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SUMMARY

We consider Bayesian analysis of the noncausal vector autoregressive model that is

capable of capturing nonlinearities and effects of missing variables. Specifically, we

devise a fast and reliable posterior simulator that yields the predictive distribution as

a by-product. We apply the methods to postwar U.S. inflation and GDP growth. The

noncausal model is found superior in terms of both in-sample fit and out-of-sample

forecasting performance over its conventional causal counterpart. Economic shocks

based on the noncausal model turn out highly anticipated in advance. We also find

the GDP growth to have predictive power for future inflation, but not vice versa.
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1. INTRODUCTION

While the vast majority of empirical analysis of multivariate time series in macroeco-

nomics and finance is based on the linear vector autoregressive (VAR) model, there

has been an increasing interest in nonlinear multivariate time series models in the last

few decades, especially followed by the burgeoning literature on theoretical nonlinear

macroeconomic models. One such model is the noncausal VAR model recently put

forth by Davis and Song (2012), Lanne and Saikkonen (2013), and Gourieroux and

Jasiak (2014). While these specifications differ somewhat from each other, they are all

characterized by the defining feature of any noncausal process of explicit dependence

on the future such that the current value has no linear representation in terms of cur-

rent and past errors. This complicates interpretation as the errors of the noncausal

VAR model are predictable from past observations, and hence, cannot be thought of

as shocks in any economic sense.

On the other hand, as pointed out by Lanne and Saikkonen (2013), the noncausal

VAR model has certain benefits. First, its having a nonlinear causal representation

indicates that is able to capture nonlinearities although the form of nonlinearity af-

forded by it is, in general, unknown. Moreover, it is capable of incorporating effects of

missing variables, and it may, therefore, be useful in many macroeconomic and finan-

cial applications, where assessing the adequacy of the included set of variables can be

problematic. In particular, the model can accommodate the effects of variables that

are included in the agents’information set but not observed by the econometrician,

and whose omission may give rise to nonfundamentalness (see Alessi et al. (2008)

for a recent survey). A case in point is news concerning future economic develop-

ments, such as a tax increase that affects agents’behavior, but is not observable to

the econometrician.
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In this paper, we consider Bayesian analysis, including estimation, model selec-

tion, and forecasting of the noncausal VAR model of Lanne and Saikkonen (2013).

Our approach is an extension of Lanne, Luoma, and Luoto (2012), who proposed

corresponding methods for the univariate noncausal autoregressive (AR) model. In

particular, we show how the posterior density of the noncausal (and hence nonlinear)

VAR model can be manipulated to facilitate estimation by a straightforward exten-

sion of the commonly employed Gibbs sampling algorithm of Kadiyala and Karlsson

(1997). We also extend our new sampler such that it conveniently yields the posterior

predictive distribution as a by-product. It is worth noting that the posterior distri-

bution of the parameters of the model may be multimodal. This may be a problem

for computing the marginal likelihood, and, therefore, we also devise an alternative

sampler based on the Importance Sampling weighted Expectations Mazimization al-

gorithm of Hoogerheide et al. (2012).

We apply the noncausal VAR model to quarterly U.S. inflation and GDP growth

series (from 1955:1 to 2013:2), where clear evidence in favor of noncausality is de-

tected. The noncausal VAR model also turns out to be superior to its causal coun-

terpart in point and density forecasting. Moreover, our Bayesian procedure finds no

evidence of Granger causality from inflation to GDP growth. Provided GDP growth

is a reasonable proxy for the marginal cost, this suggests that it is not driving in-

flation as the new Keynesian theory would imply. This finding is potentially even

stronger than that obtained in the previous literature as it indicates the absence of

even nonlinear Granger causality.

The plan of the rest of the paper is as follows. In Section 2, we review the noncausal

VAR model of Lanne and Saikkonen (2013) and discuss its interpretation. In Section

3, we introduce the Bayesian estimation procedure, while in Section 4 it is extended
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to produce forecasts. The empirical application to U.S. inflation and GDP growth is

presented in Section 5. Finally, Section 6 concludes.

2. MODEL

The n-dimensional VAR(r, s) process yt (t = 0,±1,±2, ...) proposed by Lanne and

Saikkonen (2013) is generated by

Π (B) Φ
(
B−1

)
yt = εt, (1)

where Π (B) = In−Π1B−· · ·−ΠrB
r (n× n) and Φ (B−1) = In−Φ1B

−1−· · ·−ΦsB
−s

(n× n) are matrix polynomials in the backward shift operator B, and εt (n× 1)

is a sequence of independent, identically distributed (continuous) random vectors

with zero mean and finite positive definite covariance matrix. If Φj 6= 0 for some

j ∈ {1, ..., s}, equation (1) defines a noncausal vector autoregression referred to as

purely noncausal when Π1 = · · · = Πr = 0. The corresponding conventional causal

model is obtained when Φ1 = · · · = Φs = 0, and in keeping with the conventional

notation in the literature, we sometimes use the abbreviation VAR(r) in this case.

Stationarity of the process is guaranteed by the assumption that the matrix poly-

nomials Π (z) and Φ (z) (z ∈ C) have their zeros outside the unit disc, i.e.,

det Π (z) 6= 0, |z| ≤ 1, and det Φ (z) 6= 0, |z| ≤ 1. (2)

Specifically, the process

ut = Φ
(
B−1

)
yt

is then stationary, and, as pointed out by Lanne and Saikkonen (2013), there exists

a δ1 > 0 such that Π (z)−1 has a well defined power series representation Π (z)−1 =∑∞
j=0Mjz

j = M (z) for |z| < 1 + δ1, indicating that the process ut has the causal
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moving average representation

ut = M (B) εt =
∞∑
j=0

Mjεt−j. (3)

Notice that M0 = In and that (the elements of) the coeffi cient matrices Mj decay to

zero at a geometric rate as j →∞ (cf. Lemma 3 in Kohn (1979)). When convenient,

Mj = 0, j < 0, will be assumed.

In the same vein, due to the latter condition in (2), the process wt = |Π (B)| yt

has the following representation

wt =
∞∑

j=−(n−1)r

Njεt+j, (4)

where the coeffi cient matrices Nj decay to zero at a geometric rate as j → ∞ and,

when convenient, Nj = 0, j < − (n− 1) r, will be assumed. This can be seen by

writing Π (z)−1 = (det Π (z))−1 Ξ (z) = M (z), where Ξ (z) is the adjoint polynomial

matrix of Π (z) with degree at most (n− 1) r. Then, det Π (B)ut = Ξ (B) εt and, by

the definition of ut,

Φ
(
B−1

)
wt = Ξ (B) εt,

where wt = |Π (B)| yt. Now, one can find a 0 < δ2 < 1 such that Φ (z−1)
−1

Ξ (z)

has a well defined power series representation Φ (z−1)
−1

Ξ (z) =
∑∞

j=−(n−1)rNjz
−j =

N (z−1) for |z| > 1− δ2 (see Lanne and Saikkonen (2013)).

Hence, from (2) it follows that the process yt itself has the representation

yt =
∞∑

j=−∞
Ψjεt−j, (5)

where Ψj (n× n) is the coeffi cient matrix of zj in the Laurent series expansion of

Ψ (z)
def
= Φ (z−1)

−1
Π (z)−1 which exists for 1 − δ2 < |z| < 1 + δ1 with Ψj decaying

to zero at a geometric rate as |j| → ∞. The representation (5) implies that yt is a

stationary and ergodic process with finite second moments.
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Taking conditonal expectation of equation (1) conditional on current and past

values of yt, it is seen that in the noncausal model, the elements of the Φj (j =

1, . . . , s) matrices capture the dependence of the variables included in yt on their

future expectated values. Alternatively, the conditional expectation of moving average

representation (5),

yt =

s−1∑
j=−∞

ΨjEt (εt−j) +

∞∑
j=s

Ψjεt−j.

shows how noncausality implies dependence on future errors. This follows from

the fact that, in the noncausal case yt and εt+j are correlated, and consequently,

Et (εt+j) 6= 0 for some j ≥ 0. This also implies that future errors can be predicted by

past values of the process yt, which, in turn, can be interpreted as the errors contain-

ing factors not included in the model that are predictable by the variables in the VAR

model (see Lanne and Saikkonen (2013) for a more elaborate discussion on this issue).

Hence, the presence of noncausality might be seen symptomatic of missing variables

whose effects are captured by the noncausal specification, potentially mitigating the

effects of misspecification in VAR analysis.

In addition to missing variables, misspecification of functional form may give rise

to noncausality. As pointed out by Lanne and Saikkonen (2013), the noncausal VAR

model has a nonlinear causal representation (see also Gourieroux and Zakoïan (2013)

for a discussion on this point in the univariate noncausal AR model). While the

implied form of nonlinearity is, in general, unknown, the noncausal VAR model can

nevertheless be seen as a convenient shorthand representation of a complicated non-

linear process. The simulation results of Lof (2012) show that noncausality is easily

confounded with very different econometric and economic nonlinear models (including

the exponential smooth transition autoregression and financial models with heteroge-

nous agents), lending support to this interpretation.
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Finally, it should be pointed out that noncausal autoregressive models cannot be

identified by second order properties or Gaussian likelihood. In other words, un-

der Gaussianity, the maximum of the likelihood functions of the causal and noncausal

VAR(p) models is the same. Supposing the noncausal VARmodel is correct, its causal

counterpart is misspecified with uncorrelated but not independent errors that can be

predicted by past values of the series. This predictability shows up as the difference

between the likelihood functions of the causal and noncausal models. Under Gaus-

sianity, independence coincides with uncorrelatedness, so that there is no difference in

the values of the maximized likelihood functions. Therefore, meaningful application

of the noncausal VAR model (1) requires that the error term εt is non-Gaussian. For

details on the identifiablity of the noncausal VAR model and the assumptions needed

for the derivation of the likelihood function, we refer to Lanne and Saikkonen (2013).

In this paper, we assume that the distribution of εt is multivariate t with scale matrix

Σ and degrees of freedom λ. The t-distribution provides a convenient alternative

for capturing fat tails prevalent in economic applications, and it has recently been

found adequate in much of the empirical research employing univiariate noncausal

autoregressive models cited above.

3. ESTIMATION AND INFERENCE

Lanne and Saikkonen (2013) studied maximum likelihood (ML) estimation of the non-

causal VAR model (1). Our estimation method is built upon their work as well as our

previous work on the Bayesian analysis of noncausal AR models (see Lanne, Luoma,

and Luoto (2012)). In particular, our basic estimation algorithm is a multivariate

extension of their Metropolis-within-Gibbs sampler (see also Geweke (2005, p. 206)).

It is described in Subsection 3.2, and it exploits the fact that the full conditional
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posterior distributions of Π1, . . . ,Πr, Φ1, . . . ,Φs, and Σ can be readily sampled from

their known distributions. Our experience is that, in general, the sampler works well

and convergence occurs rapidly.

In the general case (r > 0, s > 0), however, the posterior distribution of the pa-

rameters of (1) may be multimodal. This complicates the estimation of the marginal

likelihood and, if not properly handled, makes the commonly used approaches such

as importance sampling and density ratio marginal likelihood approximation (see

Gelfand and Dey (1994)) ill-suited for this purpose. Therefore, for the estimation

of the marginal likelihood, we propose an alternative algorithm based on a Mixture

of t by Importance Sampling weighted Expectation Maximization (MitISEM) algo-

rithm of Hoogerheide, Opschoor, and van Dijk (2012). This algorithm is explained in

Subsection 3.3.

3.1. Likelihood function

For the Bayesian analysis of the noncausal VAR model in (1), we need to derive the

distribution of the observations conditional on the parameters, i.e., the likelihood

function, and specify the prior distribution of the parameters. We start by describing

the likelihood function, whose detailed derivation can be found in Lanne and Saikko-

nen (2013). The choice of the prior distribution is described in the next subsection. To

simplify notation in our subsequent developments, we define the matrices Π and Φ,

which are obtained by stacking Π′j for j = 1, ..., r and Φ′j for j = 1, ..., s, respectively.

As mentioned in Section 2, we assume that εt follows the multivariate t distribution

with scale matrix Σ and degrees of freedom λ. To make the model operational, we

reparametrize εt in the following manner:

εt = ω̃
− 1
2

t ηt, (6)
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where ηt is a multivariate normally distributed random vector (ηt ∼ N (0,Σ)), and

λω̃t follows the chi-square distribution with λ degrees of freedom (λω̃t ∼ χ2 (λ)).

Under the chosen parameterization, yt generated by (1) is conditionally Gaussian

conditional on Σ and ω̃t. As will be seen, this property is critical in building a decent

posterior sampler (see also Geweke (1993), and Lanne, Luoma, and Luoto (2012)).

Notice also that the random vector (ω̃1, . . . , ω̃T )′ can be interpreted as a vector of

parameters with hierarchical priors λω̃t ∼ χ2 (λ) (t = 1, . . . , T ) and λ ∼ Exp (λ) ,

where λ is a prior hyperparameter.

The first step in the derivation of the likelihood function is writing the observed

data y = (y′1, ..., y
′
T )′ in terms of vector z = (z′1, z

′
2, z

′
3)
′, whose elements z1 =

(u′1, ..., u
′
r)
′, z2 =

(
ε′r+1, ..., ε

′
T−s
)′
, and z3 = (v′1,T−s+1, ..., v

′
s,T )′, by (3) and (4), are

independent. Here,

vk,T−s+k = wT−s+k −
−k∑

j=−(n−1)r

NjεT−s+k+j, k = 1, ..., s, (7)

and the sum is interpreted as being zero when k > (n− 1) r, that is, when the lower

bound exceeds the upper bound. Note that, by (1) and (4), vk,T−s+k can be ex-

pressed as a function of the observed data y and that the representation vk,T−s+k =∑∞
j=−k+1NjεT−s+k+j holds, showing that vk,T−s+k (k = 1, ..., s) are indeed indepen-

dent of εt, t ≤ T−s. Thus, by (6) and the preceding discussion, the joint (conditional)

density function of z conditional on ω̃ = (ω̃r+1, . . . , ω̃T−s)
′ and Σ can be expressed as

p (z |ω̃,Σ) = p (z1)

(
T−s∏
t=r+1

p (εt |ω̃t,Σ)

)
p(z3), (8)

where p (·) denotes a density function.

As shown in Section 3.1 of Lanne and Saikkonen (2013), the random vector z

is related to the data vector y = (y′1, ..., y
′
T )′ by a linear transformation of the form

z = H3H2H1y, where H1, H2, and H3 are nT × nT nonsingular transformation
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matrices that depend on the parameters Π and Φ. Furthermore, the determinants

of H2 and H3 equal unity (for details of these matrices, see Lanne and Saikkonen

(2013)). Thus, by (8), the conditional joint density function of the data y conditional

on the parameters and ω̃ can be expressed as

p (y |ω̃, θ ) = p (z1 (ϑ)) |H1|
(

T−s∏
t=r+1

p
(
Π (B) Φ

(
B−1

)
yt |ω̃t,Σ

))
p(z3 (ϑ)). (9)

In addition to the distinct elements of the matrix Σ, that is, the vector σ = vech(Σ),

the parameter vector θ also contains ϑ = (ϑ1, ϑ2) = (π′, φ′)
′, where π = vec(Π), and

φ = vec(Φ). The components of z can be expressed in terms of the observed data and

the parameters. Specifically, z1 (ϑ) is defined by replacing ut in the definition of z1

by Φ (B−1) yt (t = 1, ..., r). Moreover, z3 (ϑ) is defined similarly by replacing vk,T−s+k

in the definition of z3 by an analog with a (B) yT−s+k and Π (B) Φ (B−1) yT−s+k+j

used in place of wT−s+k and εT−s+k+j, respectively, where j = − (n− 1) r, ....,−k,

k = 1, ..., s, and

|Π (z)| = a (z) = 1− a1z − · · · − anrznr. (10)

It is important to realize that the quantities p(z1 (ϑ)) and p(z3 (ϑ)) specify the den-

sities of the initial values y1, . . . , yr and the post sample observations yT−s+1, . . . , yT ,

respectively. Lanne and Saikkonen (2013) also show that the determinant ofH1 is in-

dependent of the sample size T , and thus, following them, we propose to approximate

the (conditional) joint density of y by the third factor of (9):

p (y |ω̃, θ ) ≈
T−s∏
t=r+1

p (εt (ϑ) |ω̃t,Σ) , (11)

where

p (εt (ϑ) |ω̃t,Σ) =
ω̃
n
2
t

(2π)
n
2 |Σ|

1
2

exp

[
−1

2
ω̃tεt (ϑ)′Σ−1εt (ϑ)

]
,

and

εt (ϑ) = ut (ϑ2)− Π1ut−1 (ϑ2)− · · · − Πrut−r (ϑ2) . (12)
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Expression (11) is the exact conditional likelihood of y conditional on y1, . . . , yr and

yT−s+1, . . . , yT (and ω̃).1

3.2. Basic Algorithm

We now turn to the estimation of the parameters of model (1). As already discussed,

this is accomplished by a multivariate generalization of the Metropolis-within-Gibbs

sampler of Lanne, Luoma, and Luoto (2012). The full conditional posteriors exploited

in the sampler can be obtained by routine calculations, given a few data transforma-

tions that allow for convenient conditioning. In the following, we first provide the

required data tranfromations, and then briefly describe the algorithm.2

The conditional posteriors can be derived from the product of (11), the density of

ω̃ (see the discussion following (6)), and the joint prior density of Φ, Π, Σ, and λ.

Following the literature, we assume the independent normal-Wishart prior for π =

vec(Π), and Σ (see, e.g., Kadiyala and Karlsson (1997)), and, as already mentioned,

an exponential prior for λ. In the same vein, a normal prior distribution is assumed for

φ = vec(Φ). In particular, π ∼ N (π, V π) I (π), φ ∼ N
(
φ, V φ

)
I (φ), Σ ∼ iW (S, ν),

and λ ∼ Exp (λ), where iW is used to denote an inverse-Wishart distribution, and φ,

V φ, π, V π, S, ν, and λ are the prior hyperparameters assumed to be known by the

researcher. Indicator functions I (φ) and I (π) equal unity in the stationary region

defined by (2) and zero otherwise.

To simplify notation, we introduce a Tn×1 vector y∗ and a Tn ×sn2 matrixX∗,

which are obtained by stacking y∗t = ω̃
1/2
t Π (B) yt and X∗t = ω̃

1/2
t Π (B)Xt for t = r +

1, . . . , T−s, whereXt = In⊗
(
y′t+1, . . . , y

′
t+s

)
, respectively. We also define the matrices

1We thank a referee for pointing this out.
2A detailed derivation of the full conditional posteriors exploited in the sampler is available in

the online Appendix.
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Y and U , whose tth rows (t = r + 1, . . . , T − s) are given by u∗t = ω̃
1/2
t u′t (ϑ2) and

U∗t = ω̃
1/2
t

(
u′t−1 (ϑ2) , . . . , u

′
t−r (ϑ2)

)
, respectively. Then, the full conditional posterior

distributions of φ, π, and Σ under the given prior distributions have the following

expressions:

φ |y, π,Σ, ω̃ ∼ N
(
φ, V φ

)
I (φ) , (13)

π |y, φ,Σ, ω̃ ∼ N
(
π, V π

)
I (π) , (14)

V
−1
φ = V −1φ +X∗′ΩX∗, φ = V φ

(
V −1φ φ+X∗′ΩY ∗

)
,

V
−1
π = V −1π + Σ−1 ⊗U ′U , π = V π

(
V −1π π + vec

(
U ′Y Σ−1

))
,

with Ω = IT−r−s ⊗ Σ−1, and

Σ |y, π, φ, ω̃ ∼ iW
(
S, ν

)
, ν = ν + T − s− r, (15)

S = S +E′E, E = Y −UΠ.

The full conditional posterior distributions of the remaining parameters, ω̃ and λ,

can, respectively, be sampled from[
λ+ εt (ϑ)′Σ−1εt (ϑ)

]
ω̃t |y, π, φ,Σ, λ ∼ χ2 (λ+ n) (t = r + 1, . . . , T − s) , (16)

and, by a Metropolis-within-Gibbs step, from a distribution with the density kernel:

p (λ |y, ω̃ ) ∝
[
2λ/2Γ (λ/2)

]−(T−r−s)
λλ(T−r−s)/2

(
T−s∏
t=r+1

ω̃
(λ−2)/2
t

)
× exp

[
−
(

1

λ
+

1

2

T−s∑
t=r+1

ω̃t

)
λ

]
. (17)

Given the starting values of φ, π, Σ, ω̃, and λ, the expressions in (13)—(17) are

used sequentially to obtain an estimate of the posterior distribution of the pareme-

ters. In particular, the first four expressions are standard and can be readily used

to simulate random numbers. Following Geweke (2005), we simulate from the con-

ditional posterior of the degree-of-freedom parameter λ (17) using an independence-

chain Metropolis-Hastings (MH) algorithm. As a candidate distribution for λ we use
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the univariate normal distribution with mean equal to the mode of (17) and precision

parameter equal to the negative of the second derivative of the log posterior density,

evaluated at the mode. The acceptance probability is calculated using (17).

As pointed out above, the sampler works well when the posterior distribution is

unimodal. However, if the posterior is multimodal, it tends to be ineffi cient and may

get stuck at one of the modes. For these cases, in Section 3.3 below, we propose an

alternative algorithm based on a MitISEM algorithm of Hoogerheide, Opschoor, and

van Dijk (2012) that we apply in the estimation of the marginal likelihood.

3.3. Marginal Likelihood Estimation

In the general case (r > 0, s > 0), because of the complexity of model (1), the marginal

posterior distributions of its parameters tend to exhibit non-elliptical shapes such as

skewness and multimodality. As is well known, the Gibbs sampler does not mix well

with respect to a multimodal target posterior distribution, but tends to get stuck

at one of the modes (subspaces). Therefore, in this subsection, we explain how to

effi cienctly construct an accurate approximation to the non-elliptical target posterior

distribution. This approximation can then be used as a candidate density, say, in the

Metropolis—Hastings algorithm or in importance sampling. In this paper, we use the

latter to estimate the marginal likelihood of model (1) (see Geweke (2005, p. 257) for

a detailed discussion).

As already mentioned, the proposed procedure closely resembles that of Hooger-

heide, Opschoor, and van Dijk (2012), and we refer to their paper for a more detailed

discussion on the topic (see also Cappé et al. (2008)). Following their recommenda-

tion, we use a mixture of G multivariate t distributions as the candidate density:

f (θ |ψ ) =
G∑
g=1

αgtk
(
θ
∣∣µg, Vg; νg ) , (18)
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where ψ =
(
µ′1, . . . , µ

′
G, vech (V1)

′ , . . . , vech (VG)′ , ν1, . . . , νG, α1, . . . , αG−1
)′
, the mix-

ing probabilities αg satisfy
∑G

g=1 αg = 1, and tk
(
θ
∣∣µg, Vg; νg ) (k = (s+ r)×n2 +n×

(n + 1)/2 + 1) refers to the density function of the multivariate t distribution with

mode µg, (positive definite) scale matrix Vg, and degrees of freedom νg.3 The number

of mixture components G is determined iteratively as explained at the end of this

subsection.

In order to obtain a convenient approximation to the target posterior density, we

minimize the Kullback—Leibler divergence between the target and candidate distrib-

utions,
∫
p (θ |y ) log p(θ|y )

f(θ|ψ )dθ, with respect to ψ. Because the elements of vector ψ do

not enter the posterior density p (θ |y ), this is equivalent to maximizing∫
[log f (θ |ψ )] p (θ |y ) dθ = E [log f (θ |ψ )] , (19)

where E is the expectation with respect to the posterior distribution p (θ |y ).

We propose the following two-step procedure for computing the parameters ψ

of the candidate mixture distribution (18). In the first stage, the basic algorithm

described in the previous subsection is run several times, each time using very different

starting values θ0, resulting in a large matrix comprising N0 simulated draws that are

then together used to approximate a sample from the posterior p (θ |y ). An initial

estimate ψ0 can be found using the Expectation Maximization (EM) algorithm to

maximize an estimate of E [log f (θ |ψ )], given by

1

N0

N0∑
i=1

log f
(
θi |ψ

)
. (20)

3Note that, in the purely causal and noncausal cases, we use tk
(
θ
∣∣∣Ê (θ |y ), ̂var (θ |y ); 20

)
as

the importance density function. Here Ê (θ |y ) and ̂var (θ |y ) refer to the estimates of E (θ |y ) and

var(θ |y ), respectively, calculated from the posterior distribution of θ, obtained by the algorithm of

Section 3.2.
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In the second stage, we use the initial estimate ψ0 to draw an independently and

identically distributed sample θi (i = 1, . . . , N) from f (θ |ψ0 ) in (18). From this

sample we then calculate

1

N

N∑
i=1

W i log f
(
θi |ψ

)
with W i =

p
(
θi |y

)
f
(
θi |ψ0

) . (21)

This is a simulation-consistent estimate of expression (19), which can seen by noting

that ∫
[log f (θ |ψ )] p (θ |y ) dθ =

∫ [
p (θ |y )

f (θ |ψ0 )
log f (θ |ψ )

]
f (θ |ψ0 ) dθ

= E

[
p (θ |y )

f (θ |ψ0 )
log f (θ |ψ )

]
,

Now, ψ can be found by maximizing (21) by the EM algorithm. Once the candidate

density has been obtained, it is successfully used to estimate the marginal likelihood

p (y), and as mentioned above, to that end, we employ importance sampling.

Hoogerheide, Opschoor, and van Dijk (2012) use the EM algorithm to maximize

(21) in their bottom-up procedure which iteratively adds components into the mixture

(18), starting with one multivariate t distribution. Conversely, we start with a reason-

ably large number of distributions and remove the (nearly) singular ones (i.e., those

with (nearly) singular covariance matrices and very small probability weights). This

can be done because our basic algorithm tends to converge rapidly to the subspace

(mode) closest to the starting values, enabling us to quickly construct a reasonably

good approximation to the posterior distribution (a few thousand draws of each θ0

seems to be suffi cient for the approximation). Hence, we only need to calculate the

Importance Sampling (IS) weights W i (i = 1, . . . , N) once, while in the MitISEM

algorithm the IS weights must be evaluated at each iteration. Note that the basic

algorithm of Section 3.2 used to obtain initial estimates, tends to get stuck at the local
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mode, and hence is not able to move between different subspaces (modes) in a bal-

anced fashion, i.e., according to their posterior probabilities. This suggests that our

initial estimates of the mixing probabilities αg (g = 1, . . . , G) may be poor. However,

according to our experience, this hardly affects the quality of the final estimates, and

in the empirical application in Section 5, we indeed do find it very hard to improve the

accuracy of our final approximation by adding additional components in the mixture.

4. FORECASTING

As pointed out in the Introduction, the approach of Lanne, Luoma and Luoto (2012)

can be extended to evaluating the posterior predictive distribution of yT+h (h ≥ 1)

and, unless otherwise stated, we shall assume that the model is noncausal and mul-

tivariate, i.e., s > 0 and n > 1. Our starting point is equation (4), which is made

operational by approximating the infinite sum on the right hand side by a finite sum.

Recalling that wt can be written as wt = |Π (B)| yt = a (B) yt, where

|Π (z)| = a (z) = 1− a1z − · · · − anrznr,

and substituting this into equation (4), we obtain the approximation

yT+h ≈ a1yT+h−1 + · · ·+ anryT+h−nr +

M−h∑
j=−(n−1)r

NjεT+h+j. (22)

M is a positive integer, and because the coeffi cient matrices Nj decay to zero at a

geometric rate as j →∞, the approximation error can be made negligible by setting

M suffi ciently large. The approximate predictive distribution of yT+h for h > 0,

conditional on information in period T , can be computed recursively starting from

h = 1, provided we are able to evaluate the conditional distribution of the last term on

the right hand side of (22) for every h > 0. In the univariate case (n = 1) considered

by Lanne et al. (2012a,b) this term contains the errors εT+1, ..., εT+M only, facilitating
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a straightforward way to obtain forecasts. However, as emphasized by Nyberg and

Saikkonen (2013), in the multivariate case the error terms εT+1−(n−1)r, ..., εT are also

involved, and because εT−s+1, ..., εT (s > 0) cannot be expressed as functions of the

observed data (cf., (1)), additional complications arise.

The forecasting procedure is based on the joint distribution of the augmented data

vector
(
y′,ε′T+1, ..., ε

′
T+M

)′. The derivation of this density and the resulting sampling
algorithm are described in the online Appendix. Due to the high-dimensional joint

posterior distribution of θ and εT+1, ..., εT+M , the procedure introduced in Subsec-

tion 3.3 is not computationally feasible for forecasting, and, therefore, the proposed

method is built upon the simpler algorithm described in Section 3.2. As a matter

of fact, the algorithm only needs to be expanded by one additional Gibbs step for

εT+1, ..., εT+M .

It is important to note that if the posterior distribution of θ is in fact multimodal

and the proposed sampler is not able to move between the different subspaces in

a balanced fashion, some aspects of the ’true’predictive distribution may be lost.

However, it is shown in Lanne and Saikkonen (2013) that the limiting distribution of

the maximum likelihood estimator of the parameters of the noncausal VAR model is

multivariate normal, indicating that multimodality is related to small sample sizes.

Furthermore, it is our experience that commonly used informative Minnesota priors

result in posterior distributions that are more easily handled by our algorithm.

5. NONCAUSAL VAR FOR U.S. GDP GROWTH AND INFLATION

We apply the noncausal Bayesian VAR model to the key U.S. macroeconomic vari-

ables, namely GDP growth and inflation. Both series are computed as 400 ln (Zt/Zt−1),

where Zt denotes either the GDP or the implicit price deflator of the GDP. The result-
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ing series are denoted by xt and πt, respectively. Both series are seasonally adjusted.

Our quarterly data set runs from 1955:1 to 2013:2, and the source of the data is the

FRED database of the Federal Reserve Bank of St. Louis.

In estimation, we use the priors discussed in Section 3.2 above. The VAR coe-

ficients φ and π are assumed prior independent, and the elements of the hyperpa-

rameters φ and π are set to zero. Following Litterman (1986), we set the diagonal

elements of V π and V φ such that the prior standard deviations of the parameters

for own and foreign lags (or leads) equal γ1/l
γ3 and σiγ1γ2/σjl

γ3 , respectively, where

l = 1, . . . , r (or l = 1, . . . , s). Here the ratio σi/σj accounts for the different units of

measurement of the dependent variable (i = 1, . . . , n) and the jth (j 6= i) explanatory

variable, and, following the literature, σ2i is set at the residual standard error of a

univariate causal AR(p) (p = r + s) model for variable i = 1, . . . , n. The parame-

ter γ1 > 0 is often referred to as the overall tightness of the prior, 0 < γ2 ≤ 1 as

the relative tightness of the other variables, and γ3 > 0 as the lag decay rate. The

values of these hyperparameters are set at γ1 = 2 , γ2 = 1, and γ3 = 1. We set

S = (ν − n− 1)diag(σ21, . . . , σ
2
n), and the degree-of-freedom parameter ν is set to 10.

Finally, we set the prior hyper parameter λ at 5.

5.1. Estimation Results

We estimate all causal and noncausal second, third and fourth-order VAR models and

compute their marginal likelihoods. They are estimated using importance sampling,

and in the general case (r > 0, s > 0), the importance density function (18) is

obtained by the procedure explained in Section 3.3. Throughout, the results are based

on N = 100, 000 independent draws from (18). The resulting mixture importance

distributions typically involve three component distributions, two of which have modes
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that are relatively far apart (the detailed results, not reported, are available upon

request.).

The log marginal likelihoods of all estimated models and their numerical standard

errors (obtained by the delta method) are presented in Table I. There is clear evi-

dence in favor of noncausality, and hence nonlinearity, as conditional on the order,

a noncausal model with one lag always maximizes the marginal likelihood, while the

causal model yields the smallest value. Among all models, the noncausal VAR(1,2)

model is selected. The very small standard errors indicate accurate estimation, and

hence, facilitate model selection. The error distribution indeed seems to be fat-tailed,

as required for identification; the posterior mode of the degree-of-freedom parameter

λ equals 4.19. For comparison, we also computed the maximum likelihood estimates

of Lanne and Saikkonen (2013), and the posterior modes of all parameters turned out

to lie close to the maximum likelihood estimates. However, the marginal posterior

distributions of most coeffi cients are multimodal, with one clearly dominating mode.

5.2. Forecasts

As discussed in Section 4, predictive distributions are obtained as a by-product of

the estimation of the noncausal VAR model. In order to gauge forecast performance,

we compute pseudo out-of-sample forecasts from a number of models for the period

1970:1 to 2013:2. They are computed recursively, at each step reestimating each

model using an expanding data window starting at 1955:1. We consider the forecast

horizons of one, four, and eight quarters, as is common in the inflation and GDP

growth forecasting literature.

We report the results of two evaluation criteria, the root mean squared forecast

error (RMSFE) based on the median of the predictive distribution and the sum of
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log predictive likelihoods (PL) computed over the forecast period. The RMSFE and

PL summarize the accuracy of point and density forecasts, respectively. Following

Bauwens et al. (2011), and Clark and Doh (2011), we compute the predictive like-

lihoods using kernel density estimation of the forecasted densities of the VAR(r, s)

models.

The sums of log predictive likelihoods of all third-order VAR models are reported

in Table II. The VAR(1,2) model selected in the in-sample analysis, outperforms the

other specifications by a wide margin at the one and eight-quarter forecast horizons,

while the VAR(0,3) model is the most accurate at the four-quarter horizon. The

corresponding figures for the univariate density forecasts reported in the right-hand

side panel of Table III also indicate the superiority of the VAR(0,3) and VAR(1,2)

models.

As far as the point forecasts are concerned, the result in the left-hand side panel

of Table III show that for inflation the purely noncausal VAR(0,3) model is the most

accurate at the four and eight-quarter horizons, while it is marginally outperformed

by the VAR(2,1) model at the one one-quarter horizon. Also for GDP growth the

noncausal models always outperform the causal VAR(3,0) model. However, at the

one and eight-quarter horizons, it is the VAR(2,1) model that yields the most accu-

rate point forecasts, with the VAR(0,3) models being the winner at the four-quarter

horizon.

Probably the most surprising finding is that the univariate AR(1,2) model yields

more accurate point and density forecasts of GDP growth than any of the VAR mod-

els, indicating that inflation contains no useful information for future GDP growth

over and above the univariate noncausal model. Moreover, the AR(1,2) model outper-

forms the causal AR(3) model (not shown), attesting to the ability of the noncausal
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model to take effects of missing variables (other than inflation) into account. In

contrast, for inflation the univariate AR model is clearly inferior to any of the VAR

models, which suggests that GDP growth is useful in forecasting inflation in ways not

captured by the univariate noncausal model.

We finally check the forecasting results using some informative priors.4 The con-

clusion that the noncausal VAR models are superior to their conventional causal

counterparts in terms of point and density forecasting performance remains intact

irrespective of the priors used. However, while the informative priors have negligible

effect on the forecasting performance of the VARmodels for inflation, they bring about

substantial improvements in density and point forecast accuracy of GDP growth.

5.3. Granger Causality and Impulse Response Analysis

Because the noncausal VARmodel can capture effects of missing variables and omitted

nonlinearities, it is likely to alleviate the well-known dependence of Granger causality

on the employed specification (see, e.g., Lütkepohl 2005, 49—51)). Bayesian analysis

also lends itself to checking Granger causality in a straightforward manner, while

conducting the corresponding classical test seems complicated, or potentially even

impossible. This follows from the diffi culty of expressing the hypothesis of no marginal

predictive power in terms of the parameters of the noncausal VAR model (see Nyberg

and Saikkonen (2013, Section 4.1) for further discussion).

4We consider the commonly used values of γ1 = γ2 = 0.2 (and γ1 = 0.6 and γ2 = 0.1). In

addition, we check the results by setting the elements of φ (or π, in the purely causal case (s=0))

corresponding to the first leads (lags) of inflation and GDP growth to 0.8 and to 0.3, respectively,

and the other elements of φ and π to zero. Thus, for s > 0, we are assuming that the persistence in

the U.S. inflation results from forward-looking behavior rather than dependence on past inflation.

The detailed results are not presented to save space, but they are available upon request.
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Our Bayesian approach simply relies on comparing the marginal predictive likeli-

hoods of the univariate and bivariate models to check whether the variable excluded

from the univariate model has marginal predictive power for the other variable (at

any forecast horizon). In practice, this comparison is conducted at a suffi ciently large

number of forecast horizons to confirm the robustness of the findings. While the

Granger noncausality test is typically defined in terms of the mean squared forecast

error, our procedure corresponds to the concept of Granger causality in distribution

defined by Droumaguet and Wózniak (2012), who propose a similar approach.

Assuming the GPD growth is a reasonable proxy for the marginal cost, inflation

should Granger cause it if the marginal cost indeed is driving inflation in accordance

with the new Keynesian theory (see, e.g., Rudd and Whelan (2005) and the references

therein). We computed the differences in marginal predictive likelihoods between the

VAR(1,2) and the univariate AR(1,2) models at forecast horizons of one, four and

eight quarters for each variable in turn. In the case of the GDP growth, these figures

are negative at all prediction horizons considered, indicating virtually no predictive

ability of inflation for the GDP growth over and above its own history. Interestingly,

there is strong evidence in favor of the reverse Granger causality from the GDP

growth to inflation, with the difference in the PLs around 10. Whereas, there is

little evidence in the previous literature in favor of Granger causality from the GDP

growth to inflation in data including the period after the mid-1980s (see, e.g., Lanne

and Luoto (2013) and the references therein), and based on the causal VAR(3,0)

model, also we were unable to find Granger causality in either direction.5

5In the causal VAR(3,0) model, Granger causality can easily be checked by comparing the unre-

stricted model to the restricted model with the lags of the other variable set to zero in each equation

in turn (cf. Droumaguet and Wózniak (2012)). In both cases, the Bayes Factor (BF), calculated

as the ratio of the marginal likelihood of the restricted model to that of the unrestriced model, is

22

lanne
Cross-Out

lanne
Inserted Text
There

lanne
Inserted Text



The noncausal VAR model also lends itself to impulse response analysis, with the

elements of the Ψj matrix of its moving-average representation (5) being the impulse

responses of the components of error εt at lag (or lead) j. For j ≤ −1, the elements

of Ψj, reveal to what extent each error is anticipated at each lead. Such anticipation

effects reflect the information incorporated in the errors that helps the agents to

predict future shocks.

To obtain one-standard-deviation orthogonal shocks, following Song and Davis

(2012), we use a lower-triangular Choleski decomposition of the covariance matrix

of the errors. We order inflation first, so the shock to the GDP growth has no

unexpected immediate impact on inflation. This is in contrast to the corresponding

recursive causal model, where any immediate impact of the shock to the GDP growth

on inflation is precluded. Both shocks may still have an expected immediate impact on

both variables. The estimated impulse response functions (not shown to save space)

indicate that the variables are significantly affected by their own shocks, and these

effects are anticipated well in advance, while their unexpected effects (for j > 0) are

negligible. Also in the corresponding causal recursive VAR model, the variables are

significantly affected by their own shocks, but, by construction, not anticipated. In

view of the evidence in favor of the noncausal VAR, the latter model is misspecified,

and thus the significant unexpected impact of the shocks that it implies, is misleading.

6. CONCLUSION

In this paper, we have devised Bayesian methods of estimation and forecasting in the

noncausal VAR model. In particular, we have proposed a relatively fast and reliable

posterior simulator that yields the predictive distribution as a by-product. It is well

greater than 100, giving decisive evidence against Granger causality.
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known, however, that the posterior distributions of the parameters of nonlinear models

tend to exhibit non-elliptical shapes such as skewness and multimodality, and based

on our empirical findings, the noncausal VAR model is not an exception. Therefore,

to successfully estimate the marginal likelihood of the model, we also proposed an

alternative estimation procedure that closely resembles the MitISEM algorithm of

Hoogerheide, Opschoor, and van Dijk (2012).

We demonstrated the new methods with an empirical application to U.S. inflation

and GDP growth for which a noncausal VAR model turned out to be superior in

both in-sample fit and out-of-sample forecasting performance over its conventional

causal counterpart. In addition, we found GDP growth to have predictive power for

the future distribution of inflation, but not vice versa, which may be interpreted as

evidence against the new Keynesian theory, provided GDP growth is a reasonable

proxy of the marginal cost. In contrast, in line with the previous literature, we found

no Granger causality in either direction in the causal VAR model. This suggests that

either Granger causality is nonlinear, and hence, not detected in the linear causal

VAR model, or alternatively, the noncausal model is capable of capturing the effects

of variables not included in the model in a way that facilitates detecting the Granger

causal relationship from GDP growth to inflation, or both. Moreover, according to

our impulse response analysis, the economic shocks are highly anticipated, which un-

dermines the validity of impulse response analysis based on the corresponding causal

VAR model.

We have only applied our method to a low-dimensional vector autoregression.

However, the method can be readily used for larger dimensions, such as a VAR model

comprising the seven variables included in the US macroeconomic model of Smets

and Wouters (2007), but this kind of an exercise calls for an informative prior distri-
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bution that shrinks the parameters towards the chosen prior mean, hence preventing

overfitting.
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Table I. Model selection.

Model ln ML Std.err.

VAR(2,0) —936.48 0.0035

VAR(1,1) —934.61 0.0066

VAR(0,2) —935.45 0.0055

VAR(3,0) —938.51 0.0045

VAR(2,1) —935.16 0.0071

VAR(1,2) —932.15 0.0045

VAR(0,3) —934.95 0.0056

VAR(4,0) —942.49 0.0089

VAR(3,1) —938.54 0.0280

VAR(2,2) —935.31 0.0192

VAR(1,3) —934.84 0.0090

VAR(0,4) —938.17 0.0056

The figures in the second and third

columns are the sums of the logarithmic

marginal likelihoods of all second, third

and fourth-order VAR models for inflation

and output growth from 1955:1 to 2013:2,

and their standard errors, respectively.
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Table II. Sums of h-step-ahead log predictive likelihoods.

Model h = 1 h = 4 h = 8

VAR(3,0) —702.8 —770.8 —799.0

VAR(2,1) —701.5 —773.1 —803.4

VAR(1,2) —698.2 —763.9 —794.6

VAR(0,3) —701.8 —757.8 —796.1

The figures are the sums of the log pre-

dictive likelihoods (ln PL(h)) with one, four

and eight quarter forecast horizons (h) for each

model. The forecasts are computed recursively

in the period 1970:1—2013:2, at each step rees-

timating each model using an expanding data

window starting at 1955:1.

29



Table III. Pseudo out-of-sample forecast analysis.

RMSFE ln PL(h)

Model h = 1 h = 4 h = 8 h = 1 h = 4 h = 8

Inflation

VAR(3,0) 1.108 1.541 2.038 —258.2 —314.2 —355.3

VAR(2,1) 1.103 1.572 2.114 —259.1 —314.6 —356.1

VAR(1,2) 1.126 1.525 2.035 —253.8 —306.4 —347.3

VAR(0,3) 1.150 1.513 1.980 —253.5 —304.7 —349.3

AR(1,2) 1.131 1.654 2.166 —276.7 —328.9 —363.8

GDP Growth

VAR(3,0) 3.428 3.691 3.608 —449.2 —457.0 —446.7

VAR(2,1) 3.281 3.661 3.514 —447.7 —458.1 —447.1

VAR(1,2) 3.331 3.623 3.578 —445.7 —458.0 —449.4

VAR(0,3) 3.448 3.617 3.563 —449.0 —453.9 —445.3

AR(1,2) 3.188 3.404 3.362 —442.6 —448.6 —437.3

The figures are the root mean square forecast errors (RMSFE) and sums

of the log predictive likelihoods (ln PL(h)) with one, four and eight quarter

forecast horizons (h) for inflation and GDP growth. The forecasts are com-

puted recursively in the period 1970:1—2013:2, at each step reestimating each

model using an expanding data window starting at 1955:1.
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