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Objectives: Tumour-associated macrophages participate in tumour development and progression. The
aim of this study was to assess the interactions of pancreatic cancer cells and pro-inflammatory M1 and
anti-inflammatory M2 macrophages, specifically their effect on pancreatic cancer cell migration and the
changes in STAT-signalling.
Methods: Monocytes were isolated from healthy subjects and differentiated into macrophages with M-
CSF. The macrophages were polarized towards M1 by IL-12 and towards M2 by IL-10. We studied also the
effect of pan-JAK/STAT-inhibitor P6. Macrophage polarization and STAT and NFkB-activation in both
MiaPaCa-2 and macrophages were assessed by flow cytometry. We recorded the effect of co-culture on
migration rate of pancreatic cancer cells MiaPaCa-2.
Results: Macrophages increased the migration rate of pancreatic cancer cells. Co-culture activated STAT1,
STAT3, STAT5, AKT, and NFkB in macrophages and STAT3 in MiaPaCa-2 cells. IL-12 polarized macrophages
towards M1 and decreased the migration rate of pancreatic cancer cells in co-cultures as well as P6. IL-10
skewed macrophage polarization towards M2 and induced increase of pancreatic cancer cells in co-
cultures.
Conclusion: Co-culture with macrophages increased pancreatic cancer cell migration and activated
STAT3. It is possible to activate and deactivate migration of pancreatic cancer cells trough macrophage
polarization.
© 2017 IAP and EPC. Published by Elsevier B.V. All rights reserved.
Introduction

Pancreatic cancer is worldwide the 7th leading cause of cancer
deaths mostly due to its tendency to metastasize aggressively at
early stages and the lack of effective treatment [1]. Chronic
inflammation is a risk factor for various cancer forms, such as
chronic pancreatitis leading to pancreatic cancer [2]. Cancer cells
also create an inflammatory microenvironment and the cytokines
they produce attract monocytes from the blood circulation which,
in tissues, mature into macrophages [3].

As monocytes mature into macrophages the stimuli in their
Helsinki University Hospital,

lakkainen).
rship.

r B.V. All rights reserved.
microenvironment constantly activate and polarize them. The
activated macrophages can be divided into different subtypes by
their phenotype and function [4]. The polarized macrophages are
divided into type M1 and M2 macrophages according to their
preferential secretion of interleukin (IL)-12 or IL-10 which then,
respectively, activate pro- and anti-inflammatory responses [5].
TypeM1macrophages support the immune system activation, they
are cytotoxic, and they inhibit malignant tumour progression. Type
M2 macrophages suppress the inflammatory response, they sup-
port tissue renewal, angiogenesis, and lymphangiogenesis. Type
M1 macrophages express higher levels of IL-12 and IL-23 as
compared to M2 macrophages which in turn express high IL-10
phenotype [6e8]. IL-12 is a pro-inflammatory cytokine mainly
produced by phagocytes and dendritic cells through activation of
Toll-like receptors (TLRs). It activates the Th-1 cells of the adaptive
immunity [9]. The anti-inflammatory IL-10 inhibits inflammatory
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cytokine expression and Th-1 responses while activating Th-2 cells
[10]. Macrophage activation state responds to continuous regula-
tion by growth factors and other signals of their microenvironment
[11].

In tumour microenvironment macrophages differentiate into a
distinct subtype of M2 macrophages called tumour-associated
macrophages (TAMs), which enhance tumour invasion by several
mechanisms [12,13]. The presence of TAMs in pancreatic cancer
tissue has been confirmed in a number of studies; likewise the
abundance of TAMs is also associated with worse prognosis [14,15].

Janus-activated kinases (JAK) are a group of tyrosine kinases
that mediate the expression of various proteins in cells by acti-
vating the signal transducers and activators of transcription (STAT)
proteins through tyrosine phosphorylation. STATs in turn activate
transcription by binding to promoter sequences in cell nucleus [16].
The JAK/STAT pathway modulates the extracellular signalling of
several cytokines and growth factors into the expression of thou-
sands of protein-encoding genes [17]. For example, IL-6 activates
STAT3 that in turn inhibits pro-inflammatory responses and pro-
motes oncogenesis and tumour progression [18e20]. JAK/STAT
signalling pathway participates in macrophage activation [16] and
several types of tumors express abnormal STAT activation [21e23].
Pyridone-6 (P6) is a pan-JAK-inhibitor that has been shown to
inhibit the growth of multiple myeloma cells [24].

The aim of this study was to modulate macrophages' phenotype
towards either more inflammatory (M1) or anti-inflammatory (M2)
direction in co-cultures with pancreatic cancer cells and assess the
changes in the intracellular activation of transcription factors and
pancreatic cancer cell migration. Further, the aim was to assess the
inhibition of the signalling pathways activated by the macrophage
phenotype change.

Materials and methods

Cell cultures and reagents

We isolated mononuclear cells from healthy subjects' blood
samples with Ficoll-Paque Plus (Amershamn, Uppsala, Sweden) by
density gradient centrifugation followed by paramagnetic bead
separation using Human Monocyte Isolation Kit II (Miltenyi Biotec,
Auburn, USA). Monocytes (130 000 cells/cm2) were cultured in
Macrophage Serum-free Media (Gibco Life Technologies, Paislay,
UK) supplemented with penicillin 100mg/ml (Sigma, St.Louis, USA)
and M-CSF (ImmunoTools, Oldenburg, Germany) 50 ng/ml to
differentiate them into mature macrophages. Additional reagents
IL-12 5 ng/ml, IL-10 25 ng/ml, and P6 500 nM (Calbiochem, San
Diego, USA), were added after 5 days of differentiation in standard
37 �C and 5% CO 2.

MiaPaCa-2, human pancreatic adenocarcinoma cells from a
primary tumour, was purchased from the American Type Culture
Collection. MiaPaCa-2 (35,000/cm2) cells were added to the
macrophage cultures simultaneously with the additional reagents
(IL-10, IL-12, or P6) after differentiating the macrophages for 5 days
with M-CSF.

Characterization of macrophages

Macrophages were cultured on Nunc UpCell dishes (Thermo
Scientific) and acquired on flow cytometry two days after adding
the cancer cells and/or the additional stimuli to the macrophage
culture (the seventh day after isolating the monocytes). The cells
were detached from their culture dishes by lowering their tem-
perature from þ37 �C to room temperature according to the UpCell
manufacturer's instructions. Prior to the characterization flow
cytometry we used anti-CD11b magnetic micro beads (Miltenyi
Biotec Inc., Auburn, USA) to separate the differentiated macro-
phages from cancer cells, this was done also to the macrophages
cultured without cancer cells. Macrophages were then incubated
with antibodies for 20 min in room temperature. They were ac-
quired on FACS Calibur (CellQuest Pro software, BD Bioscience) flow
cytometer and the WinMDI software (v2.8) was used for analysis.
The antibodies we used to characterize the macrophages were FITC
and PE Mouse Anti-Human CD14, FITC Mouse Anti-Human CD16,
PE Mouse Anti-Human CD80, APC Mouse Anti-Human CD86, PE
Mouse Anti-Human CD163, PE Mouse Anti-Human CD209, PE
Mouse IgG1 k Isotype Control, APC Mouse IgG1 k Isotype Control,
FITC Mouse IgG1 k Isotype Control (BD Pharmingen, San Diego,
USA).

Cancer cell migration

First, the isolated monocytes were differentiated on 8-well
coverslip dishes (Nunc, Thermo Scientific, Rochester, USA) coated
with 60 ml Matrigel (BD Biosciences, San Jose, USA) for five days.
MiaPaCa-2 pancreatic cancer cells were stained with fluorescent
dye (CellTracker Green CMFDA, Invitrogen, Eugene, USA) and added
to the 8-well dishes on the differentiated macrophages, or alone as
controls, with and without IL-10, IL-12, and P6. The fluorescence
microscopy was initiated after 24 h of further incubation. The
cancer cell migration on Matrigel was recorded in humidified,
temperature (þ37 �C) and CO2 (5%) controlled chamber (OKOlab,
Ottaviano, Italy) with fluorescence microscope equipped with
coolled CCD camera (Sensicam, PCO, Germany) with 30 min in-
tervals for 24 h, as previously described [25]. The datawas analysed
using ImagePro software (v 7.01, Media Cybernetics, Rockville, MD,
USA).

STAT and NFkB activation

To assess the activation of STAT 1, 3, and 5 as well as NFkB and
AKT, we used flow cytometry as previously described [26,27]. The
macrophages were cultured identically, as to the characterization
described above. MiaPaCa-2 cells and IL-10, IL-12, or P6 were added
after five days and the flow cytometry was acquired after seven
days of incubation. The cells were stabilized with Lyse/Fix Buffer
(BD Phosflow™, BD Biosciences) at þ37 �C for 10 min. We per-
meabilised the cells with BD Perm Buffer (BD Biosystems) at�20 �C
for 30 min. Consequently, the cells were washed with Pharmingen
Stain Buffer and finally stained with the labeling antibodies for
CD45, STAT 1, 3, and 5, and for NFkB and AKT. The antibodies were
FITCMouse Anti-Human CD45 (material #555482), Alexa Fluor 647
Mouse Anti-STAT1 (pY701, #612597), Alexa Fluor 647 Mouse Anti-
NFkB p65 (pS529, #558422), PE Mouse anti-Akt (pS473, #560378),
PE Mouse Anti-STAT3 (pY705, #612569), PE Mouse Anti-STAT5
(pY694, #612567) from BD Phosflow™, BD Biosciences. The sam-
ples were acquired on FACS Calibur (CellQuest Pro software; BD
Biosciences) flow cytometer and the data was analysed byWinMDI
(v2.8) software. We assessed the phosphorylation data of the
macrophages and MiaPaCa-2 cells separately by dividing them to
CD45 positive and negative cells.

Cytokine assay

The cells were cultured as described above; first 5 days of
macrophage differentiation, after which MiaPaCa-2 and either
nothing, P6, IL-10, or IL-12 were added. The cells were on Matrigel,
on 24-well plates (Nunc, Thermo Scientific), in 500 ml medium. The
culture media were collected after further 48 h of incubation and
stored in freezers at �75 �C. To assess the cytokine concentrations
in the macrophage and MiaPaCa-2 co-culture medium, we used an
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infrared Human Q-Plex™ Custom Assay (#107749 GR, Quansys
Biosciences, USA), and prepared themedium samples following the
manufacturer's instructions. The assay is a multiplexed ELISA kit; it
measures the concentration of multiple proteins in each sample
with capturing antibodies in a multiwall plate. Odyssey infrared
imager (Licor Biosciences, USA) imaged the assays and Q-View™
Software (Quansys Biosciences) analysed the dot blots. The Q-Plex
assay identified the levels of INFy, IL-1a, IL-1b, IL-1Ra, IL-4, IL-6, IL-
8, IL-10, IL-12p70, IL-17, IL-23, MCP-1, and RANTES.
Statistics

We used the nonparametric Mann-Whitney U test orWilcoxon's
signed-rank test (paired measurements) to detect the difference
between continuous variables. Two tailed tests were used. p < 0.05
was considered as statistically significant. The results are presented
Fig. 1. The surface expression of macrophages. A. The proportion of macrophages (%) posit
of M-CSF differentiated human-derived macrophages cultured with (the lighter columns) an
with pancreatic cancer cells did not change the macrophage phenotype. B. Macrophages
Macrophages with two days of IL-12 supplementation, cultured with and without MiaPaCa-2
without MiaPaCa-2. * indicates a statistically significant (p < 0.05) difference as comparing th
in 1A). # indicates a statistically significant (p < 0.05) difference as comparing the stimul
MiaPaCa-2 without additional stimuli (No Stimulus in 1A). e indicates a statistically significa
the macrophages cultured with and without MiaPaCa-2. Error bars show the standard err
macrophages co-cultured with MiaPaCa-2 and supplemented with IL-10, IL-12, and P6 (SSC
as mean ± standard error of the mean (SEM).
Results

Macrophage characteristics

The macrophages in our cell cultures in Macrophage SFM and
M-CSF 50 ng/ml, the macrophages showed a CD14 high, CD86 high,
CD16 low phenotype that was not statistically significantly changed
by adding MiaPaCa-2 pancreatic cancer cells to the culture (Fig. 1A).
IL10 expectedly polarized the macrophages towards the anti-
inflammatory phenotype detected by significantly reduced CD86
surface expression on macrophages. In co-cultures with macro-
phages and MiaPaCa-2 cells IL10 supplementation increased the
surface expression of CD16 (M1 marker), CD80 (M1 marker), and
CD163 (M2 marker) (Fig. 1B). IL12 skewed the macrophage
ive to different M1 (CD16, CD80, CD86) and M2 (CD14, CD163, CD209) surface markers
d without (the darker columns) MiaPaCa-2 measured by flow cytometry. The co-culture
with two days of IL-10 supplementation, cultured with and without MiaPaCa-2. C.
. D. Macrophages with two days of Pyridone 6 (P6) supplementation, cultured with and
e stimulated macrophages to the macrophages without additional stimuli (No Stimulus
ated macrophages co-cultured with MiaPaCa-2 to the macrophages co-cultured with
nt (p < 0.05) difference between the macrophages with additional stimuli as comparing
or of the mean (SEM). E. Representative dot plots of CD163 (M2) surface marker on
side scatter, FSC forward scatter, PE Phycoerythrin).
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polarization more towards pro-inflammatory phenotype: in
macrophage cultures IL12 decreased M2markers CD14, CD163, and
CD209, but also M1 markers CD16 and CD80, whereas in co-
cultures with MiaPaCa-2 IL12 decreased the M2 markers CD14,
CD163, and CD209 indicating that in co-cultures with pancreatic
cancer cells and added IL12 macrophages are skewed towards pro-
inflammatory M1 macrophages (Fig. 1C). P6 lowered CD80 (M1
marker) and CD209 (M2 marker) in macrophage cultures and only
CD16 (M1 marker) in co-cultures (Fig. 1D).

Migration of pancreatic cancer cells in co-cultures with
macrophages

Macrophages increased the migration rate of MiaPaCa-2
pancreatic cancer cells in co-cultures on Matrigel from 10.0 mm/h
± 1.6e13.3 mm/h ± 1.8, p < 0.001 (Fig. 2). IL-10 did not affect the
migration rate of cancer cells cultured without macrophages, but in
the co-cultures of macrophages and cancer cells IL-10 increased the
migration rate significantly (to 17.8 mm/h ± 2.4 p ¼ 0.001) as
compared to co-cultures of MiaPaCa-2 and macrophages without
IL-10. The inflammatory cytokine IL-12 reduced the migration rate
of MiaPaCa-2 cells alone (to 8.1 mm/h ± 1.5, p ¼ 0.013) and also in
co-cultures with macrophages (8.9 mm/h ± 1.4, p < 0.001). In co-
cultures, P6 inhibited the macrophage-induced increase of
pancreatic cancer cell migration (9.2 mm/h ± 1.2, p ¼ 0.003) (Fig. 2).

STAT, NFkB, and AKT activation

We analysed STAT1, STAT3, STAT5, AKT, and NFkB activation by
flow cytometry in macrophages and in MiaPaCa-2 and the effect of
IL-12, IL-10, and P6 on the interactions. Co-culture with MiaPaCa-2
increased the activation of STAT1 (p ¼ 0.037), STAT3 (p < 0.001),
and STAT5 (p < 0.001) as well as AKT (p < 0.001) and NFkB
(p < 0.001) in macrophages (Fig. 3). In MiaPaCa-2 STAT3 (p < 0.001)
increased in co-culture with macrophages (Fig. 4). In macrophages
cultured alone, IL-10 increased the activation of STAT3, STAT5, and
NFkB while in MiaPaCa-2 it had no statistically significant effect on
the studied pathways. In the co-cultures, IL-10 decreased NFkB in
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Fig. 2. Migration rate of MiaPaCa-2. Migration of MiaPaCa-2 with or without the co-
culture of macrophages and the additional stimuli (IL-10, IL-12, and P6) was assessed
on Matrigel. Macrophages increased pancreatic cancer cell migration and stimulation
with IL-10 added to this effect. However, IL-12 and P6 inhibited the increasing effect of
macrophage co-culture on pancreatic cancer cell migration. e indicates a statistically
significant (p < 0.05) difference in the migration rate between the cancer cells as
comparing the pancreatic cancer cells cultured with or without macrophages in
otherwise the same conditions. * indicates a statistically significant (p < 0.05) differ-
ence as comparing the stimulated MiaPaCa-2 to the MiaPaCa-2 without additional
stimuli (No Stimulus). # indicates a statistically significant (p < 0.05) difference as
comparing the stimulated MiaPaCa-2 co-cultured with macrophages to the MiaPaCa-2
co-cultured with macrophages without additional stimuli). Error bars show the stan-
dard error of the mean (SEM).
macrophages as compared to the co-cultures without IL-10 sug-
gesting inflammatory suppression; STAT3 (in macrophages and
MiaPaCa-2), STAT5 and AKT (in macrophages) retained their acti-
vation. In macrophages, IL-12 increased STAT1, STAT5, and AKT
activation and in co-cultures IL-12 decreased macrophages' NFkB
activation. The effect of JAK/STAT-inhibitor P6 was assessed only in
co-cultures of macrophages and MiaPaCa-2 where it decreased
STAT1 and STAT5 in macrophages but also decreased STAT3 and
increased NFkB in MiaPaCa-2, suggesting an enhanced inflamma-
tory activation.

Cytokine secretion in co-cultures

In co-cultures of macrophages and MiaPaCa-2, IL-10 increased
IL12p70 concentration from 0.3 pg/ml ± 0.1 SD to 6.0 pg/ml ± 15.1
SD (p ¼ 0.002). IL-10 also induced a significant decrease in TNFa
concentration in the culture medium (93.1 pg/ml ± 58.5 SD to
34.9 pg/ml ± 58.5 SD, p ¼ 0.021). P6, in turn, increased TNFa con-
centration in co-cultures to 120.5 pg/ml ± 59.0 SD (p ¼ 0.044 as
compared to co-cultures without P6). P6 also decreased the IL1ra
concentration in the co-cultures from 16758.5 pg/ml ± 8211.4 SD to
8082.6 pg/ml ± 5519.9 SD (p ¼ 0.019), thus, increasing the in-
flammatory activity. IL-12 induced no statistically significant
changes in the cytokine secretion profile as compared to macro-
phage and MiaPaCa-2 co-cultures without IL-12 (except that,
naturally, the IL-12 concentration was higher).

Discussion

This study on pancreatic cancer cells and their interaction with
human-derived macrophages emphasized that anti-inflammatory
type M2 macrophages (stimulated with IL-10) increased pancre-
atic cancer cell migration and pro-inflammatory type M1 macro-
phages (stimulated with IL-12) were able to inhibit it. Unstimulated
macrophages increased the migration rate of pancreatic cancer
cells, as also shown previously with different pancreatic cancer cell
lines [28]. In co-cultures, both pro- and anti-inflammatory path-
ways were activated in macrophages, as STAT1, STAT3 and STAT5
activation increased as well as AKT and NFkB pathways, as
compared to macrophages cultured without cancer cells. In
MiaPaCa-2 STAT3 was activated in the co-culture with macro-
phages. Both STAT3 and STAT5 have implications for cancer pro-
gression by inhibiting anti-tumour immunity. Particularly STAT3 is
connected to maintaining inflammation-associated tumorigenic
microenvironment by for example inhibiting the expression of
NFkB target genes [29,30]. NFkB is pivotal inmediating anti-tumour
immune responses. Aberrations in its expression are also linked to
numerous cancer types, including pancreatic cancer, by also being
involved in orchestrating the pro-carcinogenic inflammatory
microenvironment [31]. STAT3 has previously been associated with
increased invasiveness of pancreatic cancer [32].

In the present study, STAT3 activation was induced in both
macrophages and MiaPaCa-2 by their co-culture. Nonetheless, the
activation of STAT3 in macrophages was not unambiguously asso-
ciated with their effect on the migration rate of the pancreatic
cancer cells. The pro-inflammatory cytokine IL-12, characteristi-
cally secreted by M1 macrophages, inhibited pancreatic cancer cell
migration in the co-cultures with macrophages. The surface
expression of macrophages stimulated with IL-12 polarized to-
wards inflammatory phenotype. However, IL-12 did not signifi-
cantly lower STAT3 activation in the MiaPaCa-2 and macrophage
co-cultures. This indicates that the IL-12 inhibition of pancreatic
cancer cell migration is not dependent on STAT3. In a previous
study we also demonstrated that IL-6, a known upstream activator
of STAT3, in co-cultures with macrophages and pancreatic cancer
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cells inhibited the migration rate of pancreatic cancer cells [33].
Elevated levels of immunoregulatory cytokine IL-10 has been

reported in patients with pancreatic cancer and it has been asso-
ciated with impaired survival in for example lung cancer [34,35]. In
the present study, pancreatic cancer cell migration was activated
even further with IL-10 but only when the cancer cells were co-
cultured with macrophages, which indicates that the IL-10 activa-
tion of pancreatic cancer cell migration is mediated by their inter-
action with macrophages. Further, STAT3 activation in MiaPaCa-
2 cells after adding IL-10 occurred only with macrophages; IL-10
and IL-12 had no statistically significant effect on intracellular
MiaPaCa-2 STAT nor NFkB signalling. IL-10 polarized the macro-
phages' surface expression towards anti-inflammatory type, and it
reduced the secretion of pro-inflammatory TNFa and NFkB activa-
tion in co-cultures, whichmight in part lead to the increased cancer
cell migration. In macrophage cultures alone IL-10 activated STAT3,
also a marker of phenotype change towards M2. IL-10 has previ-
ously been linked to epithelial-mesenchymal transition of pancre-
atic cancer cells but using mouse macrophages [36]. However, the
division of macrophages to types M1 and M2 is a simplification and
they can be further divided into several subtypes with divergent
phenotypes and functions [37,38]. Recent evidence also indicates
that TAMs may exhibit features and functions of both M1 and M2
macrophages which might partly explain the discrepancies in the
surface marker profiles and STAT activation in the present study
[39].

Surprisingly, JAK/STAT inhibitor P6 (500 nM) inhibited STAT3
activation only in MiaPaCa-2 and not statistically significantly in
macrophages even though according to previous studies it should
completely inhibit pY-STAT3 [40]. P6 inhibited pancreatic cancer
cell migration in co-cultures with macrophages and in HPAF-II
cultures also without macrophages. Thus, it is possible that P6 in-
hibits pancreatic cancer cell migration by STAT3 inhibition of
pancreatic cancer cells regardless of macrophages. P6 also left
macrophage polarization statistically unchanged, except for
lowering the proportion of CD16 positive cells, in co-cultures with
pancreatic cancer cells as compared to co-cultures without P6.

The present study provides novel insight to the interaction of
macrophages and pancreatic cancer cells. It was possible to inhibit
macrophage-induced increase of pancreatic cancer cell migration
by polarizing themacrophages towards type M1with IL-12 but also
to increase it by inducing typeM2macrophages with IL-10. It seems
that STATs might participate in the regulation of pancreatic cancer
cell migration, as pan-JAK/STAT inhibitor reduced their migration
rate and inhibited STAT3 activation of MiaPaCa-2, but STAT3 acti-
vation was not, however, directly predictive for pancreatic cancer
cell migration rate. The interaction of macrophages and pancreatic
cancer cells increased the activation of STAT1, STAT3, STAT5, AKT,
and NFkB in macrophages and STAT3 in pancreatic cancer cells. The
interactions warrants further studies in models, where it is possible
to evaluate also other elements of tumour environment. The results
encourage to continue research on macrophages to explore on the
possibility of finding a TAM-targeting therapy.
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