
This paper is included in the Proceedings of the
27th USENIX Security Symposium.

August 15–17, 2018 • Baltimore, MD, USA

ISBN 978-1-931971-46-1

Open access to the Proceedings of the
27th USENIX Security Symposium

is sponsored by USENIX.

Man-in-the-Machine: Exploiting Ill-Secured
Communication Inside the Computer

Thanh Bui and Siddharth Prakash Rao, Aalto University; Markku Antikainen, University of
Helsinki; Viswanathan Manihatty Bojan and Tuomas Aura, Aalto University

https://www.usenix.org/conference/usenixsecurity18/presentation/bui

Man-in-the-Machine: Exploiting Ill-Secured Communication
Inside the Computer

Thanh Bui*, Siddharth Rao*, Markku Antikainen†, Viswanathan Bojan*, and Tuomas Aura*

* Aalto University † University of Helsinki, Helsinki Institute for Information Technology

Abstract

Operating systems provide various inter-process commu-
nication (IPC) mechanisms. Software applications typi-
cally use IPC for communication between frontend and
backend components, which run in different processes
on the same computer. This paper studies the security
of how the IPC mechanisms are used in PC, Mac and
Linux software. We describe attacks where a nonprivi-
leged process impersonates the IPC communication end-
points. The attacks are closely related to impersonation
and man-in-the-middle attacks on computer networks but
take place inside one computer. The vulnerable IPC
methods are ones where a server process binds to a name
or address and waits for client communication. Our re-
sults show that application developers are often unaware
of the risks and secure practices in using IPC. We find at-
tacks against several security-critical applications includ-
ing password managers and hardware tokens, in which
another user’s process is able to steal and misuse sensi-
tive data such as the victim’s credentials. The vulnera-
bilities can be exploited in enterprise environments with
centralized access control that gives multiple users re-
mote or local login access to the same host. Computers
with guest accounts and shared computers at home are
similarly vulnerable.

1 Introduction

People use personal computers (PC) for storing and pro-
cessing their most critical information, such as sensitive
work documents, private messages, or access credentials
to online accounts. These computers and the software
running on them is designed to be personal, and the fo-
cus of security engineering has therefore been on exter-
nal threats from unauthorized users and from the Inter-
net. Nevertheless, most PCs can be accessed by more
than one authorized user, making them effectively multi-
user computers. In this paper, we analyze threats from

the authorized insiders. They may be coworkers, family
members, or guest users with console access.

Our focus is on the security of inter-process communi-
cation (IPC), i.e. communication channels that are inter-
nal to the computer. Computer software often comprises
multiple components, such as a frontend application and
a backend database, which obviously need to exchange
information. Many modern desktop applications also of-
ten follow the design of web software and have a sepa-
rate UI component, which connects to the business logic
via a RESTful API. The UI may even be implemented in
JavaScript and run in a web browser.

We assume the attacker to have login access as non-
administrator or, at minimum, the ability to keep non-
privileged processes running in the background. The at-
tacker’s goal is to exploit IPC between the processes of
another user. The attacks that we discover are similar to
those on the open networks, but they happen inside one
computer, where application developers often do not ex-
pect adversaries. We therefore use the name man in the
machine (MitMa) to describe these attackers.

During the analysis of case-study applications, we ob-
served that application developers have an ambiguous
attitude towards local attackers and the security of IPC
channels. On one hand, these threats are not given much
consideration. It is quite common to cite opinions of se-
curity experts stating that attempts to defend against local
attackers are futile. On the other hand, the application
implementations often make some attempt to authenti-
cate or encrypt the communication, but rarely with the
same prudence as seen in communication over physical
networks.

Our main contribution is to highlight the importance
of the adversary model where a nonprivileged user inter-
cepts communication inside the computer. We demon-
strate its seriousness with various examples of widely-
deployed applications and compromises of critical data.
We show that the vulnerabilities are common and that
exploiting them is not difficult. We also discuss potential

USENIX Association 27th USENIX Security Symposium 1511

Figure 1: MitMa attack

mitigation techniques. Finally, we believe that the obser-
vations of this paper will be valuable also in the ongoing
efforts to improve isolation between one user’s applica-
tions.

The rest of this paper is structured as follows. Sec-
tion 2 explains our adversary model. Section 3 describes
IPC methods and the basic attack principles. Sections 4–
7 cover the vulnerabilities found in several classes of ap-
plications. Potential solutions are covered in Section 8
while Section 9 discusses the results and Section 10 sur-
veys related work. Finally, Section 11 concludes the pa-
per.

2 The adversary

This section describes the adversary model and explains
its relevance in everyday information systems.

We consider multi-user computers that may have pro-
cesses of two or more users running at the same time.
The attacker is a nonprivileged user who tries to steal
sensitive information from or interfere with another user.
It does this by intercepting communication between the
victim user’s processes, as illustrated in Figure 1. The
malicious process is nonprivileged, and it typically runs
in the background and belongs to a different login ses-
sion than the victim’s processes. The attack is similar
to impersonation or man in the middle in computer net-
works, but since the communication takes place inside
one computer, we call it man in the machine (MitMa).

Shared computers are common both in home and en-
terprise environments. In a Windows domain, users are
centrally registered at the Active Directory (AD) and
they are typically able to log into each other’s worksta-
tions. Linux and macOS workstations are commonly in-
tegrated into AD or other centralized directory services.

In addition to having its own user account, the MitMa
attacker needs to be able to run a process in the back-
ground when the victim user is working on the computer.
Table 1 summarizes ways to achieve this. Personal com-
puters generally have not been designed for multiple si-
multaneous users, but they do support fast user switch-

ing [41], that is, leaving login sessions in the background
and resuming them later. Such background sessions con-
tinue to have running processes that can be used in the
attacks. On macOS and Linux, it is also possible to
leave processes running when the user logs out (e.g., with
the nohup command). On Windows, user processes are
killed at the end of the login session, and thus the MitMa
attacker must remain logged in.

MitMa attacker Method

m
ac

O
S

W
in

do
w

s

L
in

ux

Authenticated
user

Console login 3 3 3

SSH 3 3 3

Remote desktop N/A 3 N/A
Guest account Console login 3 3 3

Table 1: MitMa attackers on different OSs

The MitMa attacks can also be launched using guest
accounts. The guest user can start the malicious process
and leave the guest session in the background with fast
user switching. We implemented the attacks described
in this paper with macOS High Sierra, Windows 7, and
Windows 8.1. These operating systems have the guest
account enabled by default. Windows 10 does not cur-
rently have a built-in guest account, though creating one
is possible. In enterprise Windows domains, the avail-
ability of the guest account depends on the group policy.

The attacks can also be carried out remotely, for ex-
ample, if SSH [56] has been enabled. On macOS, the
SSH server is started if the administrator chooses “Re-
mote Login” from sharing preferences. Windows 10 in
the developer mode also starts an SSH server. The user
might not realize this because earlier Windows versions
required third-party SSH servers.

Another remote access method is remote desktop.
Non-server versions of Windows allow only one inter-
active session at a time. Thus, the attacker cannot access
the computer at the same time as the local users. How-
ever, the remote desktop session can be left in the back-
ground and resumed later, similar to fast user switching.
The MitMa attack is technically possible also between
remote desktop sessions on a Windows Server. While the
case-study applications considered in this paper are gen-
erally not run on Windows Server, there could be other
vulnerable applications.

3 Client-server communication inside the
computer

Modern operating systems (OS) provide several means
for IPC. The vulnerabilities presented in this paper were
found in IPC methods where a server process or device

1512 27th USENIX Security Symposium USENIX Association

listens for connections from client processes. Specifi-
cally, we consider network sockets, named pipes, and
Universal Serial Bus (USB) communication. In this sec-
tion, we give a high-level overview of these IPC mech-
anisms. The reader is referred e.g. to [47, 49] for more
details. We also discuss the attack vectors that the MitMa
attacker might exploit against each IPC type.

3.1 Network sockets
Network sockets are widely used in distributed client-
server architectures. The server waits for the incoming
client requests by listening on an IP address and a TCP
or UDP port number. Any client can connect to the server
as long as it knows the IP address and port. While net-
work sockets were originally intended for communica-
tion across a network, they are also used for IPC within
one host. If the server listens only on the loopback in-
terface, i.e. on one of the special localhost addresses
127.0.0.0/8 and ::1/128, only local client processes
can connect to it.

Network sockets have almost the same functionality
across operating systems. Any process, regardless of its
owner, can listen on a port 1024 or higher as long as the
number has not been taken by another process. Also,
any local process can connect as a client to any localhost
port where a server is listening. It is the responsibility
of the client and server processes to authenticate each
other on the application layer, as if the client was on the
other side on the Internet. However, a separate connec-
tion is created for each client, and the OS prevents unau-
thorized processes from sniffing the communication. In
that respect, IPC over the loopback interface is more se-
cure than communication over a physical network.

Attack vectors. The malicious process, like any pro-
cess on the computer, can connect to any server port on
the localhost. This makes client impersonation very easy.
Some servers might accept only one client connection,
and in that case the malicious process needs to connect
before the legitimate client.

The network-socket server typically listens for TCP
connections on one or more predefined ports. The at-
tacker can find the port numbers from the application
documentation or source code, if available, or with com-
mands such as netstat. In port hijacking, the MitMa
attacker binds to the port (≥ 1024) before the legitimate
process does. The attacker can then receive any connec-
tions that clients open to the port, enabling server imper-
sonation.

The MitMa attacker naturally wants to combine server
and client impersonation to a full man-in-the-middle at-
tack where the attacker passes messages between the le-
gitimate client and server. This is not always easy to

do on the localhost because the legitimate server and at-
tacker cannot both bind to the same port number. Fortu-
nately for the attacker, many applications implement port
agility for IPC: if the primary port is taken, they choose
the next port number from a predefined list. This enables
the attacker to receive client connections on the primary
port and connect itself to a secondary port on the legiti-
mate server.

Even if the application uses one fixed port for IPC, the
attacker may be able to replay messages by alternating
between the client and server roles. It sometimes binds
to the server port and sometimes releases it for the legit-
imate server. The rate of the messages passing through
the attacker will be slow, but we found practical attacks
that only require a small number of such role reversals.

3.2 Windows named pipes
Both Windows and Unix systems support named pipes,
but the implementation details differ significantly. We
describe Windows named pipes here because they were
found to create more actual vulnerabilities.

On Windows, the named pipes are placed in the root
directory of the named pipe filesystem. It is mounted un-
der the special path \\.\pipe\, to which every user of
the system has access, including the guest user. When
no pipe with the given name exists, any process can cre-
ate it. The named pipe can have multiple instances to
support multiple simultaneous connections from clients.
The creator of the first instance decides the maximum
number of instances as well as specifies the security de-
scriptor, which includes an access control list (DACL)
that controls access to all the instances of the named pipe.
The default descriptor grants read access to everyone and
full access only to the creator user and the administra-
tors. Some important details are that, if an instance of
the named pipe with the same name already exists, only
processes with the FILE CREATE PIPE INSTANCE access to
the pipe object can create a new instance, and that a pro-
cess can set the FILE FLAG FIRST PIPE INSTANCE flag to
ensure that it is creating the first instance.

Attack vectors. If the named pipe is created with the
default security descriptor, or with open read-write ac-
cess for two-directional communication, the attacker’s
malicious process can connect to it and impersonate the
legitimate client. The pipe server would have to con-
figure the DACL on the named pipe object carefully to
allow access for only legitimate clients.

The default security descriptor does not allow the at-
tacker to create new pipe instances. The attacker can,
however, hijack the pipe name by creating the first pipe
instance and thus becoming the owner of the named-
pipe object. This way, the attacker can impersonate the

USENIX Association 27th USENIX Security Symposium 1513

named-pipe server. Furthermore, the attacker can set the
access control list so that it allows the victim (or anyone)
to create new pipe instances. If the legitimate server is
careless, it will not check that it is creating the first in-
stance of the pipe. By choreographing the creation of the
instances and client connections, the attacker can then
become a man in the middle between the legitimate client
and server, passing messages between two pipes. It helps
to know that Windows connects new clients to the server
instances in round-robin order.

To summarize, it is easy to overlook the necessary se-
curity controls for named pipes, thus creating vulnera-
bilities, but on the other hand, careful configuration can
avoid most of the issues.

3.3 Hardware security tokens
Universal Serial Bus (USB) allows peripheral devices to
communicate with a computer. USB human interface de-
vices (HID) include keyboards and pointing devices, but
also hardware security tokens.

In Linux, HIDs are character devices and mapped
to special files under /dev/hidraw*. The currently
logged-in user gets by default read-write access to the
special file. If the user session is interrupted, either by
the user logging out or by switching users, the read-write
access is reassigned to the display manager and later to
the next logged-in user. Thus, exactly one user at a time
has access to a USB HID. Windows lacks such mech-
anisms for dynamic access-rights assignment, and more
than one user at a time could have access to a HID device
including hardware security tokens.

Attack vectors. The MitMa attacker in Windows can
access USB HIDs plugged in by other users. This also
applies to USB security tokens. The security of the to-
ken will then depend on application-level security mech-
anisms implemented in the hardware or software.

3.4 Safe IPC methods
It is worth noting that some IPC mechanisms, such as
anonymous pipes and socket pairs, are not vulnerable to
our attacks. In these methods, both endpoints of the IPC
channel are created at the same time by the same pro-
cess, which prevents an untrusted process from getting to
the middle. Unfortunately, these IPC methods can only
be used between related processes (typically parent and
child), which severely limits the software architecture.
Thus, it is attractive to use the more client-server oriented
but less safe methods described above.

On macOS, apart from the same IPC methods that are
available on Windows and Linux, there are also Mach
IPC methods that are based on the Mach kernel, such as

Figure 2: Password manager architecture with native app
and browser extension

CFMessagePort. These IPC channels are associated with
a login session [10], and a process from one login session
cannot interact with another. Thus, these IPC methods
are immune to MitMa attacks between users.

In the following sections, we show how the attack
vectors described above are affecting real-world applica-
tions. Table 2 summarizes the applications and the vul-
nerabilities that we found.

4 Case study 1: Password managers

We chose password managers as our primary case study
because the information they send over IPC is obviously
critical and, thus, it is easy to identify security violations.

Password managers help users to choose and remem-
ber strong passwords without reusing them [24]. They
store passwords along with the associated hostnames and
usernames in an encrypted password vault. The key
to the vault is typically derived from a master pass-
word. Password managers are often integrated to the
web browser and assist the user both by offering to cre-
ate and store passwords and by entering them into login
pages. We focus on password managers that consist of
two discrete components: a stand-alone app for manag-
ing the password vault and a browser extension for the
web-browser integration, as in Figure 2. We analyze the
inter-process communication between these two compo-
nents.

As the following sections will show, the MitMa at-
tacker is able to capture passwords and other confiden-
tial information from a large number of password man-
agers. What we find interesting is that, in almost all
cases, the software developers have taken some mea-
sures to authenticate or encrypt the communication be-
tween the browser extension and the app. This shows
that they do not fully trust the security of the chosen IPC
method. Yet, none of the studied examples implements
well-designed cryptographic protection that would com-
pletely protect the communication from the MitMa at-
tacker. The main message of the current paper is to high-
light this ambivalent attitude towards IPC security and to
suggest a rethink.

1514 27th USENIX Security Symposium USENIX Association

Application
type

Application
version

Browser,
extension version m

ac
O

S

W
in

do
w

s

L
in

ux Communication
channel Attacks

Password
managers

RoboForm 8.4.4
Chrome, 8.4.3.6
Firefox, 8.4.3.4
Safari, 8.4.5

3 7 N/A Network socket Client impersonation

Dashlane 5.1.0
Chrome, 5.5.3
Firefox, 5.5.3
Safari, 5.5

3 3 N/A Network socket Server impersonation

1Password 6.8.4 Safari, 4.6.12 3 7 N/A Network socket Server impersonation

F-Secure Key 4.7.114
Chrome, 1.0.0.3
Firefox, 1.0.3

3 3 N/A Network socket
Client impersonation
Server impersonation

Password Boss
3.1.3434

Chrome, 3.1.3434
Firefox, 3.1.3434

7 3 N/A Named pipe Man-in-the-middle

Sticky Password 8.0.4
Chrome, 8.0.12.120
Firefox, 8.0.12.130
Safari, 8.0.2.63

3 7 N/A Network socket
Client impersonation
Server impersonation

Hardware
tokens

FIDO U2F Key — 7 3 7 USB Unauthorized access
DigiSign 4.0.12.5850 — 3 3 3 Network socket Client impersonation

Backends with
HTTP API

Blizzard 1.10.1.9799 — 3 3 N/A Network socket Client impersonation
Transmission 2.93 — 3 3 3 Network socket Client impersonation
Spotify 1.0.73.345 — 3 3 3 Network socket Client impersonation

Others
MySQL 5.7.21 — 7 3 7 Named pipe Man-in-the-middle
Keybase 1.0.40 — 7 3 7 Named pipe Server impersonation

Table 2: Discovered vulnerabilities (3 vulnerable, 7 not vulnerable)

4.1 Managers with network sockets
Many password managers use network sockets as the
IPC method because of its portability across operating
systems and browsers and compatibility with web APIs.
This section discusses the MitMa vulnerabilities found
in such implementations.

4.1.1 RoboForm

The RoboForm [7] password manager (S) and its browser
extension (E) communicate via the loopback network in-
terface with HTTP without any authentication. The pro-
tocol is basically as follows:

1. E→ S: “list”
2. E← S: [item id1, item id2, ..., item idn]
3. E→ S: “getdataitem”, item idi
4. E← S: itemi

The extension first requests a list of all items stored in
the password vault by sending an HTTP POST request to
http://127.0.0.1:54512. The server replies with the
item identifiers, which consist of a type (e.g. password,
safenote) and name. To retrieve an item, the extension
sends a getdataitem request to the server, which re-
turns the item data in plaintext.

Attacks. Since there is no authentication between the
browser extension and the native app, a MitMa attacker

can impersonate the browser extension by simply con-
necting to the above URL. It can then retrieve all the
sensitive information from the user’s password vault.

4.1.2 Dashlane

Dashlane [3] has two modes of operation: in one, the
browser extension retrieves passwords directly from a
cloud storage and, in the other, from a desktop app. We
only consider the latter operating mode. The Dashlane
app runs a WebSocket server on port 11456.

The WebSocket communication between the Dashlane
app (server) and the browser extension (client) is pro-
tected as follows. First, all messages are encrypted with
keys derived from a hard-coded constant secret and a
nonce, which is fresh for each message and included in
the message. Second, the server verifies the browser-
extension id in the HTTP Origin header of each request.
Third, the server verifies the client process by check-
ing its code-signing signature using APIs provided by
the operating system. The process must be a whitelisted
web browser and the signature must be generated by a
whitelisted software publisher. Fourth, the server checks
that the client process is owned by the same user as the
server.

A peculiar feature of Dashlane is that the browser ex-
tension collects all DOM elements from the web pages

USENIX Association 27th USENIX Security Symposium 1515

that the user visits and sends them to the app for anal-
ysis. The app then instructs the extension on actions to
take, such as to save the contents of a web form to the
app when the user submits it.

Attacks. The verification of the browser binary and user
id prevented us from impersonating the web browser or
browser extension. However, it does not prevent imper-
sonation of the server to the browser extension. We ex-
plored what the MitMa attacker can achieve with server
impersonation. The attacker first needs the shared con-
stant secret, which it can find in the JavaScript code of
the browser extension. The attacker then runs its ma-
licious WebSocket server on port 11456 before the be-
nign server starts, which effectively forces the benign
server to fail over to another port (the user is not noti-
fied about this). Since the attacker knows the encryption
keys, the browser extension will happily communicate
with the malicious server. As a result, the attacker ob-
tains all HTML content from the web pages that the vic-
tim visits. This includes personal data displayed on web
pages, such as emails and social-network messages. Fur-
thermore, the malicious app can instruct the extension to
collect web-form data and send the data to it. Then, any
usernames and passwords that the user types in are sent
to the malicious app regardless of whether the user wants
to save them to the vault or not.

4.1.3 1Password

1Password [1] app runs a WebSocket server on port
6263. The very first time when the browser extension
communicates with the WebSocket server, the server ver-
ifies the client binary and user in the same way as Dash-
lane does. They then run the following protocol to agree
on a shared encryption key.

1. E→ S: “hello”
2. E← S: code (random 6-digit string)
3. E→ S: hmac key
4. Both the browser and the app display the code. The user

compares the codes and confirms to the app that they
match. Otherwise, the protocol restarts.

5. E← S: “authRegistered”
6. E→ S: nonceE
7. E← S: nonceS,

mS = HMAC(hmac key,nonceS||nonceE)
8. E→ S: mE = HMAC(hmac key,mS)
9. E← S: “welcome”

Finally, both sides derive the encryption key
K = HMAC(hmac key,mS||mE ||“encryption”), which
will be used to protect all future communication.

Attacks. The above protocol is clearly not a secure key
exchange. The checks on the client binary and user, how-
ever, protect against many attacks that otherwise could

exploit the protocol weaknesses. The remaining criti-
cal flaw is that the protocol requires user confirmation
only on the app side. This allows the attacker’s mali-
cious background process to skip the confirmation step,
and the browser extension will happily connect to it.

Because of the above flaw, the attacker can imperson-
ate the app to the browser extension, like in Dashlane. By
analyzing the JavaScript code of the 1Password browser
extension, we found commands that the app can issue to
the extension, such as collectDocuments, which tells
the browser extension to collect data on the page the user
is visiting including the URL and data entered into web
forms.

4.1.4 F-Secure Key

The F-Secure Key [4] app runs an HTTP server on the
localhost port 24166. If the port is already occupied by
another process, the server fails to run.

To start using the browser extension, the user needs
to cut and paste an authorization token from the app to
the extension. The secret token is then used to encrypt
parts of the messages exchanged between the app and
the extension, including usernames and passwords. Ad-
ditionally, every message from the extension includes a
hash of the token for authentication.

When the user visits a web page, the login protocol is
roughly as follows.

1. E→ S: page url, token hash
2. E← S: [(description1, username1, password1), ...,

(descriptionn, usernamen, passwordn)]

The browser extension requests the app for password
entries that match a given URL. If matches are found, the
app returns their information to the extension, including
a description, username, and password. The messages
are JSON objects where the values are encrypted while
the keys are plaintext. Each value is encrypted as a sepa-
rate message. For example:

{ "items": [{ "title": "<encrypted_title>",

"username": "<encrypted_username>",

"password": "<encrypted_password>" }]}

F-Secure Key requires the user to create passwords in
the app, and thus confidential data mainly flows from the
app to the extension. Apart from the aforementioned
messages, the extension sends a periodic health mes-
sage to the app to indicate that it is still running and a
logout message to lock the vault, after which the user
has to enter the master password to unlock the app again.
Both messages have no content except for the authoriza-
tion token hash.

Attacks. As we can see, the extension does not authen-
ticate the app before sending messages. Thus, a MitMa

1516 27th USENIX Security Symposium USENIX Association

attacker can impersonate the app to the extension by run-
ning an HTTP server on port 24166. Thanks to the health
messages, the attacker is able to capture the authorization
token hash and use it later to impersonate the extension.

With the ability to impersonate both sides, the MitMa
attacker can perform replay attacks as follows. In the
first stage, it impersonates the app to collect as many
encrypted URLs from the extension as possible. In the
second stage, the attacker closes the malicious server, re-
leasing port 24166, and waits until the user restarts the
app. The attacker then connects to the app as a client
and sends the encrypted URLs. In response, the attacker
obtains a list of encrypted password entries. Note that
the attacker cannot decrypt the passwords. However, be-
cause the values are encrypted as individual messages
and the integrity of the end-to-end connection is not
checked, the attacker can modify the messages and pair
the encrypted password fields with the wrong encrypted
URLs. In the third stage, the attacker again impersonates
the app to the extension, listening on port 24166. It can
do this, for example, if the user logs out and later logs
back in. The attacker then responds to requests from the
browser extension by replaying the responses that it re-
ceived earlier, but with the mismatched passwords. Since
the passwords have been matched with the wrong URLs,
they get sent to the wrong websites. As described, this is
just a nuisance attack but shows that data leaks are possi-
ble. More seriously, the attacker could collude with one
of the websites, identify its encrypted URL at the MitMa
process by correlating the timing of the encrypted mes-
sage with the user’s login on the colluding site, and then
leak the user’s passwords to that site one by one.

4.2 Managers with native messaging

Native messaging [25] is intended to provide a more se-
cure alternative to network sockets or named pipes for
communicating between a browser extension and native
code. In Windows, native messaging uses named pipes
with random names for its internal implementation, and
in Linux and macOS, it uses anonymous pipes. This
makes the communication channel immune to MitMa at-
tacks. The native password manager app registers an
executable, called native messaging host (NMH), with
the web browser. The configuration file of the NMH can
specify which browser extensions have access to it. The
web browser starts the NMH in a child process and lets
the browser extension communicate with it.

Native messaging can be used to implement a pass-
word manager that is only accessed through the web
browser and the browser extension. It is, however,
not a complete solution for communication between
the browser extension and the stand-alone password-
manager app of Figure 2. This is because the NMH needs

Figure 3: Communication in native messaging

to be a child process of the web browser and thus is a dif-
ferent process from the stand-alone app. In the follow-
ing, we analyze how password managers nevertheless try
to make use of native messaging.

4.2.1 Password Boss

Password Boss [6] on Windows uses both native mes-
saging and named pipes, as shown in Figure 3. When
the native app is started, it creates a named pipe with a
fixed name and maximum 50 instances. The access con-
trol list on the named pipe allows all authenticated users
to read and write to its instances. The native messaging
host connects to the named pipe as a pipe client and for-
wards messages between the browser extension and the
native app. Messages are sent in plaintext and no attempt
is made to authenticate them.

Attacks. Any authenticated user on the system can per-
form the MitMa attack as follows. First, the attacker con-
nects as a client to the native app’s named pipe instance.
The attacker then creates another instance of the named
pipe, which is possible thanks to the unnecessarily high
maximum number of instances. When the native mes-
saging host tries to communicate with the native app, it
will connect to the attacker’s instance because it is the
only one available. The attacker can thus sit between
the two pipe instances forwarding messages and reading
their content, including passwords.

The above attack does not work if the attacker only has
guest access to the victim’s system because the named
pipe’s security attributes allow only authenticated users
to create and access instances. To overcome this lim-
itation, the guest-user attacker needs to hijack the pipe
name as described in Section 3. That is, the attacker has
to create the first instance of the named pipe, so that it
can set the DACL to allow access by everyone. After
that, the guest user can mount the MitMa attack.

4.2.2 Sticky Password

Sticky Password [8] also makes use of both native mes-
saging and WebSocket, but in a configuration that is
slightly different from Figure 3. When the browser ex-
tension starts up, it uses native messaging to obtain an
AccessKey from the NMH, which gets it from the stand-
alone Sticky Password app with the CFMessagePort IPC
method. After this, the browser extension communicates
directly with the app’s WebSocket server on port 10011.

USENIX Association 27th USENIX Security Symposium 1517

A simplified version of the protocol between the Sticky
Password browser extension and app is shown below.

1. E→ S: “authenticate”, ClientID, AccessKey
2. E→ S: “GetCompleteWebAccounts”
3. E← S: [(id1,username1), ...,(idn,usernamen)]
4. E→ S: “GetLoginPassword”, idi
5. E← S: password

Thus, the browser extension first authenticates to the
server with the AccessKey. It then uses further com-
mands to retrieve the list of available data and, finally,
the desired data item. Different commands exist for dif-
ferent types of user data.

Attacks. The first attack that a MitMa attacker can do
with Sticky Password is to impersonate the WebSocket
server. The reason is that the extension does not au-
thenticate the app. That is, the attacker can hijack the
localhost port 10011 before Sticky Password starts and
pretend to be the app. By impersonating the server, the
attacker may be able to capture data that the extension
sends to the app, including new passwords that the user
is attempting to save to the password vault.

Another important piece of data that the attacker can
obtain with the above attack is the AccessKey. Once the
attacker has learned this, it can impersonate the exten-
sion to the authentic Sticky Password app. That is, af-
ter capturing the AccessKey, the MitMa attacker closes
the server socket at port 10011 and waits for the user to
restart the Sticky Password app. It can then connect to
the app and use the AccessKey to retrieve all of the vic-
tim’s passwords. The attacker has to resort to this two-
stage attack because, when the attacker’s binary binds to
port 10011, the Sticky Password app fails to do so. Nev-
ertheless, a patient attacker is able to alternate between
the connections.

5 Case study 2: Hardware tokens

Our second case study is communication with physical
authentication devices. Communication with the physi-
cal tokens also takes place within one computer, and we
find that it is vulnerable to MitMa attacks by malicious
processes that are running in the background.

5.1 U2F security key
FIDO U2F [23] is an open authentication standard that
enables strong two-factor authentication to online ser-
vices with public-key cryptography and a USB hardware
device called security key. It is supported by major on-
line service providers, by UK government services [28],
and by the Google Chrome and Firefox (beta) browsers.
We analyze the security of U2F in Windows computers.

Figure 4: The basic authentication flow of a website with
U2F security key [57]

The user must first register the U2F device to the on-
line service. The device generates a service-specific key
pair and stores it together with a key handle (i.e. identi-
fier) and the origin URL of the service.

Figure 4 illustrates the two-factor authentication pro-
cess to a website. The browser receives a challenge to-
gether with a key handle from the web server. It forms
the so-called client-data object and sends the object
to the U2F device for signing. At this point, the user
needs to activate the device by touching a button on the
device. The browser then delivers the signed object back
to the web server for verification.

The button press is meant to prevent unauthorized use
of the hardware device. In practice, the browser process
keeps sending signing requests to the USB device until
it receives a signature back. When the button is pressed,
the device responds to the first received signing request.
The origin URL is included in the signed message to pre-
vent replay attacks between websites.

Attacks. The two-factor authentication is supposed to
prevent login even when the user’s password has been
compromised (e.g. because of attacks described in Sec-
tion 4). Thus, we only consider how the attacker can
subvert the U2F hardware-device authentication. To do
this, the MitMa attacker creates a malicious (browser)
process that runs on the user’s computer and tries to log
into one of the user’s online services. The attacker’s pro-
cess then sends client-data objects to the U2F device at
a high rate. When the user decides to log in to any ser-
vice using U2F authentication and touches the button on
the device, there is a high probability that the attacker’s
request will be signed. The user may notice that the first
button press had no effect, but such minor glitches are
normal in computers and typically ignored.

In experiments with FIDO U2F Security Key, our ma-
licious Python client in the background was 100% suc-

1518 27th USENIX Security Symposium USENIX Association

Browser
https://domain.com DigiSign

Select certificate
and enter PIN

msg, cert, PIN

signkeycert(msg)

Card

Verify PIN

HTTPS POST localhost:53952
msg

sign(msg)

(a) Normal operation

Browser
https://domain.com DigiSign

msg', cert, PIN

signkeycert(msg')

Card

Verify PIN

HTTPS POST
localhost:53952; msg

Malicious
binary

HTTP POST
localhost:53951; msg'

Select certificate
and enter PIN

sign(msg')

(b) MitMa attack

Figure 5: MitMa attack on DigiSign smart card reader through SCS interface

cessful in snatching the first button press and spoofing
the second authentication factor to services such as Face-
book and GitHub. The high success rate is due to the le-
gitimate user’s browser being slower to issue the signing
requests to the device than our frequently-polling mali-
cious script.

There are two root causes to this attack. First, the de-
vice does not have a secure path for informing the user
about which request will be signed. Second, Windows
allows even non-interactive processes to access the USB
device in the background. This attack is not possible in
Linux or macOS because they would prevent the mali-
cious background process form accessing the USB de-
vice.

Another approach to strengthening the security of crit-
ical login sessions is the TLS Channel ID [13,21]. It does
this by using a public key in addition to session cookies.
However, such approaches only help protect the already
established session, and they do not have any effect on
the security of the initial two-factor authentication which
we are able to compromise.

5.2 Fujitsu DigiSign

DigiSign is a smart-card reader application developed by
Fujitsu for the Finnish government. Its main user base is
healthcare professionals, but all citizens can acquire an
electronic identity card for strong authentication to gov-
ernment services.

The DigiSign application implements the so-called
Signature Creation Service (SCS) interface [34] specified
by the Finnish Population Register Centre. We analyze
the currently implemented protocol version 1.01.

The idea of the SCS interface is to allow a browser to
send signing requests to the card-reader application with-
out requiring any browser extensions. The basic process
is illustrated in Figure 5(a). The card-reader app with
the SCS interface has an HTTP server running on port
53951 and HTTPS server on port 53952 (during installa-

tion, the card reader app creates a self-signed certificate
for the local HTTPS server and adds it to the trusted cer-
tificates). A webpage may send signature requests to the
card reader by making a Cross-Origin Resource Sharing
(CORS) requests on one of these ports on the loopback
address. The data to be signed may be a document, a
hash, or a token that is used for authentication. Once
card reader app receives a signature request over SCS,
it displays a UI dialog requesting the user to insert the
smart card to the reader and to type in the PIN. If these
are correct, the smart card signs the messages and the
result is returned to the browser.

Attacks. The MitMa attack against the SCS protocol,
illustrated in in Figure 5(b), is similar to those against
password managers. The attacker’s process hijacks the
primary (HTTPS) port used by the SCS protocol. While
the attacker cannot spoof the HTTPS server, an attempt
to connect to it informs the malicious process that the
user is about to sign something. The malicious process
blocks this connection without closing it and sends a ma-
licious signing request to the card reader app, which is
listening on the secondary (HTTP) port. When the user
enters the PIN, the card signs the attacker’s data.

SCS specification version 1.1 [43] will fix some of the
problems. Most notably, it mandates the use of TLS on
the local IPC channel and specifies only one port for the
card reader app. Because of this, it would appear that an
attacker cannot hijack a port and simultaneously send a
signing request to the card reader app. Nevertheless, the
newer specification does not solve the root cause of the
problem, which is that the client in the SCS protocol is
not authenticated. A malicious process could opportunis-
tically send signing requests to the card reader app and
hope that the timing is right, or a confused user might en-
ter the PIN by mistake. Moreover, the attacker could use
out-of-band hints, such as insertion of the smart card or
shoulder surfing, to time the malicious signature request
approximately at the correct time window.

USENIX Association 27th USENIX Security Symposium 1519

6 Case study 3: Software back-ends with
HTTP API

A common application software architecture separates
the application into a front-end component, which only
handles user interaction, and a back-end server with
an HTTP API, which often follows the REST design
paradigm. We discuss three such applications that use
network sockets and HTTP for inter-process communi-
cations. We show that a MitMa attacker can circumvent
the commonly accepted security solutions that are sup-
posed to prevent client impersonation in such applica-
tions.

6.1 Blizzard
Blizzard [2], a computer game publisher, provides the
Battle.net desktop app for installing and updating games.
The app comes with a background service called Bliz-
zard update agent, which receives commands from the
app and does the actual software installation. The up-
date agent runs an HTTP server on localhost port 1120.
The client first retrieves an authorization token from
http://localhost:1120/agent and then connects to
other endpoints.

The security of the update agent has received recent
attention [26] because it was found that rogue web pages
open in the user’s browser could connect to it and issue
malicious commands to take over the computer. The at-
tack circumvented the same-origin policy in the browser
with DNS rebinding [31]. The solution was to check
that the Host header on the incoming HTTP requests is
localhost and not something else.

We see a deeper problem behind the vulnerability:
there is no access control to limit which processes can
connect to the update agent, and the implemented solu-
tion trusts the client process to provide the correct in-
formation (Host header). We implemented a MitMa at-
tacker client that spoofs the Host header and, thus, has
no problems issuing commands to the update agent. This
naturally enables the same kind of privilege escalation
for the MitMa attacker as the earlier-reported vulnerabil-
ity enabled for rogue websites.

6.2 Transmission
Transmission [9] is an open-source BitTorrent client. It
includes a background service that handles all torrent-
related activities. The service runs an HTTP server on
port 9091 and accepts connections by default only from
the localhost. The user can, optionally, set up a user-
name and password for authenticating connections to the
server. The client posts commands, such as adding, stop-
ping and removing torrents, to the HTTP server.

This service has also been found vulnerable to DNS
rebinding [27]. Again, the proposed solution of check-
ing the Host header is insufficient to stop MitMa attacks
because the attacker’s background process can spoof the
header. Moreover, the MitMa attacker can hijack the
server port and capture the username and password from
the client, before releasing the port and waiting for the
legitimate server to start. The attacker will then have full
access to the user’s Transmission account.

6.3 Spotify
Spotify, a music streaming service, runs an HTTP server
on the localhost port 4381 to accept streaming com-
mands, such as playing a song. The server whitelists
clients based on the Origin header in order to allow se-
lected web pages to open in the user’s browser to access
the HTTP API. This access-control mechanism does not
prevent MitMa attacks. The reason is that the MitMa at-
tacker can lie about the Origin hostname. The attacker
can then the disturb the victim by telling the server to
play arbitrary songs.

7 Other client-server applications

This section will analyze two more client-server applica-
tions that make use of named pipes for the IPC.

7.1 MySQL
MySQL server on Windows can be configured so that
the clients connect to it using named pipes. This may be
more efficient than TCP when the client and server are on
the same host [39]. The MySQL server simply creates a
named-pipe instance with the name MySQL. This named
pipe allows everyone to connect to it with full access.
When a client connects, a new instance is created to wait
for the next client.

Attacks. The MitMa attacker can perform a man-in-the-
middle attack on MySQL connections as follows. Sup-
pose that the server has started and it has created the
first instance of the named pipe. First, the attacker cre-
ates another instance of the named pipe. This is possible
due to the unrestricted DACL of the pipe. The attacker
then connects to the first instance as a client. Next, the
MySQL server will create a new instance to wait for a
new client. However, if a legitimate client now tries to
connect, it will be connected to the attacker’s instance
because it is the oldest unconnected instance. After this,
the attacker can act as the man in the middle and forward
messages between the two pipe instances.

The above attack allows the attacker to read all mes-
sages between the client and the server and to modify the

1520 27th USENIX Security Symposium USENIX Association

http://localhost:1120/agent

SQL queries and responses. Furthermore, the attacker
can inject its own queries to the session.

7.2 Keybase
Keybase [5] is an open-source messaging app with end-
to-end encryption, which is available for both phones and
desktop computers. On the latter, the Keybase app has
a client-server architecture. The app launches a back-
ground process that handles all of the application’s tasks,
such as encrypting and sending messages.

On Windows, the client accepts commands from the
user and sends them to the Keybase background pro-
cess over a named pipe. The background process creates
the pipe with the name keybased.sock at startup. The
named pipe’s access control list grants full access for the
current active user and administrators, while other users
have only read access. Also, the pipe is created with the
FILE FLAG FIRST PIPE INSTANCE flag. Thus, the back-
ground process will not start if the named pipe already
exists.

To use Keybase on a new device, the user must first
sign in to the Keybase background process with his Key-
base credential and then approve the new device from
a previously registered device. After that, the Keybase
background process on the new device has full access to
the user’s Keybase account.

Attacks. We see that the MitMa attacker cannot
set itself between legitimate client and server because
of the FILE FLAG FIRST PIPE INSTANCE flag. There is
also no point for the MitMa attacker to impersonate the
client without having write access, which is required for
two-directional communication. However, the attacker
can impersonate the Keybase background process to the
client by starting it before the legitimate one. This causes
the legitimate background process to fail silently. Since
the Keybase is open source, the attacker can simply mod-
ify the Keybase source code so that the named pipe al-
lows full access from everyone. The attacker then runs
the modified service in the background and waits for the
victim’s first login. When the victim signs in, approval
is given to the malicious Keybase instance instead of the
intended one.

8 Mitigation mechanisms

In this section, we discuss potential prevention and mit-
igation mechanisms for the MitMa threats. The goal is
to present a taxonomy that brings order to the concepts,
rather than to cover all technical details.

Spatial and temporal separation of user sessions.
MitMa attacks are performed by leaving a malicious pro-
cess running in the background when the victim logs in

to the system. The most straightforward countermeasure
is to limit the number of users that have access to each
computer. Ideally, each computer would be personal to
one user. If that is not feasible, the administrator of a
multi-user system may implement the principle of least
privilege so that users can only log into the computers
that they really need to access. This includes disabling
the guest account.

A slightly less drastic solution is to enforce tempo-
ral separation, i.e. to allow only one user’s processes to
be running on the computer at any one time. On Linux
and macOS, this requires disabling fast user switching
and remote access and killing any rogue processes that
might have been left behind. On Windows, disabling
user switching is not effective because the attacker can
easily bypass it, for example, with the built-in Windows
system tool tsdiscon. Instead, the Shared PC mode
[54] should be enabled, which prohibits multiple simul-
taneous login sessions.

Security-conscious users can also take some protec-
tive measures by themselves. They can manually verify
that there are no other active login sessions in the back-
ground, e.g. with the Windows command query user.
The most reliable way is to reboot the computer before
logging in, so that any active user sessions and processes
are flushed out. Naturally, these measures help only if
all remote access methods, such as SSH, have been dis-
abled.

Access control. The developers of IPC applications
should make use of OS access-control features such as
Unix permissions or Windows DACLs on named pipes.
Unfortunately, operating systems do not provide simi-
lar access controls for network sockets. As we have
seen, access control for USB communication in Win-
dows is also lacking. Furthermore, the cases studies
in this paper show that it is easy to make mistakes
with access control. For example, when creating a
named pipe on Windows, the server needs to specify the
FILE FLAG FIRST PIPE INSTANCE flag or check after the
creation who is the owner of the securable pipe object.
Any checks made before the pipe creation are not reli-
able because of possible race conditions.

Attack detection. Once a named IPC channel has been
created, the communicating endpoints can use operating-
system APIs to check whether they are communicating
securely with the correct entity. With Windows named
pipes, the client and server can query the session and pro-
cess identifiers of the other endpoint. This makes it pos-
sible to check that the client and server are in the same
login session. Based on the process id, they can query
further attributes of the process at the other end of the
pipe, such as the user and the path to the process binary,
which can then be compared to a whitelist. The critical

USENIX Association 27th USENIX Security Symposium 1521

trick here to perform the checks both at the server for the
client and at the client for the server.

JavaScript clients running in a web browser, includ-
ing browser extensions, pose special challenges for such
attack detection. First, they do not have access to OS
APIs and are therefore unable to perform most checks on
the server process to which they connect. This limitation
means that it is difficult to establish secure communica-
tion between a web browser extension and a stand-alone
app. Second, web browsers are highly scriptable. As we
have seen, some IPC servers check that the client binary
is a signed version of a well-known web browser. This
check alone is not reliable because the attacker could be
using the legitimate binary for malicious purposes. At
minimum, the server should check the owner of the client
process.

Cryptographic protection. Authentication methods for
communication over insecure channels have been studied
widely [15,18,30] and can be applied also to IPC. These
protocols require distribution of shared or public keys to
the IPC clients and servers. For example, F-Secure Key
authorizes access to the password database by transfer-
ring a secret token to the client through a user-assisted
out-of-band channel (in this case, Windows clipboard,
which has its own weaknesses). Lessons for more se-
cure user-assisted pairing methods could be learned, for
example, from Bluetooth device pairing and other user-
assisted out-of-band authentication and pairing protocols
[12, 16, 45].

Another approach is to assume that all IPC takes place
remotely over the Internet and to use the standard TLS-
based protocols for protecting it. The necessary infras-
tructure, including certification authorities, may be an
overkill when the goal is authorization of the server and
client processes rather than binding them to strong iden-
tities. Even OAuth 2.0, which defines bearer tokens
for client authorization and therefore seems suitable for
IPC clients, depends on certificates for authenticating the
server. In any case, cryptographic protection requires
careful design and, as we have seen once again in this
paper, ad-hoc implementations tend to have weaknesses.

Architectural changes to software. Some password
managers do not have a stand-alone app but connect di-
rectly from the browser extension to a cloud service,
which provides the server functions. This kind of archi-
tecture avoids inter-process communication altogether
but is not feasible for all applications.

Another way to avoid the vulnerabilities of IPC meth-
ods is to redesign software to run related software com-
ponents in the same process. This does not necessarily
mean loss of software modularity or use of third-party
components. For example, SQLite does not require IPC
in the same way as MySQL does because it is linked to

the application as a library. The safe IPC methods (un-
named pipes and socket pairs, see Section 3.4) can still
be used between related processes without exposing the
applications to MitMa attacks.

Such architectural solutions work well when they are a
good match for the goals of the application developer. In
many cases, however, the developer would not be will-
ing to give up common software patterns like separating
software into a frontend UI and backend business logic
and database that run on the same computer, or commu-
nicating with a web API between these components.

9 Discussion and future work

The described vulnerabilities are fundamentally caused
by carelessly-designed or poorly-written software. This
conclusion is supported by the fact that there are also se-
cure, well-designed applications that make use of IPC.
As a further case study, we looked at cloud-storage ap-
plications (e.g. Dropbox, SpiderOak, Box), which tend
to have a local backend component that is accessed over
IPC. We found this class of software to be more prudent
about security than the ones discussed in this paper. Be-
cause of such positive examples, our view of the future
is not entirely bleak.

The well-designed applications set up strict DACLs or
permissions to ensure that the IPC channel is accessi-
ble only to the authorized user(s) and configure the IPC
channel options carefully rather than relying on the de-
fault settings. They also query the OS APIs to check that
the login session, user and executable file of the other
endpoint have the expected values. Named pipes provide
more such control and seem easier to secure than net-
work sockets. The advantage of network sockets is that
the same web APIs work without code changes locally
and across the Internet, but the cost is that the available
web security mechanisms do not take advantage of the
locality and are usually considered too heavy for local
IPC.

The explanation why the problems with IPC are so
widespread is probably twofold. First, developers are in-
clined to consider the localhost a trusted environment.
Second, the best practices for secure IPC are not doc-
umented, and therefore developers may simply be un-
aware of the threats and solutions. We therefore believe
that the best way to address both of these potential ex-
planations is to raise awareness about the attacks and
defenses, as we attempt to do in this paper. Over time,
better tools such as safe APIs and security test benches
could help eradicate entire classes of problems. Fully au-
tomated vulnerability scanning, however, does not seem
possible because the automated tools cannot not evalu-
ate the security of application-level cryptographic pro-
tection.

1522 27th USENIX Security Symposium USENIX Association

In some sense, the idea of protecting the users of a
multi-user computer system from each other takes us
back to the early days of computer security. With per-
sonal computers, this has not been perceived as so im-
portant. It has also become common wisdom among
information-security experts that, if the attackers can run
a process on the computer, they always can find a path
to privilege escalation [32, 44, 55] and gain full admin-
istrative access. There is, however, the opposite trend
towards greater isolation of applications from each other
and containing malicious applications. This trend started
in mobile devices, but desktop operating systems are be-
ginning to provide similar protections (UWP AppCon-
tainers in Windows 10 [40] or application sandboxing
in macOS [11]). The MitMa attacks are one way for
a non-privileged process to circumvent isolation bound-
aries within the computer, and we believe that the obser-
vations of this paper will prove useful in the design of
application-isolation mechanisms.

We have focused on the threat model where the at-
tacker and victim are two nonprivileged users. One di-
rection of further work is to look at similar MitMa vul-
nerabilities in server software where a non-administrator
attacker exploits IPC for privilege escalation. Attacks
between applications of the same user may also deserve
a look. Even though current desktop applications will
not present much resistance to such attacks, it is good to
question the status quo. Such threats have earlier been
studied in the context of Mac OS X [55] and mobile
OSs [22,46,55], which, as mentioned above, already pro-
vide isolation for user-space apps.

10 Related work

This section summarizes the research literature related to
the attacks presented in this paper.

IPC security. Windows named pipes have been an at-
tractive target for security analysts. Even though the OS
offers security controls to named pipes using DACL, the
default security descriptor of a Windows named pipe al-
lows anyone to read its content [38]. In some cases, there
could be write access for everyone due to the developer’s
negligence. In such scenarios, even a remote attacker
may be able to impersonate the pipe client to perform
code execution or denial of service [19, 20]. The server-
impersonation and name-hijacking attacks explained in
our paper are not feasible for such remote attackers.

Additionally, named pipes are also known to be vul-
nerable to an impersonation attack [53] (unrelated to the
client or server impersonation of our paper). The pipe
server impersonates its client’s security context, which
allows it to perform actions on behalf of the client. This
attack requires the server and client processes to run as

the same user or for the server to run as the superuser,
which is a stronger assumption than our threat model.

Vulnerabilities have also been found for other IPC
mechanisms. Xing et al. [55] demonstrated that a mali-
cious application on macOS and iOS can access another
application’s resources despite the app isolation. The at-
tacks intercept IPC in a way similar to ours, but the ma-
licious binary is executed with the victim’s privileges.
Related problems have also been found in Android app
isolation [22, 46].

The DNS rebinding vulnerability [26, 27, 31] that we
referred to in Sections 6.1 and 6.2 has simple solu-
tions based on whitelisting. It is, however, known that
whitelisting approaches, such as cross-origin resource
sharing (CORS) for HTTP, often lead to the use of un-
safe wildcard policies. Such too-relaxed whitelists on
locally-running services may enable XMLHttpRequest

from untrusted web applications (without the DNS re-
binding of [26, 27]). These attacks are akin to our client
impersonation, but the attack is launched from a suppos-
edly sandboxed code running in the web browser rather
from another user’s session.

Automated detection and firewall-like defenses may
help to prevent attacks between users and applications
inside the same computer. Vijayakumar et al. [51] au-
tomate the detection of name-resolution vulnerabilities
with dynamic analysis of software. A process firewall
can prevent unauthorized cross-user resource access with
system calls [52] and file and IPC squatting attacks [50].
The attacks presented in the current paper could be pre-
vented by firewalling of applications, although it may be-
come burdensome to whitelist the desirable interactions
accurately.

Password manager security. Secure and usable inte-
gration of a password manager and a browser is a widely
studied problem. Because the password manager is ex-
pected to autofill passwords into web forms, the creden-
tials are exposed to network attackers running malicious
scripts on the website. Silver et al. [48] showed that the
autofill policies in some browsers allow a network at-
tacker to steal credentials. Li et al. [37], on the other
hand, found that password managers suffer from tradi-
tional web vulnerabilities (e.g. XSS, CSRF), poor user-
interface design, and problems related to poorly under-
stood threat model. Unlike the remote attacker in these
publications, our MitMa attacker exploits the IPC com-
munication within a single computer.

There have been several attempts to create more se-
cure password-manager architectures, more specifically
to address autofill attacks [36] and offline cracking at-
tacks [17]. While they illustrate the wide variety of
threats that must be taken into account when designing a
password manager, to our best knowledge, there is hardly

USENIX Association 27th USENIX Security Symposium 1523

any previous work that would address the security issues
arising within the computer.

USB hardware token security. Hardware tokens can be
used as a second authentication factor to protect against
credential leaking, phishing, and man-in-the-middle at-
tacks [35]. The security of the tokens has been studied
under various threat models [14, 29, 33, 42]. Unlike the
attacks in these papers, our MitMa attacks neither require
the attacker to physically access the hardware token nor
to find a side channel.

11 Conclusion

We analyzed the security of inter-process communica-
tion in the presence of a nonprivileged malicious process
on the same computer. The malicious process may be-
long to another user that has login access to the com-
puter or to a guest user. We found several vulnerabilities
in security-critical applications including password man-
agers, two-factor authentication, and applications that
have been split into separate frontend and backend pro-
cesses. While it is possible to use IPC in a secure way,
we found that many applications either do not give much
consideration to the security of local communication or
they implement ad-hoc security measures that are insuf-
ficient. We expect the importance of IPC security to in-
crease as operating system strive to isolate not only users
but also applications from each other.

Following responsible disclosure, we have reported
the vulnerabilities discovered in the research project to
the respective vendors and believe that they have taken
steps to prevent the attacks.

Acknowledgments

This work started from a collaborative research project
with F-Secure. We are grateful to Alexey Kirichenko
and others at F-Secure for their support and feedback.
The research was partially funded by the CyberTrust pro-
gram of DIMECC and Tekes (Business Finland) and by
Academy of Finland (project 296693).

References
[1] 1Password. https://agilebits.com/onepassword.

[2] Blizzard. https://www.blizzard.com/.

[3] Dashlane. https://www.dashlane.com/.

[4] F-Secure Key. https://www.f-secure.com/en/web/
home global/key.

[5] Keybase. https://keybase.io/.

[6] Password Boss. https://www.passwordboss.com/.

[7] RoboForm. https://www.roboform.com/.

[8] Sticky Password. https://www.stickypassword.com/.

[9] Transmission. https://transmissionbt.com/.

[10] APPLE DOCUMENTATION ARCHIVE. Root and login sessions on
OS X. https://developer.apple.com/library/content/
documentation/MacOSX/Conceptual/BPMultipleUsers/

Concepts/SystemContexts.html, Apr. 2013.

[11] APPLE DOCUMENTATION ARCHIVE. App sand-
box design guide — app sandbox in depth.
https://developer.apple.com/library/
content/documentation/Security/Conceptual/

AppSandboxDesignGuide/AppSandboxInDepth/

AppSandboxInDepth.html, Sept. 2016.

[12] AURA, T., AND SETHI, M. Nimble out-of-band authentication
for EAP (EAP-NOOB). Internet-Draft draft-aura-eap-noob-03,
IETF, July 2018.

[13] BALFANZ, D., AND HAMILTON, R. Transport layer security
(TLS) channel IDs. Internet-Draft draft-balfanz-tls-channelid-01,
2013.

[14] BARDOU, R., FOCARDI, R., KAWAMOTO, Y., SIMIONATO, L.,
STEEL, G., AND TSAY, J.-K. Efficient padding oracle attacks on
cryptographic hardware. vol. 7417 of LNCS, Springer, pp. 608–
625.

[15] BELLARE, M., POINTCHEVAL, D., AND ROGAWAY, P. Au-
thenticated key exchange secure against dictionary attacks. In
Advances in Cryptology - Eurocrypt 2000 (2000), vol. 1807 of
LNCS, Springer, pp. 139–155.

[16] BLUETOOTH SPECIAL INTEREST GROUP. Simple pairing,
V10r00. Whitepaper, Aug. 2006.

[17] BOJINOV, H., BURSZTEIN, E., BOYEN, X., AND BONEH, D.
Kamouflage: Loss-resistant password management. In European
Symposium on Research in Computer Security, ESORICS 2010
(2010), vol. 6345 of LNCS, Springer, pp. 286–302.

[18] BOYKO, V., MACKENZIE, P., AND PATEL, S. Provably secure
password-authenticated key exchange using Diffie-Hellman. In
Advances in Cryptology - Eurocrypt 2000 (2000), vol. 1807 of
LNCS, Springer, pp. 156–171.

[19] BURNS, J. Fuzzing Win32 inter-process communication mecha-
nisms. In Black Hat (2006).

[20] COHEN, G. Call the plumber you have a leak in your (named)
pipe. In DEF CON 25 (2017).

[21] DIETZ, M., CZESKIS, A., BALFANZ, D., AND WALLACH,
D. S. Origin-bound certificates: A fresh approach to strong client
authentication for the web. In 21st USENIX Security Symposium
(2012), pp. 317–331.

[22] FELT, A. P., WANG, H. J., MOSHCHUK, A., HANNA, S., AND
CHIN, E. Permission re-delegation: Attacks and defenses. In
20th USENIX Security Symposium (2011).

[23] FIDO ALLIANCE. Universal 2nd factor (U2F) overview.
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-
20170411/fido-u2f-overview-v1.2-ps-20170411.html,
Oct. 2017.

[24] FLORENCIO, D., AND HERLEY, C. A large-scale study of web
password habits. In 16th International Conference on World Wide
Web, WWW2007 (2007), ACM, pp. 657–666.

[25] GOOGLE. Native messaging. https://

developer.chrome.com/apps/nativeMessaging. [Nov.
2017].

[26] GOOGLE SECURITY RESEARCH. Blizzard update agent -
JSON RPC DNS rebinding. https://www.exploit-db.com/
exploits/43879/, Jan. 2018. EDB-ID 43879.

[27] GOOGLE SECURITY RESEARCH. Transmission - JSON RPC
DNS rebinding. https://www.exploit-db.com/exploits/
43665/, Jan. 2018. EDB-ID 43665, CVE-2018-5702.

1524 27th USENIX Security Symposium USENIX Association

https://agilebits.com/onepassword
https://www.blizzard.com/
https://www.dashlane.com/
https://www.f-secure.com/en/web/home_global/key
https://www.f-secure.com/en/web/home_global/key
https://keybase.io/
https://www.passwordboss.com/
https://www.roboform.com/
https://www.stickypassword.com/
https://transmissionbt.com/
https://developer.apple.com/library/content/documentation/MacOSX/Conceptual/BPMultipleUsers/Concepts/SystemContexts.html
https://developer.apple.com/library/content/documentation/MacOSX/Conceptual/BPMultipleUsers/Concepts/SystemContexts.html
https://developer.apple.com/library/content/documentation/MacOSX/Conceptual/BPMultipleUsers/Concepts/SystemContexts.html
https://developer.apple.com/library/content/documentation/Security/Conceptual/AppSandboxDesignGuide/AppSandboxInDepth/AppSandboxInDepth.html
https://developer.apple.com/library/content/documentation/Security/Conceptual/AppSandboxDesignGuide/AppSandboxInDepth/AppSandboxInDepth.html
https://developer.apple.com/library/content/documentation/Security/Conceptual/AppSandboxDesignGuide/AppSandboxInDepth/AppSandboxInDepth.html
https://developer.apple.com/library/content/documentation/Security/Conceptual/AppSandboxDesignGuide/AppSandboxInDepth/AppSandboxInDepth.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-overview-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-overview-v1.2-ps-20170411.html
https://developer.chrome.com/apps/nativeMessaging
https://developer.chrome.com/apps/nativeMessaging
https://www.exploit-db.com/exploits/43879/
https://www.exploit-db.com/exploits/43879/
https://www.exploit-db.com/exploits/43665/
https://www.exploit-db.com/exploits/43665/

[28] GOVERNMENT DIGITAL SERVICE. Introducing GOV.UK
Verify. https://www.gov.uk/government/publications/
introducing-govuk-verify/introducing-govuk-

verify, Mar. 2018.

[29] GRAND, J. Attacks on and countermeasures for USB hardware
token devices. In Proceedings of the Fifth Nordic Workshop on
Secure IT Systems (2000).

[30] JABLON, D. P. Strong password-only authenticated key ex-
change. ACM SIGCOMM Computer Communication Review 26,
5 (1996), 5–26.

[31] JACKSON, C., BARTH, A., BORTZ, A., SHAO, W., AND
BONEH, D. Protecting browsers from DNS rebinding attacks.
ACM Transactions on the Web (TWEB) 3, 1 (2009), 2.

[32] JURANIC, L. Back to the future: Unix wildcards
gone wild. http://www.defensecode.com/public/
DefenseCode Unix WildCards Gone Wild.txt, June 2014.

[33] KÜNNEMANN, R., AND STEEL, G. YubiSecure? Formal secu-
rity analysis results for the YubiKey and YubiHSM. In Interna-
tional Workshop on Security and Trust Management, STM 2012
(2012), vol. 7783 of LNCS, Springer, pp. 257–272.

[34] LAITINEN, P. HTML5 and digital signatures: Signature creation
service 1.0.1. Specification, Finnish Population Register Cen-
tre, 2015. https://eevertti.vrk.fi/documents/2634109/
2858578/SCS-signatures v1.0.1.pdf.

[35] LANG, J., CZESKIS, A., BALFANZ, D., SCHILDER, M., AND
SRINIVAS, S. Security Keys: Practical cryptographic second fac-
tors for the modern web. In International Conference on Finan-
cial Cryptography and Data Security, FC 2016 (2016), vol. 9603
of LNCS, Springer, pp. 422–440.

[36] LI, H., AND EVANS, D. Horcrux: A password manager for
paranoids. Document arXiv:1706.05085v2, Oct. 2017. http:

//arxiv.org/abs/1706.05085.

[37] LI, Z., HE, W., AKHAWE, D., AND SONG, D. The emperor’s
new password manager: Security analysis of web-based pass-
word managers. In 23rd USENIX Security Symposium (2014),
pp. 465–479.

[38] MICROSOFT. Named pipe security and access rights.
https://docs.microsoft.com/en-us/windows/desktop/
ipc/named-pipe-security-and-access-rights, May
2018.

[39] MICROSOFT DEVELOPERS NETWORK. Choosing a network
protocol. https://msdn.microsoft.com/en-us/library/
ms187892.aspx, 2016.

[40] MICROSOFT DEVELOPERS NETWORK. AppContainer iso-
lation. https://msdn.microsoft.com/en-us/library/
windows/desktop/mt595898(v=vs.85).aspx, May 2018.

[41] MICROSOFT DEVELOPERS NETWORK. Fast user switching.
https://msdn.microsoft.com/en-us/library/windows/
desktop/bb776893, May 2018.

[42] OSWALD, D., RICHTER, B., AND PAAR, C. Side-channel at-
tacks on the YubiKey 2 one-time password generator. In Inter-
national Workshop on Recent Advances in Intrusion Detection,
RAID 2013 (2013), vol. 8145 of LNCS, Springer, pp. 204–222.

[43] PARTANEN, A., AND LAITINEN, P. HTML5 and digital sig-
natures: Signature creation service 1.1. Specification, Finnish
Population Register Centre, 2017. https://eevertti.vrk.fi/
documents/2634109/2858578/SCS-signatures v1.1.pdf.

[44] REDHAT. Kernel local privilege escalation ”Dirty COW” —
CVE-2016-5195. https://access.redhat.com/security/
vulnerabilities/DirtyCow, Oct. 2016.

[45] SETHI, M., ANTIKAINEN, M., AND AURA, T. Commitment-
based device pairing with synchronized drawing. In IEEE Inter-
national Conference on Pervasive Computing and Communica-
tions, PerCom 2014 (2014), pp. 181–189.

[46] SHAO, Y., OTT, J., JIA, Y. J., QIAN, Z., AND MAO, Z. M.
The misuse of Android Unix domain sockets and security im-
plications. In 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2016 (2016), ACM, pp. 80–91.

[47] SILBERSCHATZ, A., GALVIN, P. B., AND GAGNE, G. Operat-
ing system concepts essentials. John Wiley & Sons, 2014.

[48] SILVER, D., JANA, S., BONEH, D., CHEN, E. Y., AND JACK-
SON, C. Password managers: Attacks and defenses. In 23rd
USENIX Security Symposium (2014), pp. 449–464.

[49] STEVENS, W. R., FENNER, B., AND RUDOFF, A. M. UNIX
Network Programming, vol. 1. Addison-Wesley Professional,
2004.

[50] VIJAYAKUMAR, H., GE, X., PAYER, M., AND JAEGER, T. JIG-
SAW: Protecting resource access by inferring programmer expec-
tations. In 23rd USENIX Security Symposium (2014), pp. 973–
988.

[51] VIJAYAKUMAR, H., SCHIFFMAN, J., AND JAEGER, T. STING:
Finding name resolution vulnerabilities in programs. In 21th
USENIX Security Symposium (2012), pp. 585–599.

[52] VIJAYAKUMAR, H., SCHIFFMAN, J., AND JAEGER, T. Process
firewalls: Protecting processes during resource access. In 8th
ACM European Conference on Computer Systems, EuroSys’18
(2013), ACM, pp. 57–70.

[53] WATTS, B. Discovering and exploiting named pipe secu-
rity flaws for fun and profit. http://www.blakewatts.com/
namedpipepaper.html. [Dec. 2017].

[54] WINDOWS IT PRO CENTER. Set up a shared or guest PC
with Windows 10. https://docs.microsoft.com/en-us/
windows/configuration/set-up-shared-or-guest-pc,
July 2017.

[55] XING, L., BAI, X., LI, T., WANG, X., CHEN, K., LIAO, X.,
HU, S.-M., AND HAN, X. Cracking app isolation on Apple:
Unauthorized cross-app resource access on macOS. In Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, CCS 2015 (2015), ACM, pp. 31–43.

[56] YLONEN, T., AND LONVICK, C. The secure shell (SSH) proto-
col architecture. RFC 4251, IETF, 2006.

[57] YUBICO DEVELOPER PROGRAM. U2F technical
overview. https://developers.yubico.com/U2F/
Protocol details/Overview.html. [Oct. 2017].

USENIX Association 27th USENIX Security Symposium 1525

https://www.gov.uk/government/publications/introducing-govuk-verify/introducing-govuk-verify
https://www.gov.uk/government/publications/introducing-govuk-verify/introducing-govuk-verify
https://www.gov.uk/government/publications/introducing-govuk-verify/introducing-govuk-verify
http://www.defensecode.com/public/DefenseCode_Unix_WildCards_Gone_Wild.txt
http://www.defensecode.com/public/DefenseCode_Unix_WildCards_Gone_Wild.txt
https://eevertti.vrk.fi/documents/2634109/2858578/SCS-signatures_v1.0.1.pdf
https://eevertti.vrk.fi/documents/2634109/2858578/SCS-signatures_v1.0.1.pdf
http://arxiv.org/abs/1706.05085
http://arxiv.org/abs/1706.05085
https://docs.microsoft.com/en-us/windows/desktop/ipc/named-pipe-security-and-access-rights
https://docs.microsoft.com/en-us/windows/desktop/ipc/named-pipe-security-and-access-rights
https://msdn.microsoft.com/en-us/library/ms187892.aspx
https://msdn.microsoft.com/en-us/library/ms187892.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/mt595898(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/mt595898(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb776893
https://msdn.microsoft.com/en-us/library/windows/desktop/bb776893
https://eevertti.vrk.fi/documents/2634109/2858578/SCS-signatures_v1.1.pdf
https://eevertti.vrk.fi/documents/2634109/2858578/SCS-signatures_v1.1.pdf
https://access.redhat.com/security/vulnerabilities/DirtyCow
https://access.redhat.com/security/vulnerabilities/DirtyCow
http://www.blakewatts.com/namedpipepaper.html
http://www.blakewatts.com/namedpipepaper.html
https://docs.microsoft.com/en-us/windows/configuration/set-up-shared-or-guest-pc
https://docs.microsoft.com/en-us/windows/configuration/set-up-shared-or-guest-pc
https://developers.yubico.com/U2F/Protocol_details/Overview.html
https://developers.yubico.com/U2F/Protocol_details/Overview.html

