

Taming	a	Monster:	Tackling	the	Emergent	Issues	
Encountered	in	Mission	Critical	System	Development 	
AAPO	KOSKI,	Patria	Oyj		
TOMMI	MIKKONEN,	University	of	Helsinki	

Many	large	IT	systems	have	become	too	complex	to	understand.	The	complexity	stems	from	the	ever-increasing	number	of	technical	parts	
as	well	as	 from	the	 increasing	number	of	people	 involved.	Still,	 the	systems	are	designed,	developed,	 tested,	and	taken	into	use	without	
paying	too	much	attention	to	the	issues	the	inherent	system	complexity	introduces.	These	issues	–	called	emergent	because	we	are	not	able	
to	foresee	them	–	result	in	system	failures,	downtime,	and	hasty	workarounds	and	fixes.	These,	in	turn,	lead	to	unsatisfying	user	experi-
ence	and	unexpected	costs.	This	paper	is	an	experience	report	on	some	problems	encountered	and	on	the	solutions	applied	during	a	mis-
sion	critical	SaaS	system	project,	especially	from	the	system	testing	and	monitoring	standpoint.	Main	lessons	learned,	regarding	the	ability	
to	control	and	understand	the	mission	critical	service	behavior,	are	that	masked	production	data	is	a	must	for	performance	testing,	and	
that	the	test	cases	should	be	automated	early	and	not	developed	further	and	enhanced	all	the	time.	One	should	also	remember	to	trust	the	
performance	test	results,	once	assured	that	the	environment	has	been	steady.	

1. INTRODUCTION	

Everyone	dealing	with	large	IT	systems	readily	admits	that	systems	have	become	almost	too	complex	to	under-
stand	(Lyu,	1996).	They	are	still	often	designed,	developed,	tested,	and	taken	into	use	without	paying	enough	
attention	to	the	issues	the	inherent	system	complexity	introduces.	These	issues	–	often	called	emergent	–	result	
in	system	failures,	downtime,	and	hasty	workarounds.	These,	in	turn,	lead	to	unsatisfying	user	experience	and	
unexpected	costs.	

When	dealing	with	a	mission	critical	 information	system,	 failures	and	downtime	are	unacceptable,	 to	 the	
extent	that	it	is	not	an	option	to	even	risk	that	the	users	start	to	doubt	reliability.	Therefore,	a	mission	critical	
system	should	always	operate	in	a	way	that	the	users	can	rely	on.	The	users	need	to	be	able	to	trust	that	almost	
whatever	happens,	the	system	will	be	available	to	the	users	in	the	best	possible	fashion,	and	help	the	users	to	
perform	tasks	to	the	extent	the	present	situation	allows.	In	addition,	the	user	must	always	feel	confident	with	
the	system.	Consequently,	the	complex	mission	critical	system	–	the	monster	of	this	story	–	needs	to	be	tamed	
appropriately	and	with	proper	tools	and	processes.	

When	a	mission	critical	system	is	first	built,	be	it	out	of	licensed	or	custom	built	software,	then	taken	to	use,	
and	finally	maintained	by	an	organization	other	than	the	one	that	has	developed	and	deployed	it,	the	challenge	
of	divided	responsibilities	emerges	(Liu,	2016).	 In	the	presence	of	any	event	regarded	as	a	problem,	 it	 is	not	
imminently	clear	which	party	is	best	capable	of	tracing	the	bug	or	who	is	responsible	for	providing	a	fix.	Fur-
thermore,	time,	being	always	a	scarce	resource	when	dealing	with	mission	criticality,	 is	wasted	when	the	dif-
ferent	organizations	are	 spuriously	 communicating	 to	 find	a	 solution	 to	 the	problem,	or,	 even	worse,	 to	 just	
understand	which	party	should	react	to	the	problem	at	hand.	

Considering	responsibilities,	the	software-as-a-service	(SaaS)	(Turner,	2003)	model	is	a	good	fit	with	mis-
sion	criticality	in	several	ways.	When	the	system	is	provided	as	a	service	by	one	service	provider,	there	is	no	
doubt	who	to	blame	in	the	occurrence	of	errors,	who	to	contact	as	problems	arise,	or	who	should	take	care	of	
observed	problems	or	issues	raised	by	the	users	–	the	provider	always	bears	the	responsibility.	Also,	the	poten-
tial	problems	with	communications	should	be	less	likely	when	the	communication	takes	place	within	one	or-
ganization,	not	between	several	ones.	However,	at	the	same	time,	the	SaaS	model	puts	a	totally	different	kind	of	
burden	on	the	shoulders	of	the	company	providing	the	mission	critical	service.	If	the	service	has	in	practice	no	
option	 to	 fail,	 the	system	design,	development,	 testing,	deployment,	and	monitoring	while	being	operational,	
must	be	done	with	the	mission	criticality	as	the	first	thing	 in	mind.	One	of	the	most	 important	aspects	 is	 the	
thorough	understanding	of	the	provided	service	characteristics:	how	the	system	behaves	in	ideal	environment,	
how	the	behavior	changes	when	the	environment	changes	in	some	way,	what	are	the	limitations	of	the	system,	
and	what	kind	of	anomalies	we	should	be	monitoring	to	be	able	to	detect	faults	and	possibly	resulting	errors.	

Author's	address:	Aapo	Koski,	Patria	Oyj,	C4ISTAR,	Hatanpään	valtatie	30,	33100	Tampere,	Finland;	aapo.koski@patria.fi	
Second	author's	address:	Tommi	Mikkonen,	Dep.	of	Computer	Science,	00014	University	of	Helsinki,	Finland;	tommi.mikkonen@helsinki.fi	
Copyright	2017	is	held	by	the	authors.		

Taming	a	Monster: Tackling	the	Emergent	Issues	Encountered	in	Mission	Critical	System	Development:	Page	-	2	

In	this	paper,	we	report	experiences	gathered	during	the	development	and	deployment	of	a	mission	critical	
information	system,	used	by	security	authorities.	In	accordance	to	best	agile	practices,	the	system	was	devel-
oped	 in	 close	 cooperation	with	 the	users	 in	 an	 iterative	 and	 incremental	way.	Due	 to	 its	 nature,	 the	 system	
needs	to	have	an	extremely	high	availability	and	robustness.	Such	high	availability	means	that	 in	practice	no	
downtime	can	be	tolerated	and	downtime	periods	for	maintenance	of	any	kind	are	not	available.	

2. ABOUT	THE	MISSION	CRITICAL	SYSTEM	

A	mission	critical	system	is	a	system	that	is	so	essential	to	the	survival	of	an	organization	using	it	that	a	failure	
of	the	system	or	an	interruption	in	the	system	functionality	impacts	business	operations	significantly	(Mission	
critical,	2017).	In	many	cases,	a	failure	may	cause	a	threat	to	human	life	or	at	very	least	cause	significant	eco-
nomic	 losses.	Therefore,	 to	put	 it	simply,	 the	downtime	of	such	a	system	is	not	tolerable	during	the	system’s	
specified	operational	 intervals.	For	public	 security	 systems	–	 the	domain	 from	which	views	and	experiences	
discussed	 in	 this	paper	have	been	collected	–	 the	 specified	operational	 interval	 is	24	hours	per	day,	 all	 year	
around.	

The	system	our	experience	stems	from	is	built	for	operational	use	by	hundreds	of	simultaneous	users	and	
has	 strict	 performance	 and	 reliability	 requirements.	 The	 system	 is	 provided	 as	 a	 service	 for	 the	 authorities	
responsible	for	the	emergency	response	functions	nationwide	(New	national	ERC	information	system,	2017).	
The	service	is	provided	as	a	service	by	a	private	company	and	it	is	targeted	to	be	run	at	an	availability	level	of	
99.996%.	The	system	comprises	of	several	COTS	components	as	well	as	custom	tailored	software	modules	and	
relies	in	its	operation	on	many	integrated	systems	with	varying	integration	capabilities	and	dynamics.	

The	major	part	of	the	system	was	designed	and	developed	during	a	period	of	5	years	with	a	team	of	up	to	
30-40	persons.	Being	a	SaaS	system,	the	development	effort	naturally	continued	also	after	the	first	versions	of	
the	system	were	deployed	for	customer	testing	and	approval	for	operational	use.	The	organization	of	the	de-
velopment	 project	 comprised	 of	 4-5	 cross-functional	 agile	 teams	 which	 used	 Scrum	 and	 worked	 on	 team-
specific	backlogs	and	in	time-boxed	intervals,	typically	in	sprints	of	3-4	weeks.	Testing	was	performed	by	the	
teams	as	new	features	were	developed.	In	addition,	we	had	an	operations	team	responsible	for	integration	and	
system	testing	as	well	as	for	deploying	the	released	versions	of	the	system	for	customer	testing	and	use.	

The	first	author	of	this	report	has	been	the	chief	architect	of	this	system	from	the	very	beginning	of	the	pro-
ject	and	was	responsible	for	a	large	part	of	the	technical	aspects	of	the	project,	ranging	from	the	refinement	of	
the	system	requirements	with	 the	customer	 to	 the	ramp-up	of	 the	development	 teams	and	specification	and	
building	of	the	required	system	environments	and	testing	facilities.	

3. INFORMATION	SYSTEM	AND	ITS	ENVIRONMENT	

Large-scale	information	systems,	which	contain	million	lines-of-code	or	more,	easily	become	so	complex	that	
their	behavior	is	next	to	impossible	to	comprehend.	This	complexity	stems	from	the	fact	that	such	system	com-
prises	of	many	components,	which	introduce	emergent	behaviors	when	acting	dynamically	together,	either	in	
foreseen	or	in	unforeseen	ways.	In	addition	to	system	components,	the	system-level	behavior	is	also	dependent	
on	the	state	of	the	environment	as	interpreted	by	the	system,	and	this	environment	can	be	even	more	complex	
than	the	system	itself,	resulting	in	further	emergent	behaviors.	What	is	obtrusive	in	this	context	is	that	in	isola-
tion	the	characteristics	of	the	components	are	usually	well	known	and	documented.	This	easily	leads	to	a	false	
assumption	that	 large-scale	 information	systems	can	be	developed,	tested	and	taken	into	use	without	paying	
much	attention	to	the	issues	the	inherent	system	complexity	and	resulting	emergent	behaviors	introduce.	

Failing	to	pay	enough	attention	to	system	complexity	and	the	interaction	between	the	system	and	its	envi-
ronment	result	in	infamous	system	failures	and	unwanted	downtime.	When	problems	are	encountered,	hasty	
workarounds	are	often	introduced,	which	often	make	the	overall	situation	even	worse.	Failing	to	foresee	oper-
ational	system	behavior	causes	unsatisfying	user	experience	and	unexpected	costs,	both	of	which	the	software	
industry	is	already	much	too	famous	for.		

Similarity	Between	Test	and	Production	Environments:	To	enable	pushing	complex	systems	to	produc-
tion	environments,	several	intermediate	environments	are	needed.	Some	are	used	for	development,	some	for	
testing	 and	 training,	 and	 finally	 at	 least	 one	 for	 deployment.	While	 the	most	 interesting	 environment,	 both	
from	users’	and	developers’	point	of	view,	is	the	operational	environment	where	the	real	action	takes	place,	the	
others	must	be	consistent	with	the	operational	environment	for	the	development	and	testing	efforts	to	make	
truly	sense.	Otherwise	the	results	we	get	from	the	testing	–	both	in	terms	of	technology	and	user	experience	-	
do	not	correspond	to	the	ones	obtained	from	the	real	operational	system.	

Taming	a	Monster: Tackling	the	Emergent	Issues	Encountered	in	Mission	Critical	System	Development:	Page	-	3	

The	relevant	questions	here	include	how	well	we	need	to	know	the	environment	and	its	characteristics,	and	
how	much	is	enough	when	considering	similarity	between	the	installation	environments.	If	we	cannot	even	tell	
if	two	environments	are	different	or	not,	we	are	already	losing	the	game	of	controlling	a	running	system	instal-
lation.	Furthermore,	to	add	further	complexity,	 it	 is	 just	not	the	static	configurations	of	the	environments	we	
must	deal	with,	but	all	environments	are	dynamic	and	constantly	experience	changes.	The	changes	taking	place	
are	either	caused	by	intentional	actions	performed	by	the	many	stakeholders	involved,	or	by	unintentional	or	
unexpected	incidents	of	varying	nature	such	as	operating	system	updates,	networking	conditions,	and	so	on.	

To	summarize,	the	criticality	of	various	actions	and	possible	incidents	need	to	be	considered,	and	their	con-
sequences	need	to	be	known.	In	addition,	we	must	be	able	to	observe	changes	in	the	environment’s	character-
istics,	and	have	the	capacity	to	react	accordingly.	In	our	cases,	we	started	from	an	early	phase	to	release	and	
test	the	developed	parts	of	the	system	together	in	several	environments	that	resembled	as	closely	as	possible	
to	the	 future	operational	environment	as	we	understood	 it.	We	had	a	separate	 identical	environment	 for	 the	
customer	acceptance	testing	and	for	 the	performance,	stress	and	 load	testing.	The	setup	and	maintenance	of	
these	 environments,	 although	 heavily	 virtualized,	 requires	 a	 notable	 amount	 of	work	 and	 therefore	 specific	
resources	assigned	to	the	maintenance	and	control	of	these	environments	solely.	

Controlling	the	Environments:	Without	appropriate	control	over	the	environments	used	to	run	the	sys-
tem,	 there	 is	no	way	 to	protect	 the	users	 from	emergent	events	 that	 are	 imminent	 in	 complex	 systems.	The	
need	 to	know	what	has	been	done	and	what	 is	planned	 to	be	done	 to	 the	environment	 is	of	 the	utmost	 im-
portance	to	understand	the	consequences	of	a	certain	change.	Still,	control	does	not	mean	that	we	prevent	the	
changes	from	taking	place	or	restrict	the	possible	changes	that	are	allowed.	Any	modern	information	system	
must	be	built	to	allow	flexibility	for	varying,	ever	changing	needs	of	the	users.	

In	our	cases,	although	the	environment	configurations	were	documented	in	a	very	detailed	way,	one	of	the	
problems	encountered	was	how	to	ensure	as	automatically	as	possible	that	the	documentation	corresponds	to	
the	 real	 situation.	 It	 was	 more	 than	 once	 that	 the	 human	 factor	 surfaced:	 once	 a	 configuration	 problem	 is	
solved	in	one	environment	after	possibly	a	notable	effort	of	trials	and	errors,	it	seems	to	be	relatively	hard	to	
remember	to	document	the	needed	change	appropriately	and	to	remember	to	do	the	same	change	into	all	the	
other	related	environments	having	the	same	system	configuration.	

With	the	SaaS	model,	unlike	traditional	system	provision	models,	the	service	providers	typically	can	config-
ure	and	control	the	system	environment	as	needed	and	thus	the	above	points	should	not	be	a	problem.	

4. ASSESSING	MISSION	CRITICALITY	

With	mission	critical	information	systems,	failures	and	downtime	cannot	be	tolerated	in	the	same	way	or	at	the	
same	level	as	with	non-mission	critical	systems.	A	mission	critical	service	should	always	run	so	that	its	users	
can	fully	rely	on	it	and	trust	that	no	matter	what	happens,	the	mission	critical	system	remains	available.	This	
calls	for	mechanisms	that	help	detecting	problems	as	well	as	recovery	mechanisms	when	problems	have	been	
identified,	i.e.	tools	with	which	we	can	monitor	and	control	the	monster	we	have	created.	As	with	the	environ-
ment,	 specifying,	 setting	up,	and	using	various	mechanisms	 for	 taming	 the	system	with	SaaS	model	depends	
only	on	the	skills	and	competencies	of	the	system	provider.	

4.1 Monitoring	Mechanisms	
Monitoring	a	critical	service	is	something	one	does	not	want	to	do	with	tens	of	different	monitoring	manage-
ment	products.	The	management	system	of	 the	monitoring	solution	should	also	be	able	 to	 report	on	perfor-
mance	levels,	as	that	will	be	a	key	aspect	of	the	service	level	agreement	(SLA)	or	equivalent	availability	indica-
tor	of	the	service.	The	SLA’s	the	customers	require	need	to	be	met	without	having	to	double	computing	infra-
structure	or	having	to	add	separate	staff	to	implement	High	Availability	(HA)	and	Disaster	Recovery	(DR).	This	
need	for	comprehensive	tools	calls	for	developers	with	a	true	DevOps	mindset.	We	started	by	having	the	moni-
toring	solution	and	the	service	itself	in	separate	silos	managed	by	separate	people	which	resulted	in	problems	
in	communication,	problem	solving	quality	and	above	all,	the	response	times	to	solving	the	observed	problems.	
To	get	rid	of	these	problems	we	had	to	find	people	who	were	capable	to	understand	both	the	system	and	the	
monitoring	solution	and	willing	to	be	responsible	for	the	entire	provided	service,	not	just	the	system	itself.	

A	factor	that	often	seems	to	be	forgotten	when	information	systems	are	build,	is	that	if	we	have	any	kind	of	
monitoring	capability	to	monitor	and	control	the	system	or	service,	the	monitoring	system	is	as	critical	part	of	
the	system	as	the	rest	of	the	system	(Landau,	1969).	The	monitoring	solution	thus	needs	to	be	designed	with	
the	same	level	of	reliability	and	robustness	as	the	system	itself	and	the	components	of	the	monitoring	solution	
need	to	be	under	the	very	same	configuration	management	as	the	operative	parts	of	the	system.	We	may	even	

Taming	a	Monster: Tackling	the	Emergent	Issues	Encountered	in	Mission	Critical	System	Development:	Page	-	4	

have	to	consider	monitoring	the	monitoring	solution	to	ensure	that	our	monitoring	system	is	operational	and	
provides	reliable	information.	

In	our	cases,	we	are	monitoring	the	system	on	two	different	 levels;	reported	state	and	deduced	state.	Re-
ported	 state	 is	 the	 state	 that	 the	 service	 itself	 claims	 to	 be	 in.	 Each	 service	 in	 the	 system	publishes	 its	 own	
availability,	load	and	response	time	information	via	JMX	(Java	Management	Extension,	2017)	for	any	observers	
to	see.	Reported	availability	does	not	necessarily	tell	if	the	service	is	usable	to	a	client,	so	the	main	purpose	of	
this	is	to	help	pinpoint	issues	when	they	occur,	deliver	extra	information	about	the	services’	internal	states	and	
construct	an	overview	of	component’s	availability.	Deduced	state	is	the	service’s	state	as	seen	by	an	interested	
party,	and	is	measured	by	calling	the	service	and	seeing	when,	how	and	if	it	manages	to	respond.	For	this	pur-
pose,	service	APIs	share	a	common,	unified	monitoring	interface,	which	allows	checking	their	state	in	a	generic	
way.	All	client	applications	can,	and	should	use	this	method	to	measure	the	availability,	as	displayed	to	users,	
since	it	represents	the	factual	usability	of	the	service.	

The	amount	of	work	and	energy	required	to	design	and	implement	a	reliable	monitoring	solution	for	a	mis-
sion	critical	system	is	huge	and	calls	for	special	skills.	Per	our	experiences,	a	reliable	monitoring	system	cannot	
be	built	afterwards	for	a	system.	Instead,	it	must	be	developed	and	grown	together	with	the	system	itself.		

4.2 Redundancy	Mechanisms	
Redundancy	can	be	used	as	a	tool	to	build	mission	critical	systems	that	are	computation	and	communication	
compatible.	Intuitively,	redundancy	is	a	perfect	tool	with	which	we	can	promote	coordination	of	the	provision	
of	the	service.	Redundancy	is	used	to	check	whether	an	individual	component	of	the	system	offering	the	service	
has	 deviated	 and	 in	 case	we	 observe	 some	 deviation	 the	 redundancy	mechanism	 ensures	 that	 the	 deviated	
component	is	replaced	by	a	fully	functional	one.	

Problem	with	 redundancy	 is	 that	 typically	we	 cannot	 objectively	 determine	what	 level	 of	 redundancy	 is	
needed	and	what	kind	of	redundancy	should	be	employed.	Redundancy	also	further	complicates	the	system	–	
the	 redundancy	mechanisms	 itself	may	become	 the	weak	 links	 in	 our	 system	with	unforeseen	or	 surprising	
characteristics	(Dubey,	2007).	Furthermore,	building	the	redundancy	is	in	most	cases	very	costly,	and	testing	
features	related	to	it	is	complex.	

In	our	cases,	we	started	with	modeling	 the	most	critical	process	 flows	 in	 the	system.	With	 the	model,	we	
sketched	out	all	the	possible	failure	scenarios	we	could	think	of,	ensured	that	if	such	a	scenario	takes	place	we	
observe	it	and	designed	ways	to	tolerate	these	situations.	

Finally,	redundancy	alone	is	not	enough.	Providing	a	service	that	requires	100%	uptime	requires	the	ability	
to	know	when	there	is	a	problem.	Moreover,	we	also	need	to	know	that	there	is	a	problem	likely	to	surface	in	
the	future.	This	puts	a	high	pressure	on	the	monitoring	mechanisms	to	detect	all	the	relevant	problems.		

4.3 Service	Requirements	and	Criticality	
Precise,	covering	requirements	form	the	foundation	for	any	project	trying	to	provide	good	service	to	custom-
ers.	All	changes	that	come	from	the	customer	side	need	to	be	verified,	and	appropriate	process	for	handling	the	
changes	needs	to	be	established	from	the	beginning.	With	the	verification,	also	the	understanding	on	what	will	
be	the	effect	on	the	testing	needs	to	be	clear.		

We	learned	that	to	maintain	the	mission	critical	service	under	control	–	especially	when	it	is	developed	in	
an	agile	fashion	as	ours	were	–	the	most	important	things	related	to	the	requirements	are	the	following:	

• Cut	the	functionality:	We	were	far	too	optimistic	in	the	beginning	regarding	the	system	scope	and	esti-
mated	time	to	develop	it.	To	survive,	we	should	have	always	looked	for	the	simplest	way	to	satisfy	a	us-
er	need.	One	needs	 to	 remember	 that	 satisfying	a	need	does	not	often	mean	 fulfilling	 the	written	re-
quirement.	

• Control	feature	creep:	We	were	also	much	too	eager	to	answer	yes	to	nice-to-have	features	and	wishes	
the	customer	or	the	end-users	had.	Trying	to	please	the	customer	with	this	kind	of	behavior	will,	soon-
er	or	 later,	have	catastrophic	effect	on	the	project	schedule	and	budget.	This	needs	to	be	 fully	under-
stood	by	all	players	and	on	daily	basis	everyone	involved	should	critically	assess	the	work	at	hand	–	is	
this	what	I	am	doing	providing	value	to	the	customer	and	are	there	more	valuable	issues	that	should	be	
taken	care	of	first?	

4.4 Critical	Configuration	Management	
In	addition	to	the	configuration	management	of	the	normal	situation	–	so-called	happy	day	scenario	–	one	must	
do	similar	configuration	management	also	for	disaster	scenarios,	where	the	system	configuration	changes	due	
to	 responses	 to	 some	 faults	 or	 otherwise	 exceptional	 situations	 (Dart,	 1991).	 The	 same	 applies	 to	 recovery	

Taming	a	Monster: Tackling	the	Emergent	Issues	Encountered	in	Mission	Critical	System	Development:	Page	-	5	

plans,	which	in	addition	to	being	properly	tested	and	proven	ones,	should	be	managed	with	similar	configura-
tion	management	than	all	other	setups	of	the	system	in	question.	

We	 learned	 that	 the	 requiring	 smaller	but	more	 frequent	updates	 to	 the	 system,	 emphasized	 in	 the	SaaS	
model,	does	not	make	the	situation	easy	with	regards	to	the	configuration	management	(Dubey,	2007).	A	disci-
plined	mode	of	operation	with	new	streamlined	processes	to	handle	the	changes	needed	is	a	must-have.	

5. UNDERSTANDING	THE	MONSTER	

We	 test	 to	 ensure	 that	 the	 system	or	 service	 behaves	 as	 it	 is	 expected	 to	 behave.	 Testing	 is	 used	 to	 have	 a	
measure	on	the	user	impact	to	the	service	in	various	situations	and	in	various	ways.	By	performing	testing,	we	
try	 to	 achieve	 the	 needed	 level	 of	 service	 quality	 and	 to	 do	 that	we	naturally	must	 define	 precisely	what	 is	
meant	by	the	quality	with	regards	to	the	service	at	hand	(Canfora,	2009).	

Traditionally,	software	quality	has	focused	a	lot	on	the	number	of	defects	in	a	system,	and	testing	has	been	
the	main	technique	for	decreasing	those	defects	by	first	finding	them	and	then	enabling	their	fixes.	However,	
with	mission	critical	systems,	quality	is	not	something	one	can	introduce	into	a	service	via	testing	–	it	must	be	
part	of	the	service	from	the	very	start.	Testing	a	mission	critical	system	has,	however,	even	more	into	it	than	
just	ensuring	that	the	observed	quality	corresponds	to	the	expected	quality.	With	criticality,	the	expected	quali-
ty	may	not	always	be	enough.	A	critical	system	behaving	exactly	as	planned	but	resulting	in	economic	losses	or	
even	losses	of	lives	while	performing	some	action	or	restricting	some	action	not	be	performed	for	some	reason,	
is	not	obviously	in	retrospect	of	good	quality.	

To	achieve	confidence	on	the	service	behavior,	we	must	be	sure	that	we	understand	the	customer	or	end-
user	expectations	right	from	the	beginning	of	the	development	process,	including	not	just	the	functionality,	but	
also	usability,	reliability,	supportability,	and	performance,	as	well	as	business	logic	involved.	

5.1 Functional	Verification	
For	mission	critical	system,	the	functional	quality	must	be	understood	in	a	broad	sense.	Functional	quality	does	
not	 just	mean	that	a	certain	 function	 is	available	 for	certain	user	to	perform	some	action	but	high	functional	
quality	should	mean	 that	 the	 functionality	 is	 for	 the	user	 to	use	 in	all	needed	situations,	 informs	 the	user	 in	
appropriate	way	about	any	issues	related	to	the	functionality	and	in	case	the	functionality	is	somehow	not	fully	
available,	offers	the	user	options	how	to	act	to	achieve	wanted	results.	

In	our	cases	the	size	of	the	systems	poses	a	challenge	to	functional	verification.	In	fact,	it	was	clear	from	the	
very	beginning	that	the	major	part	of	the	functional	verification	needs	to	be	fully	automated.	This	facility	would	
also	act	as	a	setup	for	regression	testing.	To	this	end,	we	developed	a	model	based	testing	setup	where	by	con-
figuration	we	could	setup	and	run	several	models	of	end-users.	These	end-user	models	behave	a	 lot	 like	 the	
real	 end-users	with	 statistical	 variation	on	 the	 response	 times	and	process	actions	and	we	can	 run	as	many	
end-user	models	simultaneously	as	we	want.	

Developing	a	system	in	incremental	and	iterative	way	forces	the	development	of	the	tests	to	be	incremental	
and	iterative.	A	mistake	that	we	did	in	our	projects	was	that	we	didn’t	understand	to	stop	developing	the	test	
cases	further	all	the	time.	Changing	the	tests	hides	the	real	system	characteristics	and	performance.	

To	cope	with	the	enormous	amount	of	work	involved	in	testing,	the	full	automation	of	the	release	and	build	
test	cycles	should	be	enabled	as	early	as	possible.	As	 it	has	been	reported	that	even	60%	of	the	total	system	
cost	is	spent	on	different	types	of	testing	(Paré,	1997),	the	investment	into	test	automation	can	be	justified.	Our	
experiences	support	 the	observation	that	although	automation	of	 test	cases	have	a	high	 implementation	and	
maintenance	costs,	automation	of	test	cases	can	give	remarkable	returns	in	the	long	run	(Kumar,	2016).	

Finally,	although	emphasis	needs	to	be	on	the	automated	testing	to	have	the	time	and	resources,	the	manual	
testing	 has	 its	 place,	 too,	 however.	 For	 example,	 ad-hoc	 testing	 cannot	 be	 performed	 using	 automation	 and	
negative	testing	can	be	done	more	rigorously	with	manual	testing	(Stobie,	2009).	However,	based	on	our	expe-
riences,	the	skill-set	required	from	such	effective	manual	ad-hoc	tester	is	far	from	the	role	of	a	traditional	soft-
ware	tester.	Good	scripting	skills,	ability	to	think	outside	the	box	and	true	will	to	break	the	system	under	test	
seem	to	be	a	rare	combination.	

5.2 Testing	for	Quality	
The	 importance	 of	 testing	 the	 quality	 of	 the	 created	 system	 from	 the	 very	 beginning	 cannot	 be	 emphasized	
enough.	With	mission	criticality	in	the	picture,	the	role	of	the	testing	of	the	non-functional	issues	is	even	more	
important.	Naturally,	testing	for	quality	requires	that	we	know	what	kind	of	quality	is	needed	–	a	simple	and	

Taming	a	Monster: Tackling	the	Emergent	Issues	Encountered	in	Mission	Critical	System	Development:	Page	-	6	

axiomatic	thing,	but	extremely	hard	to	get	right.	Table	1	 lists	the	most	serious	problems	encountered	during	
the	development	of	the	system	and	the	mitigation	actions	taken.	

Table 1. Pain points and mitigations in mission critical system testing

Pain	point	 Mitigation	 Comment	
We set up the testing environment in a
relatively ad-hoc way, thinking roughly
along the lines “better to have at least
some kind of environment for the testing
than nothing at all”.

Problem: test effort not focused optimal-
ly

We took a more disciplined way of
identifying in detail the environments
needed for the testing efforts. Both the
physical and virtual test environments
and the production environment were
analyzed and identified in detail, and the
tools and resources required to be availa-
ble to the testers in these environments
were agreed and identified as early on as
possible.

Having a thorough understanding of the
entire test environment enables more
efficient test design and planning and
help in understanding the testing chal-
lenges faced in the project. The process
of analyzing and identifying the testing
environments must be revisited periodi-
cally throughout the life cycle of the
service.

We focused on the functional testing
because it is more straightforward to do
and specify.

Problem: non-functional tests did not get
focus early enough

We took up the non-functional ac-
ceptance criteria with all the relevant
stakeholders. The required response
times, throughputs, and resource utiliza-
tion goals and constraints need were
documented and agreed as well as all the
failure scenarios and monitoring events.
All the issues that we could not find
criteria for, were assigned on some-
body’s responsibility for clarification.

The response times are a concern of the
users and should be analyzed in detail to
enable good enough user experience.
Without proper understanding on the
user behavior good criteria on the re-
sponse times is almost impossible to set.
The throughput and resource utilization
are in most cases not directly user con-
cerns but business and system concerns,
respectively.

We performed the testing with ad-hoc
test data without paying enough attention
to the form, amount and nature of the
true operational data.

Problem: test results do not reflect the
real situation in operative environment

We started to plan and design the test
cases in close cooperation with the end-
users, including the type and size of the
test data into the test specification. All
the key scenarios with determined varia-
bility, including all the failure scenarios
and related redundancy mechanisms,
were specified in detail.

The test data must be realistic in form
and in size and appropriate metrics to be
collected need to be established.
Also, the capabilities to simulate the
specified variabilities need to be devel-
oped.

We did not do the configuration of the
test environment in a disciplined enough
way and/or the documentation was not
updated as regularly and accurately as
needed.

Problem: we did not understand some
configurational effects in test results

Preparing and configuring the test envi-
ronment in a disciplined way and per
documented process.
Furthermore, we should ensure that the
test environment is instrumented for
resource monitoring as necessary and
that the monitoring system itself is work-
ing properly.

The configuration of the test environ-
ment requires eye for details and disci-
pline. The preparation of the test envi-
ronment, all the required tools, and
resources necessary to execute tests as
new features and components become
available for test need to be done in a
documented and traceable way.

We specified the performance tests only
later in the development project, not in
the beginning. Furthermore, some of the
performance tests were specified without
thorough analysis of the true perfor-
mance criteria.

Problem: energy was wasted by perform-
ing tests that did not provide true value

We developed performance tests in
accordance with the other test designs
and started to follow more closely the
execution and monitoring of the tests.
The tests, the test data, and results were
validated to ensure that we have meas-
ured the right things and that the meas-
urements collected are true measure-
ments of real nature.

The validated tests for analysis should be
executed only while monitoring the test
and the test environment. In case we
observe any exceptional issues these
should be investigated thoroughly to
understand the root causes of the obser-
vations.

We did not analyze the test results thor-
oughly due to some constraints. In addi-
tion, the customer was provided the
results in a format not easily understand-
able to all the relevant stakeholders.

Problem: test results were not effectively
used for improving the service

We consolidated and shared the test
results to all relevant stakeholders and
organized sessions for analyzing the
results together with the customer, aim-
ing for better understanding of and new
points-of-view to the results obtained.

The analysis and reporting of the test
results is naturally the most crucial ac-
tion of all. A test has been successful
only if all the metric values are within
accepted limits, none of the set thresh-
olds have been violated, and all the
desired information has been collected.

Taming	a	Monster: Tackling	the	Emergent	Issues	Encountered	in	Mission	Critical	System	Development:	Page	-	7	

Based	on	our	experiences,	the	approach	to	non-functional	testing	needs	to	be	well	planned	in	due	time	be-
fore	the	mission	critical	system	development	starts	in	full.	Naturally	the	testing	effort	does	not	stop	when	the	
above	actions	have	been	performed	successfully.	Once	 the	 testing	has	been	 finished	with	analysis	we	should	
remember	that	we	only	have	tested	one	scenario	on	one	configuration,	nothing	else.	

Unlike	their	functional	counterparts,	non-functional	tests	should	not	be	developed	further	all	the	time,	even	
though	we	may	find	room	for	improvement.	Changing	the	tests	hides	the	real	system	characteristics,	and	with-
out	a	comprehensive	understanding	on	the	effect	of	a	certain	change,	we	will	gradually	lose	the	control	on	the	
system.	Naturally,	the	tests	need	to	be	modified	and	enhanced	immediately	if	there	is	a	real	change	in	the	non-
functional	requirements	–	in	which	case	we	need	to	admit	that	some	part	of	our	understanding	of	the	system	
behavior	becomes	invalid.	In	our	case,	we	soon	also	understood	the	risk	that	there	might	exist	additional	per-
formance	acceptance	criteria	that	may	not	be	captured	by	resource	utilization	goals	and	constraints.	Thus,	we	
should	be	able	to	understand	with	the	help	of	performance	tests	also	the	service	behavior	with	different	com-
binations	of	configuration	settings	and	gain	the	knowledge	on	the	most	desirable	performance	characteristics.	

The	differences	between	the	production	and	test	environments	need	to	be	known	in	detail.	One	should	be	
almost	paranoid	about	ensuring	that	the	environments	are	as	we	think	they	are.	The	assumptions	made	on	the	
environments	 need	 to	 be	 verified	 often	 enough	 and	 all	 the	 possible	 changes	 in	 the	 environment	 must	 get	
logged	and	notified.	One	important	thing	to	remember	is	to	trust	the	non-functional	test	results	once	assured	
that	the	environment	has	been	steady.	We	failed	several	times	in	listening	the	weak	signals	observable	in	the	
test	results.	

5.3 Service	Virtualization	and	Testing	
While	it	is	widely	accepted	that	thorough	testing	should	be	performed	already	early	in	the	service	development	
process,	it	is	often	hard	to	bring	effective	testing	into	reality	due	to	the	increasing	complexity	of	system	envi-
ronments.	To	solve	this	problem,	obviously,	some	new	approaches	are	needed,	 that	preferably	both	 improve	
the	overall	level	of	testing	and	increase	the	efficiency	of	removing	the	imminent	defects.		

Service	virtualization	enables	the	service	provider	to	create	more	efficient	testing	environments	by	elimi-
nating	 several	 issues	 typically	 encountered	 in	 testing	 the	 service.	Especially	when	dealing	with	 the	develop-
ment	and	delivery	of	complex	services	with	multiple	dependent	components	that	must	be	thoroughly	tested	to	
understand	the	system	behavior,	the	virtualization	comes	to	rescue.	

With	service	virtualization,	we	could	do	the	testing	of	the	whole	system,	from	end	to	end,	already	before	the	
real	dependent	services	become	available.	In	our	project,	the	service	virtualization	was	used	both	to	emulate	
the	missing	elements	as	well	as	to	compare	the	behavior	of	the	real	system	element	with	the	virtualized	opti-
mally	behaving	element.	With	service	virtualization,	 the	 test	environments	can	use	virtual	 services	 in	 lieu	of	
the	production	services,	increasing	the	frequency	and	quality	of	integration	testing.		

6. SKILLS	TO	TAME	THE	MONSTER	

From	the	issues	handled	above,	it	is	obvious	that	the	skillset	required	for	managing	all	the	aspects	in	building	
successfully	a	mission	critical	system	as	a	service	in	much	more	than	just	technical	skills	as	such.	In	retrospect,	
we	were	too	busy	to	put	the	teams	together	and	did	not	appreciate	enough	the	fact	the	people	working	to	keep	
up	the	service	and	at	the	same	time	keeping	the	users	of	the	service	happy,	must	be	technically	first-class	but	
also	have	strong	interpersonal	soft	capabilities.	This	skillset	is	a	must	to	provide	customer	service	constituting	
a	large	part	of	making	the	mission	critical	service	one	that	the	users	want	to	use.		

Technical	skills	certainly	are	important	as	they	can	help	a	developer	and	tester	do	their	job	better.	But	for	a	
software	 tester	 also	 other	 skills	 are	 essential,	 including	 the	 ability	 to	 think,	 the	 ability	 to	 be	 inquisitive,	 the	
ability	to	be	focused,	the	will	to	break	the	rules	and	the	will	to	fail.	

To	accomplish	the	disciplined	tasks	involved	in	the	provision	of	a	mission	critical	service	and	especially	the	
important	 testing	phase,	one	needs	developers	and	testers	with	ambition,	and	as	well	as	people	with	energy	
and	who	want	to	make	a	difference	(Noll,	2002),	(Skulmoski,	2010).	Such	persons	are	hard	to	find	and	there-
fore	it	takes	time	to	create	the	teams	needed	for	the	development	effort.	Once	assured	that	we	have	the	right	
people	working	on	the	project,	 trust	 them	fully	and	make	sure	 that	 they	have	the	right	 tools	and	no	 impedi-
ments	on	their	paths.	

In	 the	bigger	picture,	 the	 industry	 the	 service	providers	 represent	needs	 to	 collaborate	with	 educational	
providers	to	guide	and	inform	what	skills	people	need	when	moving	into	a	tech	workplace.	Based	on	our	expe-
riences,	a	part	of	the	people	problem	is	that	students	at	universities	are	given	somewhat	outdated	material	on	
the	requirements	they	face	at	the	workplace.	

Taming	a	Monster: Tackling	the	Emergent	Issues	Encountered	in	Mission	Critical	System	Development:	Page	-	8	

7. CONCLUSIONS	

Information	systems	of	today	are	in	a	level	of	complexity	where	one	cannot	trust	on	the	results	of	traditional	
testing	efforts	to	gain	a	reliable	knowledge	on	the	system’s	characteristics.	This	fact	is	demonstrated	typically	
by	the	large	number	of	reported	bugs	and	issued	enhancement	requests	which,	on	one	hand	provide	us	good	
feedback	from	the	real	users,	but	on	the	other	are	also	symptoms	of	customer	dissatisfaction.	

With	mission	 critical	 systems,	 the	 information	 related	 to	 some	problems	 the	users	have	with	 the	 service	
cannot	be	 left	 to	be	 channeled	 through	 some	 ticketing	 system	or	alike.	Monitoring	 the	 service	 in	 a	way	 that	
enables	the	service	provider	to	know	about	service	problems	before	the	users	face	them	is	mandatory.	In	addi-
tion,	appropriate	swift	actions	to	isolate	the	problem	and	fix	or	circumvent	it	need	to	be	available	and	planned.	

To	create	a	reliable	mission	critical	service,	testing	is	naturally	in	the	key	role.	Testing	a	mission	critical	sys-
tem	needs	to	be	done	in	a	way	where	the	mission	criticality	is	fully	considered.	We	emphasized	the	role	of	the	
automated	end-to-end	testing	of	the	system	in	an	environment	as	close	to	the	operative	one	as	was	possible.	In	
our	opinion,	focusing	the	testing	efforts	optimally	and	scheduling	the	efforts	early	enough	in	the	development	
process,	 saves	 us	 from	many	 problematic	 situations	 in	 the	 operational	 environment.	 To	 conclude,	 the	main	
lessons	learned,	regarding	the	ability	to	control	and	understand	the	mission	critical	service	behavior,	are:	

• Masked	production	data	is	a	must	for	performance	testing.	
• The	test	cases	should	not	be	developed	further	and	enhanced	all	the	time.	Changing	the	tests	hides	the	

real	performance	and	we	cannot	collect	reliable	data	on	the	changing	system	behavior.	
• Release	and	build	performance	test	cycles	need	to	be	fully	automated	early	in	the	development	process.	
• Understand	in	detail	the	differences	between	the	production	and	performance	test	environments.	
• Trust	the	performance	test	results	once	assured	that	the	environment	has	been	steady.	
Furthermore,	probably	the	most	important	thing	enabling	a	successful	provision	of	the	mission	critical	ser-

vice	is	to	find	right	kind	of	people	to	do	the	job.	The	people	need	to	be	truly	committed,	interested	in	the	cus-
tomer,	have	the	will	 to	 find	a	solution	no	matter	what	and	the	will	 to	admit	 that	sometimes	 failure	 is	an	 im-
portant	result,	something	to	learn	from	and	not	to	repeat.	

In	our	project,	we	faced	a	multitude	of	challenges	of	which	the	aspects	described	above	are	just	a	small	part	
of.	With	mission	critical	system	it	all	comes	down	to	observing	and	understanding	how	the	service	behaves	in	
real	life	rather	than	in	an	artificial	environment.	And	that	is	how	we	can	achieve	service	quality:	by	measuring	
user	impact,	and	not	just	preventing	bugs,	but	responding	quickly	once	found.	

8. ACKNOWLEDGEMENTS	

This	paper	would	not	have	come	together	without	the	keen	help	of	our	shepherd,	Maria	Paasivaara	from	Aalto	
University,	Helsinki,	Finland.	Thank	you,	Maria,	for	your	time	and	valuable	ideas	and	support!	
REFERENCES		
Canfora,	G.		Service-oriented	architectures	testing:	A	survey.	In	Software	Engineering	(pp.	78-105).	Springer	Berlin	Heidelberg,	2009.	
Dart,	Susan.	"Concepts	in	configuration	management	systems."	Proc.	of	the	3rd	International	workshop	on	SW	configuration	management.	
ACM,	1991.	
Dubey,	A.,	&	Wagle,	D.	“Delivering	software	as	a	service.”	The	McKinsey	Quarterly,	6.2007,	2007.	
Java	Management	Extensions,	in	Wikipedia,	Retrieved	Feb	28,	2017,	from	https://en.wikipedia.org/wiki/Java_Management_Extensions	
Kumar,	Divya,	 and	K.	K.	Mishra.	 "The	 Impacts	 of	 Test	Automation	on	 Software's	 Cost,	Quality	 and	Time	 to	Market."	Procedia	 Computer	
Science	79	(2016):	8-15.	
Landau,	Martin.	"Redundancy,	rationality,	and	the	problem	of	duplication	and	overlap."	Public	Administration	Review	29.4	(1969):	346-358.	
Liu,	J.	Y.	C.,	&	Yuliani,	A.	R.	(2016).	Differences	Between	Clients’	and	Vendors’	Perceptions	of	IT	Outsourcing	Risks:	Project	Partnering	as	the	
Mitigation	Approach.	Project	Management	Journal,	47(1),	45-58.	
Lyu,	M.	Handbook	of	Software	Reliability	Engineering.	IEEE	and	McGraw-Hill,	1996.	
Mission	critical,	in	Wikipedia.	Retrieved	Feb	20,	2017,	from	https://en.wikipedia.org/wiki/Mission_critical	
New	national	ERC	information	system	(Feb	28,	2017),	retrieved	from	http://www.112.fi/en/the_erc_reform/new_information_system	
Noll,	C.	L.,	&	Wilkins,	M.	(2002).”	Critical	skills	of	IS	professionals:	A	model	for	curriculum	development.”	Journal	of	information	technology	
education,	1(3),	143-154.	
Paré,	G.	and	J.	J.	Elam,	“Using	case	study	research	to	build	theories	of	IT	implementation,”	in	Proceedings	of	the	IFIP	TC8	WG	8.2	Internation-
al	Conference	on	Information	Systems	and	Qualitative	Research,	pp.	542–568,	Chapman	&	Hall,	Philadelphia,	Pa,	USA,	May-June	1997.	
Skulmoski,	Gregory	J.,	and	Francis	T.	Hartman.	"Information	systems	project	manager	soft	competencies:	A	project-phase	 investigation."	
Project	Management	Journal	41.1	(2010):	61-80.	
Stobie,	K.	“Too	much	automation	or	not	enough?	When	to	automate	testing.”	Pacific	Northwest	Software	Quality	Conference,	2009.	
Turner,	M.,	Budgen,	D.,	&	Brereton,	P.	(2003).	Turning	software	into	a	service.	Computer,	36(10),	38-44	

