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Abstract 

Experimental studies have shown how microplastics are taken up by various aquatic organisms. Most of 

these studies have been carried out with small (<100µm) symmetrically shaped primary microplastics 

(beads) which are not readily found in marine environment, and also in unnaturally high microplastic 

concentrations. We conducted experiments to study the ingestion of microplastics in more natural 

settings. We offered secondary microplastics to common planktivores, fish and mysid shrimps in their 

prey size categories to observe the uptake of such asymmetrically shaped fragments (PET >200 µm and 

ABS >100 µm) in comparison to primary microplastic beads (90 µm). Our results show that fragments of 

secondary plastics may end up in the food web but only in small amounts, and that the size of the 

fragments more than their shape is a crucial nominator influencing the numbers of plastics ingested. 

Future research aiming to resolve the effects of microplastics in the ecosystems should concentrate on 

environmentally relevant plastics and concentrations. 
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1.     Introduction 

  

Global plastic production has been on a constant rise since 1950’s and exceeded 335 million tonnes in 

2016 (PlasticsEurope 2017). Along with the increasing manufacturing and use of plastic items, plastics 

are accumulating in the oceans, comprising by far the largest proportion of marine debris materials 

worldwide (UNEP 2016). While the harm of visible litter has been acknowledged already since the 

1980’s (Laist 1987), interest towards the smallest fractions (micro- and nanosized particles) of plastic 

pollution is more recent and has constantly been growing both among scientists and the society 

(GESAMP 2016). Microplastics (<5 mm synthetic polymer particles, hereafter referred to as MPs) form 

an important  component  of micro-sized litter and are widespread in marine ecosystems reaching from 

the Arctic to the tropics (Obbard et al. 2014, Ivar do Sul et al. 2014), and from the sea surface to deep 

ocean floors (Moore et al. 2001, Van Cauwenberghe et al. 2013, Woodall et al. 2014, Setälä et al. 2016a). 

MPs are classified primary when originally manufactured to small size and secondary if fragmented from 

larger plastic items (GESAMP 2016). Due to the ongoing weathering of plastics in the marine 

environment, there is an enormous variety in size, shape, color and polymer type among the secondary 

marine MPs, since they can originate from the breakdown of any larger plastic item. 

  

Due to the small size and ubiquitous distribution of MPs in the marine environment, they are available to 

various organisms in both pelagic and benthic habitats (Foekema et al. 2013, Mathalon & Hill 2014). 

Numerous studies have documented the uptake of primary MPs by zooplankton (Cole et al. 2013, Setälä 

et al. 2014), bivalves and other macro-sized invertebrates (Browne et al. 2008, Graham & Thompson 

2009, Setälä et al. 2016b, Gray & Weinstein 2017), as well as fish (Rochman et al. 2013, Batel et al. 

2016) in laboratory settings. Such experimental exposure studies have also shed light on the impacts of 

ingested MPs on various organisms suggesting that they can cause both physical and chemical harm (von 

Moos et al. 2012, Rochman et al. 2013, Au et al. 2015), and even acute mortality (Gray & Weinstein 

2017). 
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However, the results of experimental laboratory studies should not be directly applied to natural 

conditions. When conducting environmentally relevant experimental research on the effects of MP 

ingestion to marine organisms and food webs, there are four primary variables that should be addressed: 

the concentration, size, shape and polymer type of the particles. There seems to be a mismatch between 

the MPs present in the environment and MPs used in laboratory experiments since most experiments have 

been run with MP concentrations higher than those commonly found in the environment (Phuong et al. 

2016). Most studies have also used virgin particles of uniform size and shape that fail to accurately 

represent the conditions in the field. This inconsistency is likely to influence our understanding of the 

marine MP problem. 

  

To fully address the potential effects of MPs in the marine environment, environmentally relevant 

concentrations, size, shape and type of the particles should be met. With our experimental setup we firstly 

aim to monitor the ingestion of secondary MPs of different polymer materials, sizes and shapes, and 

secondly, to observe other mechanical harm (entanglement) of MPs to the animals. We demonstrate that 

secondary MPs within the feeding range of the experimental animals, common small predatory species in 

the Baltic Sea, do not represent a significant proportion of their diet even when the animals are exposed to 

elevated MP concentrations. The outcome of this study is discussed in a wider perspective taking into 

account the present knowledge gaps that relate to the concentration and distribution of MPs in different 

marine environments with emphasis on the Baltic Sea. 

  

2.     Material and Methods 

  

To study the ingestion of and entanglement to secondary MPs, small-scale mesocosm experiments were 

carried out in June 2016 and 2017. Two sets of experiments were performed. First trials were conducted 

with littoral mysids (Praunus sp.) and three-spined sticklebacks (Gasterosteus aculeatus) to study the 

potential ingestion of small fragments of used ketchup bottles made of polyethylene terephthalate (PET). 

Further experiments were conducted with pelagic mysid shrimps (Mysis relicta) to compare if the 

ingestion of secondary fragments made of polyethylene terephthalate (PET) bottles and toy bricks made 
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of  acrylonitrile butadiene styrene (ABS) differ from the ingestion of primary microplastic beads made of 

polystyrene  (PS). 

  

2.1 Secondary plastic fragments 

Two types of secondary plastic fragments made of PET were produced from red used ketchup bottles and 

green used soft drink bottles. The targeted size range of the fragments (200–500 µm) corresponds well to 

the size of local mesozooplankton, which are fed upon by higher trophic level invertebrates and fish of 

the northern Baltic Sea (e.g. Viherluoto & Viitasalo 2001a). Both types of PET bottles were cleaned with 

tap water, rinsed with Milli-Q water and grinded. Although the post-consumer PET is already aged during 

use, the PET was further weathered with mild heating (30–40 °C) and hydrated with Milli-Q water during 

the grinding process (1–1.5 h) to mimic their weathering state in the environment. The material was 

sieved to the size fraction of 200–500 µm, although later inspection of the produced fractions revealed 

that there were also longer particles, up to 1500 µm that went through the sieves. To estimate the number 

of particles for the experimental additions, the mass corresponding to approximately 1000 particles was 

estimated by weighing 20 replicates with a known number of particles. The average estimated mass for 

the 1000 PET particles was 11.21 mg (± 0.03) and 12.15 (± 0.02), respectively for red and green particles 

(Mettler Toledo MX5 scale; d = 1 µg). For each mesocosm experiment, adjusted weight of MPs was 

added to correspond to concentration of 250 particles L-1. 

The third type of secondary MPs was produced by grinding toy bricks with a metallic 

kitchen grater. The produced irregular orange ABS fragments were gently washed with tap water and 

sieved to obtain a size fraction of 100–200 µm, although later inspection of the produced fragments 

revealed that also with ABS there were longer particles, up to 1000 µm that went through the sieves. The 

MPs were stored in a glass bottle with MQ water. The concentration of MPs in the solution was 

determined by counting the fragments in five subsamples with a total volume of 50 µL (Leica 

MZ7.5,  0.63–5.0× magnification). 

  

2.2 Collection of study animals and experimental setup 
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The animals used in the study were common macrozooplankton (mysid shrimps) and fish (three-spined 

stickleback) species of the study region. For the first set of trials littoral mysids and sticklebacks were 

collected in the vicinity of Tvärminne Zoological Station (University of Helsinki, Finland) (59º 49' N, 23º 

17' E), western Gulf of Finland, northern Baltic Sea one day before the start of the experiment. Mysid 

shrimps (Praunus spp.) were collected with hand-nets, and three-spined sticklebacks (Gasterosteus 

aculeatus) were caught using a beach seine. Zooplankton prey was collected with a 100 µm plankton net 

with a cod end. For the second set of trials mysids (Mysis relicta) and their zooplankton prey were 

collected from the Bothnian Sea, northern Baltic Sea (station SR5, 61°05.00', 19°34.78', depth 126 m) 

with a 100 µm zooplankton net with a closed cod end with net hauls from the bottom to the surface. After 

capture, all animals were transferred to a temperature controlled room, and allowed to acclimate 

overnight to experimental conditions mimicking in situ conditions (for the first set littoral animals: 15 ͒C, 

16:8h light:dark regime, gentle aeration, ambient zooplankton community, for the second set pelagic 

mysids: 5 ͒C, darkness, gentle aeration, ambient zooplankton community). 

  

The first set of experiments was carried out in 4 L aquaria in the same climate controlled facility. In total 

36 aquaria were prepared, consisting of 18 experimental units and 18 control units (Table 1). Before the 

addition of the study organisms, all aquaria were filled with 2 L of <10 µm filtered seawater. All units 

received the same concentration of mesozooplankton community (final concentration: 50 adult copepods 

L-1). After 1 h of acclimation, the experiment was started by adding one type of secondary plastic 

fragments (ketchup bottle, PET) to the experimental units. For each treatment unit, approximately 1000 

plastic particles was added, thus providing an average concentration of 250 particles L-1. Although, it 

should be noted that the actual experimental MP concentrations in the aquaria were slightly lower as 

some of the particles remained floating due to the surface tension. 

  

For the second set of trials three different types of plastic particles of different size and shape were used: 

green secondary post-consumer PET (200–1500 µm), secondary orange ABS fragments (>100µm), and 

primary microplastics; fluorescent PS microbeads (90 µm) purchased from the manufacturer 

(Polysciences). Four experimental treatment waters were prepared mixing particles with filtered (0.8 µm) 
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seawater: one for each particle type and one mixture containing all particle types. The total plastic particle 

concentration in each treatment was adjusted to a concentration of 250 particles L-1 as in the first 

experiment. Four replicates of each treatment were prepared and four controls. Experimental glass bottles 

(volume 1.17 L) were filled to 1 L volume, and a mixture of the on-site collected zooplankton (final 

concentration 25 ind. L-1) and ambient phytoplankton community (dominated by centric diatoms and 

dinoflagellates) was added as prey for the mysids. One mysid shrimp was gently added to each bottle, 

which were after that filled with filtered seawater and attached to a plankton wheel (0.5 rpm) to keep the 

plastic particles suspended in water. 

  

2.3 Sample processing and microscopy 

After the incubation (1.5 h for fish and 3 h for mysids), animals were collected from the experimental 

units. The fish were immediately terminated by decapitation, and all specimens were measured to the 

nearest mm under a stereomicroscope and carefully checked for visible plastic fragments on their surfaces 

(Wild M4, 5–20× magnification). If fragments were observed, they were removed with tweezers. Mysids 

and three-spined sticklebacks were dissected under a stereomicroscope on clean petri dishes, their 

digestive tracts and stomachs removed and opened under a stereomicroscope (Leica M125, 8–100× 

magnification). The ingestion of plastic particles was visually verified from the dissected mysid guts and 

stomachs (Viherluoto et al. 2000, Setälä et al. 2014, 2016b). Red and green PET and orange ABS 

particles were clearly visible and counted under the stereomicroscope, whereas the fluorescent 

microbeads were counted by using an inverted epifluorescence microscope (Leica DMIRB, 100–200x). A 

melting test was done for red PET particles found from the fish stomachs to verify that the particle was 

plastic, simply by touching the particle with a hot needle. 

  

2.4 Statistical analyses 

A Linear Mixed-effects Model (LMM), fitted by REML (Restricted Maximum Likelihood) estimation, 

was used to test differences in the number of plastic fragments between the predator units (mysid or three-

spined stickleback), and treatment vs. control (presence vs absence of plastic). Predator and treatment 

were used as fixed effects. To test for differences in ingestion between different MPs (green soft drink 
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bottle, toy brick, microbead, mixture and control), and to compare ingestion rates between two 

experiments (ketchup bottles vs. others, please see above) with each other, we applied univariate 

ANOVAs using logged data (log10 x+1), followed by pairwise comparisons. To check for differences in 

particle entanglement (in appendages), we used a non-parametric Kruskal-Wallis ANOVA. All data were 

checked for normality and heterogeneity of variances. The analyses were performed using SPSS 21.0. 

  

3.     Results 

  

All animals were in good condition at the end of the experiments. All mysids and fish did feed on the 

offered zooplankton during the experiment, as prey were visible in their stomachs. Experimental MPs 

were found inside animals of all tested taxa (22 % of the sticklebacks and 23 % of mysids). The 

secondary plastics most commonly present in the stomachs were orange >100 µm ABS fragments: they 

were found in 75% of the mysids when offered as the only MPs and in all mysid individuals when 

provided in mixture with green PET fragments and fluorescent PS beads. The average numbers of 

ingested ABS particles in these treatments were 5.5 ± 6.6 and 3.25 ± 0.6 pieces per individual, 

respectively (Fig. 1). Also red PET fragments from the ketchup bottle (>200 µm) were ingested by 22% 

of the sticklebacks and 8% of the mysids, and the PS beads were ingested by 50 % of the mysids. There 

was a significantly higher number of the ketchup bottle fragments inside mysids and sticklebacks (Linear 

Mixed Model: F1,32=.507 p=0.042) as well as other tested materials in pelagic mysids, compared with the 

control (ANOVA: F4=7.161, p=0.002), but there was no significant difference in the number of ingested 

MPs between the predators (p>0.05). Significantly more MPs were ingested in the treatment where three 

types of MPs were offered to mysids with the ambient zooplankton community compared with the other 

treatments with single MP types (Tamhane Post Hoc test: p=0.013). The highest numbers of ingested MP 

fragments were found from mysids; 15 ABS toy brick fragments were found inside the digestive tract of 

one mysid and six PET ketchup bottle particles inside another individual. 8% of mysids had also ingested 

some fibers, although these were not intentionally offered in the experiments. No soft drink bottle 

fragments (200-1500 µm) were eaten. 
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Plastic fragments were entangled to the swimming appendages of six mysids. The highest number of 

entangled fragments per individual was 3 pieces of green PET fragments. Significantly more of the green 

PET fragments (size on average 400-1000 µm) were found entangled to mysids compared to other 

fragment types (Kruskall-Wallis test: p=0.032). None of the beads (90 µm) were observed attached to the 

swimming appendages.  

  

4.     Discussion 

Conducting environmentally relevant experimental work on ingestion and effects of MPs is challenging 

(Phuong et al. 2016). Evidence of microplastic ingestion by marine organisms comes mostly from 

simplified laboratory experiments which cannot be directly applied to natural conditions. At the moment 

there is still a mismatch between “reality” and laboratory experiments. So far most experiments are run 

with microplastic concentrations higher than those commonly found in the environment, and with virgin 

particles of uniform size and shape that do not represent the actual environmental conditions. This 

inconsistency is likely to affect our interpretations of the study results as there are indications of 

secondary microplastics causing more negative effects on e.g. zooplankton feeding compared to primary 

microplastics (Ogonowski et al. 2016). Our study was able to meet three of the four primary requirements 

we had set for environmentally relevant experiments: size, shape, and polymer type of the used MPs. 

Firstly, we used MPs of various size within the range of 90–1500 µm, which are in the the prey size 

category of our study organisms. Secondly, the shape of these particles was irregular, as secondary 

fragments usually are. Thirdly, we used polymer types which are commonly found in marine 

environments. In addition, the ingestion of these secondary post-consumer MPs and polystyrene beads 

was compared. The secondary plastics used were weathered PET fragments from post-consumer bottles, 

and ABS fragments from used toy bricks. Of these, PET is one of the most common consumer plastics 

used and recycled, and thus environmentally relevant; 3.3 million tonnes of PET plastics were used in 

Europe during the year 2014 (PlasticsEurope 2015). The crushing and shredding processes of recycled 

plastic waste, such as PET, yield to high amounts of secondary MPs that can be distributed into the 

surrounding environment. 
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However, adjusting our fourth requirement, concentration of the experimental MPs was difficult. First of 

all, we realized that the present environmental data do not provide enough information on the 

concentrations of MPs – at least not in all environmentally relevant size fractions (Phuong et al. 2016). In 

overall, recent studies carried out worldwide and in the study area show the heterogeneity of the data on 

MP distribution and abundance: for example the measured MP concentrations in the Baltic Sea water vary 

from 0.1 to over 100 000 particles m-3 depending on the study, sub-region and mesh size used (e.g. Norén 

2007, Gorokhova 2015, Setälä et al. 2016a, Gewert et al. 2017, Railo et al. 2018). Another problem that 

experimental exposure studies have to deal with is the dilemma between exposure level (in this case 

particle concentration) and incubation time. Most likely using low concentrations of MPs requires longer 

exposure time for detecting ingestion. On the other hand, the longer the incubation time, the more likely 

also becomes the egestion of potentially ingested particles. The problems can be overcome by increasing 

the concentration of MPs, but then again it drives the experimental conditions further away from natural 

conditions. We mimiced natural conditions in our experiments as well as possible, however, the problem 

with the concentration partly remained.  

  

We decided to use a concentration, which can be relevant for hot spot areas (Norén 2007), but knew also 

that the commonly observed concentrations for these size fractions are lower in the Baltic Sea (e.g., 

Magnusson & Norén 2011, Magnusson 2014, Setälä et al. 2016a). When exposed to our experimental 

concentration, on average 0.2 ± 0.4 particles were found from three-spined sticklebacks and 0.8 ± 2.3 

from mysid shrimps. These results demonstrate that even when animals are exposed to relatively high MP 

concentrations, the ingestion of an environmentally relevant type of MPs may not be significant. On 

average, the numbers of ingested MPs were relatively low in both studied small predators even though the 

particles corresponded to the size of their natural prey. Compared to previous studies carried out with the 

commonly used small and symmetrical virgin plastic pellets (Browne et al. 2008, Graham & Thompson 

2009, Cole et al. 2013), and even when using the same study organisms (Setälä et al. 2014, Setälä et al. 

2016b), the ingestion of polystyrene beads in this study can be considered negligible. In the case of mysid 

shrimps their feeding mode affects the ingestion efficiency of MPs. Mysids are able to switch between 

raptorial feeding on selected prey of larger size and passive filtration of small particles, such as 
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phytoplankton (Viitasalo & Rautio 1998). This selective raptorial feeding explains the negligible uptake 

of larger sized MPs and even the beads compared to the previously observed efficient MP filtration of 10 

µm PS beads (Setälä et al. 2016b). As the experiments were conducted in filtered seawater, small prey 

were absent; hence, mysids were only feeding raptorially. In relatively low MP concentration this resulted 

in a low number of ingested particles. 

 

Mysid shrimps and three-spined sticklebacks are known to actively select their prey (Visser 1982, 

Ibrahim & Huntingford 1989, Viherluoto & Viitasalo 2001a) and were probably able to select 

mesozooplankton over MP fragments. Size-selective feeding may also explain why ABS fragments of a 

certain size fraction (100–200 µm) were selected over other sizes (90 and over 500 µm) of MPs in the 

given mixtures. The mysids utilised in the experiments were of the size (~1.5 cm) which feeds readily on 

zooplankton prey of over 150 µm, mostly cladocerans and copepods (Viherluoto & Viitasalo 2001a). The 

color of the offered particles (orange ABS, green and red PET, yellow PS) did not play a significant role 

in the prey selection, as mysids are shown to locate their prey by mechano-reception and not based on 

visual signals (Viherluoto & Viitasalo 2001b). Most probably mysids have encountered the particles in 

the experimental water by accident, captured them and decided based on the size of the particle whether 

to ingest or to reject it.  

 

Besides affecting the feeding mode and therefore ingestion probability of a particle, the size and shape of 

the MPs seem also to affect the entanglement to these particles. Our results show that MPs can be trapped 

in the appendages of mysids, and that most of the entangled particles were the largest filamentous 

fragments made of a soft drink bottle (200–1500 µm, PET). It is possible that mysids tried to reject these 

particles after capture as too large for ingestion without success. These results indicate that different-sized 

particles in the environment represent different pathways for MP exposure and impacts even in just one 

organism: in case of mysid shrimps, smaller particles are more probable to get ingested whereas larger, 

filamentous particles may more easily lead to entanglement. Entanglement to MPs may cause nuisance 

for the animals via hampered swimming, filtering, or prey capture as shown earlier for copepods (Cole et 

al. 2011). 
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The MP content of 355 three-spined sticklebacks collected from different open sea areas in the northern 

Baltic Sea was recently studied (Budimir et al. 2018), with no evidence of MP ingestion. However in 

another study where three-spined sticklebacks (120 individuals) were collected from coastal sites of the 

northern Baltic Sea, MPs were found from 12.5% of the fish (Zidbeck, 2018). Such observations are 

supported by our experimental results (22% of the sticklebacks ingested MPs). Field studies from other 

regions with various fish species have shown similar results with 2.4–36.5% of the studied fishes having 

ingested plastic particles (Boerger et al. 2010, Foekema et al. 2013, Lusher et al. 2013, Avio et al. 2015, 

Liboiron et al. 2016, Rummel et al. 2016). However, little is known on the consequences of ingestion; 

degraded polymer structures can leach endocrine disrupting, plastic derived chemicals that have a 

potential to disturb the energy metabolism shown with three-spined sticklebacks (Katzenberger 2015), but 

it remains unknown how low numbers of ingested MPs can generate visible negative effects. 

 

The MP load is usually less than two particles on average per fish that have ingested plastic (e.g. 

Foekema et al. 2013, Lusher et al. 2013, Rummel et al. 2016, Budimir et al. 2018). As observed in our 

study, exposure to relatively high concentrations of secondary MPs does not automatically lead to high 

MP ingestion in fish. This is an important take-home message as the majority of experiments which have 

indicated marked ingestion of MPs have worked with primary microplastics only (e.g. Cole et al. 2013, 

Setälä et al. 2014, Batel et al. 2016). Also the importance of fibers, that seem to be the most dominant 

particle shape found from the environment (Browne et al. 2011, Ivar do Sul & Costa, 2014, Waite et al. 

2018), should be acknowledged. In our study, the ingestion of fibers by mysids was as common as the 

ingestion of PET fragments from the ketchup bottles, even though PET fragments were intentionally 

given in relatively high concentrations and the fibers were unintentionally in the experimental units. This 

observation highlights the ubiquitous presence of fibers around us, and the importance of contamination-

preventing practices when handling environmental samples. Our results clearly indicate the need for 

further studies using secondary MPs of environmentally relevant sizes, shapes and types, in 

concentrations as close to natural conditions as possible.  

  

5.     Acknowledgements 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

We want to thank the personnel of the Tvärminne Zoological Station for the great facilities and help, and 

the students on the field course of the experimental plankton ecology for the effective field and laboratory 

work during the first set of trials. Erasmus+ exchange students Tine Bizjak and Tamara Gajst at 

University of Eastern Finland are thanked for post-consumer microplastic production. The experiment 

was performed according to current Finnish legislation on animal welfare, approved by the ethical 

committee of animal experiments according to the §497/2013 legal act and degree. This study (0-class 

experiment) meets the terms of the Animal Care Committee at the County Board. 

  

6.     Funding sources 

This work was supported by the Academy of Finland (no 296169, 276947). Supporting funds were also 

received from the Ministry of Environment (MERIROSKA), the University of Helsinki, and the Walter 

and Andrée de Nottbeck Foundation. Funding sources had no role in preparation of the article, in study 

design in the collection, analysis or interpretation of data, or in the decision to submit the article for 

publication. 

 

7. Declarations of interest: none 

  

There are no conflicts of interest concerning our article.  

 

8. References 

  

Au, S. Y., Bruce, T. F., Bridges, W. C., & Klaine, S. J. (2015). Responses of Hyalella azteca to acute and 

chronic microplastic exposures. Environmental Toxicology and Chemistry, 34(11), 2564–2572. 

  

Avio, C. G., Gorbi, S., & Regoli, F. (2015). Experimental development of a new protocol for extraction 

and characterization of microplastics in fish tissues: First observations in commercial species from 

Adriatic Sea. Marine Environmental Research, 111, 18–26. 

  

Batel, A., Linti, F., Scherer, M., Erdinger, L., & Braunbeck, T. (2016). The transfer of benzo [a] pyrene 

from microplastics to Artemia nauplii and further to zebrafish via a trophic food web experiment–CYP1A 

induction and visual tracking of persistent organic pollutants. Environmental Toxicology and Chemistry, 

35(7), 1656–1666. 

  

Boerger, C. M., Lattin, G. L., Moore, S. L., & Moore, C. J. (2010). Plastic ingestion by planktivorous 

fishes in the North Pacific Central Gyre. Marine Pollution Bulletin, 60(12), 2275–2278. 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Browne, M. A., Dissanayake, A., Galloway, T. S., Lowe, D. M., & Thompson, R. C. (2008). Ingested 

microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). 

Environmental Science & Technology, 42(13), 5026–5031. 

  

Browne, M. A., Crump, P., Niven, S. J., Teuten, E., Tonkin, A., Galloway, T., Thompson, 

R., 2011. Accumulation of microplastic on shorelines worldwide: sources and sinks. Environmental 

Science & Technology, 45, 9175–9179.  

 

Budimir, S., Setälä, O. & Lehtiniemi, M. (2018). Effective and easy to use extraction method shows low 

numbers of microplastics in offshore planktivorous fish from the northern Baltic Sea. Marine Pollution 

Bulletin 127, 586–592. 

  

Cole, M., Lindeque, P., Halsband, C. & Galloway, T.S. (2011). Microplastics as contaminants in the 

marine environment: a review. Marine Pollution Bulletin, 62: 2588-2597. 

  

Cole, M., Lindeque, P., Fileman, E., Halsband, C., Goodhead, R., Moger, J., & Galloway, T. S. (2013). 

Microplastic Ingestion by Zooplankton. Environmental Science & Technology, 47(12), 6646–6655. 

  

Foekema, E. M., De Gruijter, C., Mergia, M. T., van Franeker, J. A., Murk, A. J., & Koelmans, A. A. 

(2013). Plastic in North Sea Fish. Environmental Science & Technology, 47(15), 8818–8824. 

  

GESAMP (2016). Sources, fate and effects of microplastics in the marine environment: part two of a 

global assessment. In P. J. Kershaw & C. M. Rochman (Ed.), (Vol. 93, pp. 220). London: 

IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP Joint Group of Experts on the 

Scientific Aspects of Marine Environmental Protection. 

 

Gewert, B., Ogonowski, M., Barth,  A. & MacLeod, M. (2017). Abundance and composition of near 

surface microplastics and plastic debris in the Stockholm Archipelago, Baltic Sea 

Marine Pollution Bulletin, 120, 292-302. 

  

Gorokhova, E. (2015). Screening for microplastic particles in plankton samples: How to integrate marine 

litter assessment into existing monitoring programs? Marine Pollution Bulletin, 99(1–2), 271–275. 

  

Graham, E. R., & Thompson, J. T. (2009). Deposit- and suspension-feeding sea cucumbers 

(Echinodermata) ingest plastic fragments. Journal of Experimental Marine Biology and Ecology, 368(1), 

22–29. 

 

Gray, A. D. & Weinstein, J. E. (2017). Size‐ and shape‐dependent effects of microplastic particles on 

adult daggerblade grass shrimp (Palaemonetes pugio). Environmental Toxicology, 36(11), 3074-3080. 

DOI 10.1002/etc.3881 

 

Ibrahim, A. A. & Huntingford, F. A. (1989). The role of visual cues in prey selection in three-spined 

sticklebacks (Gasterosteus aculeatus). Ethology, 81, 265–272. doi:10.1111/j.1439-0310.1989.tb00772.x 

  

Ivar do Sul, J. A. & Costa, M. F. (2014). The present and future of microplastic pollution in the marine 

environment. Environmental Pollution, 185, 352–364. 

  

Katzenberger, T. D. (2015). Assessing the biological effects of exposure to microplastics in the three-

spined Stickleback (Gasterosteus aculeatus) (Linnaeus 1758). PhD Thesis, University of York. p. 255. 

  

Laist, D. W. (1987). Overview of the biological effects of lost and discarded plastic debris in the marine 

environment. Marine Pollution Bulletin, 18(6), 319–326. 

  

Liboiron, M., Liboiron, F., Wells, E., Richárd, N., Zahara, A., Mather, C., Bradshaw, H. & Murichi J. 

(2016). Low Plastic Ingestion Rate in Atlantic Cod (Gadus Morhua) From Newfoundland Destined for 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Human Consumption Collected Through Citizen Science Methods. Marine Pollution Bulletin, 113(1-2), 

428-437. 

 

Lusher, A. L., McHugh, M., & Thompson, R. C. (2013). Occurrence of microplastics in the 

gastrointestinal tract of pelagic and demersal fish from the English Channel. Marine Pollution Bulletin, 

67(1–2), 94–99. 

  

Magnusson, K. & Norén, F. (2011). Microscopic litter in the sea - development of a monitoring method 

(in Swedish: Mikroskopiskt skräp i havet - metodutveckling för miljöövervakning). Rapport till 

Naturvårdsverket, Swedish Environmental Protection Agency: 22. 

  

Magnusson, K. (2014). Microlitter and other microscopic anthropogenic particles in the sea around 

Rauma and Turku. Finland. IVL reports. Report no. U4645. February 2014. 18 pp. 

  

Mathalon, A., & Hill, P. (2014). Microplastic fibers in the intertidal ecosystem surrounding Halifax 

Harbor, Nova Scotia. Marine Pollution Bulletin, 81(1), 69–79. 

 

Moore, C. J., Moore, S. L., Leecaster, M. K., & Weisberg, S. B. (2001). A Comparison of Plastic and 

Plankton in the North Pacific Central Gyre. Marine Pollution Bulletin, 42(12), 1297–1300. 

  

Norén, F. (2007). Small Plastic Particles in Coastal Swedish Waters. N-Research report, commissioned 

by KIMO, Sweden. 11 pp. 

  

Obbard, R. W., Sadri, S., Wong, Y. Q., Khitun, A. A., Baker, I., & Thompson, R. C. (2014). Global 

warming releases microplastic legacy frozen in Arctic Sea ice. Earth's Future, 2(6), 315–320. 

 

Ogonowski, M., Schür, C., Jarsén, Å. & Gorokhova, E. (2016). The Effects of Natural and Anthropogenic 

Microparticles on Individual Fitness in Daphnia magna. PLoS ONE 11(5): e0155063. 

doi:10.1371/journal.pone.0155063 

 

Phuong, N. N., Zalouk-Vergnoux, A., Poirier, L., Kamari, A., Châtel, A., Mouneyrac, C., & Lagarde, F. 

(2016). Is there any consistency between the microplastics found in the field and those used in laboratory 

experiments? Environmental Pollution, 211, 111–123. 

  

PlasticsEurope. (2015). Plastics - the Facts 2015.   Retrieved 18.8. 2017 from 

http://www.plasticseurope.org/Document/plastics---the-facts-2015.aspx?Page=DOCUMENT&FolID=2 

 

PlasticsEurope. (2017). Plastics - the Facts 2017. Retrieved 16.4.2018 from 

https://www.plasticseurope.org/application/files/5715/1717/4180/Plastics_the_facts_2017_FINAL_for_w

ebsite_one_page.pdf  

  

Railo, S., Talvitie, J., Setälä, O., Koistinen, A., Lehtiniemi, M. (in press). Application of an enzyme 

digestion method reveals microlitter in Mytilus trossulus at a wastewater discharge area. Marine Pollution 

Bulletin. 

 

Rochman, C. M., Hoh, E., Kurobe, T., & Teh, S. J. (2013). Ingested plastic transfers hazardous chemicals 

to fish and induces hepatic stress. Scientific Reports, 3, 3263. doi: 10.1038/srep03263 

 

Rummel, C. D., Löder, M. G. J., Fricke, N. F., Lang, T., Griebeler, E.-M., Janke, M., & Gerdts, G. 

(2016). Plastic ingestion by pelagic and demersal fish from the North Sea and Baltic Sea. Marine 

Pollution Bulletin, 102(1), 134–141. 

  

Setälä, O., Fleming-Lehtinen, V., & Lehtiniemi, M. (2014). Ingestion and transfer of microplastics in the 

planktonic food web. Environmental Pollution, 185, 77–83. 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Setälä, O., Magnusson, K., Lehtiniemi, M., & Norén, F. (2016a). Distribution and abundance of surface 

water microlitter in the Baltic Sea: A comparison of two sampling methods. Marine Pollution Bulletin, 

110 (1), 177–183. 

  

Setälä, O., Norkko, J., & Lehtiniemi, M. (2016b). Feeding type affects microplastic ingestion in a coastal 

invertebrate community. Marine Pollution Bulletin, 102(1), 95–101. 

  

UNEP (2016). Marine plastic debris and microplastics – Global lessons and research to inspire action and 

guide policy change. Nairobi: United Nations Environment Programme. 

  

Van Cauwenberghe, L., Vanreusel, A., Mees, J., & Janssen, C. R. (2013). Microplastic pollution in deep-

sea sediments. Environmental Pollution, 182, 495–499. 

 

Viherluoto, M., Kuosa, H., Flinkman, J. & Viitasalo, M. (2000). Food utilisation of pelagic mysids, Mysis 

mixta and M. relicta, during their growing season in the northern Baltic Sea. Marine Biology 136(3). 553-

559.  

 

Viherluoto, M. & Viitasalo, M. (2001a). Temporal variability in functional responses and prey selectivity 

of the pelagic mysid, Mysis mixta, in natural prey assemblages. Marine Biology, 138, 575–583. 

 

Viherluoto, M. & Viitasalo, M. (2001b). Effect of light on the feeding rates of pelagic and littoral mysid 

shrimps: a trade-off between feeding success and predation avoidance. Journal Experimental Marine 

Biology and Ecology 261(2), 237-244. 

 

Viitasalo, M. & Rautio, M. (1998). Zooplanktivory by Praunus flexuosus (Crustacea: Mysidacea): 

functional responses and prey selection in relation to prey escape responses. Marine Ecology Progress 

Series 174, 77-87. 

  

Visser, M. (1982). Prey selection by the three-spined stickleback (Gasterosteus aculeatus L.). Oecologia, 

55, 395. doi:10.1007/BF003769 

  

von Moos, N., Burkhardt-Holm, P., & Köhler, A. (2012). Uptake and Effects of Microplastics on Cells 

and Tissue of the Blue Mussel Mytilus edulis L. after an Experimental Exposure. Environmental Science 

& Technology, 46(20), 11327–11335. 

  

Waite, H. R., Donnelly, M. J. & Walters, L. J.  (2018). Quantity and types of microplastics in the organic 

tissues of the eastern oyster Crassostrea virginica and Atlantic mud crab Panopeus herbstii from a 

Florida estuary. Marine Pollution Pollution. 129(1), 179-185. 

 

Woodall, L. C., Sanchez-Vidal, A., Canals, M., Paterson, G. L. J., Coppock, R., Sleight, V., Calafat, A., 

Rogers, A. D., Narayanaswamy, B. E., & Thompson, R. C. (2014). The deep sea is a major sink for 

microplastic debris. Royal Society Open Science, 1(4), 140317. 

 

Zidbeck, E. (2018). Microplastic ingestion by coastal fish in Finland (in Finnish). Master’s thesis, 

University of Helsinki, pp. 64 (in press). 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

Table 1. Experimental set-ups. The studied organisms (numbers and size) and incubation times. In the 

first (1.) set of trials the tested MPs were fragmented ketchup bottles (PET), in the second (2.) set of trials 

they were fragmented soft drink bottles (PET), toy bricks (ABS) and primary beads (PS). All MPs were 

offered in 250 particle L-1 concentration. In the mixture treatment the total MP concentration was 250 

particle L-1. The number of controls was 9 in the 1. set of trials per tested animal and 4 in the 2. set of 

trials. 

  

 Set of trials and 

treatments 

Number of 

replicates 

Number of 

animals per 

unit 

Mean size of 

the animals 

(cm) ± SD 

Incubation 

time (h) 

Praunus spp. 1.  

Ketchup bottles (PET) 

9 4 1.6 ± 0.2 3 

Gasterosteus 

aculeatus 

1.  

Ketchup bottles (PET) 

9 1 5.6 ± 0.5 1.5 

Mysis relicta 2. 

Soft drink bottles (PET) 

4 1 1.7 ± 0.2 3 

Mysis relicta 2. 

Toy bricks (ABS) 

4 1 1.7 ± 0.1 3 

Mysis relicta 2. 

Beads (PS) 

-Mixture of all plastic 

types 

4 1 1.7 ± 0.1 3 

Mysis relicta 2. 

Mixture of all plastic 

types (soft drink bottle, 

toy brick, bead) 

4 1 1.6 ± 0.2 3 

  

 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Figure legends 

  

Figure 1. The number (average + standard deviation) of primary (PS beads, 90 µm) and secondary 

microplastics (ABS fragments of toy bricks >100 µm, ketchup bottle PET >200 µm) in the intestines of 

three-spined sticklebacks and mysid shrimps after the experimental incubations. The numbers above the 

bars show the percentage of animals with MPs. Soft drink bottle fragments were not eaten thus they are 

not included in the figure. 

 

Figure 2. The number (average + standard deviation) of secondary microplastics (ABS fragments of toy 

bricks >100 µm, ketchup bottle PET >200 µm, soft drink bottle PET >200 µm) entangled in the 

appendages of mysid shrimps. The numbers above the bars show the percentage of animals with MPs. 
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Highlights 

 

 Naturally occurring microplastics were used in the experiments 

 Planktivores were exposed to secondary microplastics (PET, ABS) 

 Apparent ingestion of plastic fragments was low 

 Entanglement to mysids was observed 
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