Using a feature model configurator for release planning

Mikko Raatikainen
Juha Tiihonen

Tomi Mannisto
University of Helsinki
Helsinki, Finland
firstname.lastname @helsinki.fi

ABSTRACT

The requirements for a system have many dependencies that can
be expressed in the individual requirements managed in an issue
tracker or a requirements management system. However, managing
the entire body of requirements taking into account all complex
dependencies is not well supported. We describe how a feature
model based configurator can be used as a tool to help manage
requirements data. Data transfer and constructing the needed re-
quirements model can be carried out automatically by relying on
a model generator. We implemented a prototype tool for require-
ments and release management that utilizes a knowledge-based
configurator.

CCS CONCEPTS

« Software and its engineering — Requirements analysis;
Software product lines;

KEYWORDS

Release management, feature modeling, requirements engineering.

ACM Reference Format:

Mikko Raatikainen, Juha Tiithonen, Tomi Méannist6, Alexander Felfernig,
Martin Stettinger, and Ralph Samer. 2018. Using a feature model configurator
for release planning. In 22nd International Systems and Software Product Line
Conference - Volume B (SPLC ’18), September 10-14, 2018, Gothenburg, Sweden.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3236405.3236411

1 INTRODUCTION

Various kinds of requirement management systems (RMS) are be-
ing applied in requirements engineering [11]. Traditional RMS
examples include Doors and Polarion. More recently, different issue
trackers have become increasingly popular, especially in large-scale,
globally distributed open source projects. For example, Linux kernel
uses Bugzilla, Homebrew uses Github tracker and Qt uses Jira.
Especially issue trackers primarily support individual require-
ments throughout various requirements engineering activities, such
as requirements documentation, analysis, and management includ-
ing tracking the status of a requirement. Dependencies such as
requires can be expressed in an individual requirement. Advanced

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SPLC ’18, September 10-14, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5945-0/18/09.

https://doi.org/10.1145/3236405.3236411

Alexander Felfernig
Martin Stettinger

Ralph Samer
Graz University of Technology
Graz, Austria
firstname.lastname@ist.tugraz.at

analyses over all requirements taking into account the dependen-
cies and properties of the requirements are not well supported.
This, despite the fact that dependencies are one of the key concerns
that need to be taken into account in requirements prioritization
[1, 10, 22] and release planning [2, 21]. In fact, dependencies have
not been at the core of the tool support for the requirement engi-
neering activity. Rather, the focus is on a single requirement, its
properties, and its life cycle.

Although requirements engineers and product management,
especially for a single system, are not directly concerned with soft-
ware variability management, the context and problems are very
similar with the ones that variability management [13, 21] aims to
solve. Variability management can address concerns, such as how
to take into account the properties of and dependencies between nu-
merous requirements especially in incremental development when
several consecutive releases as an incrementally building sequence
of product variants are planned. More precisely, variability manage-
ment aims to capture knowledge of what configurations of systems
can be constructed so that the resulting system is meaningful and
meets users’ needs. Thus, one essential part of variability manage-
ment is to capture the dependencies of the system. For instance, if
one desired requirement consists of other requirements, or requires
another requirement, all need to be selected as a consequence of
selecting the desired requirement. In particular, feature modeling
has become a well-researched method to manage variability and
has been provided with several different analyses to assist in sys-
tem management [4]. Consequently, variability models can also be
seen as what is to be realized - it is not only variability in terms of
selecting features but also the meaningful implementation order.

This paper describes how a configurator as a tool can be used
to help in requirements engineering and product management.
We addresses specifically release management related to require-
ments during the development life cycle and over the entire body
of requirements. The specific concerns addressed are the manage-
ment and analysis of dependencies between requirements and their
properties. We describe how the requirements of a system under
development can be automatically represented using the concepts
of a variability model in order to utilize the existing research on
variability management. We use a feature model dialect as the
concrete variability model. Finally, we describe a prototype service-
based system that realizes the concepts and can be used either by
integrating to Jira or by dedicated prototype release planner.

2 CONCEPTUAL BASIS

In general, our approach is based on using requirements data stored
in a issue tracker (or RMS) and using the constructs of a feature

https://doi.org/10.1145/3236405.3236411
https://doi.org/10.1145/3236405.3236411

SPLC 18, September 10-14, 2018, Gothenburg, Sweden

model to represent this data. For clarity, we use the term require-
ment model rather than a feature model of the resulting model of
requirements.

The concept of a requirement is in general somewhat ambiguous
and we adopt a relatively general notion of a requirement: We
consider each requirement to be a single, unique entity for a system.
A requirement is further characterized as roadmappable, meaning
that a requirement is an entity that is decided to be implemented,
e.g., in a specific release, or disregarded. For clarity, we presume
that each requirement has a separate unique identification (ID),
and name. The name (or content) describes the requirement in
human-understandable form, often textually.

A requirement is seen as an instance of a requirement type that
can define a set of named properties as property-value pairs for the
requirements of a system. Archetypical properties include priority,
planned release, effort and assignee. A requirement has at least
implicitly a status as a property that indicates whether the require-
ment has been implemented. However, the actual property types
are context-dependent [18].

It is possible to structure individual requirements hierarchically.
A more general requirement can consist of a set of more detailed
requirements that we refer to as a part-of hierarchy. As concrete
examples, an epic can consist of a set of user stories, or a user require-
ment can be refined to a set of technical requirements. A requirement
can also have dependencies as relationships beyond the part-of hi-
erarchies to other requirements, such as a requirement requires
or excludes another requirement. Industrial studies emphasize the
importance of dependencies [15, 24] and taxonomies have been
proposed of dependencies [7, 9, 17, 25]. Finally, the dependencies
are not only between requirements per se, but also between the
properties of requirements. For example, each requirement specifies
its planned release as a property value, such as the release is "3",
and an dependency can specify that the releases must not be the
same for two specific requirements.

The notion of a feature model, similarly as a requirement, is not
unambiguous. A feature of a feature model is defined, e.g., as a
characteristic of a system that is visible to the end user [14], or a
system property that is relevant to some stakeholder and is used to
capture commonalities or discriminate among product variants [8].
A feature model is often represented as a graphical feature diagram,
but textual feature models also exist. A feature model is a model
of features typically organized in a tree-structure. One feature is
the root feature and all other features are then the subfeatures of
the root or another feature. Additional relationships are expressed
by cross-branch constraints of different types, such as requires or
excludes. Feature model dialects are not always precise about, e.g.,
their semantics, such as whether the tree constitutes a part-of or
an is-a structure [23]. Despite this, feature models have also been
provided with various formalizations [3, 8, 20] including a mapping
to constraint programming [5, 6].

A feature model is a variability model roughly meaning that
there are optional and alternative features to be selected, and at-
tribute values to be set that are limited by predefined constraints.
As variability is resolved, i.e., a product is derived or configured, the
result is a configuration. Variability is resolved—often stepwise—by
making a set of decisions for variability resolving that we refer to as
configuration selections. For instance, an optional feature is selected

M. Raatikainen et al.

to be included, or one of the alternatives is selected. A consistent
configuration is a configuration in which a set of selections have
been made, and none of the rules have been violated. A complete
configuration is a consistent configuration in which all necessary
selections are made, although there can be still additional selections
that can be made or changed, such as adding an optional feature.
After making a selection or a set of selections, consequences are typ-
ically deduced in order to maintain the configuration consistent or
to detect early an inconsistency. For example, when a selected fea-
ture requires another feature, the consequence is that both features
become selected.

In order to make the connection between requirements and a
feature model, we construct a requirements model by using the
basic concepts of a feature model, such as sub-feature relations, and
constraints. We make a correspondence between requirements and
features at the representational level. Although requirements and
features are similar and the correspondence is quite intuitive, we are
not claiming or making a general similarity-mapping between the
concepts of a requirement and feature—in one system requirements
and features can actually be the same, in another system not. Rather,
we aim at using the concepts of a feature model to represent a
set of individual requirements including their dependencies in a
requirements model so that the analyses of the model become
possible with the analyses developed for feature models.

More specifically, we make each requirement correspond to ex-
actly one feature in a feature model. The properties of a requirement
correspond respectively to the attributes of a feature. Different re-
quirement types, such as epics and user stories, can be represented
by the respective concept of feature types. In order to make such
a mapping, we are required to have a feature model dialect that is
conceptually relatively expressive supporting, e.g., subtyping and
attributes.

The part-of (or consist of) relationships of requirements consti-
tute the tree hierarchy, thus being alike to subfeature-relationships.
In order to construct the tree of requirements, a generic root is de-
fined that, in practice, is the project itself, which has then all require-
ments underneath either directly, or through multiple and transitive
part-of relationships. Other dependencies among requirements cor-
respond to the cross-branch constraints of a feature model.

In practice, all requirements do not state their dependencies.
The situation is similar as in a feature model in which especially
all cross-branch dependencies are rarely stated to the extent that
automated analysis and configuring is always reliable. However,
as requirements often have descriptive text, we have also experi-
mented with extracting missing dependencies automatically using
natural language processing (NLP). The extracted dependencies
are marked with a proposed status to allow humans to accept or
reject them. Neverthless, rather than being a formal presentation,
a requirements model always remains somewhat incomplete in
which analyses remain approximations.

3 APPLYING A CONFIGURATOR FOR
REQUIREMENTS AND RELEASE PLANNING

The resulting requirements model utilizing feature model repre-
sentation technologies enables applying configurator technologies

Using a feature model configurator for release planning

for requirements. A specific application scenario is a release plan-
ner [19], in which requirements are assigned to a set of releases. A
release, similarly as a requirement, can have certain properties such
as length bound by start and end dates, and an amount of available
resources. The requirements are then assigned to ordered releases
so that attributes of the releases are taken into account, in addition
to the properties and dependencies of requirements.

First, the overall correctness and characteristics of the require-
ments per se can be assessed. Although requirement can express
dependencies, it is not guaranteed that all dependencies are correct.
For example, an analysis of dependencies is carried out to find cir-
cular hierarchies or mutually conflicting dependencies. The model
is analyzed for meaningfulness, such as whether there exists a con-
figuration and whether the cumulative effort exceeds the available
effort. In addition, other analyses especially originating from the
feature model analysis (cf. [4]) can be carried out. For example, dead
requirements, which cannot be selected because of dependencies,
can be identified. In practice, dead requirements are an indicator of
incorrect dependencies between requirements. Dead requirements
can also be a result of selecting one of mutually exclusive require-
ments, such as for different implementation technologies, and other
requirements that are not selected become over time obsolete dead
requirements, and can be removed or archived.

Second, the resulting requirements model can be used for anal-
ysis of and experimenting with different kinds of development
scenarios and options. Basically, each configuration selection for
requirements can result in consequences that need to be taken into
account in development and product management. The selected
requirement can require other requirements meaning that the re-
quired requirements need to be developed before or at the same
time. Alternatively, there can be other dependencies, such as an-
other requirement should not be developed at the same time or in
the same release, because they represent functionality that has been
decided to be introduced incrementally over time. It is also possible
to assess the properties of requirements, such as the cumulative
effort of the selected requirements in a consistent configuration.
That is, requirements can form an interdependent group, which rep-
resents requirements for a set of features or modules of the system,
and by combining the dependent requirements enables treating
and analyzing them together. Thus, the analyses can be carried out
for any individual requirement, a set of requirements to see the
consequences.

Specifically, any planned release should represent a complete
configuration in which the needed requirements are assigned to the
specific or any earlier release. Consequently, release management
becomes a configuration problem to find a sequence of consistent
and complete configurations. A release can be analyzed for validity,
such as no required requirements are left out to later releases, or
the release does not contain requirements that are developed in the
same release but should be developed in a different release. As the
release is a property of a requirement, the total effort of a release can
be analyzed as a cumulative effort of the individual requirements.
We support limiting the maximum effort capacity of a release so
that the cumulative effort of requirements assigned to the release
must not exceed the capacity. Different options for development by
assigning requirements differently to different releases can then be
experimented with. Other similar analyses can be carried out, such

SPLC 18, September 10-14, 2018, Gothenburg, Sweden

<HE choiclaweo

EDP::: e

E I
DEPENDENCIES model: The requil 7

is in conflict with requirement 16!

Select requirement Select requirement

+ ADD DEPENDENCY

User Registration Create DB table []

Ul of login page User Registration

Login as admin User Registration

Login as admin Ul of login page

Figure 1: Inconsistent requirements model in OpenReq
release planner user interface. The arrows are requires-
dependencies.

as the priorities of requirements can be analyzed in order that high
priority requirements are included as early as possible, but if a low
priority requirement is required by a high priority requirement, the
low priority requirement should also be in an early release.

Finally, it is possible to propose repairs for inconsistent configu-
rations. For example, if the available effort of a release is exceeded,
low priority requirements can be suggested to be moved to later re-
leases. In particular, model based diagnosis techniques [12] known
from knowledge based configuration research can be applied for
this purpose.

4 ARCHITECTURE AND DESIGN

We have implemented a proof of concept service-based system!
using Java Spring for the above described concepts. The system
consists of independent services that in practice operate in a choreo-
graphic manner combining the pipe-and-filter and layered architec-
tural styles. The services following REST principles and collaborate
through JSON message-based interfaces. An example of require-
ments datais shown in Figure 2 in Appendix.

The Mulperi service operates as a pipe-and-filter service that
generates a requirements model (a feature model) from individ-
ual requirements utilizing the existing dependencies defined in
them. Mulperi also operates as the controller for SpringCaaS when
analysis tasks are performed.

The back-end logic realizing a feature model configurator is im-
plemented in Spring Configurator as a Service (SpringCaaS). Spring-
CaaS is based on extending an existing feature model based con-
figurator [16]. SpringCaasS is a stand-alone service without any
graphical user interface that facilitates feature model based con-
figuring and a set of feature model analyses. In the basic scenario,
SpringCaaS takes the requirements model expressed as a feature
model as an input message and maps it to a Constraint Satisfac-
tion Problem (CSP). Then after, different queries can be carried

! The services will be available as open source on OpenReq project webpage openreq.eu.

SPLC 18, September 10-14, 2018, Gothenburg, Sweden

out including configuring selections that preserve consistency and
deduce consequences.

The proof-of-concept design of the OpenReq release planner user
interface is implemented as reactive web pages. The basic function-
ality is similar to an issue tracker or RMS to store requirements,
their properties and dependencies. Figure 1 shows an example view
of requirements and dependencies, which have been checked for
consistency and an inconsistency is notified for a user. The individ-
ual requirements are transferred from OpenReq release planner to
the above backend services using aforementioned JSON.

Additional services implement supporting requirements model
management subtasks. The Milla service facilitates integration with
different issue trackers or RMSs, and provides requirements in a uni-
form format to Mulperi. As an evaluation of the integration we have
used Jira, in which Qt (www.gt.io) open source project stores its
tens of thousands requirements and bug reports (bugreports.qt.io).
For this integration, Milla fetches the requirements individually as
a batch process using the Mallikas service as a persistent database
cache before sending requirements to Mulperi. Integration to any
other RMS can be done similarly either in Milla or by other similar
service; the design is not specific for Jira per se. We have also exper-
imented with ReqIF (www.omg.org/spec/ReqIF) as a general data
interchange format used in many RMSs, such as Doors. Finally, the
Nikke service is another standalone, experimental service that ex-
tracts missing dependencies from requirements data using different
NLP algorithms.

5 CONCLUSIONS

We have described in this paper a tool demonstration that utilizes
a feature model based configurator for requirements data. The
tool consists of services that automatically generate the needed re-
quirements model from requirements data in an issue issue tracker
or requirements management system. The resulting requirements
model can be used for a configurator as a service to help in handling
the dependencies over the entire body of requirements, such as
consistency of dependencies and consequences of selecting a set of
requirements. Specifically, we focused on elaborating the scenario
of release planning and management in which configuration tech-
nologies can help with the validity of requirements assignment to
different releases.

We have now different basic services in place to demonstrate
the technical feasibility. The experiments with performance indi-
cate that the system is scalable for managing at least thousands
requirements even on an office computer. The future work focuses
especially on experimenting with and adapting to practically rele-
vant scenarios and contexts.

ACKNOWLEDGMENTS

This work is a part of OpenReq project that is funded by the Euro-
pean Union’s Horizon 2020 Research and Innovation programme
under grant agreement No 732463.

REFERENCES

[1] Philip Achimugu, Ali Selamat, Roliana Ibrahim, and Mohd NazaAZri Mahrin.
2014. A systematic literature review of software requirements prioritization
research. Information and Software Technology 56, 6 (2014), 568-585.

M. Raatikainen et al.

—_
&,

David Ameller, Carles Farré, Xavier Franch, and Guillem Rufian. 2016. A Survey
on Software Release Planning Models. In International Conference Product-Focused
Software Process Improvement. 48—65.

[3] Timo Asikainen, Tomi Méannistd, and Timo Soininen. 2007. Kumbang: A Domain
Ontology for Modelling Variability in Software Product Families. Advanced
engineering informatics journal 21, 1 (2007), 23-40.

[4] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. 2010. Automated
analysis of feature models 20 years later: A literature review. Information Systems
35, 6 (2010), 615-636.

[5] David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés. 2005. Automated
Reasoning on Feature Models. In Conference on Advanced Information Systems
Engineering.

[6] David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés. 2005. Using Con-
straint Programming to Reason on Feature Models. In 17th International Confer-
ence on Software Engineering and Knowledge Engineering.

[7] Pér Carlshamre, Kristian Sandahl, Mikael Lindvall, Bjorn Regnell, and Johan
Natt och Dag. 2001. An industrial survey of requirements interdependencies in
software product release planning. In IEEE International Symposium on Require-
ments Engineering. 84-91.

[8] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. 2005. Formalizing
Cardinality-Based Feature Models and Their Specialization. Software process:
Improvement and practice 10, 1 (2005), 7-29.

[9] Asa G. Dahlstedt and Anne Persson. 2005. Engineering and Managing Software
Requirements. Springer, Chapter Requirements Interdependencies: State of the
Art and Future Challenges, 95-116.

[10] Maya Daneva and Andrea Herrmann. 2008. Requirements prioritization based
on benefit and cost prediction: A method classification framework. In Euromicro
Conference on Software Engineering and Advanced Applications. 240-247.

[11] Juan M. Carrillo de Gea, Joaquin Nicolas, José L. Fernandez Aleman, Ambrosio

Toval, Christof Ebert, and Aurora Vizcaino. 2012. Requirements engineering

tools: Capabilities, survey and assessment. Information and Software Technology

54,10 (2012), 1142 - 1157.

Alexander Felfernig, Monika Schubert, and Christoph Zehentner. 2012. An Effi-

cient Diagnosis Algorithm for Inconsistent Constraint Sets. Artificial Intelligence

for Engineering Design, Analysis and Manufacturing (Al EDAM) 26, 1 (2012), 53-62.

Matthias Galster, Danny Weyns, Dan Tofan, Bartosz Michalik, and Paris Avgeriou.

2014. Variability in Software Systems — A Systematic Literature Review. IEEE

Transactions on Software Engineering 40, 3 (2014), 282-306.

[14] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and A Spencer

Peterson. 1990. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Tech-

nical Report CMU/SEI-90-TR-21. Software Engineering Institute.

Laura Lehtola, Marjo Kauppinen, and Sari Kujala. 2004. Requirements Prioritiza-

tion Challenges in Practice. In International Conference Product Focused Software

Process Improvement. 497-508.

Varvana Mylldrniemi, Mikko Ylikangas, Mikko Raatikainen, Jari Paikko, Tomi

Ménnistd, and Timo Aaltonen. 2012. Configurator-as-a-service: tool support for

deriving software architectures at runtime. In Working IEEE / IFIP Conference on

Software Architecture, Companion Volume. 151-158.

Klaus Pohl. 1996. Process-centered requirements engineering. Wiley.

Norman Riegel and Joerg Doerr. 2015. A systematic literature review of require-

ments prioritization criteria. In Working Conference on Requirements Engineering:

Foundation for Software Quality. 300-317.

Gunther Ruhe and Moshood Omolade Saliu. 2005. The art and science of software

release planning. IEEE Software 22, 6 (2005), 47-53.

Pierre-Yves Schobbens, Patrick Heymans, Jean-Christophe Trigaux, and Yves

Bontemps. 2007. Generic semantics of feature diagrams. Compututer Networks

51, 2 (2007), 456-479.

Mikael Svahnberg, Tony Gorschek, Robert Feldt, Richard Torkar, Saad Bin Saleem,

and Muhammad Usman Shafique. 2010. A systematic review on strategic release

planning models. Information and Software Technology 52, 3 (2010), 237 — 248.

Rahul Thakurta. 2017. Understanding requirement prioritization artifacts: a

systematic mapping study. Requirements Engineering 22, 4 (2017), 491-526.

[23] Juha Tiihonen, Mikko Raatikainen, Varvana Mylldrniemi, and Tomi Méannisto.

2016. Carrying Ideas from Knowledge-Based Configuration to Software Product

Lines. In International Conference on Software Reuse. 55-62.

Andreas Vogelsang and Steffen Fuhrmann. 2013. Why feature dependencies

challenge the requirements engineering of automotive systems: An empirical

study. In IEEE International Requirements Engineering Conference (RE). 267-272.

He Zhang, Juan Li, Liming Zhu, Ross Jeffery, Yan Liu, Qing Wang, and Ming-

shu Li. 2014. Investigating dependencies in software requirements for change

propagation analysis. Information and Software Technology 56, 1 (2014), 40-53.

[12

[13

[15

[16

— =
&2

[19

[20

[21

[22

[24

[25

Using a feature model configurator for release planning

6 APPENDIX

{
"project": {
"id": "ABC",
"name": "ABCExample",
"specificRequirements": ["A", "B", "C"]
3
"requirements": [
{
"id": "A",
"name": "Requirement a",
"effort": 2
}
{
"id": "B",
"name": "Requirement b",
"effort": 1
3,
{
"id": "C",
"name": "Requirement c",
"effort": 3
}
1,
"releases": [
{
"id": 1,
"capacity": 5,
"requirements": ["A", "B", "C"]
3
1,
"dependencies": [
{
"dependency_type": "requires",
"from": "B",
"to": "C"
}
]
3
{
"response": {
"consistent": false,
"diagnosis": [
L
{"requirement": "B"}
]
]
3
}

Figure 2: A simple example of requirements data as JSON
that describes the requirements, the assignments of require-
ments to arelease and a dependency (top). The requirements
model is be checked for consistency and diagnosis for in-
consistency caused by B exceeding the effort capacity of a

release is proposed (bottom).

SPLC 18, September 10-14, 2018, Gothenburg, Sweden

	Abstract
	1 Introduction
	2 Conceptual basis
	3 Applying a configurator for requirements and release planning
	4 Architecture and Design
	5 Conclusions
	Acknowledgments
	References
	6 Appendix

