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Abstract

We propose a Bayesian approximate inference method for learning the dependence structure of a Gaussian graphical
model. Using pseudo-likelihood, we derive an analytical expression to approximate the marginal likelihood for an
arbitrary graph structure without invoking any assumptions about decomposability. The majority of the existing
methods for learning Gaussian graphical models are either restricted to decomposable graphs or require specification
of a tuning parameter that may have a substantial impact on learned structures. By combining a simple sparsity
inducing prior for the graph structures with a default reference prior for the model parameters, we obtain a fast and
easily applicable scoring function that works well for even high-dimensional data. We demonstrate the favourable
performance of our approach by large-scale comparisons against the leading methods for learning non-decomposable
Gaussian graphical models. A theoretical justification for our method is provided by showing that it yields a consistent
estimator of the graph structure.

Keywords: Approximate likelihood, Fractional Bayes factors, Model selection, Structure learning, Gaussian
graphical models

1. Introduction

1.1. Bayesian learning of Gaussian graphical models

Gaussian graphical models provide a convenient framework for analysing conditional independence in continuous
multivariate systems [1, 2, 3]. We consider the problem of learning Gaussian graphical models from data using a
Bayesian approach. Most of the Bayesian methods for learning Gaussian graphical models make the assumption
about the decomposability of the underlying graph [4, 5, 6]. Recently, Fitch et al. [7] investigated how Bayesian
methods assuming decomposability perform in model selection when the true underlying model is non-decomposable.
Bayesian methods that do not assume decomposability have been considered more seldom in the literature, and in
particular not in the high-dimensional case [8, 9, 10, 11, 12, 13, 14].

A widely used frequentist method for learning Gaussian graphical models is the graphical lasso [15, 16]. Graphical
lasso (glasso) uses l1-penalized Gaussian log-likelihood to estimate the inverse covariance matrices and does not
rely on the assumption of decomposability. Other approaches include a neighbourhood selection (NBS) method by
Meinshausen and Bühlmann [17] and Sparse Partial Correlation Estimation method (space) by Peng et al. [18]. The
NBS-method estimates the graphical structure by performing independent lasso regressions for each variable to find
the estimates for the neighbourhoods whereas space imposes an l1-penalty on an objective function corresponding to
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an l2-loss of a regression problem in order to estimate the non-zero partial correlations which correspond to edges in
the graphical model.

Assuming decomposability in Bayesian methods has been popular, since it enables derivation of a closed form
expression for the marginal likelihood under a conjugate prior. In our approach we bypass this restriction by replacing
the true likelihood in the marginal likelihood integral by a pseudo-likelihood. This implies a factorization of the
marginal pseudo-likelihood into terms that can be evaluated in closed form by using existing results for the marginal
likelihoods of Gaussian directed acyclic graphs. The marginal pseudo-likelihood offers further advantages by allowing
efficient search algorithms to be used, such that model optimization becomes realistic for even high-dimensional data.

Dobra et al. [19] considered a similar pseudo-likelihood based approach. These two methods involve similar
techniques in the first step where a general dependency network is learned using a Bayesian approach. A dependency
network [20] is a collection of conditional distributions for each variable given the others which are all fitted separately.
In the general case, this network does not define a proper joint distribution for the variables. Dobra et al. use this
dependency network in order to define an ordering for the variables before learning a directed acyclic graphical model
over the variables. The found directed graph is then moralized in order to produce an undirected graph. In other
words, their method does not consider general non-decomposable graphs.

Marginal pseudo-likelihood has been previously used to learn undirected graphical models with discrete variables
in Pensar et al. [21]. Our paper can be seen to generalize the ideas developed there to the continuous domain by intro-
ducing the required methodology and providing a formal consistency proof under the multivariate normal assumption.
Our method utilizes the fractional Bayes factors based approach of Consonni and La Rocca [22] to cope automatically
with the difficulty of setting up prior distributions for the models’ parameters.

The rest of the paper is organized as follows. After introducing the notation, we briefly review the results by
Consonni and La Rocca that are needed in deriving the expression for the marginal pseudo-likelihood. In Section 3
we state our main result by introducing the fractional marginal pseudo-likelihood. The detailed proof of its consistency
for Markov blanket estimation is given in Appendix. A score-based search algorithm adopted from Pensar et al. [21]
is presented in order to implement the method in practice. In Section 4 we demonstrate the favourable performance
of our method by several numerical experiments involving a comparison against glasso, NBS and space.

1.2. Notations and preliminaries

We will start by reviewing some of the basic concepts related to graphical models and the multivariate normal
distribution. For a more comprehensive presentation, see for instance [2] and [3].

Consider an undirected graph G = (V, E), where V = {1, . . . , p} is the set of nodes (vertices) and E ⊂ V × V is
the set of edges. There exists an (undirected) edge between the nodes i and j, if and only if (i, j) ∈ E and ( j, i) ∈ E.
Each node of the graph corresponds to a random variable, and together they form a p-dimensional random vector
x. We will use the terms node and variable interchangeably. Absence of an edge in the graph G is a statement of
conditional independence between the corresponding elements of x. More in detail, (i, j), ( j, i) < E if and only if xi

and x j are conditionally independent given the remaining variables xV\{i, j}. This condition is usually referred as the
pairwise Markov property. We let mb(j) denote the Markov blanket of node j. The Markov blanket is defined as
the set containing the neighbouring nodes of j, mb(j) = {i ∈ V | (i, j) ∈ E}. The local Markov property states that
each variable is conditionally independent of all others given its Markov blanket. An undirected graph G is called
decomposable or equivalently chordal if each cycle, whose length is greater or equal than 4, contains a chord. By a
cycle, we mean a sequence of nodes such that the subsequent nodes are connected by an edge and the starting node
equals the last node in the sequence. The length of a cycle equals the number of edges in the cycle. A chord is an
edge between two non-subsequent nodes of the cycle.

We will write x ∼ Np(0,Ω−1) to state that a random vector x follows a p-variate normal distribution with a zero
mean and precision matrix Ω. We will denote the covariance matrix by Σ = Ω−1. The precision matrix Ω, and also
equivalently Σ, are always assumed to be symmetric and positive definite.

Given an undirected graph G and a random vector x, we define a Gaussian graphical model to be the collection
of multivariate normal distributions for x that satisfy the conditional independences implied by the graph G. Hence,
a Gaussian graphical model consists of all the distributions Np(0,Ω−1), where Ωi j = 0 if and only if (i, j) < E,
i , j. Otherwise, the elements of the inverse covariance matrix can be arbitrary, as long as symmetry and positive
definiteness hold.
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In contrast to the above undirected model, a Gaussian directed acyclic graphical model is a collection of multi-
variate normal distributions for x, whose independence structure can be represented by some directed acyclic graph
(DAG) D = (V, E). When considering directed graphs, we use pa(j) to denote the parent set of the node j. The set
pa(j) contains nodes i such that (i, j) ∈ E. That is, there exists a directed edge from i to j. Similar Markov assumptions
as those characterizing the dependency structure under undirected models, as described above, hold also for directed
models, see, for instance, [3]. For each decomposable undirected graph, we can find a DAG which defines the same
conditional independence assertions. In general, the assertions representable by DAGs and undirected graphs are
different.

2. Objective Comparison of Gaussian Directed Acyclic Graphs

Consonni and La Rocca [22] consider objective comparison of Gaussian directed acyclic graphical models and
present a convenient expression for computing marginal likelihoods for any Gaussian DAG. Their approach to Gaus-
sian DAG model comparison is based on using Bayes factors and uninformative, typically improper prior on the space
of unconstrained covariance matrices. Ambiguity arising from the use of improper priors is dealt with by utilizing the
fractional Bayes factors [23].

We first review a result concerning the computation of marginal likelihood in a more general setting, presented
by Geiger and Heckerman [24]. They state five assumptions concerning the regularity of the sampling distribution of
data and the structure of the prior distribution for parameters, that allow construction of parameter priors for every
DAG model with a given set of nodes by specifying only one parameter prior for any of the complete DAG models. A
complete DAG model refers to a model in which every pair of nodes is connected by an edge, implying that there are
no conditional independence assertions between the variables. When the regularity assumptions are met, the following
result can be derived:

Theorem 1. (Theorem 2 in [24]) Let M and Mc be any DAG model and any complete DAG model for x, respectively.
Let X denote a complete (no missing observations) random sample of size n. Now the marginal likelihood for M is

p(X | M) =

p∏
j=1

p(Xfa(j) | Mc)
p(Xpa(j) | Mc)

, (1)

where Xpa(j) denotes the data belonging to the parents of x j. We call fa(j) = pa(j) ∪ { j} the family of variable x j.

Assumptions given by Geiger and Heckerman also imply that the marginal likelihood given by (1) scores all
Markov equivalent DAGs equally, which is a desirable property when DAGs are considered only as models of condi-
tional independence.

In order to apply (1), Consonni and La Rocca derive expressions for the marginal likelihoods corresponding to
subvectors of x, given the complete Gaussian DAG model. Objectivity is achieved by using an uninformative improper
prior of the form

p(Ω) ∝ |Ω|
aΩ−p−1

2 , (2)

for the parameters of the complete DAG model. The improper prior is updated into a proper one by using fractional
Bayes factors approach [23]. In this approach, a fraction of likelihood is “sacrificed” and used to update the improper
prior into a proper fractional prior which is then paired with the remaining likelihood to compute the Bayes factors.
Consonni and La Rocca show that the resulting fractional prior on the precision matrix Ω is Wishart. This choice of
prior combined with Gaussian likelihood satisfies all five assumptions required to use (1).

Setting aΩ = p − 1 in (2), we can take the fraction of sacrificed likelihood to be 1/n, see [22]. With this choice,
the resulting fractional prior on Ω is Wp(p, (1/n)XT X), where Wp(a, A) refers to a Wishart distribution (to provide
interpretation for the parameters, a random variable following the distribution Wp(a, A) would have an expected value
of aA−1).

Now applying (1) and Eq. (25) in [22], we obtain the marginal likelihood of any Gaussian DAG as

p(X | M) =

p∏
j=1

π−
(n−1)

2
Γ
( n+p j

2

)
Γ
( p j+1

2

)n−
2p j+1

2

(
|Sfa(j)|

|Spa(j)|

)− n−1
2

, (3)
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where p j is the size of the set pa(j), S = XT X is the unscaled sample covariance matrix and SA refers to a submatrix of
S restricted to variables in the set A. The fractional marginal likelihood given by (3) is well defined if matrices Spa(j)
and Sfa(j) are positive definite for every j. This is satisfied with probability 1 if n ≥ max{p j + 1 | j = 1, . . . , p}.

Consonni and La Rocca also show that their methodology can be used to perform model selection among de-
composable Gaussian graphical models. This is possible because every decomposable undirected graph is Markov
equivalent to some DAG. A similar fractional marginal likelihood approach as presented above has been considered
by Carvalho and Scott [6] but it was applied only in the context of decomposable Gaussian graphical models.

3. Structure Learning of Gaussian Graphical Models

3.1. Marginal Likelihood

Suppose we have a sample of independent and identically distributed multivariate normal data X = (X1, . . . , Xn)T ,
coming from a distribution whose conditional dependence structure is represented by an undirected graph G∗. We
aim at identifying G∗ based on X, which is done with a Bayesian approach by maximizing the approximate posterior
probability of the graph conditional on the data.

Posterior probability of a graph G given data X is proportional to

p(G | X) ∝ p(G)p(X | G), (4)

where p(G) is the prior probability assigned to a specific graph and p(X | G) is the marginal likelihood. The normal-
izing constant of the posterior can be ignored, since it cancels in comparisons of different graphs. First, we focus on
the marginal likelihood, since it is the data dependent term in (4). Later on, we will make use of the prior p(G) term
in order to promote sparsity in the graph structure.

By definition, the marginal likelihood of G equals

p(X | G) =

∫
ΘG

p(θ | G)p(X | θ,G)dθ, (5)

where θ is the parameter vector, p(θ | G) denotes the parameter prior under G, the term p(X | θ,G) is the likelihood
function and the integral is taken over the set of all possible parameters under G.

However, computing the marginal likelihood for a general undirected graph is very difficult, due the global nor-
malizing constant in the likelihood term. Closed form solution exists only for chordal graphs, which is a highly
restrictive assumption in general.

3.2. Marginal Pseudo-likelihood

We circumvent the problem of an intractable integration involved with the true likelihood function by using
pseudo-likelihood. Pseudo-likelihood was introduced originally by Besag [25]. The idea behind the pseudo-likelihood
can be motivated by thinking of it as an approximation for the true likelihood in form of a product of conditional prob-
abilities or densities, where in each factor the considered variable is conditioned on all the rest. More formally, we
write the pseudo-likelihood as

p̂(X | θ) =

p∏
j=1

p(X j | X− j, θ),

where the notation X− j stands for observed data on every variable except the j:th one.
In general, pseudo-likelihood should not be considered as a numerically exact and accurate approximation of the

likelihood but as an object that has a computationally more attractive form and which can be used to obtain consistent
estimates of parameters. It can be shown that under certain regularity assumptions, the pseudo-likelihood estimates
for model parameters coincides with the maximum likelihood estimates, see [26].

One advantage of using pseudo-likelihood instead of the true likelihood is that it allows us to replace the global
normalization constant by p local normalising constants related to conditional distributions of variables and thus
makes the computations more tractable.
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Using pseudo-likelihood, the original problem (5) of computing the marginal likelihood of X can be stated as

p(X | G) ≈
∫

ΘG

p(θ | G)
p∏

j=1

p(X j | X− j, θ,G)dθ

= p̂(X | G)

The term p̂(X | G) is referred to as the marginal pseudo-likelihood, introduced by Pensar et al. [21] for discrete-valued
undirected graphical models. The local Markov property states that given the variables in its Markov blanket mb(j),
the variable x j is conditionally independent of the remaining variables. More formally, we have that

p(x j | x− j, θ) = p(x j | xmb(j), θ).

Thus, we obtain the following form for the marginal pseudo-likelihood

p̂(X | G) =

∫
ΘG

p(θ | G)
p∏

j=1

p(X j | Xmb(j), θ)dθ (6)

We assume global parameter independence in order to factor the full integral into integrals over individual parameter
sets Θ j related to conditional distributions p(x j | xmb(j)). The expression for the integral (6) becomes

p̂(X | G) =

p∏
j=1

∫
Θ j

p(θ j)p(X j | Xmb(j), θ j)dθ j. (7)

3.3. Fractional Marginal Pseudo-likelihood
The expression (7) for the marginal pseudo-likelihood can be regarded as a product of terms, where each term

corresponds to a marginal likelihood of a DAG model. This offers a tractable way to compute the marginal pseudo-
likelihood in closed form.

Recall the general formula for a marginal likelihood of any DAG model M, introduced in the previous section:

p(X | M) =

p∏
j=1

p(Xfa(j) | Mc)
p(Xpa(j) | Mc)

=

p∏
j=1

p(X j | Xpa(j),Mc), (8)

where in the last equality we used the definition fa(j) = { j} ∪ pa(j).
We can see a clear resemblance between the forms (8) and (7). In both of these, each factor corresponds to a

marginal likelihood of a DAG model, where we have a node and its parent nodes. In the case of Markov networks,
the set of parents of a node is its Markov blanket, mb(j).

Thus, we can use the closed form solution of (3) to compute the sought marginal pseudo-likelihood (7) by changing
pa(j) → mb(j) and defining fa(j) = { j} ∪ mb(j). Then the closed form solution (3) for the fractional likelihood
corresponds to

p̂(X | G) =

p∏
j=1

π−
(n−1)

2
Γ
( n+p j

2

)
Γ
( p j+1

2

)n−
2p j+1

2

(
|Sfa(j)|

|Smb(j)|

)− n−1
2

=

p∏
j=1

p(X j | Xmb(j)), (9)

where p j = |mb(j)| and S refers to the full p × p unscaled sample covariance matrix. As before, Smb(j) and Sfa(j) refer
to submatrices of S restricted to variables in sets mb(j) and fa(j). From now on, p̂(X | G) is referred to as fractional
marginal pseudo-likelihood, due to the fractional Bayes factor approach used in derivation of the analytical form. The
expression p(X j | Xmb(j)) in (9) is used to denote the local fractional marginal pseudo-likelihood for the node j.

The next theorem provides a theoretical justification for the approximation used in derivation of our scoring
criterion.
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Theorem 2. Let x ∼ Np(0, (Ω∗)−1) and G∗ = (V, E∗) denote the the undirected graph that completely determines
the conditional independence statements between x’s components. Let {mb∗(1), . . . ,mb∗(p)} denote the set of Markov
blankets, which uniquely define G∗.

Suppose we have a complete random sample X of size n obtained from Np(0, (Ω∗)−1). Then for every j ∈ V, the
local fractional marginal pseudo-likelihood estimator

m̂b( j) = arg maxmb(j)⊂V\{ j}p(X j | Xmb(j))

is consistent, that is, m̂b( j) = mb∗( j) with probability tending to 1, as n→ ∞.

The detailed proof of Theorem 2 is presented in Appendix A. The proof is split in two parts; first, we show
that the fractional marginal pseudo-likelihood score does not overestimate, i.e., the true Markov blanket is preferred
over the sets containing redundant nodes. The second part covers the underestimation: a set that does not contain
all the members of the true Markov blanket will receive strictly lower score. Combining these two results implies
our theorem. The strategy of dividing a proof in these kinds of cases is fairly common approach when proving the
consistency of model selection criteria, see, for instance, [27] and [28]. The essential part in our proof is studying the
asymptotic form of the data dependent term and showing that it behaves as desired in both of the required cases. The
statements proven can be formulated into following lemmas:

Lemma 1. Overestimation. Let mb∗ ⊂ V \ { j} and f a∗ = mb∗∪{ j} denote the true Markov blanket and the true family
of the node j ∈ V, respectively. Let mb ⊂ V \ { j} be a superset of the true Markov blanket, mb∗ ⊂ mb. Now, as the
sample size n→ ∞

log
p(X j | Xmb∗ )
p(X j | Xmb)

→ ∞

in probability.

Lemma 2. Underestimation. Let mb∗ ⊂ V \ { j} and f a∗ = mb∗ ∪ { j} denote the true Markov blanket and the true
family of the node j ∈ V, respectively. Assume that mb ⊂ mb∗. Let A ⊂ V \ fa∗. Now, as the sample size n→ ∞

log
p(X j | Xmb∗∪A)
p(X j | Xmb∪A)

→ ∞

in probability.

In Lemma 2, we also allow for cases where mb = ∅ or A = ∅. With these proven, it is easy to see that our scoring
function will asymptotically prefer the true Markov blanket over any other possible Markov blanket candidate. For
supersets of the true Markov blanket, this follows from the overestimation lemma. For an arbitrary set that does not
contain all the true members, we can apply the underestimation lemma to show that there is always a set with strictly
higher score. This set is either the true Markov blanket or its superset. This suffices, since the latter case reduces to
using the overestimation lemma again.

To be a bit more specific, consider a set mb which has the same cardinality as the true Markov blanket but does
not contain all the true nodes. This set is not a superset, nor a subset of the true Markov blanket but it will receive
a lower score asymptotically. This follows, since the underestimation lemma guarantees that a set that contains all
the members of the true Markov blanket and the redundant ones from mb, will be preferred over mere mb. This
reduces the problem to comparing the score of the true Markov blanket with its superset which is covered by the
overestimation part.

The locally consistent Markov blankets imply that the whole graph is also asymptotically correctly estimated
which is formulated in the following corollary:

Corollary 1. Let G denote the set of all undirected graphs with p nodes. The global fractional marginal pseudo-
likelihood estimator

Ĝ = arg maxG∈G p̂(X | G)

is consistent, that is, Ĝ = G∗ with probability tending to 1, as n→ ∞.
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Proof. Theorem 2 guarantees that the true Markov blanket of each node is found with a probability tending to 1 as
sample size increases. Since the structure of a Markov network is uniquely determined by its Markov blankets, the
result follows.

We will use the scoring function in conjunction with a search algorithm that finds the Markov blanket by incremen-
tally adding and removing variables. To that end, we will need the following results in order to show the asymptotic
correctness of the used algorithm with our score.

Lemma 3. Assume that node i belongs to the Markov blanket of node j. Let A ⊂ V \ { j, i} and denote B = A ∪ {i}.
Now, as the sample size n→ ∞

log
p(X j | XB)
p(X j | XA)

→ ∞

in probability.

The result above states that, asymptotically, adding a variable that is contained in the true Markov blanket will
increase the score.

Lemma 4. Let mb∗ ⊂ V \ { j} and fa∗ = mb∗ ∪ { j} denote true Markov blanket and the true family of the node j ∈ V,
respectively. Let R ⊂ V \ f a∗, R , ∅ be some set of nodes not belonging to the true Markov blanket of j. Denote
A = mb∗ ∪ R and B = mb∗ ∪ (R \ {i}), where i ∈ R.

Now, as the sample size n→ ∞

log
p(X j | XB)
p(X j | XA)

→ ∞

in probability.

Lemma 4 guarantees that removing a redundant node from a set that contains the true Markov blanket will increase
the score. The statements of lemmas 3 and 4 are similar in spirit to the properties stated in Definition 6 by Chickering
[29]. These properties were used by the author to prove the correctness of a greedy hill-climb algorithm operating in
the space of DAGs.

3.4. Learning Algorithm for Markov Blanket Discovery
The consistency result of the local Markov blanket estimators stated in the last section allows us to optimize the

Markov blanket of each variable independently which also makes this step extremely easy to compute in parallel. In
practice, each search is done by implementing a greedy hill-climb algorithm similar to interIAMB-algorithm [30],
with the heuristic function needed for measuring the association between two nodes given some others replaced by
the fractional marginal pseudo-likelihood score. The same search procedure was used by Pensar et al. [21] for discrete
Markov networks.

The search algorithm starts with an empty Markov blanket and then incrementally adds nodes that yield the
maximum increase in the score. Each successful addition step is followed by a removal step, where nodes are removed
from the blanket if this results in the increase of the score. The algorithm terminates and returns the estimated Markov
blanket when there are no variables to be added so that the score would increase further. Pseudo-code of the algorithm
is presented in Appendix C, Algorithm 1.

With help of the lemmas proved in the previous section, it is easy to see that the algorithm will asymptotically
return the correct Markov blanket. More in detail, Lemma 3 implies that all the true variables will be included in
the estimated blanket during the addition steps since these are guaranteed to increase the score. Redundant variables
might also be included but as soon as we have found all the right ones, the Lemma 4 starts to apply, and we are
guaranteed to remove the redundant ones in the removal step.

This reasoning follows a similar pattern as in [30] where the asymptotic correctness of interIAMB was shown
under the assumption that the data generating distribution is faithful to some DAG. Our consistency proofs basically
show that the fractional marginal pseudo-likelihood has the properties required by the sound heuristic function needed
in the algorithm to measure dependency between variables.

Also, Peña et al. [31] proved that IAMB-algorithm, which differs slightly from interIAMB by not having the
removal step after each successful addition but only in the end, is correct even when assumption about faithfulness
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to some DAG is relaxed. One needs only to assume that the generating distribution has the composition property
(see, Theorem 1 in [31]) and that the used function to measure dependence asymptotically decides on independence
correctly.

In our implementation of the algorithm, we restricted the maximum possible Markov blanket size for each variable
to be n − 1 when n < p. Otherwise the input empirical (unscaled) covariance matrix might not be positive definite
which is required for our score to be defined. Also, the deletion step was conducted only if the current Markov blanket
size was greater than two.

The proven consistency properties are asymptotic results so we are not guaranteed to produce proper undirected
graphs on small sample sizes by naively combining each found Markov blanket together. To be more specific, we
may find Markov blankets mb(i) and mb(j) such that i ∈ mb(j) but j < mb(j), which contradicts the definition of an
undirected graph. To overcome this, we use two criteria, AND and OR, to combine the learned Markov blankets into
proper undirected graphs.

Denote the identified Markov blankets by mb(j), j = 1, . . . , p. The edge sets specifying OR- and AND-graphs are
correspondingly defined as follows

EOR = {(i, j) ⊂ V × V | i ∈ mb(j) or j ∈ mb(i)}
EAND = {(i, j) ⊂ V × V | i ∈ mb(j) and j ∈ mb(i)}.

In addition to AND- and OR-method, we consider a third procedure referred to as the HC-method (Algorithm 2
in [21]). HC-method uses the graph obtained by OR-method to define a subspace of graphs GOR = {G = (V, E) ∈
G| E ⊂ EOR}. Then, starting from an empty graph, a simple deterministic greedy hill-climb based on local changes is
performed in this reduced model space by removing or adding single edges resulting in the largest improvement in the
fractional marginal pseudo-likelihood score. At each point, steps can be taken to neighbouring graphs, NGOR (G), which
are graphs in GOR that can be obtained from the current graph, G, by a single edge addition or deletion. Pseudo-code
of the algorithm is presented in Appendix C.

Factorization of the fractional marginal pseudo-likelihood over the terms containing variables and their Markov
blankets allows us compute the change in the score between two neighbouring graphs easily. For instance, when
adding an undirected edge (i, j) we need only to compute four terms corresponding to the local scores for variables i
and j given their new and old Markov blankets.

As mentioned in [21], the two-step strategy of first finding the possible Markov blankets and then running a
score based hill-climb in reduced model space makes the HC-method similar in spirit to Max-Min Hill-Climbing

-algorithm for learning DAGs by Tsamardinos et al. [32] with the difference being our proposed scoring function
which is used in both steps of the algorithm.

3.5. Sparsity Promoting Prior Over Local Graphs
Until now we have assumed that every graph structure is a priori equally likely and thus the prior term p(G) in

(4) was ignored. However, in most applications with high-dimensional variable sets it is natural to assume that the
underlying dependence structure is sparse. To promote sparsity beyond the basic Occam’s razor, which is built into
Bayesian model comparison, one can use the prior distribution p(G) to penalize nodes for having too many elements
in their Markov blankets. By defining our graph prior in terms of mutually independent prior beliefs about the Markov
blankets, we maintain the useful factorization of our score and the local score is given by

p(mb(j))p(X j | Xmb(j)).

We start with a similar approach as used for example in Carvalho and Scott [6] to motivate our choice for the prior. In
this approach, we assume that the inclusion of an edge in a graph happens with some unknown probability t, which
corresponds to a successful Bernoulli trial. A finite sequence of these inclusions is a repeated Bernoulli trial and thus
binomially distributed. We obtain the following form for the local prior

p(mb(j) | t) ∝ tp j (1 − t)m−p j , (10)

where p j is the proposed size of the Markov blanket of j, or equivalently the number of edges connected to j (number
of successes in repeated Bernoulli trials). We use m to represent the maximum number of edges, that could be present
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Figure 1: Synthetic subgraphs. Pictures appear originally in Pensar et al. [21].

in a local graph, that has p j + 1 nodes. Hence m corresponds to the number of trials. Strictly speaking, such an
interpretation is somewhat misleading since p j can be at most p − 1 and m = p j(p j + 1)/2 depends on it. Carvalho
and Scott [6] computed the prior probabilities for the whole graphs, not for the local graph structures as we here. So
in their case m = p(p− 1)/2 and the number of successful trials would simply equal the total amount of edges present
in the graph.

Nevertheless, our slightly different approach defines a proper prior since the prior scores derived from equation
(10) can be normalized by a constant that depends only on p, and thus cancels when comparing local graph structures.
This prior is shown to perform favourably in the numerical tests considered later.

An appropriate value for the parameter t would be unknown for most applications. To overcome this issue, we
put a prior on the parameter and integrate it out to obtain a suitable prior score function. Choosing a conjugate prior
t ∼ Beta(a, b) and integrating leads to the expression

p(mb(j)) ∝
β(a + p j, b + m − p j)

β(a, b)
,

where β(·, ·) refers to the beta function. In our numerical experiments, we use a = b = 1/2. Motivation for this choice
is that Beta(1/2, 1/2) is the Jeffreys’ prior for the probability parameter of the binomial distribution, see, for instance,
[33].

4. Numerical Experiments

4.1. Structure Learning with Synthetic Data
We first study the performance of the fractional marginal pseudo-likelihood in learning the graphical structures

from synthetic multivariate normal data. We specify the structure of the generating network and measure the quality
of the learned graphs using the Hamming distance which is defined as the number of edges to be added and deleted
from a learned graph to obtain the true generating graph structure.

The synthetic graphs used to create our data are constructed by using 4 different subgraphs as building blocks.
Graphs are shown in the Figure 1. Subgraphs are combined together as disconnected components to create a 64 node
graph. This graph is again used as a component to build larger graphs. In total, the dimensions in the sequence
p = 64, 128, 256, 512, 1024 are considered. The corresponding graphs contain 78, 156, 312, 624 and 1248 edges,
respectively.

When the graph structure is specified, we construct the corresponding precision matrices by setting elements to
zeros as implied by the graph. The absolute values of the remaining off-diagonal elements are chosen randomly
between 0.1 and 0.9 so that about half of the elements are negative. The diagonal elements are also first chosen
randomly from the same interval and then a suitable vector is added to the diagonal in order to make all the eigenvalues
positive, thus ascertaining the positive definiteness of the precision matrix. Finally, the matrix is inverted to get the
covariance matrix and zero mean multivariate normal data is sampled using the built-in function ’mvnrnd’ in Matlab.

For each of the considered dimensions, we created 25 covariance matrices, sampled a data set of 4000 observations
and learned the structures using fractional marginal pseudo-likelihood, glasso, space and NBS with different sample
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sizes. Input data were scaled so that each variable had zero mean and a standard deviation of one. The sparsity
promoting prior was used with the fractional marginal pseudo-likelihood methods.

Glasso requires a user-specified tuning parameter that affects the sparsity of the estimated precision matrix. For
every input data, we computed glasso using 12 different values for the tuning parameter logarithmically spaced on
the interval [0.01, 1]. The best value for λ was chosen according to the extended BIC criterion proposed by Foygel
and Drton [34]:

EBIC(λ) = n tr(Ω̂C) − n log det(Ω̂) + K log n + 4Kγ log p,

where n denotes sample size, p is the number of variables, C = (1/n)S is the maximum likelihood estimate for the
covariance matrix, Ω̂ stands for the estimate of the inverse covariance for given λ and K is the number of non-zero
elements in the upper-half of Ω̂, that is the number of edges in the corresponding graphical model. The parameter
γ is constrained to be between 0 and 1. By using the value γ = 0, we would retain the ordinary BIC criterion, and
increasing the γ would encourage sparser solutions. In the experiments, we used the value γ = 0.5.

The parameter value λ minimising the above criterion was used and the graphical model was read from the corre-
sponding estimate of Ω̂. R-package ’glasso’ [35] was used to perform the computations for glasso. The diagonal
elements of the precision matrix were not penalized.

The computations for NBS were carried out using the Meinshausen-Bühlmann approximation also implemented in
the R-package ‘glasso’. The required tuning parameter λ was chosen automatically, as proposed by the authors [17]
to be λ = (n−1/2)Φ−1(1 − α/(2p2)), where α = 0.05 and Φ(·) denotes the c.d.f. of a standard normal random variable.
Parameter α is related to the probability of falsely connecting two separate connectivity components of the true graph,
see ch. 3 in Meinshausen and Bühlmann [17]. Since the resulting inverse covariance matrix, Ω̂, was not necessarily
symmetric, we used the average (1/2)(Ω̂ + Ω̂T ) to determine the estimated graph structure for NBS.

For the computations of space we used the corresponding R-package [36]. Also for this method, the user is
required to specify a tuning parameter λ controlling the l1-regularisation. We selected the scale of the tuning parameter
to be s = (n1/2)Φ−1(1 − α/(2p2)) with α = 0.05. Twelve candidate values for the tuning parameter were then chosen
by multiplying a vector of 12 linearly space numbers from 0.5 to 3.25 by the scaling constant s. The best value for the
λ was then chosen according to the BIC styled criterion proposed by the authors of the method (see ch. 2.4 in [18]).
The space algorithm was run with uniform weights for regressions in the joint loss function and iteration parameter
set to 2. For both glasso and space the range of possible tuning parameters was selected so that the best value
according to the used criterion would lie strictly inside the given grid in all of the tests.

The Hamming distance results for the structure learning tests are shown in Figures 2 and 3. For the sake of clarity,
OR- and HC-methods are omitted in Figure 2, and the comparison between fractional pseudo-likelihood is presented in
Figure 3. The corresponding true positive and false positive rates for dimensions d = 64 and d = 1024 are presented
in Table 1. All the shown results are averages computed from 25 data sets. The AND- and HC-method maintain almost
equally good performance regardless the dimension considered and obtain the best overall performance in terms of
Hamming distances. The OR-method is better on smaller dimensions where the graph is denser in the relative sense.

In the smaller dimensions NBS performs almost equally well as AND and HC. The graphs estimated by NBS are
really sparse resulting in a low false positive rate. The Hamming distance curves of glasso do not seem to decrease
consistently as the sample size grows. We tried also using the ordinary BIC-criterion for choosing the tuning parameter
for glasso but this resulted in denser graphs and inferior Hamming distances (results not shown). The space-method
improves its performance quite steadily as n grows and has nearly always the best true positive rate. However, this
comes with a cost in terms of the false positive rate which is almost always higher for space than for the best
pseudo-likelihood method or NBS. When the sample size is less than the dimension, space achieves good results with
Hamming distances being equal or slightly better than those of AND-method. We can observe that in some settings,
the results for space and glasso have relatively high standard deviations which demonstrates the sensitivity of these
methods to the choice of tuning parameters with the used criteria.

To give a rough idea of the relative time complexity of the various methods, it took roughly half a second to
estimate OR, AND and HC graphs in the d = 64 case when all the Markov blanket searches were run in a serial manner on
a standard 2.3 GHz workstation. The high-dimensional cases were solved in couple minutes. Average running times
of the other methods are tabulated in Appendix B. To summarize, the NBS-method was clearly the fastest, whereas
space took the longest to run. Space was generally fast to compute when n was small but the running time varied
considerably depending on the tuning parameter and grew quickly with the sample size. Even though computing a
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Figure 2: Sample size versus Hamming distance plots. Vertical lines show the standard deviations. Dimensions considered are p =

64, 128, 256, 512 and 1024.
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p n OR AND HC glasso NBS space

TP FP TP FP TP FP TP FP TP FP TP FP

64

125 0.60 6e-03 0.44 9e-04 0.54 2e-03 0.53 1e-02 0.37 4e-04 0.66 2e-02
250 0.72 3e-03 0.59 4e-04 0.68 1e-03 0.74 2e-02 0.57 6e-04 0.79 2e-02
500 0.81 2e-03 0.73 2e-04 0.78 6e-04 0.86 2e-02 0.71 6e-04 0.88 2e-02

1000 0.88 1e-03 0.83 1e-04 0.87 4e-04 0.93 3e-02 0.82 9e-04 0.94 2e-02
2000 0.95 8e-04 0.91 6e-05 0.94 2e-04 0.97 4e-02 0.90 9e-04 0.98 2e-02
4000 0.98 4e-04 0.96 4e-05 0.98 1e-04 0.99 4e-02 0.95 8e-04 0.99 2e-02

1024

125 0.43 3e-03 0.29 5e-04 0.37 1e-03 0.00 0 0.08 7e-07 0.36 4e-04
250 0.61 2e-03 0.49 3e-04 0.57 7e-04 0.40 7e-05 0.29 1e-06 0.56 3e-04
500 0.74 1e-03 0.66 2e-04 0.72 4e-04 0.66 2e-04 0.51 2e-06 0.72 3e-04

1000 0.84 7e-04 0.79 1e-04 0.82 3e-04 0.81 3e-04 0.68 3e-06 0.83 3e-04
2000 0.92 5e-04 0.88 7e-05 0.90 2e-04 0.91 6e-04 0.81 2e-06 0.91 3e-04
4000 0.97 3e-04 0.94 5e-05 0.96 1e-04 0.96 1e-03 0.89 3e-06 0.96 3e-04

Table 1: A table showing true positive (TP) and false positive (FP) rates for different methods and sample sizes when p = 64, 1024. For the full
table with all the dimensions, see Appendix B.

single instance of glasso or space might be faster than fractional pseudo-likelihood methods, one is usually forced
to run these methods several times to find a suitable tuning parameter, thus making the actual running times much
longer. Also, choosing an appropriate range for the candidate tuning parameters might prove difficult in some settings.
These kind of practical difficulties make the method proposed here appealing, since no tuning parameters need to be
chosen by the user.

Furthermore, running the Markov blanket searches in parallel provides an easy improvement in efficiency. To
demonstrate the possible performance boost gained via parallellization, we also measured the times taken by each
individual Markov blanket search. The average maximum times are tabulated in Appendix B. In the case with d = 512
and n = 4000, the longest time used for one Markov blanket search was on average 0.179 seconds. This represents
roughly the time it would take for our method to estimate the graph if the computations were distributed among 512
cores.

4.2. Magnetic Resonance Data

We additionally illustrate the ability of the fractional marginal pseudo-likelihood to learn sparse structures by
applying it to a real data set containing brain activity measurements. The whole data set consists of 2048 observations
from a fMRI experiment on 90 variables corresponding to different regions of the brain. The data set is part of the
R-package ‘brainwaver’ by Achard [37].

We used the first 50 variables and fitted a first-order vector autoregressive model to remove the most significant
dependencies between subsequent sample vectors. As a result, we obtain 2048 residual vectors that should by as-
sumption follow a multivariate normal distribution. The obtained data was then split into a training set and a test set.
The size of the test set was always taken to be 48. For the training set size m, we considered three scenarios, where
m = 40, m = 200 or m = 2000. Training data was always centered and scaled before applying methods. Centering of
the test set was done using the means and standard deviations computed from the training data.

For pseudo-likelihood methods and NBS we first learned the graphical structure and then computed the maximum
likelihood estimate for the precision matrix given the structure. In case of glasso and space, the precision matrix is
readily available from the output of the algorithm. In these experiments we considered also the case where the sparsity
promoting graph prior was not used with pseudo-likelihood methods.

For glasso we used 30 tuning parameters from the interval [0.01, 10], choosing the best according to the extended
BIC criterion. The space-method was also computed with 30 different tuning parameter values, scale selected as in
the structure learning tests. Range of tuning parameters was again selected so that the best value according to the used
BIC criterion would be strictly inside the grid. For NBS tuning parameter was chosen automatically as in the structure
learning tests.

After the model learning, we took one data point at a time from the test set and tried to predict each of the com-
ponents given the values of the others. Predicted value X̂i for variable xi was computed as X̂i =

∑
j,i ρi j

√
ω j j/ωiiX j,

where ωii are the diagonal elements of the estimated precision matrix and ρi j are the partial correlations which can be
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m OR ORprior glasso NBS space

40 1.002(11%) 0.968(4%) 1.080(0%) 1.057(0%) 0.988(4%)
200 0.713(11%) 0.722(7%) 0.923(3%) 0.721(7%) 0.717(16%)

2000 0.647(22%) 0.650(16%) 0.648(34%) 0.650(23%) 0.649(32%)

Table 2: A table showing average MSEs and edge densities (in parentheses) for different methods applied to brain data residuals.

obtained from the precision matrix. Squared difference of predicted value to the real value was recorded and the mean
squared error (MSE) was used to compare the predictive performances of different methods.

Table 2 shows the results of prediction tests for training sample sizes m = 40, m = 200 and m = 2000. Results for
AND and HC methods are omitted, since these were generally slightly worse than the results of OR. Here, we use OR to
denote the method without the sparsity promoting prior whereas ORprior refers to the one with it. The shown results
are averages from 50 tests. We can observe that OR with a graph prior provides the lowest prediction error when the
sample size is less than the dimension. When the number of observations grows, OR without prior obtains the best
predictions. In general, the differences between the methods are quite marginal. However, the models estimated by
OR are usually substantially sparser than the ones estimated by competing methods, especially with the highest sample
size considered here, m = 2000. Sparse models are naturally desirable as they are easier to interpret. In addition to
that, these conditional independences captured by OR are relevant in a sense that the corresponding model provides
the lowest MSEs when predicting missing data.

4.3. Gene Expression Data

We conducted similar prediction experiments using gene expression data from [38]. The original data set contains
335 microarray observations on 48701 variables. We formed three smaller sets of this data by first conducting a
Kolmogorov-Smirnov test for each variable and then grouping them using the p-value obtained from the test. In
the Kolmogorov-Smirnov test, the null-hypothesis is that data comes from a normal distribution. The aim of this
procedure was to separate variables roughly according to how Gaussian their marginal distributions look like, and see
if this has effect on the performance in prediction.

Data set 1 consisted of variables for which the obtained p-value was greater than 0.9, data set 2 were variables
with p-value between 0.4 and 0.6, and data set 3 included the variables with the p-value less than 0.01. Finally, we
randomly picked 100 variables from each of these three sets to the actual tests.

For each of the sets, we split the observations into a training set of size 300 and test set containing the rest 35
observations. The procedure described with the brain data was then repeated individually for each set of variables. In
these experiments, we used 15 tuning parameters for glasso and space. The results are shown in Figure 4.

We can observe that all the methods perform almost equally well on the first two sets which represent the most
Gaussian variables. The OR-method, which is the best out of fractional marginal pseudo-likelihood methods, has
slightly higher MSE but this is obtained with substantially sparser model compared to other approaches. In the final
set, MSE is generally higher for all the methods and differences between the methods are clearer. Here, OR achieves
the best MSE with a marginal difference to space. The model is sparser than the one produced by space but more
dense than those of glasso or NBS.

4.4. Flow Cytometry Data

We analyzed a flow cytometry data set found in R-package ‘FBFsearch’ [39]. This data is originally from [40]
where the authors infer a causal Bayesian network depicting the signaling pathway between the proteins. The resulting
network is reported to highly agree with the previous findings on the known relationships between proteins. The data
set consists of 7466 observations on 11 variables. The number of variables is quite small but it nevertheless provides
an interesting target for the structure learning methods since we have a “ground truth” to compare against.

We normalized the data by centering and scaling variables to have a standard deviation of one. The fractional
pseudo-likelihood methods were run both with the sparsity promoting prior and without it. The tuning parameters for
the other methods were selected using the same criteria as before. We used 30 candidate values for glasso and space.
The quality of the learned network was measured with Hamming distance. The true directed graph was converted to
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Figure 4: Mean squared errors for different methods and different sets of variables. Heights of the bars represent MSEs and the density of the
corresponding graphical model is given on top of the bar. The shown values are averages computed from 10 tests (10 different partitions to a
training and a test set).

an undirected one by simply omitting the edge orientations. One could also use the moral graph corresponding to the
directed graph as the ground truth graph. The true graph would then have two extra edges that are not present in the
undirected skeleton. However, these two edges are not found by the methods shown in the results and it would not
affect the order of how the methods performed.

The resulting graphs for the best methods, AND and NBS, are presented in Figure 5. The AND-method without the
prior achieved the lowest Hamming distance of 16. The performance of the NBS-method was similar, resulting in a
Hamming distance of 18. This is also the same Hamming distance that was achieved by the AND-method with prior.
OR and HC methods achieve slightly worse Hamming distances, ranging from 20 to 23. The used criteria for tuning
parameter selection seemed to favour nearly fully connected networks for space and glasso which also resulted in
substantially higher Hamming distances (results not shown).

However, among the tested tuning parameter values for space and glasso, one could find a value that resulted
in a Hamming distance of 15 but it was not selected by the used criteria. This provides yet another evidence on
the difficulty of choosing an appropriate tuning parameter for structure learning and lends support to our proposed
approach where the selection is handled automatically.
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Figure 5: Left: A graph estimated by AND-method. Middle: A graph estimated by NBS approach. Right: A directed acyclic graph depicting
the known regulatory network. In the estimated graphs, red edges represent false positives, green are true positives and dashed lines depict false
negatives.

In addition to the prediction tests with the real data, we conducted similar tests using data from the same syn-
thetic networks as in the structure learning tests. In these tests, fractional marginal pseudo-likelihood based methods
achieved slightly better predictions. These results are presented in detail in Appendix B.

To conclude, we emphasize that the results produced by our methods are achieved without needing to tune any
hyperparameters. Only choice left to the user is whether to include the sparsity promoting prior or not. This can be
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a drastic advantage as demonstrated by the structure learning tests, where the suggested criteria for tuning parameter
selection did not seem to be always optimal if the goal is to find the correct graphical structure. However, if the goal
is to select a model with a good prediction power, the differences were not substantial and the used criteria produced
good results.

5. Discussion

In this work we have introduced the fractional marginal pseudo-likelihood, an approximate Bayesian method for
learning graphical models from multivariate normal data. One particular advantage of the method is its objectivity,
since it does not necessitate the use of any domain specific knowledge which may be difficult to elicitate and use in
general. That is, the method does not require the user to provide any hyperparameters that would affect the result,
only choice is to decide whether to use sparsity promoting prior or not.

The method outputs three graphs corresponding to AND-, OR- and HC-procedures. The two first mentioned are
obtained with the same computational effort. Based on our experiments, each graph has a clear interpretation in terms
of when one should use it. If the goal is to use the model for prediction, OR is the best choice. In case one is interested
in an easily interpretable graph and false positive edges are unwanted, we suggest choosing the AND-method. In a
general case, one should stick to using HC, as this provides a compromise between these two alternatives.

In addition, the method allows graphs to be non-decomposable, which can be of substantial importance in applica-
tions. Earlier research has demonstrated that when the data generating process deviates from decomposability, graph
learning methods building on the assumption of decomposability tend to yield unnecessarily dense graphs resulting
from addition of spurious edges to chordless cycles.

As shown formally, our method enjoys consistency and was found in simulation experiments to yield essentially
at least as accurate estimates of the graph structure as the competing methods without needing to tune any hyper-
parameters. For many applications of graphical model learning it is essential to retain solid interpretability of the
estimated covariance structure, which means that high fidelity of the graph structure estimator is the most desirable
property. In particular, frequently arising spurious edges may lead to confusing interpretations in the high-dimensional
setting. In terms of predictive performance, methods considered here delivered similar levels of accuracy. Our divide-
and-conquer type solution offers a possibility for efficient parallelization, as the initial Markov blanket search can be
performed independently for each node. Hence, an attractive target for future research would include applications
to very high-dimensional data sets and development of various parallelization schemes. In addition, it would be in-
teresting to investigate altered versions by making the method more robust to outliers through relaxing the Gaussian
assumption. The robust method could for instance be compared against a method by Sun and Li [41], which was
shown to perform better than glasso when the data follow a heavier tailed distribution than a Gaussian.
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Appendix A. Consistency Proofs

This section contains the proofs of Lemmas 1 and 2 which together imply the consistency of our method as
formulated in Theorem 2 and Corollary 1. We follow the same notation and the assumptions given in Theorem 2. We
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prove also Lemmas 3 and 4 which show the correctness of the used search algorithm.
The following proposition found in [2] is used in the proof.

Theorem 3. (Based on 6.7.1; p. 179) Suppose the normal random vector x can be partitioned into three (xA, xB, xC)
and all conditional independence constraints can be summarised by the single statement xB ⊥⊥ xC | xA. If xA, xB and
xC are p-,q- and r-dimensional respectively, then the deviance

dev(xB ⊥⊥ xC | xA) = −n log
|S||SA|

|SA∪B||SA∪C |

has an asymptotic chi-squared distribution with qr degrees of freedom.

Here S is defined as before, but in [2], S is used to denote the sample covariance matrix. It is clear that this does
not change the statement of the theorem in any manner of consequence to our purposes. Note that theorem holds also
if A = ∅, since complete independence can be considered a special case of the conditional independence. In this case,
term |SA| in the expression of deviance simply disappears.

Appendix A.1. Overestimation (Lemma 1)

Let mb∗ ⊂ V \ { j} and f a∗ = mb∗ ∪ { j} denote the true Markov blanket and the true family of the node x j,
respectively. We denote the cardinality of mb∗ by p j. Let mb ⊂ V \ { j} be a superset of the true Markov blanket mb∗.
Denote a = |mb| − p j. Since mb∗ ⊂ mb, we have a > 0.

We want to show that

log
p(X j | Xmb∗ )
p(X j | Xmb)

→ ∞

in probability, as n → ∞. Showing this will guarantee that fractional marginal pseudo-likelihood prefers the true
Markov blanket over its supersets as the sample size increases. Remember, that the local fractional marginal pseudo-
likelihood for mb( j) was given according to

p(X j | Xmb(j)) = π−
(n−1)

2
Γ
( n+p j

2

)
Γ
( p j+1

2

)n−
2p j+1

2

(
|Sfa(j)|

|Smb(j)|

)− n−1
2

.

Consider next the log ratio of local fractional marginal pseudo-likelihoods, for mb∗ and mb. The term containing
the power of π appears in both of the terms, and so it cancels. By noticing that

n
−

(
1+2p j

2

)/
n
−

(
1+2(p j+a)

2

)
= na,

we get the following form for the ratio

log
p(X j | Xmb∗ )
p(X j | Xmb)

= log
Γ
( n+p j

2

)
Γ
( n+p j+a

2

) + log
Γ
( 1+p j+a

2

)
Γ
( 1+p j

2

)
+ a log n −

(
n − 1

2

)
log

(
|S f a∗ ||Smb|

|Smb∗ ||S f a|

)
. (A.1)

The second term in (A.1) doesn’t depend on n so it can be omitted when considering the leading terms as n → ∞.
Denote m = (n + p j)/2. Clearly m→ ∞, as n→ ∞. Now we can write the first term in (A.1) as

log
Γ(m)

Γ
(
m + a

2

) = log Γ(m) − log Γ

(
m +

a
2

)
. (A.2)
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Now letting n→ ∞ and by using Stirling’s asymptotic formula for each of the terms in (A.2), we get

log Γ(m) − log Γ

(
m +

a
2

)
=

(
m −

1
2

)
log m − m

−

((
m +

a
2
−

1
2

)
log

(
m +

a
2

)
−

(
m +

a
2

))
+ O(1).

We see that m-terms cancel and the constant a/2 in the second term can be omitted. After rearranging the terms, the
result can be written as

m log
(

m
m + a

2

)
+

1
2

log
(

m + a
2

m

)
−

a
2

log
(
m +

a
2

)
+ O(1).

As n→ ∞, we have that

m log
(

m
m + a

2

)
=

1
2

log
(

1
1 + a

2m

)2m

→
1
2

log(exp(−a)) = −
a
2

and
1
2

log
(

m + a
2

m

)
=

1
2

log
(
1 +

a
2m

)
→ 0.

Thus, we can write (A.2) asymptotically as

log
Γ(m)

Γ
(
m + a

2

) = −
a
2

log
(
m +

a
2

)
+ O(1),

or equivalently by using variable n

log
Γ
( n+p j

2

)
Γ
( n+p j+a

2

) = −
a
2

log
(n + p j + a

2

)
+ O(1).

Now we can simplify the original formula (A.1) by combining the first and the third term

log
Γ
( n+p j

2

)
Γ
( n+p j+a

2

) + a log n = −
a
2

log
(n + p j + a

2

)
+

a
2

log n2 + O(1)

=
a
2

log n + O(1).

Consider next the last term in (A.1)

−

(
n − 1

2

)
log

(
|S f a∗ ||Smb|

|Smb∗ ||S f a|

)
. (A.3)

Since mb∗ ⊂ mb, we can write mb = mb∗ ∪ R, where R denotes the set of redundant variables in mb. Recall the
Theorem 3 and notice that by denoting

A = mb∗, B = { j} and C = R,

it holds that xB ⊥⊥ xC | xA, since mb∗ was the true Markov blanket of x j. Note also that in this case qr = 1 · a = a.
Now the deviance can be written as

dev(x j ⊥⊥ xR | xmb∗ ) = −n log
(
|S f a||Smb∗ |

|S f a∗ ||Smb|

)
,

which is essentially just the determinant term (A.3) multiplied by a constant −2. Let us denote Dn = dev(x j ⊥⊥ xR |

xmb∗ ). The determinant term gets the following representation

−

(
n − 1

2

)
log

(
|S f a∗ ||Smb|

|Smb∗ ||S f a|

)
= −

n
2

log
(
|S f a∗ ||Smb|

|Smb∗ ||S f a|

)
+ Op(1)

= −
Dn

2
+ Op(1).
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The Op(1) error on the first line comes from omitting the term

1
2

log
(
|S f a∗ ||Smb|

|Smb∗ ||S f a|

)
.

Asymptotically, it holds that Dn ∼ χ
2
a. In other words the sequence (Dn) converges in distribution to a random variable

D, where D ∼ χ2
a. Convergence in distribution implies that the sequence (Dn) is bounded in probability, that is,

Dn = Op(1) for all n.
Combining the above findings, asymptotically

−

(
n − 1

2

)
log

(
|S f a∗ ||Smb|

|Smb∗ ||S f a|

)
= Op(1).

Adding the results together, we have shown that, as n→ ∞

log
p(X j | Xmb∗ )
p(X j | Xmb)

=
a
2

log n + Op(1).

Now since a > 0, then

log
p(X j | Xmb∗ )
p(X j | Xmb)

→ ∞

in probability, as n→ ∞.

Appendix A.2. Underestimation (Lemma 2)
Let mb∗ denote the true Markov blanket of node x j and mb ⊂ mb∗. Let A ⊂ V\ f a∗. Remember that f a∗ was

defined to be mb∗ ∪ { j}. Note that A could also be an empty set. We want to show that

log
p(X j | Xmb∗∪A)
p(X j | Xmb∪A)

→ ∞

in probability, as n → ∞. Denote |mb∗ ∪ A| = p j and a = |mb ∪ A| − p j. Here a < 0, since mb is a subset of the true
Markov blanket. We can now proceed similarly as in the overestimation part, and write the log ratio as

log
p(X j | Xmb∗∪A)
p(X j | Xmb∪A)

= log
Γ
( n+p j

2

)
Γ
( n+p j+a

2

) + log
Γ
( 1+p j+a

2

)
Γ
( 1+p j

2

)
+a log n −

(
n − 1

2

)
log

(
|S f a∗∪A||Smb∪A|

|Smb∗∪A||S f a∪A|

)
. (A.4)

The first three terms are just the same ones appearing in (A.1), which allows us to write

log
p(X j | Xmb∗∪A)
p(X j | Xmb∪A)

=
a
2

log n −
(

n − 1
2

)
log

(
|S f a∗∪A||Smb∪A|

|Smb∗∪A||S f a∪A|

)
+ O(1). (A.5)

Consider next the determinant term in (A.5)

−

(
n − 1

2

)
log

(
|S f a∗∪A||Smb∪A|

|Smb∗∪A||S f a∪A|

)
. (A.6)

By the definition of S, it is clear that
S
n

=
1
n

XT X = Σ̂,

where Σ̂ is the maximum likelihood estimate of the true covariance matrix. As n approaches infinity, the maximum
likelihood estimate converges in probability to the true covariance matrix Σ.
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Letting n→ ∞, we can write the argument of logarithm in (A.6) as(
|Σ f a∗∪A|

|Σmb∗∪A|

) / (
|Σ f a∪A|

|Σmb∪A|

)
(A.7)

We can simplify the numerator and denominator by noticing that Σ f a∗∪A can be partitioned as

(
var(x j) cov(x j, xmb∗∪A)

cov(x j, xmb∗∪A)T Σmb∗∪A

)
,

where var(x j) is the variance of variable x j, cov(x j, xmb∗∪A) is a horizontal vector containing covariances between x j

and each of the variables in set mb∗ ∪ A. Using basic results concerning determinants of a partitioned matrix (see, for
instance, [42]), we have

|Σ f a∗∪A| = |Σmb∗∪A| · (var(x j) − cov(x j, xmb∗∪A) (Σmb∗∪A)−1 cov(x j, xmb∗∪A)T )

= |Σmb∗∪A| ·
(
var(x j) − var(x̂ j[xmb∗∪A])

)
= |Σmb∗∪A| · var

(
x j | xmb∗∪A

)
,

where x̂ j[xmb∗∪A] = cov(x j, xmb∗∪A) (Σmb∗∪A)−1 xmb∗∪A, which is the linear least squares predictor of x j from xmb∗∪A.
The last equality follows from the definition of partial variance, which is the residual variance of x j after subtracting
the variance based on linear least squares predictor x̂ j[xmb∗∪A]. Using this, we get

|Σ f a∗∪A|

|Σmb∗∪A|
= var

(
x j | xmb∗∪A

)
.

Applying this also for the ratio of |Σ f a∪A| and |Σmb∪A|, lets us to write (A.7) as(
|Σ f a∗∪A|

|Σmb∗∪A|

) / (
|Σ f a∪A|

|Σmb∪A|

)
=

var
(
x j | xmb∗∪A

)
var

(
x j | xmb∪A

) . (A.8)

The form (A.8) makes it easier to analyse the behaviour of the determinant term and we can write the log ratio in
(A.4) as follows

log
p(X j | Xmb∗∪A)
p(X j | Xmb∪A)

=
a
2

log n −
n
2

log
var

(
x j | xmb∗∪A

)
var

(
x j | xmb∪A

) + Op(1). (A.9)

By investigating (A.9), it is clear that consistency is achieved if we can show that

var
(
x j | xmb∗∪A

)
var

(
x j | xmb∪A

) < 1. (A.10)

The equation (A.10) is equivalent to

var
(
x j | xmb∗∪A

)
< var

(
x j | xmb∪A

)
⇔ var(x j) − var(x̂ j[xmb∗∪A]) < var(x j) − var(x̂ j[xmb∪A])

⇔ var(x̂ j[xmb∗∪A]) > var(x̂ j[xmb∪A]). (A.11)

Now assume mb , ∅, and denote the missing true Markov blanket members by R = mb∗\mb. Then by using the
additivity of the explained variance (see [2], p.138), we can write the left side of (A.11) as

var(x̂ j[xmb∗∪A]) = var(x̂ j[xmb∪A∪R])
= var(x̂ j[xmb∪A]) + var(x̂ j[xR − x̂R[xmb∪A]]).
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The term var(x̂ j[xR − x̂R[xmb∪A]]) > 0, since elements of R are in x′js Markov blanket. This shows that (A.10) holds.
If mb = ∅, the inequality (A.11) can be written as

var(x̂ j[xmb∗∪A]) > var(x̂ j[xA]).

Using again the additivity of the explained variance, this becomes

var(x̂ j[xA]) + var(x̂ j[xmb∗ − x̂mb∗ [xA]]) > var(x̂ j[xA]),

which clearly holds.
All in all, we have showed that

−
n
2

log
var

(
x j | xmb∗∪A

)
var

(
x j | xmb∪A

) → ∞,
in probability, as n→ ∞. This implies that

log
p(X j | Xmb∗∪A)
p(X j | Xmb∪A)

→ ∞

in probability, as n→ ∞, since n increases faster than (a/2) log n decreases.

Appendix A.3. Proof of Lemma 3

We want to show that asymptotically, adding a true edge into the Markov blanket always increases the score.
Denote |B| = p j and a = |A| − p j in order to have consistent notation with the previous proofs.

Here a = −1, since the sets under consideration differ only by one node. Now, the analysis proceeds exactly as in
the underestimation part of the global consistency proof, and we can write the log ratio as

log
p(X j | XB)
p(X j | XA)

=
a
2

log n −
n
2

log
var

(
x j | xB

)
var

(
x j | xA

) + Op(1).

To prove the claim, it suffices to show that
var

(
x j | xB

)
var

(
x j | xA

) < 1. (A.12)

The equation (A.12) is equivalent to

var
(
x j | xB

)
< var

(
x j | xA

)
⇔ var(x j) − var(x̂ j[xB]) < var(x j) − var(x̂ j[xA])

⇔ var(x̂ j[xB]) > var(x̂ j[xA]). (A.13)

By using the additivity of the explained variance (see [2], p.138), we can write the left side of (A.13) as

var(x̂ j[xB]) = var(x̂ j[xA∪{i}])
= var(x̂ j[xA]) + var(x̂ j[xi − x̂i[xA]]).

The term var(x̂ j[xi − x̂i[xA]]) > 0, since we assumed that node i is in the Markov blanket of j. This shows that (A.12)
holds. If A = ∅, we have that x̂ j[xA] = 0 and x̂i[xA] = 0. This lets us to write the inequality (A.13) as var(x̂ j[xi]) > 0,
which is again satisfied due to the Markov blanket assumption.
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Appendix A.4. Proof of Lemma 4

We can proceed as in the overestimation part of the global consistency proof. Since the sets A and B differ only
by one node i, the log-ratio takes the following form

log
p(X j | XB)
p(X j | XA)

=
1
2

log n −
n
2

log
(
|SB∪{ j}||SA|

|SB||SA∪{ j}|

)
+ Op(1).

Now, it holds that x j ⊥⊥ xi | xB, since mb∗ ⊂ B, and by definition conditioning x j on its Markov blanket renders it
independent of all the remaining nodes.

As before, we can now notice that the determinant term is just the deviance, dev(x j ⊥⊥ xi | xB), multiplied
by a constant. Since the deviance has an asymptotic chi-squared distribution, the determinant term is bounded in
probability. Thus, the asymptotic behaviour of the log-ratio is dominated by the term (1/2) log n, which diverges to
positive infinity as claimed.
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Appendix B. Additional Numerical Results

Table B.3 contains results for all the considered dimensions in the structure learning tests with synthetic data.

p n OR AND HC glasso NBS space

TP FP TP FP TP FP TP FP TP FP TP FP

64

125 0.60 6e-03 0.44 9e-04 0.54 2e-03 0.53 1e-02 0.37 4e-04 0.66 2e-02
250 0.72 3e-03 0.59 4e-04 0.68 1e-03 0.74 2e-02 0.57 6e-04 0.79 2e-02
500 0.81 2e-03 0.73 2e-04 0.78 6e-04 0.86 2e-02 0.71 6e-04 0.88 2e-02

1000 0.88 1e-03 0.83 1e-04 0.87 4e-04 0.93 3e-02 0.82 9e-04 0.94 2e-02
2000 0.95 8e-04 0.91 6e-05 0.94 2e-04 0.97 4e-02 0.90 9e-04 0.98 2e-02
4000 0.98 4e-04 0.96 4e-05 0.98 1e-04 0.99 4e-02 0.95 8e-04 0.99 2e-02

128

125 0.58 5e-03 0.41 8e-04 0.53 2e-03 0.36 3e-03 0.31 1e-04 0.61 6e-03
250 0.71 3e-03 0.58 4e-04 0.67 1e-03 0.72 8e-03 0.52 2e-04 0.77 9e-03
500 0.81 2e-03 0.72 2e-04 0.78 5e-04 0.85 1e-02 0.68 1e-04 0.87 1e-02

1000 0.88 1e-03 0.83 1e-04 0.87 3e-04 0.91 2e-02 0.81 2e-04 0.93 1e-02
2000 0.94 6e-04 0.91 6e-05 0.93 1e-04 0.93 9e-03 0.89 2e-04 0.97 9e-03
4000 0.98 4e-04 0.96 6e-05 0.97 9e-05 0.97 1e-02 0.94 3e-04 0.99 9e-03

256

125 0.53 4e-03 0.38 7e-04 0.48 2e-03 0.05 8e-05 0.22 1e-05 0.49 1e-03
250 0.68 2e-03 0.56 4e-04 0.64 9e-04 0.52 1e-03 0.44 3e-05 0.68 2e-03
500 0.79 2e-03 0.70 2e-04 0.76 5e-04 0.71 2e-03 0.62 3e-05 0.82 4e-03

1000 0.88 1e-03 0.82 1e-04 0.85 3e-04 0.84 2e-03 0.76 5e-05 0.91 5e-03
2000 0.94 6e-04 0.90 8e-05 0.92 2e-04 0.92 3e-03 0.86 6e-05 0.96 6e-03
4000 0.98 4e-04 0.96 5e-05 0.97 1e-04 0.97 4e-03 0.93 7e-05 0.99 5e-03

512

125 0.49 3e-03 0.35 6e-04 0.44 1e-03 0.01 0 0.15 4e-06 0.43 6e-04
250 0.65 2e-03 0.53 3e-04 0.61 8e-04 0.48 3e-04 0.37 9e-06 0.61 6e-04
500 0.77 1e-03 0.69 2e-04 0.74 5e-04 0.69 5e-04 0.57 1e-05 0.76 9e-04

1000 0.86 8e-04 0.80 1e-04 0.84 3e-04 0.82 8e-04 0.73 1e-05 0.86 1e-03
2000 0.93 5e-04 0.89 7e-05 0.92 2e-04 0.91 1e-03 0.83 1e-05 0.93 1e-03
4000 0.97 4e-04 0.95 4e-05 0.97 1e-04 0.97 2e-03 0.91 1e-05 0.97 1e-03

1024

125 0.43 3e-03 0.29 5e-04 0.37 1e-03 0.00 0 0.08 7e-07 0.36 4e-04
250 0.61 2e-03 0.49 3e-04 0.57 7e-04 0.40 7e-05 0.29 1e-06 0.56 3e-04
500 0.74 1e-03 0.66 2e-04 0.72 4e-04 0.66 2e-04 0.51 2e-06 0.72 3e-04

1000 0.84 7e-04 0.79 1e-04 0.82 3e-04 0.81 3e-04 0.68 3e-06 0.83 3e-04
2000 0.92 5e-04 0.88 7e-05 0.90 2e-04 0.91 6e-04 0.81 2e-06 0.91 3e-04
4000 0.97 3e-04 0.94 5e-05 0.96 1e-04 0.96 1e-03 0.89 3e-06 0.96 3e-04

Table B.3: A table showing true positive (TP) and false positive (FP) rates in structure learning tests for different methods and sample sizes.

In addition to true positive and false positive rates, we calculated the Matthews correlation coefficient (MCC)
which can be obtained via the following formula (see, for instance, [43])

MCC =
T P · T N − FP · FN

√
(T P + FP)(T P + FN)(T N + FP)(T N + FN)

, (B.1)

where T P, FP, T N and FN denote the numbers of true positives, false positives, true negatives and false negatives,
respectively.

When computing the MCCs, we used the average values for quantities appearing in (B.1) that are easily obtained
from the numbers in Table B.3, as the true number of edges (and missing edges) in the generating model is known.
The results are shown in Table B.4. The way the methods compare to each other follows mainly a similar pattern as
seen with the Hamming distances in Figure 2. One difference can be seen with glasso when d = 512 or d = 1024
and n = 125. In these cases, the output of glasso is, on average, nearly an empty graph which is relatively close
to the true generating graph when measured using Hamming distance. However, the corresponding MCC is close to
zero and substantially smaller compared to other methods.

Average running times for the different methods in the structure learning tests are presented in Table B.5. For the
marginal pseudo-likelihood methods and NBS, the shown times are average values computed from 10 tests. Note, that
the result shown for the HC-method is the time it took to perform the hill-climb after the OR-graph was first estimated.
The sparsity promoting prior was used in the tests. The column maxMB contains the maximum time on average taken
by a single Markov blanket search which demonstrates the effect of parallelization.
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p n OR AND HC glasso NBS space

64

125 0.69 0.64 0.70 0.58 0.59 0.63
250 0.80 0.76 0.80 0.67 0.74 0.71
500 0.88 0.84 0.87 0.72 0.83 0.77
1000 0.92 0.91 0.92 0.71 0.89 0.79
2000 0.96 0.95 0.96 0.70 0.94 0.82
4000 0.98 0.98 0.99 0.67 0.96 0.83

128

125 0.62 0.61 0.67 0.50 0.55 0.63
250 0.76 0.75 0.79 0.67 0.71 0.68
500 0.85 0.84 0.87 0.68 0.82 0.74
1000 0.91 0.91 0.92 0.69 0.89 0.77
2000 0.95 0.95 0.96 0.78 0.93 0.80
4000 0.98 0.98 0.98 0.80 0.96 0.82

256

125 0.54 0.56 0.59 0.22 0.47 0.61
250 0.70 0.72 0.74 0.65 0.66 0.70
500 0.81 0.82 0.84 0.76 0.79 0.72
1000 0.89 0.90 0.91 0.81 0.87 0.75
2000 0.93 0.94 0.95 0.83 0.93 0.76
4000 0.97 0.98 0.98 0.84 0.96 0.81

512

125 0.45 0.51 0.51 0.08 0.39 0.58
250 0.62 0.68 0.69 0.65 0.60 0.71
500 0.75 0.80 0.81 0.77 0.76 0.78
1000 0.85 0.88 0.89 0.83 0.85 0.83
2000 0.91 0.93 0.94 0.85 0.91 0.85
4000 0.95 0.97 0.97 0.84 0.95 0.87

1024

125 0.34 0.42 0.41 0.03 0.29 0.50
250 0.53 0.63 0.61 0.61 0.53 0.67
500 0.68 0.77 0.76 0.77 0.71 0.78
1000 0.79 0.86 0.85 0.83 0.83 0.85
2000 0.87 0.92 0.92 0.84 0.90 0.90
4000 0.92 0.96 0.96 0.81 0.95 0.93

Table B.4: A table showing the Matthews correlation coefficients in structure learning tests for different methods and sample sizes.
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d n OR/AND maxMB HC glasso NBS space

64
250 0.429 (0.021) (0.054) 0.021 0.002 0.044

1000 0.543 (0.023) (0.079) 0.014 0.002 0.297
4000 0.558 (0.025) (0.082) 0.009 0.003 1.359

128
250 1.832 (0.042) (0.108) 0.134 0.008 0.161

1000 1.908 (0.045) (0.138) 0.089 0.010 1.078
4000 2.076 (0.047) (0.164) 0.054 0.007 6.715

256
250 7.059 (0.074) (0.231) 1.184 0.043 0.761

1000 7.727 (0.084) (0.293) 0.656 0.044 3.904
4000 8.284 (0.089) (0.335) 0.423 0.044 35.831

512
250 29.448 (0.153) (0.559) 11.853 0.326 3.899

1000 31.317 (0.177) (0.627) 5.254 0.336 21.640
4000 33.505 (0.179) (0.711) 3.305 0.330 187.473

Table B.5: Average running times in seconds for different methods in structure learning tests.

In each of the ten tests (with given sample size and dimension), space and glasso were computed using 12
different values for the tuning parameters as explained in the paper. Shown results for these two methods are averages
computed over different tests and also over different tuning parameter values. All the timing experiments were run in
Matlab or R on a standard laptop with a 2.30 GHz quad-core processor.

Figure B.6 presents results for the prediction tests using synthetic data. In these experiments, a data set of 2048
observations from the same model structures as used in the structure learning tests was created and the procedure used
with the brain data was repeated. Size of the training set was 2000 and the remaining 48 observations formed the test
set. Selection of tuning parameters for glasso, space and NBS was done as in the structure learning tests. Figure B.6
shows the MSE and the corresponding number of edges in the graphical model for dimensions 64 and 128. The shown
results are averages computed from 25 data sets. Here, all the fractional marginal pseudo-likelihood based methods
have slightly better prediction performances compared to other methods.
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Figure B.6: MSE (vertical axis) and the number of found edges (horizontal axis) for the synthetic data.
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Appendix C. Pseudocode for the Search Algorithms

The Algorithm 1 describes the procedure discussed in Section 3.4 for finding the Markov blankets for each node
using the fractional marginal pseudo-likelihood as scoring function. The Algorithm 2 is the greedy hill-climbing
procedure in the reduced model space used by the HC-method.

Algorithm 1 Procedure for optimizing the local fractional marginal pseudo-likelihood of a node j.
1: procedure Markov-Blanket-Hill-Climb( j, X)
2: mb( j), m̂b( j)← ∅
3: while m̂b( j) has changed do
4: C ← V \ (mb( j) ∪ { j})
5: mb( j)← m̂b( j)
6: for i ∈ C do
7: if log p(X j | Xmb( j)∪{i}) > log p(X j | Xm̂b( j)) then
8: m̂b( j)← mb( j) ∪ {i}
9: end if

10: end for
11: while m̂b( j) has changed do
12: mb( j)← m̂b( j)
13: for i ∈ mb( j) do
14: if log p(X j | Xmb( j)\{i}) > log p(X j | Xm̂b( j)) then
15: m̂b( j)← mb( j) \ {i}
16: end if
17: end for
18: end while
19: end while
20: return m̂b( j)
21: end procedure

Algorithm 2 Procedure for optimizing the fractional marginal pseudo-likelihood.
1: procedure Graph-Hill-Climb(GOR,X)
2: G, Ĝ ← empty graph
3: while Ĝ has changed do
4: G ← Ĝ
5: for G′ ∈ NGOR (G) do
6: if p̂(X | G′) > p̂(X | Ĝ) then
7: Ĝ ← G′

8: end if
9: end for

10: end while
11: return Ĝ
12: end procedure
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