = 0, implying that when read isolatedly, single responses contain no
information about the stimulus. Consequently ∆IRNI = IRex , thereby proving the “only if” part. For the
“if” part, it is sufficient to notice that the last equality implies that PNI(r|s) = PNI(r).
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Appendix B.6. Proof of Theorem 5

Proof. The conditions on f and Q(rsu|rex) ensure that Q(rsu|rex) can be written as a block-diagonal
matrix, each block composed of the same rows with no zeros, and that each block can be
associated with a non-overlapping partition R1, . . . ,RM of the range of f . Under these conditions,
P(rsu|rex) = P(rsu|Rm) when rex∈Rm. Hence, for rsu∈Rm, P(rsu|s) = P(rsu|Rm) P(Rm|s),
yielding P(s|rsu) = P(s|Rm) and P(s|rsu, θ) = P(s|Rm, θ). Recomputing Equations (21)–(29) with
these equalities in mind immediately yields the equalities in the theorem.

Even when the amount of information is equal, differences in the type of information may arise
because the measures are based on different decoding strategies, here denoted α and β. However,
under the conditions of the theorem, decoding strategy α and decoding strategy β are one and the
same. Because P(s|rsu) = P(s|Rm), both decoding strategies choose s only based on the partitionR of
rex or rsu, respectively. Mathematically, both choose s according to

ŝ = arg max
s

P(s|R(r)) ,

where R(r) denotes the mapping from r into R, which is the same regardless of whether r is rex or
rsu. Because Q(rsu|rex) maps each partition onto itself, the responses within each partition of rsu is
completely generated by the responses in each partition of rex, and thus the decoding strategies are
applied to the same set of rex. Hence, both decoding strategies are defined and operate in the same
manner, yielding the same information.

Appendix C. On the Computation of ∆ID

The information loss caused by mismatched decoders (decoding strategy α) when Rsu= f (Rex)

has previously been computed as ∆ID but with Psu(s|r) replaced by P(s|Rsu = f (r)) = Psu(s| f (r))
[10,12,13]. The latter represents the probability of s given that Rsu takes the value f (r), thereby
limiting f to deterministic mappings. However, the probabilities Psu(s|r) and Psu(s| f (r)) are not
equivalent, since

Psu(s|r) ∝ ∑
r = f (r̂)

Pex(r̂, s)

Psu(s| f (r)) ∝ ∑
f (r) = f (r̂)

Pex(r̂, s)

These two definitions raise the question of which alternative is the appropriate one when
computing the information loss caused by mismatched decoders.

To resolve this question, notice that replacing Psu(s|r) with Psu(s| f (r)) in Equation (6) yields the
decoding algorithm

ŝ = arg max
s

Psu(s| f (r)) .

This algorithm entails first transforming the observed r into rsu= f (r), and then choosing the
stimulus ŝ = Dsu(r̂) with a matched probability. Hence, its operation is analogous to the decoding
algorithm β, and not, as originally intended, to the decoding algorithm α.

To illustrate the difference, recall the experiment in Figure 7a and suppose that the observed
response is r = 0.25π. The decoding algorithm α reads this value, computes Psu(s|0.25π), and decodes
ŝ = . Instead, the decoding algorithm proposed in [10,12,13], first transforms the value of r = 0.25π

into f (r) = 0.75π, then computes Psu(s|0.75π), and finally decodes ŝ = . This mode of operation
corresponds to the decoding algorithm β.

The above discrepancy can also be seen from the change in the operational meaning of ∆ID caused
by the replacement. To that end, recall that ∆ID was first introduced as a comparison between the
average number of binary questions required to identify s after observing r when using two optimal
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question-asking strategies, one tailored for Pex(s|r) and the other for Psu(s|r) [8]. Mathematically,
this difference can be written as

∆ID = ∑
s,r

Pex(s, r) log2 Pex(s|r)−∑
s,r

Pex(s, r) log2 Psu(s|r) . (A7)

In each term, the argument of the logarithms is determined by the question-asking strategy,
whereas the weight of the averages is determined by the probability distribution of the variables on
which the strategy is applied [8,10,16]. Equation (A7) describes the decoding strategy α.

Replacing Psu(s|r) with Psu(s| f (r)) turns Equation (A7) into

∆ Ĩ = ∑
s,r

Pex(s, r) log2 Pex(s|r)−∑
s,r

Pex(s, r) log2 P(s| f (r))

= ∑
s,r

Pex(s, r) log2 Pex(s|r)− ∑
s,rsu

Psu(s, rsu) log2 Psu(s|rsu)

= ∆IRsu .

Unlike ∆ID, this difference compares the average number of binary questions required to identify s
after observing r using a question-asking strategy that is optimal for Pex(s|r), with the average number
of binary questions required to identify s after observing rsu using the a question-asking strategy that
is optimal for Psu(s|rsu). This is the way the decoding strategy β operates, not α.

Naively, one may think that a change in Psu(s|r), regardless of its size, may turn the measure
∆IRsu , typically regarded as an encoding-oriented measure and here linked to the decoding algorithm
β, into the decoding-oriented measure ∆ID. However, notice that this change cannot occur through the
equations above due to the change induced in Psu(s, rsu). For that to actually occur, one must write
∆IRsu differently, as for example:

∆IRsu = ∑
s,r

Pex(s, r) log2 Pex(s|r)− ∑
s,rsu

Pex(s, r) log2 Psu(s|rsu) .

In this reformulation, the second term can be interpreted as the average number of binary
questions required to identify s after observing r using a question-asking strategy that is optimal for
Psu(s|rsu), but only after converting r into rsu. Any change in Psu(s|rsu) immediately renders Psu(s|rsu)

a mismatched probability for rsu, and makes the second term represent the average number of binary
questions required to identify s after observing r using the question-asking strategy that is optimal
for an altered version of Psu(s|rsu) but only after converting r into rsu, which need not resemble the
meaning of the second term in ∆ID.
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