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Preface

VarDial is a well-established series of workshops held annually and co-located with top-tier
international NLP conferences. Previous editions of VarDial were VarDial’2014, which was co-
located with COLING’2014, LT4VarDial’2015, which was held together with RANLP’2015, and finally
VarDial’2016 co-located with COLING’2016. The great interest of the community has made possible the
fourth edition of the Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial’2017),
co-located with EACL’2017 in Valencia, Spain.

The VarDial series has attracted researchers working on a wide range of topics related to linguistic
variation such as building and adapting language resources for language varieties and dialects, creating
language technology and applications that make use of language closeness, and exploiting existing
resources in a related language or a language variety.

We believe that this is a very timely series of workshops, as research in language variation is much
needed in today’s multi-lingual world, where several closely-related languages, language varieties, and
dialects are in daily use, not only as spoken colloquial language but also in written media, e.g., in SMS,
chats, and social networks. Language resources for these varieties and dialects are sparse and extending
them could be very labor-intensive. Yet, these efforts can often be reduced by making use of pre-existing
resources and tools for related, resource-richer languages.

As part of the workshop, we organized the first VarDial evaluation campaign with four shared tasks:
Discriminating between Similar Languages (DSL), Arabic Dialect Identification (ADI), German Dialect
Identification (GDI), and Cross-Lingual Parsing (CLP). The campaign received a very positive response
from the community. A total of 28 teams subscribed to participate in the four shared tasks, 19 of them
submitted official runs, and 15 of the latter also wrote system description papers, which appear in this
volume along with a shared task report by the task organizers.

We further received 14 regular VarDial workshop papers, and we selected nine of them to be presented
at the workshop. The papers that appear in this volume reflect the wide range of interests related to
language variation. We include papers applying NLP tools to perform dialect analysis, to study mutual
intelligibility and diatopic variation in historical corpora, as well as core NLP tasks and applications
such as dialect and similar language identification, adaptation of POS taggers, and machine translation
between similar languages and dialects.

We take the opportunity to thank the VarDial program committee and the additional reviewers for their
thorough reviews. We further thank the VarDial Evaluation Campaign participants, as well as the
participants with regular research papers, for the valuable feedback and discussions.

The organizers: Preslav Nakov, Marcos Zampieri, Nikola Ljubešić, Jörg Tiedemann, Shervin Malmasi,
and Ahmed Ali
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Nikola Ljubešić (Jožef Stefan Institute, Slovenia, and University of Zagreb, Croatia)
Jörg Tiedemann (University of Helsinki, Finland)
Ahmed Ali (Qatar Computing Research Institute, HBKU, Qatar)
Yves Scherrer (University of Geneva, Switzerland)
Noëmi Aepli (University of Zürich, Switzerland)

Programme Committee
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5Jožef Stefan Institute, Slovenia, 6Qatar Computing Research Institute, HBKU, Qatar
7University of Helsinki, Finland, 8University of Geneva, Switzerland

9University of Zurich, Switzerland

Abstract

We present the results of the VarDial
Evaluation Campaign on Natural Lan-
guage Processing (NLP) for Similar Lan-
guages, Varieties and Dialects, which we
organized as part of the fourth edition
of the VarDial workshop at EACL’2017.
This year, we included four shared
tasks: Discriminating between Similar
Languages (DSL), Arabic Dialect Identi-
fication (ADI), German Dialect Identifica-
tion (GDI), and Cross-lingual Dependency
Parsing (CLP). A total of 19 teams submit-
ted runs across the four tasks, and 15 of
them wrote system description papers.

1 Introduction

The VarDial Evaluation Campaign targets Natu-
ral Language Processing (NLP) for similar lan-
guages, varieties and dialects, and it was organized
within the scope of the VarDial’2017 workshop.
The campaign is an evolution of the DSL shared
tasks, which were organized as part of the previ-
ous editions of the VarDial workshop (Zampieri et
al., 2014; Zampieri et al., 2015b; Malmasi et al.,
2016), and which have focused on the discrimina-
tion of similar languages and language varieties as
well as on dialect identification.

Since the first DSL challenge, we have observed
a substantial increase in the interest from the com-
munity. The 2016 edition of the DSL task, which
included a sub-task on Arabic Dialect Identifica-
tion, attracted a notably larger number of par-
ticipants compared to the previous two editions.
Thus, we decided to further extend the scope of
the shared task, turning it into a more comprehen-
sive evaluation campaign with several independent
shared tasks, which included but were not limited
to dialect and similar language identification.

1.1 Shared Tasks

The VarDial Evaluation Campaign 2017 included
four tasks:

Discriminating between Similar Languages
(DSL): This was the fourth iteration of the mul-
tilingual similar language and language variety
identification task. The goal was to recognize the
language of short excerpts of texts extracted from
newspapers. This included several similar lan-
guages and language varieties: Bosnian, Croatian,
and Serbian; Malay and Indonesian; Persian and
Dari; Canadian and Hexagonal French; Brazilian
and European Portuguese; Argentinian, Peninsu-
lar, and Peruvian Spanish.

Arabic Dialect Identification (ADI): This was
the second iteration of the ADI task, which was
organized as a sub-task of the DSL task in 2016
(Malmasi et al., 2016). The goal was to recog-
nize the dialect of speech transcripts along with
acoustic features. The following Arabic dialects
were included: Egyptian, Gulf, Levantine, North-
African, and Modern Standard Arabic (MSA).

German Dialect Identification (GDI): This
task included Swiss German dialects from four
areas: Basel, Bern, Lucerne, and Zurich. We
provided manually annotated speech transcripts
for all dialect areas; unlike ADI, we provided no
acoustic data for this task.

Cross-lingual Dependency Parsing (CLP):
The task is to parse some target language (TL)
without annotated training data for that language
but given annotated data for a closely related-
language(s), called source language (SL). We in-
cluded the following language pairs: Croatian
(TL) – Slovenian (SL), Slovak (TL) – Czech (SL),
Norwegian (TL) – Danish, and Norwegian (TL)
– Swedish (SL). Note that the latter two pairs in-
clude a triple of related languages.

1



Team DSL ADI GDI CLP System Description Paper
ahaqst X X (Hanani et al., 2017)
bayesline X –
CECL X X (Bestgen, 2017)
cic ualg X (Gómez-Adorno et al., 2017)
Citius Ixa Imaxin X X (Gamallo et al., 2017)
CLUZH X (Clematide and Makarov, 2017)
CUNI X (Rosa et al., 2017)
deepCybErNet X X X –
gauge X –
Helsinki-CLP X (Tiedemann, 2017)
MAZA (ADI) X (Malmasi and Zampieri, 2017a)
MAZA (GDI) X (Malmasi and Zampieri, 2017b)
mm lct X (Medvedeva et al., 2017)
qcri mit X X –
SUKI X (Jauhiainen et al., 2017)
timeflow X (Criscuolo and Aluisio, 2017)
tubasfs X X X X (Çöltekin and Rama, 2017)
unibuckernel X X (Ionescu and Butnaru, 2017)
XAC Bayesline X X (Barbaresi, 2017)
Total 11 6 10 3 15

Table 1: The teams that participated in the VarDial’2017 Evaluation Campaign.

1.2 Participating Teams
The VarDial Evaluation Campaign received a pos-
itive response from the research community: a to-
tal of 26 teams enrolled to participate, 19 teams
eventually submitted systems, and 15 of them
wrote system description papers. Table 1 lists the
participating teams and the shared tasks they took
part in.1 We can see that each task received multi-
ple submissions, ranging from 3 for CLP to 11 for
DSL. Below we describe the individual tasks.

2 Discriminating between Similar
Languages (DSL)

Discriminating between similar languages is one
of the main challenges faced by language identifi-
cation systems. Since 2014 the DSL shared task
has been organized every year providing schol-
ars and developers with an opportunity to evaluate
language identification methods using a standard
dataset and evaluation methodology. Albeit re-
lated to other shared tasks such as the 2014 Tweet-
LID challenge (Zubiaga et al., 2014) and the 2016
shared task on Geolocation Prediction (Han et al.,
2016), the DSL shared task continues to be the
only shared task focusing on the discrimination
between similar languages and language varieties.

1The MAZA team submitted two separate papers: one for
each task they participated in.

The fourth edition of the DSL shared task was
motivated by the success of the previous editions
and by the growing interest of the research com-
munity in the identification of dialects and simi-
lar languages, as evidenced by recent publications
(Xu et al., 2016; Radford and Gallé, 2016; Castro
et al., 2016). We also saw the number of system
submissions to the DSL challenge grow from 8 in
2014 to 10 in 2015 and then to 17 in 2016.2

The 2015 and the 2016 editions of the DSL task
focused on one under-explored aspect of the task
in order to keep it interesting and challenging.

In 2015 (Zampieri et al., 2015b), we investi-
gated the extent to which named entities influ-
enced system performance. Obviously, newspa-
pers from Brazil mention Rio de Janeiro more
often than those in Portugal do, and Argentinian
newspapers talk more about Buenos Aires than
those in Spain. In order to investigate this aspect,
in 2015 we provided participants with two test
sets, one containing the original unmodified texts
(test set A) and another one containing texts with
capitalized named entities substituted by place-
holders (test set B). Eventually, we observed that
the impact of named entities was not as sizable as
we had anticipated.

2This number does not include the submissions to the Ara-
bic Dialect Identification subtask of DSL in 2016.
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At DSL 2015, the four best systems, MAC
(Malmasi and Dras, 2015b), MMS (Zampieri et
al., 2015a), NRC (Goutte and Léger, 2015), and
SUKI (Jauhiainen et al., 2015) performed simi-
larly on test set B compared to test set A: in the
closed training setting, where the systems were
trained only using the training data provided by
the DSL organizers, their accuracy dropped from
95.54 to 94.01, from 95.24 to 92.78, from 95.24 to
93.01, and from 94.67 to 93.02, respectively.3

Finally, inspired by recent work on language
identification of user-generated content (Ljubešić
and Kranjčić, 2015; Abainia et al., 2016), in the
DSL 2016 task (Malmasi et al., 2016), we looked
at how systems perform on discriminating be-
tween similar languages and language varieties
across different domains, an aspect highlighted by
Lui and Cook (2013) and Lui (2014). For this pur-
pose, we provided an out-of-domain test set con-
taining manually annotated microblog posts writ-
ten in Bosnian, Croatian, Serbian, Brazilian and
European Portuguese.

2.1 Task Setup

We applied the methodology of Tan et al. (2014)
in order to compile version 4.0 of the DSL Cor-
pus Collection (DSLCC), which contains short ex-
cerpts of journalistic texts; we describe the corpus
in detail in Section 2.2 below.

We first released the training and the develop-
ment datasets, in which all instances were labeled
with the correct language or language variety. One
month later, the participants received an unlabeled
test set, which they had to annotate with their sys-
tem’s prediction. The participating teams were al-
lowed to use the DSLCC v4.0 corpus or any other
dataset, and we had two types of training condi-
tions.

• Closed Training: using only the corpora
provided by the organizers (DSLCC v4.0);

• Open Training: using any additional data in-
cluding previous versions of the DSLCC cor-
pus.

For each kind of training, we allowed a maximum
of three runs per team, i.e., six in total.

3For a comprehensive evaluation of the 2014 and 2015
editions of the DSL shared task see (Goutte et al., 2016).

2.2 Dataset

The DSLCC v4.04 contains 22,000 short excerpts
of news texts for each language or language vari-
ety divided into 20,000 texts for training (18,000
texts) and development (2,000 texts), and 2,000
texts for testing. It contains a total of 8.6 million
tokens for training and over half a million tokens
for testing. The fourteen languages included in the
v4.0 grouped by similarity are Bosnian, Croatian,
and Serbian; Malay and Indonesian; Persian and
Dari; Canadian and Hexagonal French; Brazilian
and European Portuguese; Argentinian, Peninsu-
lar, and Peruvian Spanish. In Table 2, we present
the number of instances and the total number of
documents and tokens we released for each lan-
guage or language variety.

As indicated in Table 2, some languages were
available in all previous versions of the DSLCC
corpus (e.g., Bosnian, Croatian, and Serbian) or
only in some of them (e.g., Canadian and Hexago-
nal French). As v4.0 is comparable to the previous
versions of the DSLCC, this provided teams with
more training data to use in the open training track.

Note that Peruvian Spanish, Persian, and Dari
appear for the first time in the DSL task. However,
they were previously included in language identi-
fication experiments: Peruvian Spanish was used
in four-way classification together with texts from
Argentina, Mexico, and Spain, for which an F1 of
0.876 was reported (Zampieri et al., ), and there
were previous experiments in discriminating be-
tween Persian and Dari, which achieved 0.96 ac-
curacy (Malmasi and Dras, 2015a).

2.3 Participants and Approaches

Twenty teams enrolled to participate in this edition
of the DSL shared task and eleven of them sub-
mitted results. This represents a slight decrease in
participation compared to the 2016 edition, which
followed an uphill trend in participation since the
first DSL organized in 2014. In our opinion, this
slight decrease in participation does not represent
less interest of the scientific community in the
topic. Discriminating between similar languages
and language varieties continues to be a vibrant
research topic and the interest of the community is
confirmed by the recent aforementioned publica-
tions (Xu et al., 2016; Radford and Gallé, 2016).

4All versions of the DSLCC dataset are available at
http://ttg.uni-saarland.de/resources/
DSLCC
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Train & Dev. Test Previous DSLCC
Language/Variety Class Instances Tokens Instances Tokens v1.0 v2.0/2.1 v3.0
Bosnian bs 20,000 716,537 1,000 35,756 X X X
Croatian hr 20,000 845,639 1,000 42,774 X X X
Serbian sr 20,000 777,363 1,000 39,003 X X X
Indonesian id 20,000 800,639 1,000 39,954 X X X
Malay my 20,000 591,246 1,000 29,028 X X X
Brazilian Portuguese pt-BR 20,000 907,657 1,000 45,715 X X X
European Portuguese pt-PT 20,000 832,664 1,000 41,689 X X X
Argentine Spanish es-AR 20,000 939,425 1,000 42,392 X X X
Castilian Spanish es-ES 20,000 1,000,235 1,000 50,134 X X X
Peruvian Spanish es-PE 20,000 569,587 1,000 28,097
Canadian French fr-CA 20,000 712,467 1,000 36,121 X
Hexagonal French fr-FR 20,000 871,026 1,000 44,076 X
Persian fa-IR 20,000 824,640 1,000 41,900
Dari fa-AF 20,000 601,025 1,000 30,121
Total 280,000 8,639,459 14,000 546,790

Table 2: DSLCC v4.0: the languages included in the corpus grouped by similarity.

The slight decrease in participation is largely
due to bad timing. Because of EACL-related dead-
lines, DSL 2017 was organized only a few months
after the 2016 edition had finished, and the train-
ing data was released between Christmas and New
Year’s Eve. Moreover, this year the DSL was not
a standalone task,5 and it was part of a larger eval-
uation campaign. This has resulted in participants
splitting between the four tasks we were running
as part of the VarDial Evaluation Campaign. Yet,
the DSL task attracted the highest number of par-
ticipants, both new and returning.

We find a variety of computational approaches
and features used by the participating systems.
Below, we present a brief overview of each sub-
mission, ordered by the weighted F1 score. The
interested reader can find more information about
an individual system in the respective system de-
scription paper, which is referred to in the last col-
umn of Table 1.

• CECL: The system uses a two-step approach
as in (Goutte et al., 2014). The first step
identifies the language group using an SVM
classifier with a linear kernel trained on char-
acter n-grams (1-4) that occur at least 100
times in the dataset weighted by Okapi BM25
(Robertson et al., 1995). The second step dis-
criminates between each language within the
group using a set of SVM classifiers trained

5In 2016 ADI and DSL were organized under the name
DSL shared task, and ADI was run as a sub-task.

on a variety of features such as character n-
grams of various orders, global statistics such
as proportion of capitalized letters, punctua-
tion marks, and spaces, and finally POS tags
modeled as n-grams (1-5) for French, Por-
tuguese, and Spanish obtained by annotating
the corpus using TreeTagger (Schmid, 1994).

• mm lct: This team submitted three runs.
Run 1 (their best) used seven SVM classifiers
in two steps. First, one SVM classifier finds
the language group, and then six individual
SVM classifiers distinguish between the lan-
guages in each group. Run 2 used a linear-
kernel SVM trained using word n-grams (1–
2) and character n-grams (up to 6). Run 3
used a recurrent neural network (RNN).

• XAC Bayesline: This system is a refined
version of the Bayesline system (Tan et al.,
2014), which was based on character n-
grams and a Na”ive Bayes classifier. The sys-
tem followed the work of the system submit-
ted to the DSL 2016 by Barbaresi (2016).

• tubasfs: Following the success of tubasfs at
DSL 2016 (Çöltekin and Rama, 2016), which
was ranked first in the closed training track,
this year’s tubasfs submission used a linear
SVM classifier. The system used both char-
acters and words as features, and carefully
optimized hyperparameters: n-gram size and
margin/regularization parameter for SVM.
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• gauge: This team submitted a total of three
runs. Run 1 used an SVM classifier with
character n-grams (2–6), run 2 (their best
run) used logistic regression trained using
character n-grams (1–6), and run 3 used hard
voting of three systems: SVM, Logistic Re-
gression, and Na”ive Bayes and character n-
grams (2–6) as features.

• cic ualg: This team submitted three runs.
Runs 1 and 2 first predict the language group,
and then discriminate between the languages
within that group. The first step uses an SVM
classifier with a combination of character 3–
5-grams, typed character 3-grams, applying
the character n-gram categories introduced
by Sapkota et al. (2015), and word unigrams
using TF-weighting. The second step uses
the same features and different classifiers:
SVMs + Multinominal Naı̈ve Bayes (MNB)
in run 1, and MNB in run 2 (which works
best). Run 3 uses a single MNB classifier to
discriminate between all fourteen languages.

• SUKI: This team’s submission was based
on the token-based backoff method used in
SUKI’s DSL submission in 2015 (Jauhiainen
et al., 2015) and in 2016 (Jauhiainen et al.,
2016). Run 1 used character 1–8-grams,
and run 2 (their best) used loglike mapping
(Brown, 2014) instead of relative frequen-
cies, together with character 1–7-grams.

• timeflow: This system used a two-step clas-
sifier, as introduced by Goutte et al. (2014);
a similar approach was used by some other
teams. First, they used a Na”ive Bayes clas-
sifier trained on character n-grams to detect
the language group. Then, they distinguished
the language or language variety within the
detected group using Convolutional Neural
Networks (CNNs) with learned word em-
beddings and Multi-Layer Perceptron (MLP)
with TF.IDF vectors.

• Citius Ixa Imaxin: This team was the only
one to participate in both the open and the
closed tracks. Their system was based on
language model perplexity. The best perfor-
mance in the closed training condition was
obtained in run 1, which applied a voting
scheme over 1–3 word n-gram and 5–7 char-
acters n-grams.

• bayesline: This team participated with a
Multinomial Naı̈ve Bayes (MNB) classifier
similar to that of Tan et al. (2014), with no
special parameter tuning, as this system was
initially intended to serve as an intelligent
baseline for the task (but now it has matured
into a competitive system). In their best-
performing run 1, they relied primarily on
character 4-grams as features. The feature
sets they used were selected by a search strat-
egy as proposed in (Scarton et al., 2015).

• deepCybErNet: This team approached the
task using a neural network based on Long
Short-Term Memory (LSTM). Neural net-
works have been successfully applied to sev-
eral NLP tasks in recent years, but the re-
sults of the deepCybErNet team in the DSL
and the GDI tasks in 2017, as well as in
DSL 2016 (Malmasi et al., 2016), suggest
that using neural networks is of limited use
in our limited training data scenario: neural
networks have many parameters to optimize,
which takes a lot of training data, much more
than what we provide here.

2.4 Results

Only one team, Citius Ixa Imaxin, submitted re-
sults to the open training track, achieving 0.9 accu-
racy. As there were no other submissions to com-
pare against, in this section we report and discuss
the results obtained by participants in the closed
training track only.

Table 3 presents the best results obtained by the
participating teams. We rank them based on their
weighted F1 score (weighted by the number of ex-
amples in each class).

Rank Team F1 (weighted)
1 CECL 0.927
2 mm lct 0.925
3 XAC Bayesline 0.925
4 tubasfs 0.925
5 gauge 0.916
6 cic ualg 0.915
7 SUKI 0.910
8 timeflow 0.907
9 Citius Ixa Imaxin 0.902
10 bayesline 0.889
11 deepCybErNet 0.202

Table 3: DSL task: closed submission results.
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The CECL team achieved best performance:
F1=0.927. It is followed by three teams, all
tied with an F1 score of 0.925: namely mm lct,
XAC Bayesline, and tubasfs.

The system description paper of CECL (Best-
gen, 2017) provides some interesting insights
about the DSL task. First, they found out that
BM25 weighting, which was previously applied
to native language identification (NLI) (Wang et
al., 2016), worked better than using TF.IDF. They
further highlighted the similarity between similar
language identification and NLI as evidenced by a
number of entries in the DSL task that are adapta-
tions of systems used for NLI (Goutte et al., 2013;
Gebre et al., 2013; Jarvis et al., 2013).

We observe that the variation in performance
among the top ten teams is less than four percent-
age points. The team ranked last (eleventh) ap-
proached the task using LSTM and achieved an F1
score of 0.202. Unfortunately, they did not sub-
mit a system description paper, and thus we do not
have much detail about their system. However, in
the DSL 2016 task (Malmasi et al., 2016), neural
network-based approaches already proved not to
be very competitive for the task. See (Medvedeva
et al., 2017) for a comparison between the perfor-
mance of an SVM and an RNN approach for the
DSL task.

2.5 Summary

The fourth edition of the DSL shared task al-
lowed us once again to compare a variety of ap-
proaches for the task of discriminating between
similar languages and language varieties using the
same dataset: DSLCC v4.0. Even though previ-
ous versions of the DSLCC were available for use
in an open track condition, all teams with the ex-
ception of Citius Ixa Imaxin chose to compete in
the closed training track only.

The participants took advantage of the experi-
ence acquired in the previous editions of the DSL
task, and in absolute terms achieved the highest
scores among all four editions of the DSL chal-
lenge. CECL achieved 0.927 F1-score and mm lct,
XAC Bayesline, and tubasfs achieved 0.925.

For the reasons discussed in Section 2.3, the
participation in the DSL 2017 was slightly lower
than in the 2016 edition, but it was still higher than
in 2014 and 2015.

3 Arabic Dialect Identification (ADI)

The ADI task was introduced in 2016 (Malmasi
et al., 2016), where it was run as a subtask of the
DSL task. Unlike the DSL task, which is about
text, the ADI task is based on speech transcripts,
as Arabic dialects are mostly used in conversation.
The ADI task asks to discriminate at the utterance
level between five Arabic varieties, namely Mod-
ern Standard Arabic (MSA) and four Arabic di-
alects: Egyptian (EGY), Gulf (GLF), Levantine
(LAV), and North African (NOR).

This year’s edition of the task was motivated by
the success of the 2016 edition and by the growing
interest in dialectal Arabic in general. In 2016,
we provided task participants with input speech
transcripts generated using Arabic Large Vocab-
ulary Speech Recognition (LVCSR) following the
approach in (Ali et al., 2014a), from which we fur-
ther extracted and provided lexical features. This
year, we added a multi-model aspect to the task by
further providing acoustic features.

3.1 Dataset

As we said above, this year we used both speech
transcripts and acoustic features. The speech tran-
scription was generated by a multi-dialect LVCSR
system trained on 1,200+ speech hours for acous-
tic modeling and on 110+ million words for
language modeling; more detail about the sys-
tem, which is the winning system of the Arabic
Multi-Genre Broadcast (MGB-2) challenge, can
be found in (Khurana and Ali, 2016).

For the acoustic features, we released a 400-
dimensional i-vector for each utterance. We ex-
tracted these i-vectors using Bottle Neck Features
(BNF) trained on 60 hours of speech data; see (Ali
et al., 2016) for detail.

The data for the ADI task comes from a multi-
dialectal speech corpus created from high-quality
broadcast, debate and discussion programs from
Al Jazeera, and as such contains a combination of
spontaneous and scripted speech (Wray and Ali,
2015). We collected the training dataset from the
Broadcast News domain in four Arabic dialects
(EGY, LAV, GLF, and NOR) as well as in MSA.
The audio recordings were carried out at 16Khz.
The recordings were then segmented in order to
avoid speaker overlap, also removing any non-
speech parts such as music and background noise;
more detail about the training data can be found
in (Bahari et al., 2014).
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Training Development Testing
Dialect Dialect Ex. Dur. Words Ex. Dur. Words Ex. Dur. Words
Egyptian EGY 3,093 12.4 76 298 2 11.0 302 2.0 11.6
Gulf GLF 2,744 10.0 56 264 2 11.9 250 2.1 12.3
Levantine LAV 2,851 10.3 53 330 2 10.3 334 2.0 10.9
MSA MSA 2183 10.4 69 281 2 13.4 262 1.9 13.0
North African NOR 2,954 10.5 38 351 2 9.9 344 2.1 10.3
Total 13,825 53.6 292 1524 10 56.5 1492 10.1 58.1

Table 4: The ADI data: examples (Ex.) in utterances, duration (Dur.) in hours, and words in 1000s.

Although the test and the development datasets
came from the same broadcast domain, the record-
ing setup was different from the training data. We
downloaded the test and the development data di-
rectly from the high-quality video server for Al
Jazeera (brightcove) over a period between July
2104 and January 2015, as part of QCRI’s Ad-
vanced Transcription Service (QATS) (Ali et al.,
2014b). In addition to the lexical and the acoustic
features, we also released the audio files.6 Table 4
shows some statistics about the ADI training, de-
velopment and testing datasets.

3.2 Participants and Approaches

We received six submissions for the ADI task, all
for the closed training condition. The teams below
are sorted according to their performance on the
test dataset.

• unibuckernel: This team submitted two
runs. Run 1 was a Kernel Ridge Regres-
sion (KRR) classifier trained on the sum of
a blended presence bits kernel based on 3–
5-grams, a blended intersection kernel based
on 3–7-grams, a kernel based on Local Rank
Distance (LRD) with n-grams of 3 to 7 char-
acters, and a quadratic RBF kernel based on
i-vectors. This setup achieved an F1 of 0.642
on the development set, and 0.763 on the
test set. Run 2 was a Kernel Discriminant
Analysis (KDA) classifier trained on the sum
of a blended presence bits kernel using 3–5-
grams, a blended intersection kernel based on
3–7-grams, a kernel based on LRD with 3
to 7 characters, and a quadratic RBF kernel
based on i-vectors. This setup achieved an
F1 of 0.75 on the test set. More detail can be
found in (Ionescu and Butnaru, 2017).

6https://github.com/
Qatar-Computing-Research-Institute/
dialectID/tree/master/data

• MAZA: This team submitted three runs. Run
1 was a voting ensemble (F1=0.72), run 2 was
a mean probability ensemble (F1=0.67), and
run 3 was a meta classifier (F1=0.61). They
used character 1–8-grams, word unigrams,
and i-vectors. More detail about the sys-
tem can be found in (Malmasi and Zampieri,
2017a).

• tubasfs: This team submitted two runs. Run
1 used a linear SVM with words and i-
vectors, achieving an F1 of 0.70. Run 2 only
used word features, which yielded an F1 of
0.57. More detail about the system can be
found in (Çöltekin and Rama, 2017).

• ahaqst: This team submitted three runs. Run
1 used a focal multiclass model to com-
bine the outputs of a word-based SVM mul-
ticlass model, and an i-vector-based SVM
multiclass model, achieving an F1 of 0.63.
Run 2 combined Na”ive Bayes with multi-
nomial distribution, SVM with a Radial Ba-
sis Function (RBF) kernel, logistic regres-
sion, and Random Forests with 300 trees,
achieving an F1 of 0.31. Run 3 combined
five systems, which used WAV files only for
recognizing Arabic dialects, i-Vectors plus
Gaussian Mixture Model-Universal Back-
ground Model (GMM-UBM) plus phonotac-
tic plus GMM tokenization (256 bigrams and
20,148 unigrams), achieving an F1 of 0.59.
More detail about their system can be found
in (Hanani et al., 2017).

• qcri mit: This team submitted three runs.
Run 1 combined (i) normalized scores from
an SVM model trained on Latent Dirichlet
Allocation (LDA) i-vectors (down to a 4-
dimensional vector) with (ii) an SVM clas-
sifier trained on character 1–4-grams, achiev-
ing an F1 score of 0.616. Run 2 combined
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(i) an SVM using LDA with Within-Class
Covariance Normalization (WCCN) i-vector
with (ii) an SVM trained on count-based bag
of character 2–6-grams, achieving an F1 of
0.615. Run 3 combined (i) an SVM model
using LDA with WCCN i-vector (as in Run
2) with (ii) an SVM model trained on count
bag of characters 2–4-grams, which yielded
an F1 of 0.612.

• deepCybErNet: This team submitted two
runs. Run 1 adopted a Bi-LSTM architecture
using the lexical features, and achieved an F1
score of 0.208, while run 2 used the i-vector
features and achieved an F1 of 0.574.

3.3 Results

Table 5 shows the evaluation results for the ADI
task. Note that those participants who had used
the development data for training their models ob-
tained substantial gains, e.g., the winning system
unibuckernel achieved an F1 of 0.763. However,
this same system would have scored only 0.611,
had they trained on the training data only. We at-
tribute this to both the development and the testing
data coming from the recording setup, and that is
why using the i-vectors particularity has helped to
model the channel, not only the dialect.

Rank Team F1 (weighted)
1 unibuckernel 0.763
2 MAZA 0.717
3 tubasfs 0.697
4 ahaqst 0.628
5 qcrimit 0.616
6 deepCybErNet 0.574

Table 5: ADI task: closed submission results.

3.4 Summary

This year’s ADI task was very successful, as for
the first time in VarDial the participants were pro-
vided with acoustic features. Indeed, as we have
seen above, the i-vectors were widely used by the
participating teams. Most participants took advan-
tage of the fact that the development data came
from the same recording setup as the testing data,
which has boosted their results. Moreover, one
team used the raw audio files. In the future, we
plan another iteration of the task, where we would
add phonotactic features and phoneme duration.

4 German Dialect Identification (GDI)

This year, we introduced a new dialectal area,
which focused on German dialects of Switzerland.
Indeed, the German-speaking part of Switzerland
is characterized by the widespread use of dialects
in everyday communication, and by a large num-
ber of different dialects and dialectal areas.

There have been two major approaches to Swiss
German dialect identification in the literature. The
corpus-based approach predicts the dialect of any
text fragment extracted from a corpus (Scher-
rer and Rambow, 2010; Hollenstein and Aepli,
2015). The dialectological approach tries to iden-
tify a small set of distinguishing dialectal features,
which are then elicited interactively from the user
in order to identify his or her dialect (Leemann et
al., 2016). In this task, we adopt a corpus-based
approach, and we develop a new dataset for this.

4.1 Dataset

We extracted the training and the test datasets from
the ArchiMob corpus of Spoken Swiss German
(Samardžić et al., 2016). The current release of
the corpus contains transcriptions of 34 oral his-
tory interviews with informants speaking different
Swiss German dialects.

Each interview was transcribed by one of
four transcribers, using the writing system
“Schwyzertütschi Dialäktschrift” proposed by Di-
eth (1986). The transcription is expected to show
the phonetic properties of the variety, but in a way
that is legible for everybody who is familiar with
the standard German orthography. Although its
objective is to keep track of the pronunciation,
Dieth’s transcription method is orthographic and
partially adapted to the spelling habits in stan-
dard German. Therefore, it does not provide the
same precision and explicitness as phonetic tran-
scription methods do. Moreover, the transcription
choices are dependent on the dialect, the accentu-
ation of the syllables and – to a substantial degree
– also the dialectal background of the transcriber.
Also, the practice of using Dieth’s system changed
over time, so that some transcribers (e.g., tran-
scriber P in Table 6) made more distinctions con-
cerning the openness of vowels than others. The
transcriptions exclusively used lowercase. Note
that Dieth’s system is hardly known by laymen,
so that Swiss German data extracted from social
media would look fairly different from our tran-
scripts.
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Dialect Doc. Utter. Trans. Dist.
BE 1142 794 P <5

1170 872 P 45
1215 2,223 M 13
1121* 906 M <5

BS 1044 952 A <5
1073 1,407 P 23
1075 1,052 P <5
1263* 939 A <5

LU 1007 815 P 11
1195 1,070 P 13
1261 1,329 P <5
1008* 916 A 5

ZH 1082 842 M <5
1087 933 M <5
1143 759 P 6
1244 728 M 19
1270 702 P 6
1225* 877 M <5

Table 6: ArchiMob interviews used for the GDI
task. Doc. = document identifier (starred iden-
tifiers refer to the test set), Utter. = number of
utterances included in the GDI dataset, Trans. =
identifier of the transcriber, Dist. = distance (in
kilometers) from the core city of the dialect area.

We have been able to identify four dialectal
areas for which sufficient amounts of data were
available and which were known to be distinct
enough. The selected dialect areas correspond to
four large agglomerations in the German-speaking
part of Switzerland: Zurich (ZH), Basel (BS),
Bern (BE), and Lucerne (LU).

The training set contains utterances from at least
3 interviews per dialect, and the test set contains
utterances from another interview (see Table 6).
The data were sampled such that at least one of the
training interviews was transcribed by the same
transcriber as the corresponding test interview, ex-
cept for LU. For LU and BS, we included addi-
tional transcripts (i.e., those transcribed by A) not
available in the current ArchiMob release.

The training set contains about 14,000 instances
(between 3,000 and 4,000 instances per dialect)
with a total of 114,000 tokens (28,000 per dialect).
The test set contains about 3,600 instances (900
per dialect) with a total of 29,500 tokens (7,000–
8,000 per dialect). We did not provide a develop-
ment set. The acoustic data were not released in
this edition, but they are in principle available.

4.2 Task Setup
The task setup of the German Dialect Identifica-
tion (GDI) task was analogous to the DSL task, ex-
cept that we did not allow open training, because
the test sets for the Zurich and the Bern dialects
were already made publicly available through the
ArchiMob release.

4.3 Participants and Approaches
A total of ten teams participated in the GDI task,
which is very close to the participation in this
year’s DSL task (11 teams), but somewhat lower
than the first edition of ADI (18 teams). All teams
except one (CLUZH) also participated in the DSL
or the ADI tasks. Below, we provide a short
description of the approach taken by each team,
where the teams are ordered by their performance
on the test data in descending order:

• MAZA This team submitted three runs,
all of which are based on a combination
of probabilistic classifiers. Their best run
(run 3) is a meta-classifier based on indi-
vidual SVM classifiers using character 1–
8-grams and word unigrams (Malmasi and
Zampieri, 2017b).

• CECL This team submitted three runs, all
based on SVM classifiers using character 1–
5-grams, weighted by BM25. The different
runs used different decision rules, with run 3
performing best (Bestgen, 2017).

• CLUZH This team submitted three runs.
Run 1 used a Multinomial Na”ive Bayes clas-
sifier with character n-grams. Run 2, which
performed best, used a Conditional Random
Fields (CRF) classifier, where each word of
the sentence is represented by character n-
gram features, prefix and suffix n-gram com-
binations, and word shapes. Run 3 used ma-
jority voting of runs 1 and 2, and an SVM
classifier (Clematide and Makarov, 2017).

• qcri mit This team submitted three runs
based on different combinations of SVM
classifiers and Stochastic Gradient classifiers
with different loss functions. Their best-
performing run (run 3) consisted of an SVM
classifier with 1–5-grams, another SVM with
1–8-grams, and an SGD with Modified Hu-
ber Loss and L2 regularization and 1–5-gram
features.
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• unibuckernel This team submitted three
runs, all of which are based on multiple
string kernels combined with either Kernel
Ridge Regression (KRR) or Kernel Discrim-
inant Analysis. Their best run (run 1) used
a KRR classifier trained on the sum of the
blended presence bits kernel based on 3–6-
grams, the blended intersection kernel based
on 3–6-grams, and the kernel based on LRD
with 3–5-grams (Ionescu and Butnaru, 2017).

• tubasfs This team submitted a single system,
based on a linear SVM classifier. Their sys-
tem used both characters and words as fea-
tures, and optimized hyperparameters (the n-
gram size and margin/regularization parame-
ter for SVM) (Çöltekin and Rama, 2017).

• ahaqst This team submitted two runs, both
based on cross-entropy. Run 2, which per-
formed better, approximated cross-entropy
using strings of up to 25 bytes (Hanani et al.,
2017).

• Citius Ixa Imaxin This team submitted
three runs, all of which are based on lan-
guage model perplexity. Run 2 was based on
word unigram features, and it was their best
(Gamallo et al., 2017).

• XAC Bayesline This team submitted one
run. As for DSL, it is an adaptation of the
system submitted to the DSL 2016 by Bar-
baresi (2016).

• deepCybErNet This team submitted two
runs based on LSTM neural networks. Run 1
uses character features, whereas run 2 uses
word features.

4.4 Results
Table 7 shows the results of the GDI task, re-
porting the best run of each team. Like in the
DSL task, all teams except deepCybErNet ob-
tained similar scores.

The per-dialect results look rather similar across
the teams. For BE and BS, precision and recall
were fairly balanced around 0.7. LU is charac-
terized by very low recall (around 0.3), whereas
ZH features higher than average recall values of
around 0.9. An exception to this trend is the CECL
submission, which shows more balanced figures
for LU, with a recall of 0.52, but at the expense of
precision: 0.55 instead of around 0.7.

Rank Team F1 (weighted)
1 MAZA 0.662
2 CECL 0.661
3 CLUZH 0.653
4 qcri mit 0.639
5 unibuckernel 0.637
6 tubasfs 0.626
7 ahaqst 0.614
8 Citius Ixa Imaxin 0.612
9 XAC Bayesline 0.605
10 deepCybErNet 0.263

Table 7: GDI task: closed submission results.

The bad performance of LU can be explained
by transcriber effects. As shown in Table 6, it is
the only dialect for which no utterances from the
test transcriber (A) are included in the training set.
This hypothesis is supported by the fact that LU
is most often confused with BS (which contains
training data by A, but is dialectologically rather
distant from LU), and by the fact that the partic-
ipants have not observed such low recall in their
cross-validation experiments on the training data.
The exact nature of these transcriber effects re-
mains to be investigated and should be better con-
trolled in future iterations of this shared task.

We see two reasons for the high recall of ZH.
On the one hand, the training set is dialectally
more homogeneous (all documents except for one
stem from the city of Zurich and its suburbs) but
more heterogeneous in terms of document and
transcriber distributions. This probably allows the
models to focus on dialectal specificities and to
disregard spurious transcriber particularities. On
the other hand, Scherrer and Rambow (2010) as
well as Hollenstein and Aepli (2015) found ZH to
be one of the most easily identifiable dialects, sug-
gesting that it acts as a sort of default dialect with
few characteristic traits. Dialectometrical studies
(Scherrer and Stoeckle, 2016) have partially con-
firmed this role of the Zurich dialect.

4.5 Summary
This first edition of the GDI task was a success,
given the short time between the 2016 and 2017
editions. In the future, we would like to better con-
trol transcriber effects, either by a more thorough
selection of training and test data, or by adding
transcriber-independent features such as acoustic
features, as has been done in the ADI task this
year. Further dialectal areas could also be added.
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5 Cross-lingual Dependency Parsing
(CLP)

VarDial 2017 featured for the first time a cross-
lingual parsing task for closely related languages.7

Transfer learning and annotation projection are
popular approaches in this field and various tech-
niques and models have been proposed in the liter-
ature in particular in connection with dependency
parsing (Hwa et al., 2005; McDonald et al., 2013;
Täckström et al., 2012; Tiedemann, 2014). The
motivation for cross-lingual models is the attempt
to bootstrap tools for languages that do not have
annotated resources, which are typically necessary
for supervised data-driven techniques, using data
and resources from other languages. This is es-
pecially successful for closely related languages
with similar syntactic structures and strong lexical
overlap (Agić et al., 2012). With this background,
it is a natural extension for our shared task to con-
sider cross-lingual parsing as well. We do so by
simulating the resource-poor situation by select-
ing language pairs from the Universal Dependen-
cies (UD) project (Nivre et al., 2016) that match
the setup and come close to a realistic case for the
approach (using UD release 1.4). The UD datasets
are especially useful as they try to harmonize the
annotation across languages as much as possible,
which facilitates the cross-lingual scenario.

Language Sentences Words
Czech 68,495 1.3M
Danish 4,868 89k
Swedish 4,303 67k
Slovenian 6,471 119k

Table 8: CLP task: source language training data.

We selected Croatian, Norwegian and Slovak as
the target languages and pre-defined source lan-
guages that may be used for the cross-lingual pars-
ing. For Norwegian, we have two possible source
languages: Danish and Swedish. For Croatian, the
source is Slovenian, and for Slovak it is Czech.
We provided training data for each source lan-
guage (a copy of the original UD data), pre-trained
part-of-speech (PoS) and morphological taggers
for the target languages, and development data
with predicted PoS labels and predicted morphol-
ogy (based on the provided taggers).

7For data and other information see https://
bitbucket.org/hy-crossNLP/vardial2017

Avoiding gold labels is important here in order
to avoid exaggerated results that blur the picture
of a more realistic setup (Tiedemann, 2015). The
tagger models are trained on the original target
language treebanks using UDpipe (Straka et al.,
2016) with standard settings and without any opti-
mization of the hyper parameters. The size of the
source language data is given in Table 5. We can
see that for Czech we have by far the largest cor-
pus, which will also be reflected in the results we
obtain.

Language-pair Sentences Words
Czech-Slovak 5.7M 77M
Danish-Norwegian 4.9M 69M
Swedish-Norwegian 4.2M 60M
Slovenian-Croatian 12.8M 172M

Table 9: CLP task: parallel training data.

Participants were asked not to use the devel-
opment data with their gold standard annotation
of dependency relations for any training purposes.
The purpose of the development datasets is en-
tirely for testing model performance during sys-
tem development. All the knowledge used for
parsing should origin in the provided source lan-
guage data. Other sources (except for target
language sources) could also be used in uncon-
strained submissions, but none of the participants
chose that option. For the constrained setup, we
also provided parallel datasets coming from OPUS
(Tiedemann, 2012) that could be used for train-
ing cross-lingual parsers in any way. The datasets
included translated movie subtitles and contained
quite a bit of noise in terms of alignment, encod-
ing, and translation quality. They were also from a
very different domain, which made the setup quite
realistic considering that one would used whatever
could be found for the task. The sizes of the par-
allel datasets are given in Table 8.

In the setup of the shared task, we also pro-
vided simple baselines and an “upper bound” of
a model trained on annotated target language data.
The cross-lingual baselines included delexicalized
models (based on universal PoS tags only) and a
straightforward application of lexicalized source
language parsers to the target language without
any kind of adaptation. All these models were
trained using UDPipe without any parameter op-
timization and should be seen as lazy baselines for
rapid tool development.
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Supervised Models LAS UAS
Croatian Croatian 68.51 75.61
Norwegian Norwegian 78.23 82.28
Slovak Slovak 69.14 76.57

Delexicalized Models LAS UAS
Croatian Slovenian 50.81 62.64
Norwegian Danish 55.17 65.23
Norwegian Swedish 57.54 66.96
Norwegian Danish+Swedish 58.80 68.58
Slovak Czech 48.91 60.68
Non-adapted Source Models LAS UAS
Croatian Slovenian 53.35 63.94
Norwegian Danish 54.91 64.53
Norwegian Swedish 56.63 66.24
Norwegian Danish+Swedish 59.95 69.02
Slovak Czech 53.72 65.70

Table 10: CLP task: baseline models in terms of
labeled attachment scores (LAS) and unlabeled at-
tachment scores (UAS).

We received three submissions (denoted by
tubasfs, CUNI and Helsinki-CLP) for the CLP
task and all of them submitted results for all lan-
guage pairs. All three submissions used some kind
of annotation projection instead of model trans-
fer. Two of them applied word-by-word transla-
tion (Çöltekin and Rama, 2017; Rosa et al., 2017)
based on lexical translations learned from the par-
allel corpora. The third one (Tiedemann, 2017)
applied a mix of annotation projection (Tiede-
mann, 2014) and treebank translation (Tiedemann
et al., 2014). The overall results are shown in Ta-
ble 11.

LAS Croatian Norwegian Slovak
CUNI 60.70 70.21 78.12
Helsinki-CLP 57.98 68.60 73.14
tubasfs 55.20 65.62 64.05

UAS Croatian Norwegian Slovak
CUNI 69.73 77.13 84.92
Helsinki-CLP 69.57 76.77 82.87
tubasfs 75.61 74.61 73.16

Table 11: CLP task: closed submission results.

From the results, we can see that CUNI is the clear
winner especially in terms of labeled attachment
scores. The difference to the second-best submis-
sion is large in particular on the Slovak data. The
picture is not that clear in terms of unlabeled at-
tachment scores.

The difference in LAS between the two top sub-
missions is most likely due to the label normal-
ization that the winning system applied besides
the direct annotation projection. They also ap-
plied a more selective projection of morphological
features and used the extensive parallel data pro-
vided for the task in order to train reliable word
embeddings for the target language. Another im-
provement was obtained by relabeling the test sets
with morpho-syntactic information learned from
the projected datasets. This is especially useful for
Slovak, which gains a lot from the tagger that is
trained on large amounts of projected Czech data
instead of applying the information provided by
the supervised tagger trained on smaller amounts
of target language data. Their system also applied
a joint model for tagging and parsing, which im-
proved the overall performance.

We can also see striking differences between
the results for the three target languages. Overall,
Croatian is the least successful case with improve-
ments of 2-7 points in LAS over the non-adapted
baseline. For Norwegian, the two top-scoring
teams achieve over 10 LAS points of improve-
ment for the winning submission. However, for
both Croatian and Norwegian, the cross-lingual
models are still far behind the fully-supervised up-
per bound that scores 8 LAS points above them.
For Slovak, the picture is different. The two top
submissions both score above the “upper bound”
of fully-supervised parsing, which is quite an im-
pressive result. This is certainly due to the large
amounts of training data that we have for the
source language (Czech) and the close relation
between the two languages supports the success
as well. Nevertheless, the results demonstrate
the real-world use of the techniques tested in our
shared task.

6 Conclusion and Future Work

We have presented the methods, the data, the eval-
uation setup, and the results for four shared tasks
taht we organized as part of the VarDial 2017
evaluation campaign. To the best of our knowl-
edge, this is the first comprehensive evaluation
campaign on NLP for Similar Languages, Vari-
eties and Dialects. Three tasks (ADI, GDI, and
DSL) dealt with dialect and language variety iden-
tification, focusing on Arabic, German and several
groups of similar languages, respectively, whereas
the CLP task dealt with parsing.
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Along with the results of each shared task, we
also included short descriptions of each partici-
pating system in order to provide readers with an
overview of all approaches proposed for each task.
For a complete description of each system, we in-
cluded references to the fifteen system description
papers that were accepted for presentation at the
VarDial workshop at EACL’2017.

Given the success of the VarDial evaluation
campaign, we believe that there is room for an-
other edition with more shared tasks. Possible top-
ics of interest for future shared tasks include ma-
chine translation between similar languages and
POS tagging of dialects, among others.
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Cyril Goutte and Serge Léger. 2015. Experiments in
discriminating similar languages. In Proceedings of
the LT4VarDial Workshop.
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Cyril Goutte, Serge Léger, Shervin Malmasi, and Mar-
cos Zampieri. 2016. Discriminating similar lan-
guages: Evaluations and explorations. In Proceed-
ings of LREC.

Bo Han, Afshin Rahimi, Leon Derczynski, and Tim-
othy Baldwin. 2016. Twitter geolocation predic-
tion shared task of the 2016 workshop on noisy user-
generated text. In Proceedings of the W-NUT Work-
shop.

Abualsoud Hanani, Aziz Qaroush, and Stephen Taylor.
2017. Identifying dialects with textual and acoustic
cues. In Proceedings of the VarDial Workshop.
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Gómez, and Thamar Solorio. 2015. Not all charac-
ter n-grams are created equal: A study in authorship
attribution. In Proceedings of NAACL.

Carolina Scarton, Liling Tan, and Lucia Specia. 2015.
USHEF and USAAR-USHEF participation in the
WMT15 quality estimation shared task. In Proceed-
ings of WMT.

Yves Scherrer and Owen Rambow. 2010. Word-based
dialect identification with georeferenced rules. In
Proceedings of EMNLP.

Yves Scherrer and Philipp Stoeckle. 2016. A quan-
titative approach to Swiss German – dialectometric
analyses and comparisons of linguistic levels. Di-
alectologia et Geolinguistica, 24(1):92–125.

Helmut Schmid. 1994. Probabilistic part-of-speech
tagging using decision trees. In Proceedings of
NeMLaP.
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Abstract

In the last few years, microblogging plat-
forms such as Twitter have given rise to
a deluge of textual data that can be used
for the analysis of informal communica-
tion between millions of individuals. In
this work, we propose an information-
theoretic approach to geographic language
variation using a corpus based on Twitter.
We test our models with tens of concepts
and their associated keywords detected
in Spanish tweets geolocated in Spain.
We employ dialectometric measures (co-
sine similarity and Jensen-Shannon diver-
gence) to quantify the linguistic distance
on the lexical level between cells created
in a uniform grid over the map. This can
be done for a single concept or in the gen-
eral case taking into account an average of
the considered variants. The latter permits
an analysis of the dialects that naturally
emerge from the data. Interestingly, our
results reveal the existence of two dialect
macrovarieties. The first group includes
a region-specific speech spoken in small
towns and rural areas whereas the sec-
ond cluster encompasses cities that tend to
use a more uniform variety. Since the re-
sults obtained with the two different met-
rics qualitatively agree, our work suggests
that social media corpora can be efficiently
used for dialectometric analyses.

1 Introduction

Dialects are language varieties defined across
space. These varieties can differ in distinct lin-
guistic levels (phonetic, morphosyntactic, lex-
ical), which determine a particular regional
speech (Chambers and Trudgill, 1998). The ex-

tension and boundaries (always diffuse) of a di-
alect area are obtained from the variation of one
or many features such as, e.g., the different word
alternations for a given concept. Typically, the di-
alect forms plotted on a map appear as a geograph-
ical continuum that gradually connects places with
slightly different diatopic characteristics. A di-
alectometric analysis aims at a computational ap-
proach to dialect distribution, providing quantita-
tive linguistic distances between locations (Séguy,
1971; Goebl, 2006; Wieling and Nerbonne, 2015).

Dialectometric data is based upon a corpus that
contains the linguistic information needed for the
statistical analysis. The traditional approach is to
generate these data from surveys and question-
naires that address variable types used by a few
informants. Upon appropriate weighting, the dis-
tance metric can thus be mapped on an atlas. In
the last few years, however, the impressive up-
swing of microblogging platforms has led to a
scenario in which human communication features
can be studied without the effort that traditional
studies usually require. Platforms such as Twitter,
Flickr, Instagram or Facebook bring us the pos-
sibility of investigating massive amounts of data
in an automatic fashion. Furthermore, microblog-
ging services provide us with real-time communi-
cation among users that, importantly, tend to em-
ploy an oral speech. Another difference with tradi-
tional approaches is that while the latter focus on
male, rural informants, users of social platforms
are likely to be young, urban people (Smith and
Rainie, 2010), which opens the route to novel in-
vestigations on today’s usage of language. Thanks
to advances in geolocation, it is now possible to
directly examine the diatopic properties of spe-
cific regions. Examples of computational linguis-
tic works that investigate regional variation with
Twitter or Facebook corpora thus far comprise En-
glish (Eisenstein et al., 2014; Doyle, 2014; Kulka-
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rni et al., 2016; Huang et al., 2016; Blodgett
et al., 2016), Spanish (Gonçalves and Sánchez,
2014; Gonçalves and Sánchez, 2016; Malmasi et
al., 2016), German (Scheffler et al., 2014), Arabic
(Lin et al., 2014) and Dutch (Tulkens et al., 2016).
It is noticeable that many of these works combine
big data techniques with probabilistic tools or ma-
chine learning strategies to unveil linguistic phe-
nomena that are absent or hard to obtain from con-
ventional methods (interviews, hand-crafted cor-
pora, etc.).

The subject of this paper is the language varia-
tion in a microblogging platform using dialectro-
metric measures. In contrast to previous works,
here we precisely determine the linguistic distance
between different places by means of two metrics.
Our analysis shows that the results obtained with
both metrics are compatible, which encourages fu-
ture developments in the field. We illustrate our
main findings with a careful analysis of the dialect
division of Spanish. For definiteness, we restrict
ourselves to Spain but the method can be straight-
forwardly applied to larger areas. We find that,
due to language diversity, cities and main towns
have similar linguistic distances unlike rural areas,
which differ in their homogeneous forms. but ob-
tained with a completely different method

2 Methods

Our corpus consists of approximately 11 million
geotagged tweets produced in Europe in Spanish
language between October 2014 and June 2016.
(Although we will focus on Spain, we will not
consider in this work the speech of the Canary Is-
lands due to difficulties with the data extraction).
The classification of tweets is accomplished by
applying the Compact Language Detector (CLD)
(McCandless, 2012) to our dataset. CLD exhibits
accurate benchmarks and is thus good for our pur-
poses, although a different detector might be used
(Lui and Baldwin, 2012). We have empirically
checked that when CLD determines the language
with a probability of at least 60% the results are
extremely reliable. Therefore, we only take into
account those tweets for which the probability
of being written in Spanish is greater than 0.6.
Further, we remove unwanted characters, such
as hashtags or at-mentions, using Twokenize
(O’Connor et al., 2010), a tokenizer designed for
Twitter text in English, adapted to our goals.

We present the spatial coordinates of all tweets

Figure 1: Heatmap of Spanish tweets geolocated
in Europe. There exist 11208831 tweets arising
from a language detection and tokenization proce-
dure. We have zoomed in those arising in Spain,
Portugal and the south of France.

in figure 1 (only the south-western part of Europe
is shown for clarity). As expected, most of the
tweets are localized in Spain, mainly around major
cities and along main roads.

Next, we select a word list from Varilex (Ueda et
al., 2015), a lexical database that contains Spanish
variation across the world. We consider 89 con-
cepts expressed in different forms. Our selection
eliminates possible semantic ambiguities. The
complete list of keywords is included in the sup-
plementary material below. For each concept, we
determine the coordinates of the tweets in which
the different keywords appear. From our corpus,
we find that 219362 tweets include at least one
form corresponding to any of the selected con-
cepts.

The pictorial representation of these concepts is
made using a shapefile of both the Iberian Penin-
sula and the Balearic Islands. Then, we construct
a polygon grid over the shapefile. The size of
the cells (0.35◦ × 0.35◦) roughly corresponds to
1200 km2. We locate the cell in which a given key-
word matches and assign a different color to each
keyword. We follow a majority criterion, i.e., we
depict the cell with the keyword color whose abso-
lute frequency is maximum. This procedure nicely
yields a useful geographical representation of how
the different variants for a concept are distributed
over the space.

17



Figure 2: Spatial distribution of a few representative concepts based on the maximum absolute frequency
criterion. Each concept has a lexical variation as indicated in the figure. The concepts are: (a) cold, (b)
school, (c) streetlight, (d) fans.

2.1 Language distance

The dialectometric differences are quantified be-
tween regions defined with the aid of our cells.
For this purpose we take into account two metrics,
which we now briefly discuss.

2.1.1 Cosine similarity

This metric is a vector comparison measure. It is
widely used in text classification, information re-
trieval and data mining (Murphy, 2012). Let u and
v be two vectors whose components are given by
the relative frequencies of the lexical variations for
a concept within a cell. Quite generally, u and v
represent points in a high-dimensional space. The
similarity measure d(u, v) between these two vec-
tors is related to their inner product conveniently
normalized to the product of their lengths,

d(u, v) = 1− u · v
|u||v| . (1)

This expression has an easy interpretation. If both
vectors lie parallel, the direction cosine is 1 and
thus the distance becomes d = 0. Since all vec-
tor components in our approach are positive, the
upper bound of d is 1, which is attained when the
two vectors are maximally dissimilar.

2.1.2 Jensen-Shannon metric

This distance is a similarity measure between
probability density functions (Lin, 1991). It is
a symmetrized version of a more general metric,
the Kullback-Leibler divergence. Let P and Q be
two probability distributions. In our case, these
functions are built from the relative frequencies of
each concept variation. Our frequentist approach
differs from previous dialectometric works, which
prefer to measure distances using the Dice similar-
ity coefficient or the Jaccard index (Manning and
Schütze, 1999).
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The Kullback-Leibler divergence is defined as

DKL(P ||Q) =
∑

i

P (i) log
P (i)
Q(i)

. (2)

We now symmetrize this expression and take the
square root,

JSD(P ||Q) =

√
DKL(P ||M) + DKL(Q||M)]

2
,

(3)
where M = (P + Q)/2. The Jensen-Shannon
distance JSD(P ||Q) is indeed a metric, i.e.,
it satisfies the triangle inequality. Additionally,
JSD(P ||Q) fulfills the metric requirements of
non-negativity, d(x, y) = 0 if and only if x = y
(identity of indiscernibles) and symmetry (by con-
struction). This distance has been employed in
bioinformatics and genome comparison (Sims et
al., 2009; Itzkovitz et al., 2010), social sciences
(DeDeo et al., 2013) and machine learning (Good-
fellow et al., 2014). To the best of our knowledge,
it has not been used in studies of language varia-
tion. An exception is the work of Sanders (2010),
where JSD is calculated for an analysis of syn-
tactic variation of Swedish. Here, we propose to
apply the Jensen-Shannon metric to lexical varia-
tion. Below, we demonstrate that this idea leads to
quite promising results.

2.1.3 Average distance
Equations 1 and 3 give the distance between cells
A and B for a certain concept. We assign the
global linguistic distance in terms of lexical vari-
ability between two cells to the mean value

D(A, B) =
∑

i di(A, B)
N

, (4)

where di is the distance between cells A and B for
the i-th concept and N is the total number of con-
cepts used to compute the distance. In the cosine
similarity model, we replace di in equation 4 with
equation 1 whereas in the Jensen-Shannon metric
di is given by equation 3.

3 Results and discussion

We first check the quality of our corpus with a few
selected concepts. Examples of their spatial distri-
butions can be seen in figure 2. The lexical varia-
tion depends on the particular concept and on the
keyword frequency. We recall that the majority
rule demands that we depict the cell with the color

Figure 3: Linguistic distances for the concept cold
using (a) cosine similarity and (b) Jensen-Shannon
divergence metrics. The horizontal (vertical) axis
is expressed in longitude (latitude) coordinates.

corresponding to the most popular word. Despite a
few cells appearing to be blank, we have instances
in most of the map. Importantly, our results agree
with the distribution for the concept cold reported
by Gonçalves and Sánchez (2014) with a different
corpus. The north-south bipartition of the varia-
tion suggested in figure 2(a) also agrees with more
traditional studies (Ordóñez, 2011). As a conse-
quence, these consistencies support the validity of
our data. The novelty of our approach is to further
analyze this dialect distribution with a quantitative
measure as discussed below.

3.1 Single-concept case

Let us quantify the lexical difference between re-
gions using the concept cold as an illustration.
First, we generate a symmetric matrix of linguis-
tic distances mij(d) between pairs of cells i and
j with d calculated using equation (1) or equa-
tion (3). Then, we find the maximum possible
d value in the matrix (dmax) and select either its
corresponding imax or jmax index as the refer-
ence cell. Since both metrics are symmetric, the
choice between imax and jmax should not affect
the results much (see below for a detailed anal-
ysis). Next, we normalize all values to dmax and
plot the distances to the reference cell using a color
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Figure 4: Linguistic distances as in figure 3 but
with a minimum threshold of 5 tweets in each cell
using (a) cosine similarity and (b) Jensen-Shannon
metric.

scale within the range [−1, 1], whose lowest and
highest values are set for convenience due to the
normalization procedure. The results are shown
in figure 3. Panel (a) [(b)] is obtained with the
cosine similarity (Jensen-Shannon metric). Cru-
cially, we observe that both metrics give similar
results, which confirm the robustness of our di-
alectometric method.

Clearly, cells with a low number of tweets will
largely contribute to fluctuations in the maps. To
avoid this noise-related effect, we impose in fig-
ure 4 a minimum threshold of 5 tweets in every
cell. Obviously, the number of colored cells de-
creases but fluctuations become quenched at the
same time. If the threshold is increased up to
10 tweets, we obtain the results plotted in fig-
ure 5, where the north-south bipartition is now
better seen. We stress that there exist minimal
differences between the cosine similarity and the
Jensen-Shannon metric models.

3.2 Global distance

Our previous analysis assessed the lexical distance
for a single concept (cold). Let us now take into
account all concepts and calculate the averaged

Figure 5: Linguistic distances as in figure 3 but
with a minimum threshold of 10 tweets in each cell
using (a) cosine similarity and (b) Jensen-Shannon
metric.

distances using equation (4). To do so, we pro-
ceed as above and measure the distance from any
of the two cells that presents the maximal value of
d, where d is now calculated from equation 4. As
aforementioned, dmax connects two cells, which
denote as C1 and C2. Any of these can be selected
as the reference cell from which the remaining lin-
guistic distances are plotted in the map. To en-
sure that we obtain the same results, we plot the
distance distribution in both directions. The re-
sults with the cosine similarity model are shown
in figure 6. It is worth noting that qualitatively the
overall picture is only slightly modified when the
reference cell is changed from C1 [figure 6(a)] to
C2 [figure 6(b)]. The same conclusion is reached
when the distance is calculated with the Jensen-
Shannon metric model, see figures 7(a) and (b).

After averaging over all concepts, we lose infor-
mation on the lexical variation that each concept
presents but on the other hand one can now inves-
tigate which regions show similar geolectal vari-
ation, yielding well defined linguistic varieties.
Those cells that have similar colors in either fig-
ure 6 or figure 7 are expected to be ascribed to the
same dialect zone. Thus, we can distinguish two
main regions or clusters in the maps. The purple

20



Figure 6: Global distances averaged over all con-
cepts. Here, we use the cosine similarity measure
to calculate the distance. The color distribution
displays a small variation from (a) to (b) due to
the change of the reference cell.

background covers most of the map and represents
rural regions with small, scattered population. Our
analysis shows that this group of cells possesses
more specific words in their lexicon. In contrast,
the green and yellow cells form a second cluster
that is largely concentrated on the center and along
the coastline, which correspond to big cities and
industrialized areas. In these cells, the use of stan-
dard Spanish language is widespread due proba-
bly to school education, media, travelers, etc. The
character of its vocabulary is more uniform as
compared with the purple group. While the pur-
ple cluster prefer particular utterances, the lexicon
of the urban group includes most of the keywords.
Importantly, we emphasize that both distance mea-
sures (cosine similarity and Jensen-Shanon) give
rise to the same result, with little discrepancies on
the numerical values that are not significant. The
presence of two Twitter superdialects (urban and
rural) has been recently suggested (Gonçalves and
Sánchez, 2014) based on a machine learning ap-
proach. Here, we arrive at the same conclusion
but with a totally distinct model and corpus. The
advantage of our proposal is that it may serve as a
useful tool for dialectometric purposes.

Figure 7: Global distances averaged over all con-
cepts. Here, we use the Jensen-Shannon metric to
calculate the distance. The color distribution dis-
plays a small variation from (a) to (b) due to the
change of the reference cell.

4 Conclusions

To sum up, we have presented a dialectrometric
analysis of lexical variation in social media posts
employing information-theoretic measures of lan-
guage distances. We have considered a grid of
cells in Spain and have calculated the linguistic
distances in terms of dialects between the different
regions. Using a Twitter corpus, we have found
that the synchronic variation of Spanish can be
grouped into two types of clusters. The first re-
gion shows more lexical items and is present in big
cities. The second cluster corresponds to rural re-
gions, i.e., mostly villages and less industrialized
regions. Furthermore, we have checked that the
different metrics used here lead to similar results
in the analysis of the lexical variation for a rep-
resentative concept and provide a reasonable de-
scription to language variation in Twitter.

We remark that the small amount of tweets gen-
erated after matching the lexical variations of con-
cepts within our automatic corpus puts a limit
to the quantitative analysis, making the differ-
ences between regions small. Our work might be
improved by similarly examining Spanish tweets
worldwide, specially in Latin America and the
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United States. This approach should give more
information on the lexical variation on the global
scale and would help linguists in their dialectal
classification work of micro- and macro-varieties.
Our work hence represents a first step into the
ambitious task of a thorough characterization of
language variation using big data resources and
information-theoretic methods.
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Supplementary material

Here we provide a list of our employed concepts
and their lexical variants.

Concept Keywords
stapler abrochador, abrochadora,

clipiador, clipiadora, clip-
sadera, corchetera, cosedora,
engrampador, engram-
padora, engrapador, en-
grapadora, grapadora,
ponchadora, presilladora

sidewalk acera, andén, badén, calzada,
contén, escarpa, vereda

bedspread acolchado, colcha, colchón,
cubrecama, cubrecamas,
cubrelecho, edredón, sobre-
cama

flight attendant aeromoza, azafata, hostess,
stewardess

poster afiche, anuncio, cartel, car-
telón, letrero, póster, pro-
paganda, rótulo, tablón de
anuncio

pencil sharpner afilalápices, afilalápiz, afil-
aminas, maquineta, saca-
punta, sacapuntas, tajador,
tajalápices, tajalápiz

bra ajustador, ajustadores,
brasiel, brassiere, corpiño,
portaseno, sostén, soutien,
sutién, sujetador, tallador

swimming pool alberca, pileta, piscina

Concept Keywords
elevator ascensor, elevador
glasses anteojos, espejuelos, gafas,

gafotas, lentes
popcorn alepa, cabritas de maı́z,

canchita, canguil, co-
caleca, cotufas, crispetas,
crispetos, maı́z pira, palomi-
tas, pipocas, pochocle,
pochoclo, pocorn, popcorn,
poporopo, pororó, rosita de
maı́z, tostones

sandals alpargata, chanclas, chan-
cletas, chinelas, cholas,
cutalas, cutaras, pantuflas,
sandalias, zapatillas

aluminum paper alusa-foil, foil, papel albal,
albal, papel reinolds, pa-
pel aluminio, papel de alu-
minio, papel de estaño, pa-
pel de plata, papel encerado,
papel estañado, papel para
cocinar, papel platina

store window aparador, escaparate,
mostrador, vidriera, vitrina

coat hanger armador, cercha, colgador,
gancho de ropa, percha,
perchero

headphones audı́fonos, auriculares, cas-
cos, casquitos, headphones,
hédfons, talquis

car auto, automóvil, carro,
coche, concho, movi

bus autobús, autocar, bus,
camioneta, guagua, mi-
crobús, ómnibus, taxibús

jeans azulón, azulones, blue
jean, bluyı́n, blue jeans,
bluyı́ns, jeans, yı́ns, lois,
mahón, mahones, pantalón
de mezclilla, pantalones de
mezclilla, pantalón vaquero,
pantalones vaqueros, pan-
talones tejanos, vaqueros,
tejanos, pitusa, pitusas

backpack backpack, bolsón, macuto,
mochila, morral, salveque

boat barca, bote, canoa, cayuco,
chalana, lancha, patera, yola

miss echar de menos, extrañar,
añorar
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Concept Keywords
fender barrero, cubrebarro, cubr-

erruedas, guardabarro,
guardafango, guardalodo,
guardalodos, guardapolvo,
lodera, polvera, quitalodo,
salpicadera, salpicadero,
tapabarro

sandwich bocadillo, bocadito, bocata,
emparedado, sandwich,
sangüis, sangüich, sanwich

suitcase bolso de viaje, maleta, valija,
veliz

boxers bombacho, bóxers, calzón,
calzoncillo, calzoncillos, pan-
taloncillos, ropa interior, slip,
trusa, taparrabos, jokey

lighter bricke, brı́k, chispero, en-
cendedor, fosforera, lighter,
láiter, mechero, yesquero,
zippo

backhoe buldózer, buldócer, caterpil-
lar, caterpı́lar, excavadora,
máquina excavadora,
maquina topadora, moto-
pala, pala excavadora, pala
mecánica, retroexcavadora,
topadora

pot/pan cacerola, cacico, cacillo,
caldero, cazo, cazuela, olla,
paila, pota, tartera, cazuela,
sartén, freidera, freidero,
fridera, paila

socks calcetas, calcetines, medias,
soquetes

reclining chair cheilón, butaca, camastro,
catre, cheslón, gandula,
hamaca, perezosa, repo,
reposera, silla de extensión,
silla de playa, silla de sol,
silla plegable, silla plegadiza,
silla reclinable, tumbona

living room comedor, cuarto de estar, es-
tancia, lı́ving, livin, recibidor,
sala de estar, salita de estar,
salón

computer computador, computadora,
microcomputador, micro-
computadora, ordenador,
PC

washer lavadora, lavarropa, lavar-
ropas, máquina de lavar

Concept Keywords
matchstick cerilla, cerillo, fósforo
headlight cristal de frente, cristal de-

lantero, luna delantera, lunas
delanteras, luneta, parabrisa,
parabrisas, vidrio delantero,
windshield

skirt enagua, falda, pollera, saya
blackboard encerado, pizarra, pizarrón,

tablero
dish drainer escurreplatos, escurridero, es-

curridor, platera, secaplatos,
secavajilla

poncho estola, jorongo, mañanera,
poncho, ruana

street light farol, farola, farolillo, lumi-
naria, poste de luz, poste
eléctrico

dishwasher friegaplatos, lavadora de
platos, lavaloza, lavaplatos,
lavatrastos, lavavajilla,
lavavajillas, máquina de lavar
platos

refrigerator frigorı́fico, heladera, hielera,
nevera, refrigerador, refriger-
adora

toilet paper papel confórt, papel confor,
papel de baño, papel de in-
odoro, papel de water, pa-
pel de váter, papel higiénico,
papel sanitario, papel toalet,
rollo de papel

record player wurlitzer, burlı́tser, chancha,
compactera, gramola, juke
box, máquina de música, pi-
anola, rocola, tragamonedas,
roconola, sinfonola, tocadis-
cos, traganı́quel, vellonera,
vitrola

slice of cheese lámina de queso, lasca de
queso, loncha de queso, lonja
de queso, rebanada de queso,
rodaja de queso, slice de
queso, tajada de queso, queso
de sandwich, queso en lon-
chas, queso en rebanadas,
queso en slice, queso ameri-
cano, tranchetes

demijohn bidón, bombona, botella
grande, garrafa, garrafón,
tambuche, candungo, pomo
plástico
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Concept Keywords
plaster banda adhesiva, curita, es-

paradrapo, tirita
attic ático, altillo, azotea,

buhardilla, guardilla, pent-
house, mansarda, tabanco

wardrobe armario, closet, placard,
ropero, guardarropas

bracers breteles, bruteles, suspen-
sores, tiradores, tirantes

ring anillo, argolla, aro, sortija,
cintillo

tape recorder cassette, casete, grabador,
grabadora, magnetofón, to-
cacintas, magnetófono

merry-go-round caballitos, calesita, carrusel,
tiovivo, machina

loudspeaker altavoz, altoparlante,
altovoz, amplificador,
megáfono, parlante, mag-
navoz

flower pot maceta, macetero, matera,
matero, tiesto, macetera,
plantera

fans afición, aficionados,
fanáticos, fanaticada,
forofos, hinchada, hinchas,
seguidores

waiter camarero, barman, mesero,
mesonero, mozo, camarero

school colegio, escuela, centro es-
colar, scuela

amusement distracciones, diversión, en-
tretención, entretenimiento,
pasatiempo

stay estada, estadı́a, estancia
miss equivocación, error, falen-

cia, fallo
cheek cachetes, carrillos, galtas,

mejillas, mofletes, pómulo
monkey chango, chimpancé, macaco,

mono, mico, simio, chongo
mosquito cı́nife, mosco, mosquito,

zancudo
chance bicoca, chance, ocasión,

oportunidad
sponsor auspiciador, auspiciante,

espónsor, patrocinador,
patrocinante, propiciador,
sponsor

park aparcar, estacionar, parquear

Concept Keywords
parcel encomienda, paquete postal
banana banana, banano, cambur,

guineo, plátano, tombo
dust nube de polvo, polvadera,

polvareda, polvazal, polvero,
polvoreda, polvorı́n, terral,
terregal, tierral, tolvanera

bar bar, boliche, cantina, cerve-
cerı́a, pulperı́a, taberna,
tasca, expendio, piquera

earthquake movimiento telúrico,
movimiento sı́smico, re-
mezón, seı́smo, sismo,
temblor de tierra, terremoto

shooting abaleo, balacera, baleada,
tiroteo

glance ojeada, miradita, vistazo
greasy engrasado, grasiento, gra-

soso, mantecoso, seboso
beautiful bella, bonita, hermosa, linda,

preciosa
cold catarro, constipado, coriza,

gripa, gripe, resfrı́o, resfri-
ado, trancazo

cellophane tape celo, celofán, cinta adhesiva,
cinta scotch, cintex, scotch,
teip, dúrex, diurex, cinta pe-
gante

crane grúa, guinche, tecle
fruit cup ensalada de frutas, macedo-

nia, clericó, cóctel de frutas,
tuttifruti, tutifruti

gas station bomba de gasolina, bomba
de nafta, estación de ser-
vicio, gasolinera, bencinera,
bomba de bencina, gaso-
linerı́a, surtidor de gasolina

interview entrevistar, reportear, inter-
viuvar

obstinate cabezón, cabezudo, cabeza
dura, cabezota, obstinado,
porfiado, terco, testarudo,
tozudo

peanut cacahuate, cacahuete, manı́,
cacahué, cacaomani

scratch arañazo, arañón, aruñetazo,
aruñón, rajuño, rayón,
rasguño, rasguñón

sweetener edulcorante, endulzante, en-
dulcina, endulzador, sacarina

thaw descongelar, deshielar

25



Proceedings of the Fourth Workshop on NLP for Similar Languages, Varieties and Dialects, pages 26–35,
Valencia, Spain, April 3, 2017. c©2017 Association for Computational Linguistics

Computational analysis of Gondi dialects
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Abstract

This paper presents a computational anal-
ysis of Gondi dialects spoken in central
India. We present a digitized data set of
the dialect area, and analyze the data us-
ing different techniques from dialectome-
try, deep learning, and computational bi-
ology. We show that the methods largely
agree with each other and with the ear-
lier non-computational analyses of the lan-
guage group.

1 Introduction

Gondi languages are spoken across a large region
in the central part of India (cf. figure 1). The lan-
guages belong to the Dravidian language family
and are closely related to Telugu, a major literary
language spoken in South India. The Gondi lan-
guages received wide attention in comparative lin-
guistics (Burrow and Bhattacharya, 1960; Garap-
ati, 1991; Smith, 1991) due to their dialectal vari-
ation. On the one hand, the languages look like a
dialect chain while, on the other hand, some of the
dialects are shown to exhibit high levels of mutual
unintelligibility (Beine, 1994).

Smith (1991) and Garapati (1991) perform clas-
sical comparative analyses of the dialects and clas-
sify the Gondi dialects into two subgroups: North-
west and Southeast. Garapati (1991) compares
Gondi dialects where most of the dialects belong
to Northwest subgroup and only three dialects be-
long to Southeast subgroup. In a different study,
Beine (1994) collected lexical word lists tran-
scribed in International Phonetic Alphabet (IPA)
for 210 concepts belonging to 46 sites and at-
tempted to perform a classification based on word
similarity. Beine (1994) determines two words to
be cognate (having descended from the same com-
mon ancestor) if they are identical in form and

meaning. The average similarity between two sites
is determined as the average number of identical
words between the two sites. The author describes
the experiments of the results qualitatively and
does not perform any quantitative analysis. Until
now, there has been no computational analysis of
the lexical word lists to determine the exact rela-
tionship between these languages. We digitize the
dataset and then perform a computational analysis.

Recent years have seen an increase in the num-
ber of computational methods applied to the study
of both dialect and language classification. For in-
stance, Nerbonne (2009) applied Levenshtein dis-
tance for the classification of Dutch and German
dialects. Nerbonne finds that the classification of-
fered by Levenshtein distance largely agrees with
the traditional dialectological knowledge of Dutch
and German areas. In this paper, we apply the di-
alectometric analysis to the Gondi language word
lists.

In the related field of computational histor-
ical linguistics, Gray and Atkinson (2003) ap-
plied Bayesian phylogenetic methods from com-
putational biology to date the age of Proto-Indo-
European language tree. The authors use cog-
nate judgments given by historical linguists to in-
fer both the topology and the root age of the Indo-
European family. In parallel to this work, Kon-
drak (2009) applied phonetically motivated string
similarity measures and word alignment inspired
methods for the purpose of determining if two
words are cognates or not. This work was fol-
lowed by List (2012) and Rama (2015) who em-
ployed statistical and string kernel methods for de-
termining cognates in multilingual word lists.

In typical dialectometric studies (Nerbonne,
2009), the assumption that all the pronunciations
of a particular word are cognates is often justified
by the data. However, we cannot assume that this
is the case in Gondi dialects since there are sig-

26



Figure 1: The Gondi language area with major cities in focus. The dialect/site codes and the geographical
distribution of the codes are based on Beine (1994).

nificant amount of lexical replacement due to bor-
rowing (from contact) and internal lexical innova-
tions. Moreover, the previous comparative linguis-
tic studies classify the Gondi dialects using sound
correspondences and lexical cognates. In this pa-
per, we will use the Pointwise Mutual Information
(Wieling et al., 2009) method for obtaining sound
change matrices and use the matrix to automati-
cally identify cognates.

The comparative linguistic research classified
the Gondi dialects into five different genetic
groups (cf. table 1). However, the exact branching
of the Gondi dialects is yet a open question. In this
paper, we apply both dialectometric and phyloge-
netic approaches to determine the exact branching
structure of the dialects.

The paper is organized as followed. In sec-
tion 2, we describe the dataset and the gold stan-
dard dialect classification used in our experiments.
In section 3, we describe the various techniques
for computing and visualizing the dialectal differ-
ences. In section 4, we describe the results of the
different analyses. We conclude the paper in sec-
tion 5.

2 Datasets

The word lists for our experiments are derived
from the fieldwork of Beine (1994). Beine (1994)
provides multilingual word lists for 210 mean-
ings in 46 sites in central India which is shown
in figure 1. In the following sections, we use
the Glottolog classification (Nordhoff and Ham-
marström, 2011) as gold standard to evaluate the
various analyses. Glottolog is a openly avail-
able resource that summarizes the genetic relation-

ships of the world’s dialects and languages from
published scholarly linguistic articles. For refer-
ence, we provide the Glottolog classification1 of
the Gondi dialects in table 1. The Glottolog clas-
sification is derived from comparative linguistics
(Garapati, 1991; Smith, 1991) and dialect mutual
intelligibility tests (Beine, 1994).

Dialect codes Classification

gdh, gam, gar, gse, glb,
gtd, gkt, gch, prg, gka,
gwa, grp, khu, ggg, gcj,
bhe, pmd, psh, pkh, ght

Northwest Gondi, Northern
Gondi

rui, gki, gni, dog, gut,
gra, lxg

Northwest Gondi, Southern
Gondi

met, get, mad, gba, goa,
mal, gja, gbh, mbh

Southeast Gondi, General
Southeast Gondi, Hill
Maria-Koya, Hill Maria

mku, mdh, ktg, mud,
mso, mlj, gok

Southeast Gondi, General
Southeast Gondi, Muria

bhm, bhb, bhs Southeast Gondi, General
Southeast Gondi, Bison Horn
Maria

Table 1: Classification of the 46 sites according to
Glottolog (Nordhoff and Hammarström, 2011).

The whole dialect region is divided into two
major groups: Northwest Gondi and Southeast
Gondi which are divided into five major sub-
groups: Northern Gondi, Southern Gondi, Hill
Maria, Bison Horn Maria, Muria where Northern
Gondi and Southern Gondi belong to the North-
west Gondi branch whereas the rest of the sub-
groups belong to Southeast Gondi branch. It has

1http://glottolog.org/resource/
languoid/id/gond1265
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to be noted that there is no gold standard about the
internal structure of dialects belonging to each di-
alect group.

3 Methods for comparing and visualizing
dialectal differences

We use the IPA transcribed data to compute
both unweighted and weighted string similar-
ity/distance between two words. We use the same
IPA data to train LSTM autoencoders introduced
by Rama and Çöltekin (2016) and project the au-
toencoder based distances onto a map.

As mentioned earlier, the dialectometric analy-
ses typically assume that all words that share the
same meaning are cognates. However, as shown
by Garapati (1991), some Gondi dialects exhibit
a clear tree structure. Both dialectometric and
autoencoder methods only provide an aggregate
amount of similarity between dialects and do not
work with cognates directly. The methods are sen-
sitive to lexical differences only through high dis-
similarity of phonetic strings. Since lexical and
phonetic differences are likely to indicate differ-
ent processes of linguistic change, we also analyze
the categorical differences due to lexical borrow-
ings/changes. For this purpose, we perform auto-
matic cognate identification and then use the in-
ferred cognates to perform both Bayesian phylo-
genetic analysis and dialectometric analysis.

3.1 Dialectometry

3.1.1 Computing aggregate distances
In this subsection, we describe how Levenshtein
distance and autoencoder based methods are em-
ployed for computing site-site distances.

Levenshtein distance: Levenshtein distance is
defined as the minimum number of edit operations
(insertion, deletion, and substitution) that are re-
quired to transform one string to another. We use
the Gabmap (Nerbonne et al., 2011) implementa-
tion of Levenshtein distance to compute site-site
differences.

Autoencoders: Rama and Çöltekin (2016) in-
troduced LSTM autoencoders for the purpose of
dialect classification. Autoencoders were em-
ployed by Hinton and Salakhutdinov (2006) for
reducing the dimensionality of images and docu-
ments. Autoencoders learn a dense representation
that can be used for clustering the documents and
images.

An autoencoder network consists of two parts:

encoder and decoder. The encoder network takes
a word as an input and transforms the word to a
fixed dimension representation. The fixed dimen-
sion representation is then supplied as an input to
a decoder network that attempts to reconstruct the
input word. In our paper, both the encoder and
decoder networks are Long-Short Term Memory
networks (Hochreiter and Schmidhuber, 1997).

In this paper, each word is represented as a
sequence (x1, . . . xT ) of one-hot vectors of di-
mension |P | where P is the total number (58)
of IPA symbols across the dialects. The encoder
is a LSTM network that transforms each word
into h ∈ Rk where k is predetermined before-
hand (in this paper, k is assigned a value of 32).
The decoder consists of another LSTM network
that takes h as input at each timestep to predict
an output representation. Each output represen-
tation is then supplied to a softmax function to
yield x̂t ∈ R|P |. The autoencoder network is
trained using the binary cross-entropy function
(−∑t xtlog(x̂t) + (1 − xt)log(1 − x̂t)) where,
xt is a 1-hot vector and x̂t is the output of the soft-
max function at timestep t to learn both the en-
coder and decoder LSTM’s parameters. Following
Rama and Çöltekin (2016), we use a bidirectional
LSTM as the encoder network and a unidirec-
tional LSTM as the decoder network. Our autoen-
coder model was implemented using Keras (Chol-
let, 2015) with Tensorflow (Abadi et al., 2016) as
the backend.

3.1.2 Visualization
We use Gabmap, a web-based application for di-
alectometric analysis for visualizing the site-site
distances (Nerbonne et al., 2011; Leinonen et al.,
2016).2 Gabmap provides a number of methods
for analyzing and visualizing dialect data. Below,
we present maps and graphics that are results of
multi-dimensional scaling (MDS) clustering.

For all analyses, Gabmap aggregates the differ-
ences calculated over individual items (concepts)
to a site-site distance matrix. With phonetic data, it
uses site-site differences based on string edit dis-
tance with a higher penalty for vowel–consonant
alignments and a lower penalty for the alignments
of sound pairs that differ only in IPA diacritics.
With binary data, Gabmap uses Hamming dis-
tances to compute the site-site differences. The
cognate clusters obtained from the automatic iden-

2Available at http://gabmap.nl/.
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tification procedure (section 2.2) forms categories
(cognate clusters) which are analyzed using bi-
nary distances. Finally, we also visualize the dis-
tances from the autoencoders (section 2.1) using
Gabmap.

Gabmap provides various agglomerative hierar-
chical clustering methods for clustering analyses.
In all the results below, we use Ward’s method for
calculating cluster differences. For our analyses,
we present the clustering results on (color) maps
and dendrograms. Since the clustering is known to
be relatively unstable, we also present probabilis-
tic dendrograms that are produced by noisy clus-
tering (Nerbonne et al., 2008). In noisy clustering,
a single cluster analysis is performed a large num-
ber of times (∼ 100) by adding a small noise to
the distance matrix that is proportional to the stan-
dard deviation of the original distance matrix. The
combined analysis then provides statistical sup-
port for the branches in a dendrogram.

The multi-dimensional scaling (MDS) is a use-
ful analysis/visualization technique for verifying
the clustering results and visualizing the dialect
continuum. A site-site (linguistic) distance ma-
trix represents each site on a multi-dimensional
space. MDS ‘projects’ these distances to a smaller
dimensional space that can be visualized easily. In
dialect data, the distances in few most-important
MDS dimensions correlate highly with the orig-
inal distances, and these dimensions often cor-
respond to linguistically meaningful dimensions.
Below, we also present maps where areas around
the linguistic similar locations are plotted using
similar colors.

3.2 Phylogenetic approaches

3.2.1 Automatic cognate detection
Given a multilingual word list for a concept, the
automatic cognate detection procedure (Hauer and
Kondrak, 2011) can be broken into two parts:

1. Compute a pairwise similarity score for all
word pairs in the concept.

2. Supply the pairwise similarity matrix to a
clustering algorithm to output clusters that
show high similarity with one another.

Needleman-Wunsch algorithm (NW, Needle-
man and Wunsch (1970); the similarity counter-
part of Levenshtein distance) is a possible choice
for computing the similarity between two words.
The NW algorithm maximizes similarity whereas

Levenshtein distance minimizes the distance be-
tween two words. The NW algorithm assigns a
score of 1 for character match and a score −1 for
character mismatch. Unlike Levenshtein distance,
NW algorithm assigns a penalty score for opening
a gap (deletion operation) and a penalty for gap
extension which models the fact that deletion op-
erations occur in chunks (Jäger, 2013).

The NW algorithm is not sensitive to differ-
ent sound segment pairs, but a realistic algorithm
should assign higher similarity score to sound cor-
respondences such as /l/ ∼ /r/ than the sound cor-
respondences /p/ ∼ /r/. The weighted Needleman-
Wunsch algorithm takes a segment-segment sim-
ilarity matrix as input and then aligns the two
strings to maximize the similarity between the two
words.

In dialectometry (Wieling et al., 2009), the
segment-segment similarity matrix is estimated
using pointwise mutual information (PMI). The
PMI score for two sounds x and y is defined as
followed:

pmi(x, y) = log
p(x, y)
p(x)p(y)

(1)

where, p(x, y) is the probability of x, y being
matched in a pair of cognate words, whereas, p(x)
is the probability of x. A positive PMI value be-
tween x and y indicates that the probability of
x being aligned with y in a pair of cognates is
higher than what would be expected by chance.
Conversely, a negative PMI value indicates that an
alignment of x with y is more likely the result of
chance than of shared inheritance.

The PMI based computation requires a prior list
of plausible cognates for computing a weighted
similarity matrix between sound segments. In the
initial step, we extract cross-lingual word pairs
that have a Levenshtein distance less than 0.5 and
treat them as a list of plausible cognates. The PMI
estimation procedure is described as followed:

1. Compute alignments between the word pairs
using a vanilla Needleman-Wunsch algo-
rithm.3

2. The computed alignments from step 1 are
then used to compute similarity between seg-
ments x, y according to the following for-
mula:

3We set the gap-opening penalty to -2.5 and gap extension
penalty to -1.75.
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3. The PMI matrix obtained from step 2 is used
to realign the word pairs and generate a new
list of segment alignments. The new list of
alignments is employed to compute a new
PMI matrix.

4. Steps 2 and 3 are repeated until the difference
between PMI matrices reach zero.

In our experience, five iterations were sufficient
to reach convergence. At this stage, we use the
PMI matrix to compute a word similarity matrix
between the words belonging to a single meaning.
The word similarity matrix was converted into a
word distance matrix using the following transfor-
mation: (1+exp(x))−1 where, x is the PMI score
between two words. We use the InfoMap cluster-
ing algorithm (List et al., 2016) for the purpose of
identifying cognate clusters.

3.2.2 Bayesian phylogenetic inference
The Bayesian phylogenetics originated in evolu-
tionary biology and works by inferring the evo-
lutionary relationship (trees) between DNA se-
quences of species. The same method is applied
to binary traits of species (Yang, 2014). A binary
trait is typically a presence or absence of a evolu-
tionary character in an biological organism. Com-
putational biologists employ a probabilistic substi-
tution model θ that models the transition probabil-
ities from 0 → 1 and 1 → 0. The substitution
matrix would be a 2 × 2 matrix in the case of a
binary data matrix.

A evolutionary tree that explains the relation-
ship between languages consist of topology (τ )
and branch lengths (T). The likelihood of the bi-
nary data to a tree is computed using the pruning
algorithm (Felsenstein, 1981). Ideally, identifying
the best tree would involve exhaustive enumera-
tion of the trees and calculating the likelihood of
the binary matrix for each tree. However, the num-
ber of possible binary tree topologies grows facto-
rially ((2n − 3)!! where, n is the number of lan-
guages) and, hence intractable even for a small
number (20) of languages. The inference problem
would be to estimate the joint posterior density of
τ, θ,T.

The Bayesian phylogenetic inference program
(MrBayes;4 Ronquist and Huelsenbeck (2003)) re-
quires a binary matrix (languages × number of
clusters) of 0s and 1s, where, each column shows
if a language is present in a cluster or not. The

4http://mrbayes.sourceforge.net/

German Hund 1 0
Swedish hund 1 0
Hindi kutta 0 1

Table 2: Binary matrix for meaning “dog”.

cognate clusters are converted into a binary ma-
trix of 0s and 1s in the following manner. A word
for a meaning would belong to one or more cog-
nate sets. For example, in the case of German,
Swedish, and Hindi, the word for dog in German
‘Hund’ and Swedish ‘hund’ would belong to the
same cognate set, while Hindi ‘kutta’ would be-
long to a different category. The binary trait ma-
trix for these languages for a single meaning, dog,
would be as in table 2. A Bayesian phylogenetic
analysis employs a Markov-Chain Monte-Carlo
procedure to navigate across the tree space. In this
paper, we ran two independent runs until the trees
inferred by the two runs do not differ beyond a
threshold of 0.01. In summary, we ran both the
chains for 4 million states and sampled trees at ev-
ery 500 states to avoid auto-correlation. Then, we
threw away the initial one million states as burn-in
and generated a summary tree of the post burn-in
runs (Felsenstein, 2004). The summary tree con-
sists of only those branches which have occurred
more than 50% of the time in the posterior sample,
consisting of 25000 trees.

4 Results

In this section, we present visualizations of differ-
ences in the language area using MDS and noisy
clustering.

4.1 String edit distance
In the left map in Figure 2, the first three MDS
dimensions are mapped to RGB color space, visu-
alizing the differences between the locations. Note
that the major dialectal differences outlined in ta-
ble 1 are visible in this visualization. For exam-
ple, the magenta and yellow-green regions sep-
arate the Bison Horn Maria and the Hill Maria
groups from the surrounding areas with sharp con-
trasts. The original linguistic distances and the
distances based on first three MDS dimensions
correlate with r = 0.90, hence, retaining about
81% of the variation in the original distances. The
middle map in figure 2 displays only the first di-
mension, which seems to represent a difference
between north and south. On the other hand, the
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Figure 2: MDS analysis performed by Gabmap with string edit distance. The left map shows first three
MDS dimensions mapped to RGB color space. The middle map shows only the first dimension, and
the right map shows the second MDS dimension. The first three dimensions correlate with the original
distances with r = 0.73, r = 0.55 and r = 0.41, respectively, and first three dimensions with r = 0.90.
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Figure 3: Clustering analysis performed by Gabmap with string edit distance using Ward’s method and
the color in the map indicate 5 dialect groups. Probabilistic dendrogram from the default Gabmap anal-
ysis (string edit distance).

right map (second MDS dimension) seems to indi-
cate a difference between Bison Horn Maria (and
to some extent Muria) and the rest.

The clustering results are also complementary
to the MDS analysis. The 5-way cluster map
presented in figure 3 indicates the expected di-
alect groups described in table 1. Despite some
unexpected results in the detailed clustering, the
probabilistic dendrogram presented in figure 3
also shows that the main dialect groups are stable
across noisy clustering experiments. For instance,
the Bison Horn Maria group (bhm, bhs, bhb) pre-
sented on the top part of the dendrogram indicates
a very stable group: these locations are clustered
together in all the noisy clustering experiments.
Similarly, the next three locations (mco, mud, mlj,
belonging to Muria area) also show a very strong
internal consistency, and combine with the Bison
Horn Maria group in 72% of the noisy clustering

experiments. However, other members of Muria
group (mdh, mku, ktg, gok at the bottom of the
probabilistic dendrogram) seem to be placed often
apart from the rest of the group.

4.2 Binary distances
Next, we present the MDS analysis based on lex-
ical distances in figure 4. For this analysis, we
identify cognates for each meaning (cf. section
2.2), and treat the cognate clusters found in each
location as the only (categorical) features for anal-
ysis. The overall picture seems to be similar to
the analysis based on the phonetic data, although
the north-south differences are more visible in
this analysis. Besides the first three dimensions
(left map), both first (middle map) and second
(right map) dimensions indicate differences be-
tween north and south. The left figure shows that
there is a gradual transition from the Northern di-
alects (gtd, gkt, prg, ggg, khu, bhe, gcj, pmd, psh,
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Figure 4: MDS analysis performed by Gabmap with categorical differences. The left map shows first
three MDS dimensions mapped to RGB color space. The middle map shows only the first dimension, and
the right map shows the second MDS dimension. The first three dimensions correlate with the original
distances with r = 0.77, r = 0.53 and r = 0.41, respectively, and first three dimensions with r = 0.94.
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Figure 5: The dendrogram shows the results of the hierarchical clustering (left) based on binary matrix.
Probabilistic dendrogram from the Gabmap analysis with Hamming distances.

pkh) to the rest of the northern dialects that share
borders with Muria and Southern dialects. There
is a transition between Southern dialects to the Hill
Maria dialects where, the Hill Maria dialects do
not show much variation.

The clustering analysis of the binary matrix
from cognate detection step is projected on the ge-
ographical map of the region in figure 5. The map
retrieves the five clear subgroups listed in table 1.
Then, we perform a noisy clustering analysis of
the Hamming distance matrix which is shown in
the same figure. The dendrogram places Bison-
Horn Maria dialects (bhm, bhs, bhb) along with
the eastern dialects of Muria subgroup. It also
places all the Northern Gondi dialects into a sin-
gle cluster with high confidence. The dendrogram
also places all the southern dialects into a single
cluster. On the other hand, the dendrogram incor-
rectly places the Hill Maria dialects along with the
western dialects of Muria subgroup. With slight

variation in the detail, the cluster analysis and the
probabilistic dendrogram presented in figure 5 are
similar to the analysis based on phonetic differ-
ences.

4.3 Autoencoder distances
The MDS analysis of autoencoder-based distances
are shown in figure 6. The RGB color map of
the first three dimensions shows the five dialect
regions. The figure shows a clear boundary be-
tween Northern and Southern Gondi dialects. The
map shows the Bison Horn Maria region to be
of distinct blue color that does not show much
variance. The autoencoder MDS dimensions cor-
relate the highest with the autoencoder distance
matrix. The first dimension (middle map in fig-
ure 6) clearly distinguishes the Northern dialects
from the rest. The second dimension distinguishes
Southern Gondi dialects and Muria dialects from
the rest of the dialects.

The clustering analysis of the autoencoder dis-
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Figure 6: MDS analysis performed by Gabmap with autoencoder differences. The left map shows first
three MDS dimensions mapped to RGB color space. The middle map shows only the first dimension, and
the right map shows the second MDS dimension. The first three dimensions correlate with the original
distances with r = 0.74, r = 0.57 and r = 0.49, respectively, and first three dimensions with r = 0.92.
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Figure 7: Probabilistic dendrogram from the
Gabmap analysis with autoencoder distances. The
clustering result is similar to the left map in fig-
ure 3.

tances are projected on to the geographical map
in figure 7. The map retrieves the five subgroups
in table 1. The noisy clustering clearly puts the
Bison Horn Maria group into a single cluster. It
also places all the northern dialects into a single
group with 100% confidence. On the other hand,
the dendrogram splits the Southern Gondi dialects
into eastern and western parts. The eastern parts
are placed along with the Hill Maria dialects. The
clustering analysis also splits the Muria dialects
into three parts. However, the dendrogram places
gok (a eastern Muria dialect) incorrectly with Far
Western Muria (mku).

4.4 Bayesian analysis

The summary tree of the Bayesian analysis is
shown in figure 8. The figure also shows the per-
centage of times each branch exists in the posterior
sample of trees. The tree clearly divided North-
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Figure 8: The majority consensus tree of the
Bayesian posterior trees.

west Gondi from Southeast Gondi groups. The
tree places all the Northern Gondi dialects into
a single group in 99% of the trees. The south-
ern dialects are split into two different branches
with rui, dog, gki branching later from the com-
mon Northwest Gondi later than the rest of the
Southern Gondi dialects. The tree clearly splits the
Hill Maria dialects from rest of Southeast Gondi
dialects. The tree also places all the Bison Horn
Maria dialects into a single group but does not put
them into a different group from the rest of the
Muria dialects.

5 Conclusion

In this paper, we performed analysis using tools
from dialectometry and computational historical
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linguistics for the analysis of Gondi dialects. The
dialectometric analysis rightly retrieves all the
subgroups in the region. However, both edit dis-
tance and autoencoder distances differ in the noisy
clustering analysis. On the other hand, the noisy
clustering analysis on the binary cognate matrix
yields the best results. The Bayesian tree based on
cognate analysis also retrieves the top level sub-
groups right but does not clearly distinguish Bi-
son Horn Maria group from Muria dialects. As a
matter of fact, the Bayesian tree agrees the high-
est with the gold standard classification from Glot-
tolog.

The contributions of the paper is as followed.
We digitized a multilingual lexical wordlist for 46
dialects and applied both dialectometric and phy-
logenetic methods for the classification of dialects
and find that phylogenetic methods perform the
best when compared to the gold standard classi-
fication.
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Abstract

This paper investigates diatopic variation
in a historical corpus of German. Based on
equivalent word forms from different lan-
guage areas, replacement rules and map-
pings are derived which describe the re-
lations between these word forms. These
rules and mappings are then interpreted as
reflections of morphological, phonological
or graphemic variation. Based on sample
rules and mappings, we show that our ap-
proach can replicate results from historical
linguistics. While previous studies were
restricted to predefined word lists, or con-
fined to single authors or texts, our ap-
proach uses a much wider range of data
available in historical corpora.

1 Introduction

In this paper we give an outline of our joint
endeavor—combining computational and German
historical linguistics—to develop a set of meth-
ods with the goal of uncovering and investigat-
ing the whole range of variation on the word level
in a large scale corpus of historical texts. This
is in contrast to traditional approaches in histori-
cal linguistics, who often use a predefined list of
carefully-selected words for comparing linguistic
variation.

In recent years, an increasing number of corpora
of historical German has been built and published,
including reference corpora of historical German,
some still under construction (Donhauser, 2015;
Klein et al., 2016; Schmitz et al., 2013; Peters
and Nagel, 2014). Data from texts of historical
and thus non-standard German is always strongly
characterized by variation on every level of the
language system. Hence, designing methods to
gather and analyze the scope and scale of variation

present in these corpora is a hot topic as well as a
methodological challenge. Purely manual analysis
is ruled out by the large amount of data provided
by these corpora, necessitating the application of
automatic methods.

We address the challenge of dealing with such
data by way of systematic and exhaustive com-
parison of words that are variants of each other.
To test and develop the comparative methods pre-
sented here we use the Anselm Corpus (Dipper and
Schultz-Balluff, 2013).

The paper is organized as follows. Section 2 ad-
dresses prior work done in this area. In Section 3,
we introduce the Anselm Corpus that we used in
our comparison. Sections 4 and 5 present the com-
parison and its results, followed by a conclusion in
Section 6.

2 Related Work

In recent years, spelling variation in non-standard
data, such as historical texts or texts from social
media, has come into focus in Natural Language
Processing. Most often, variation is dealt with
by normalization, i.e. mapping variants to some
standard form (for historical data, see Piotrowski
(2012, chap. 6)). The main focus of this research
has been on how to automatize the normalization
process, which is often a preparatory step to facili-
tate further processing of historical language data,
e.g. by search tools or taggers (e.g. Jurish (2010),
Bollmann (2012)). Some work addresses the ex-
tent of variance found in the data (e.g. Baron et
al. (2009)). However, the derived mappings them-
selves that map historical to modern word forms
are usually not in the focus of interest (but see
Barteld et al. (2016)).

In contrast, theoretical linguists researching lan-
guage evolution and language varieties are in-
terested in these mappings, which highlight the
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differences between the languages. Tradition-
ally, historical linguistic research is mainly based
on morphological and phonological properties.
For instance, the relationships between the Indo-
European languages have been established on the
base of shared inflectional properties and phonetic
relations, such as the first and second Germanic
consonant shift. Similarly, dialect classification
mainly depends on phonological and morpholog-
ical features, with syntactic properties playing a
minor role.

Language comparison in this spirit is based on
specific language data: for sound-based compari-
son, lists of parallel words in different languages
or language stages are usually used, such as the
classical Swadesh list (Swadesh, 1955) or lists that
have been compiled more recently for various lan-
guages (see, e.g., the data used in Jäger et al.
(2017)). The challenge is then to identify related
words, such as cognates and loan words, and unre-
lated words. The number of cognates between two
languages serves as a measure of relatedness. In
some approaches, no distinction is made between
“real cognates”, which are etymologically related,
and words that are related due to some process
other than strict inheritance.

In contrast to these approaches, we do not
restrict our comparisons to single words from
carefully-compiled word lists but aim at using as
much data as possible from available corpora.

3 The Data

The data we use to test and refine our method
has been extracted from the Anselm Corpus, which
consists of about 50 versions of the medieval text
Interrogatio Sancti Anselmi de Passione Domini
(‘Questions by Saint Anselm about the Lord’s Pas-
sion’). The text is a dialogue between St. Anselm
and the Virgin Mary, who recounts the events of
the passion. The versions are from different lan-
guage areas and time periods from Early New
High German (1350–1600). Since they deal with
the same topic, the overlap in content and vocab-
ulary is large. Hence, the data provides a perfect
basis for diatopic research. The map in Figure 1
gives an impression of the wide distribution of
the different versions across the German language
area.

Each word form in the Anselm Corpus has
been manually annotated by its modern German
translation (Bollmann et al., 2012). We define

Figure 1: Distribution of the Anselm texts
across the German-speaking area. Each
marker represents one text (map taken from
https://www.linguistics.rub.de/
anselm/corpus/map.html).

as shared or equivalent all historical word forms
whose modern translations are identical. For in-
stance, vffston in an Alemannic text and vpstain in
a Ripuarian text are considered equivalent because
they both correspond to modern German aufstehen
‘stand up’. The investigations we present in this
paper are based on such shared, equivalent word
forms occurring in different texts.

Table 1 gives an overview of the temporal and
regional distribution of shared words in the Anselm
data.1 The table shows that the Anselm Corpus
has a good coverage of the 15th century, and that
mbair is the best-documented language area.

We selected seven texts from different language
areas for diatopic comparison. The comparison
starts with texts written in the same language area

114 means ‘14th century’, 14.1 means ‘first half of the
14th century’ (i.e. 1300–1350), etc. The language areas are:
alem: Alemannic, hchalem: High Alemannic, mbair: Central
Bavarian, nbair: North Bavarian, obs: Upper Saxon, rhfrk:
Rhine-Franconian, rip: ‘Ripuarian’, schwaeb: ‘Swabian’;
thuer: ‘Thuringian’.
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14 14.1 14.2 15 15.1 15.2 16 16.1
East nbair 4143:2 12840:7

Upper mbair 2119:1 7995:4 9915:6 2236:2 1535:1

German alem 2166:1 1991:1

West hchalem 2497:1 6653:2 1976:1

schwaeb 2102:1 4404:4

West rip 3507:2 5510:3

Central rhfrk 4203:2

German East thuer 1250:1 1713:1

obs 777:1 2039:1

Table 1: Temporal and regional distributions of shared, equivalent words (number of types) in the Anselm
Corpus. The numbers after the colon represent the number of texts that have been compared.

nbair mbair schw rhfrk
M4 Ba2 M3 B3 D4 St B2

M4 – 1572 2407 1856 1732 2058 2141
Ba2 – 1744 1475 1552 1614 1585
M3 – 1954 1884 2220 2315
B3 – 1611 1734 1765
D4 – 1865 1779
St – 2300

Table 2: Number of pairwise shared words (types)
for diatopic comparison, all texts dating from 15.2.

(e.g. mbair) and proceeds with the comparison of
adjacent language areas that belong to the same
major dialect (mbair→ nbair). Finally, texts from
different dialects are compared, which are sepa-
rated by the Speyer line, an isogloss separating the
language areas called ‘Central German’ and ‘Up-
per German’ (rhfrk→ schwaeb/bair).

Table 2 shows the overlap between the texts that
we compared.2

4 Diatopic Comparison

As mentioned above, the diatopic comparisons are
based on equivalent word forms. This section de-
scribes how these forms are found and how they
form the base of comparison.

2The identifiers used here (M4 etc.) are the sigla of
the individual texts, as defined in the Anselm corpus, see
https://www.linguistics.ruhr-uni-bochum.
de/anselm/corpus/german.html for a list. The
sigla are derived from the respective repositories, e.g. M4 is
stored in Munich (Bayerische Staatsbibliothek).

Text 1 Text 2 Normalization
M4: bedürfen M3: pedurffen bedürfen ‘require’
Ba2: pitten B3: biten bitten ‘ask’
St: uch D4: aüch euch ‘you (pl)’

Table 3: Examples of equivalent word forms.

4.1 Finding Equivalent Word Forms

All original word forms in the Anselm Corpus
have been manually normalized to the correspond-
ing modern German word forms (Bollmann et al.,
2012). All word forms with identical normaliza-
tions are considered equivalent.3 For each pair of
texts, equivalent word forms were collected and
paired. Table 3 shows some sample pairs.

4.2 Deriving Rewrite Rules and
Levenshtein-based Mappings

Similarities and differences between the equiva-
lent word forms are modeled by means of ‘Rewrite
rules’ and Levenshtein-based mappings (for de-
tailed description and comparison of both meth-
ods, see Bollmann (2012)).

Rewrite rules Given a pair of equivalent word
forms, both forms are first aligned at the character
level, see (1a) which aligns the equivalent word
forms biten and pitten (bitten, ‘ask’) (for details,
see Bollmann et al. (2011)). (1b) is an alternative
representation of the alignments. In the following,

3In order to diminish data sparseness, word forms with
identical normalization but differing morphological proper-
ties were also considered equivalent, e.g. chrawcze (M3,
mostly dative case) and creucz (B3, any case), both normal-
ized as kreuz ‘cross’.
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the format of (1b) is used in the presentation of
examples.

(1) a.
B3 b i t e n

Ba2 p i t t e n

b. |b=p|i=i|t=t|=t|e=e|n=n|

From these character alignments, rewrite rules
are derived that replace characters from the first
word to arrive at the second word. The word pair
in (1) gives rise to the context-aware replacement
rules shown in (2). ‘#’ indicates word boundaries,
‘E’ represents the empty string.

(2) a. b → p | # _ i
“Replace word-initial ‘b’ by ‘p’, if fol-
lowed by ‘i”’

b. E → t | i _ t
“Insert ‘t’ between ‘i’ and ‘t”’

In addition to the replacement rules, “identity
rules” are derived, recording the characters that are
identical in both word forms, see (3) and (4) for the
identity rules derived from (1).4

(3) a. i → i | p _ t

b. t → t | t _ e

c. e → e | t _ e

d. n → n | e _ #

(4) a. E → E | # _ p

b. E → E | p _ i

c. E → E | t _ e

d. E → E | e _ n

e. E → E | n _ #

The rules derived from a text pair are collected
and counted. Table 4 shows the top five identity
and non-identity rules with their frequencies, as
derived from the equivalent word forms of B3 and
Ba2. The interpretation of these rules is addressed
below.

4The left context is checked against the target word form,
the right context against the source form. The rules can also
map sequences of characters, thus considering larger context.
For details see Bollmann et al. (2011).
The rules in (4) prevent the insertion of characters at specific
positions.

Freq Rule
419 E → E | n _ #
312 E → E | e _ n
281 n → n | e _ #
265 E → E | t _ #
240 E → E | e _ r
26 c → E | # _ z
19 E → e | r _ n
17 n → E | a _ n
16 j → i | # _ o
14 j → i | # _ u

Table 4: Most frequent rewrite rules derived from
B3 → Ba2 (top: identity rules; bottom: non-
identity rules).

Weight Seq 1→ Seq 2
0.125245 nn → n
0.195926 j → i
0.202549 ei → ai
0.220936 te → tte
0.227544 enn → en

Table 5: Least weighted mappings derived from
B3→ Ba2.

Levenshtein-based mappings Another way of
modeling the relation between both word forms
is by means of weighted Levenshtein-based map-
pings, which map character sequences of varying
length. The more often a certain mapping has been
observed in the data, the smaller its weight or cost.
According to Levenshtein, identity mappings are
the cheapest mappings with zero costs.

Some sample mappings derived from the exam-
ple pair in (1a) are provided in (5). Table 5 shows
the top five cheapest mappings derived from B3
and Ba2.

(5) a. b → p

b. bi → pi

c. te → tte

d. t → tt

4.3 Interpreting the Rules and Mappings

The notation of the rules and mappings makes use
of ‘→’, implying that there is a directed relation
between the two word forms, which takes one of
the forms as the input and produces the other form
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Rule Analysis
c → E | # _ z Graphemic variation: <cz> or <z> representing /ts/ in initial position
E → e | r _ n Syncope (loss) of <e> representing /@/ before final <n>
n → E | a _ n <n> or <nn> representing /n/
j → i | # _ o Graphemic variation: <j> or <i> in initial position
j → i | # _ u

Table 6: Top non-identity rewrite rules derived from B3→ Ba2, along with a linguistic analysis.

as the output. This interpretation may seem ad-
equate for diachronic changes where we can say
that the later form evolves out of the former form.
For diatopic relations, a bidirectional interpreta-
tion seems more sensible, simply stating that a cer-
tain character (or character sequence) in one lan-
guage area corresponds to another one in the other
language area.

The (non-identity) rules and mappings often en-
code interesting relations, such as b → p, which
indicates (de)voicing of plosives. In the next sec-
tion, we go through a set of selected rules and
mappings, discussing the range of phenomena that
can be observed.

Ultimately we aim at using the rules and map-
pings for automatic clustering of texts relating to
the crucial factors in language variation, language
area and time, as well as other parameters—if they
are included in the metadata the corpus provides—
such as text type/function. Speaking from the per-
spective of historical linguistics, we hope to fur-
ther enhance methodology by facilitating exhaus-
tive analyses of larger corpora. Of course, this ap-
proach must be able to bear comparison to pre-
vious non-exhaustive approaches. It should be
able to reflect previous, well-substantiated find-
ings, such as the results of the High German con-
sonant shift, but it should also be able to allow for
new insights and eventually to draw a more de-
tailed picture. The examples discussed in the next
section were selected in a way to show that our
approach will be able to satisfy both criteria.

5 First Results

Before discussing some results in detail, we would
like to begin this section by giving an impression
of how to interpret the replacement rules extracted
by the method described above.

Table 6 gives linguistic analyses for the top non-
identity rules of the pairing B3 → Ba2 (listed in
Table 4).

The interpretation of the rewrite rules has to

take into account which texts have been paired, in
particular their spatial and temporal relation. In
the example, we have paired two texts from the
same period and the same area (Bavarian), but
from different regions: Ba2 is a North Bavarian
text, and B3 a Central Bavarian text, so we do not
expect to see any diachronic variation here, and
diatopic variation only to some extent.

The rules derived from the corpus show vari-
ants which are related to different levels of linguis-
tic variation on the word level: to morphological,
phonological and graphemic variation. To clas-
sify the rules as morphological, phonological or
graphemic, the underlying word forms have to be
consulted. As an example, see the list of 26 align-
ments in Table 7 that the rule in (6) has been de-
rived from. The list of alignments shows all word
forms starting with an inital affricate /ts/, which is
encoded by <cz> in B3 on the one hand and by
<z> in Ba2 on the other hand. As can be seen, the
graphematic variation <cz>/<z> concerns a vari-
ety of different lemmas but becomes visible as a
pattern through the rewrite rule.

(6) B3→ Ba2: c → E | # _ z

In some cases (9 instances), Ba2 also uses <cz>,
like B3, triggering an identity rule, (7).

(7) B3→ Ba2: c → c | # _ z

Morphological variation When pairing a Cen-
tral German text, St (from the Rhine-Franconian
area (Mainz)) with any of the Bavarian Upper Ger-
man texts (Ba2, M4, M3, B3) from the same time
period—the latter in order to rule out diachronic
variation—the rule shown in (8) sticks out in all
comparisons, see Table 8. To give an impres-
sion of the type of rules and their frequencies that
have been derived, the table provides the three top-
ranked (non-identity) rules for each pairing.

(8) t → E | n _ #
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Alignments Lemma
|c=|z=z|e=e|c=|h=h|e=e|r=r|=e|n=n| zeheren ‘(to) weep’
|c=|z=z|e=e|c=c|h=h|e=e|r=r|=e|n=n|

|c=|z=z|a=a|r=r|t=t|e=e|n=n| zart ‘sweet’

|c=|z=z|u=u|h=h|a=a|n=n|t=t| zuhand ∼ zehant ‘at once’
|c=|z=z|u=u|h=h|a=a|n=n|=d|t=t|
|c=|z=z|u=u|h=h|a=a|n=n|t=d|
|c=|z=z|u=u|h=h|a=a|n=n|n=|t=t|
|c=|z=z|u=u|h=h|a=a|n=n|n=d|t=t|
|c=|z=z|u=u|h=h|a=a|n=n|n=|t=d|

|c=|z=z|e=e|h=h|e=e|n=n| zehn ‘ten’

|c=|z=z|e=a|i=i|c=c|h=h|e=e|n=n| Zeichen ‘sign’

|c=|z=z|e=a|i=i|g=g|e=e|n=n| zeigen ‘(to) show’

|c=|z=z|e=e|i=i|t=t| Zeit ‘time’

|c=|z=z|u=e|s=r|c=|h=s|l=l|a=a|h=g|e=e|n=n| zerschlagen ‘(to) break’

|c=|z=z|u=e|s=s|p=p|i=i|=e|l=l|t=t| ze(r)spalten ‘(to) split’

|c=|z=z|e=e|r=r|s=s|t=t|o=e|r=r|e=e|r=r| Zerstörer ‘destroyer’

|c=|z=z|u=u|g=c|k=h|t=t| ziehen ‘to pull’
|c=|z=z|u=o|g=c|k=h|t=|
|c=|z=z|o=u|c=c|h=h|=t|
|c=|z=z|o=o|c=c|h=h|
|c=|z=z|u=u|g=g|e=e|n=n|

|c=|z=z|o=o|r=r|=e|n=n| Zorn ‘anger’

|c=|z=z|u=u| zu ‘to’

|c=|z=z|w=w|u=e|=n| zwen ∼ zwo ‘two’
|c=|z=z|w=w|u=o|

|c=|z=z|e=e|r=r|t=t|l=l|i=i|c=c|h=h|e=e|n=n| zertlich ‘gentle’

Table 7: All 26 alignments underlying the replacement rule in (6).
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Text pair Rule Freq
St→ Ba2 (nbair) t → E | n _ # 51

e → E | t _ # 33
d → t | # _ o 25

St→ M4 (nbair) t → E | n _ # 45
e → E | t _ # 34
e → E | d _ # 27

St→ M3 (mbair) t → E | n _ # 47
E → h | c _ r 40
E → e | l _ i 31

St→ B3 (mbair) t → E | n _ # 44
e → E | t _ # 32
i → E | o _ s 24

Table 8: Three top-ranked replacement rules, as
derived from pairing a Central German text (St)
with different Upper German texts.

This rule is triggered mainly by varying inflec-
tional verb forms, such as gaben vs. gabent ‘(they)
gave’, haben vs. habent ‘(they) have’, kommen
vs. komment ‘(they) come’, glauben vs. glaubent
‘(they) believe’, etc.

Rule (8) reflects a well-known case of dia-
topic morphological variation in the Early New
High German period: Upper German strongly
tends towards -ent as inflectional marker for plu-
ral verb forms, whereas Central German prefers
-en (Dammers et al., 1988, §74ff.).

The Levenshtein-based mappings confirm the
picture. Table 9 shows the top mappings for three
of the pairings in Table 8. Only with the pairing
St → B3 (mbair), there is no respective mapping
among the top-ranked ones.

B2 is another text from the Rhine-Franconian
area but has been located further south than St (see
Figure 2). If B2 is paired with the same Upper Ger-
man texts (Ba2, M4, M3, B3), the results do not
contain rule (8) at all, or their frequency is much
lower. This also reflects the findings presented in
Dammers et al. (1988, §76ff.), who show that the
distribution of the variants -ent vs. -en does not co-
incide completely with the isoglosse(s) separating
Upper from Central German, and -ent is instead
common farther to the north.

These examples show that the method proposed
in this paper is able to confirm results of previous
research, i.e. it is possible to derive constraints on
the localization of these texts by means of their
‘linguistic footprint’ as mirrored in these rules.

Text pair Se1→ Seq2 Weight
St→ Ba2 (nbair) y → i 0.136881

yn → in 0.155339
nt → n 0.167918
d → t 0.171744

St→ M4 (nbair) y → i 0.13741
yn → in 0.15568
yn → ein 0.194489
nt → n 0.213094

St→ M3 (mbair) cr → chr 0.117811
b → p 0.146198
nt → n 0.161911
ent → en 0.168727

Table 9: Top four Levenshtein-based mappings
of the Central text St with three texts from Up-
per German. The mappings corresponding to the
replacement rule t → E | n _ # have been
highlighted.

Phonological variation We next look at a rule
that is related to the High German consonant shift,
see (9).

(9) St→ D4: E → f | #p _ e
example: penning vs. pfenni(n)g

The rule in (9)5 has been derived from pairing St
with a Swabian text, D4. D4 is a borderline case,
i.e. located on the border between Upper and Cen-
tral German, which is indicated by the isoglosse
called Germersheim Line. This line marks the shift
of Germanic /p/ to affricate /pf/ in initial position,
see Figure 2. Rule (9) locates D4 south of the Ger-
mersheim Line.

Another example of phonologically-based vari-
ation is the rule in (10)6. This rule clearly iden-
tifies St as a Rhine-Franconian text, showing /d/
instead of Upper German /t/ in initial or medial
position, see Table 10.

(10) St→ D4: t → d | # _ o
examples: tochter vs. dochter, todes vs. do-
des

Graphemic variation The above examples con-
firmed results already known from the literature.
The next examples illustrate that our new method
also enables us to refine the picture of historical

5Rule rank: 30; rule frequency: 8.
6Rule rank: 8; rule frequency: 16.
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Freq Rule Phonemes
26 E → c | # _ z Initial affricate /ts/, <cz> vs. <z>

e.g. czehen vs. zehen; czu vs. zu

15 u → ü | f _ r Umlaut vowels with or without trema <¨>
e.g. für vs. fur; fürst vs. furst; füren vs. furen

13 t → E | d _ # Final alveolar stop <dt> vs. <t>
e.g. gesundt vs. gesund; kindt vs. kind

11 z → E | s _ # Final alveolar fricative <sz> or <s>
e.g. bisz vs. bis; dasz vs. das; schosz vs. schos

Table 11: Selected rules and their frequencies, as derived from Ba2 → M4, both from North Bavaria,
along with a description of the phonemes that are represented by the respective graphemes.

Figure 2: Localization of the texts. The Speyer
Line is indicated by the letter ‘e’ on the left side. It
coincides with the Germersheim Line in the West-
ern part of the German language area. North of
this line, Germanic */p/ is retained, south of the
line, /pf/ is used instead.

Text pair Freq Rank
St→ Ba2 (nbair) 25 3
St→ M4 (nbair) 16 12
St→ M3 (mbair) 21 8
St→ B3 (mbair) 14 13

Table 10: Absolute frequencies and ranks of the
replacement rule t → d | # _ o, as derived
from pairing a Central German text (St) with dif-
ferent Upper German texts.

variation, especially when it comes to graphemic
variation.

Suitable examples come from pairing neigh-
boring texts, e.g. Ba2 → M4, two texts from
North Bavaria (nbair). This pairing generates
rules which correspond mainly to graphemic vari-
ation, in contrast to pairings of different language
areas, as in the previous section, see the examples
in Table 11.

In applying the method proposed in this pa-
per systematically and exhaustively, a highly nu-
anced picture of graphemic variation will become
observable. In systematically assessing the re-
placement rules derived from a balanced corpus
of historical texts we hope to be able to ascer-
tain a complete picture of graphemic variation, i.e.
which variants were available and were preferred
by scribes in different areas.

6 Conclusion

We hope that our approach will help filling re-
search gaps in historical linguistics. Thus far, re-
search had to cope with a lack of corpora on the
one hand, and the restrictedness of retrieval meth-
ods on the other hand. Therefore, previous stud-
ies in historical graphematics were inevitably re-
stricted and of a merely exemplary nature.

Of course, the exemplary segments these stud-
ies have been focussing on—copies of one text
in Glaser (1985), texts by one and the same au-
thor in Wiesinger (1996), German prints of the
bible translated by Martin Luther in Rieke (1998),
texts originating from one scribal office in Moser
(1977) and texts from one specific place (Duis-
burg) in Mihm (2004) and Elmentaler (1998;
2001; 2003)—have been selected applying expe-
dient criteria. The studies have been able to pro-
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vide insight into a very small, if significant area,
leaving the rest of the map to remain blank.

This is where our approach comes in. The
characteristics of the bundle of methods described
above is that we aim at capturing the whole range
of variation documented in historical corpora, and
that we do so by ‘joining forces’ and mustering ex-
pertise from NLP as well as from German histori-
cal linguistics. In this way we make sure that the
results delivered by the computational methods fit
the requirements of actual variation analysis and
are therefore to be considered not only usable, but
beneficial for future corpus-based historical lin-
guistics. Our approach will be applicable to cor-
pora with a normalization layer—which is the case
for the reference corpora of historical German.

As Table 1 shows, the Anselm Corpus does
not allow for comprehensive diachronic analyses.
When applied to a corpus which covers a larger
time period than the Anselm Corpus, we expect
the proposed method to discover both diachronic
and diatopic variation. Language change never
occurs as a sudden change or replacement of one
variant by the other but involves a period of co-
existences of multiple variants. Hence, language
change will become visible as changes in fre-
quency of the variants involved (cf. Wegera and
Waldenberger (2012, 25)), starting out with an in-
creasing number of instances of the new variant
and—if the process is successful—resulting in a
decrease of the older variant. Such changes in fre-
quency will translate into the rewrite rules gener-
ated by our method, specifically into the ratio be-
tween non-identity rules and their corresponding
identity rules.
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Valencia, Spain
prosso@dsic.upv.es

1 Abstract

Author profiling is the study of how language is
shared by people, a problem of growing impor-
tance in applications dealing with security, in or-
der to understand who could be behind an anony-
mous threat message, and marketing, where com-
panies may be interested in knowing the demo-
graphics of people that in online reviews liked or
disliked their products. In this talk we will give an
overview of the PAN1 shared tasks that since 2013
have been organised at CLEF and FIRE evaluation
forums, mainly on age and gender identification
in social media, although also personality recog-
nition in Twitter as well as in code sources was
also addressed.

In 2017 the PAN author profiling shared task ad-
dresses jointly gender and language variety iden-
tification in Twitter where tweets have been anno-
tated with authors’ gender and their specific varia-
tion of their native language: English (Australia,
Canada, Great Britain, Ireland, New Zealand,
United States), Spanish (Argentina, Chile, Colom-
bia, Mexico, Peru, Spain, Venezuela), Portuguese
(Brazil, Portugal), and Arabic (Egypt, Gulf, Lev-
antine, Maghrebi).

1http://pan.webis.de/
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CLEF and FIRE evaluation forums, on plagiarism
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Abstract

The present study has examined the sim-
ilarity and the mutual intelligibility be-
tween Amharic and two Tigrigna vari-
ties using three tools; namely Levenshtein
distance, intelligibility test and question-
naires. The study has shown that both
Tigrigna varieties have almost equal pho-
netic and lexical distances from Amharic.
The study also indicated that Amharic
speakers understand less than 50% of the
two varieties. Furthermore, the study
showed that Amharic speakers are more
positive about the Ethiopian Tigrigna va-
riety than the Eritrean variety. However,
their attitude towards the two varieties
does not have an impact on their intelli-
gibility. The Amharic speakers’ familiar-
ity to the Tigrigna varieties seems largely
dependent on the genealogical relation be-
tween Amharic and the two Tigrigna vari-
eties.

Keywords: Language Similarity, Lan-
guage Distance, Mutual Intelligibility, At-
titude, Language Contact

1 Introduction

1.1 Language in Ethiopia

More than 85 languages are spoken in Ethiopia
(Demeke, 2001; Hetzron, 1972; Hetzron, 1977;
Hudson, 2013). The languages are classified un-
der four language families: Semitic, Cushitic,
Omotic and Nilo-Saharan (Bender and Cooper,
1976; Demeke, 2001; Hornberger, 2002; Hudson,
2013). In each family, there are many related lan-
guage varieties so that the speakers of one vari-
ety can sometimes communicate with the speak-
ers of another variety in the same language family

without major difficulties (Demeke, 2001; Gutt,
1980). However, the similarity among the lan-
guages is often obscured by the attitude of the
speakers since language is considered as a sym-
bol of identity (Lanza and Woldemariam, 2008;
Smith, 2008). Hence, there are cases where vari-
eties of the same languages are considered as dif-
ferent languages (Hetzron, 1972; Hetzron, 1977;
Hudson, 2013; Smith, 2008). Therefore, due to
politics, sensitivity to ethnicity and the lack of
commitment from the scholars, the exact number
of languages in Ethiopia is not known (Bender and
Cooper, 1976; Demeke, 2001; Leslau, 1969).Fur-
thermore, except some studies for example, Gutt
(1980) and Ahland (2003) cited in Hudson (2013)
on the Gurage varieties, and Bender and Cooper
(1971) on mutual intelligibility of Sidamo dialects,
the degree of mutual intelligibility among various
varieties and the attitude of the speakers towards
each others’ varieties has not been thoroughly in-
vestigated. Hence, the present study examined
the distance and the mutual intelligibility between
Amharic and two Tigrigna varieties together with
the effect of the attitude on the mutual intelligibil-
ity.

Amharic and Tigrigna are members of the
Ethiosemitic language family, a branch of proto-
Semitic family (Bender and Cooper, 1976; De-
meke, 2001; Hetzron, 1972; Hetzron, 1977).
According to Demeke (2001), Hetzron (1972),
Hetzron (1977) and Bender and Cooper (1971),
Ethiosemitic languages are divided into North and
South Ethiosemitc. While the Tigrigna varieties
are North Ethiosemitic languages, Amharic is one
of the South Ethiosemitic languages. Nowadays,
Amharic is spoken only in Ethiopia, but Tigrigna
is spoken both in Ethiopia and in Eritrea. Due
to the genealogical and typological relationship
between Amharic and Tigrigna (Demeke, 2001;
Hetzron, 1972; Hetzron, 1977), Amharic speak-
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ers are supposed to understand the Tigrigna vari-
eties to a certain degree. Since Amharic has been
the national language of Ethiopia, it is a widely
used language compared to Tigrigna (Getachew
and Derib, 2008; Iyob, 2000; Lanza and Wolde-
mariam, 2008; Smith, 2008). The use of Amharic
as a national language helped many speakers of
Ethiopian Tigrigna to learn Amharic as a second
language (Smith, 2008). Moreover, Amharic has
also been given as a subject for Ethiopian Tigrigna
speakers, starting from elementary school. Some
speakers of Eritrean Tigrigna variety used to speak
Amharic before secession. However, after the in-
dependence, using Amharic in schools and in dif-
ferent offices was banned (Hailemariam and Wal-
ters, 1999; Rena, 2005). The relationship between
the peoples of the two countries was also strained
especially after Ethio-Eritrean war from 1988 to
2000. Hence, due to the border conflict, Eritrean
Tigrigna speakers do not also have an access to
Tigrigna speakers in Ethiopia and to the Amharic
speakers.

Studies on the language attitude of the speakers
of Amharic and the Tigrigna varieties are at scarce.
However, language, ethnicity and politics are very
interrelated in Ethiopia (Bulcha, 1997; May, 2011;
Smith, 2008). The link has been accelerated by
the ethnic-based federal system in Ethiopia (Lanza
and Woldemariam, 2008; Young, 1996; Vaughan
and Tronvoll, 2003).The atmosphere of politics in
Eritrea and Ethiopia could also affect the attitude
of the people in both countries. There has been an
anti-Ethiopia sentiment in Eritrea since 1993 (Ab-
bink, 2003; Assefa, 1996; Iyob, 2000). This hos-
tile situation could have an effect on the attitude
of the speakers of Amharic and the speakers of the
Ethiopian Tigrigna.

The study of the similarity between Amharic
and the Tigrigna varieties and the attitude of the
speakers of one language towards another has a
paramount significance in two ways. From prac-
tical point of view, there has been an attempt to
standardize Tigrigna and use it widely in media
and in schools. The study positively contributes
to this effort. From theoretical perspective, there
have been a number of attempts towards improv-
ing the enduring limitations of methods of di-
alectology. One of the positive contributions has
been complementing the traditional lexicostatis-
tics methods by the mutual intelligibility and per-
ceptive distance measures. Very promising results

have been reported by the studies conducted on
the Scandinavian languages and the Chinese di-
alects in this regard (see (Gooskens and Heeringa,
2004; Gooskens, 2013; Gooskens, 2007; Tang and
Heuven, 2007; Tang and Heuven, 2009; Tang and
Heuven, 2015)). The present study is an addition
to these contributions.

1.2 Measuring Language Distance and
Mutual Intelligibility

The study of the distance among related languages
has been a concern of many scholars for decades
(Sokal, 1988). Several previous studies employed
phonetic distance to measure the relative distance
between various languages (Bakker, 2009; Cohn
and Fienberg, 2003; Kessler, 1995). However,
the emergence of the Levenshtein algorithm has
enhanced the objective structural comparisons by
introducing a computer-based distance computa-
tion (Heeringa, 2004; Gooskens and Heeringa,
2004). This has probably contributed a lot in terms
of attracting many scholars towards the study of
language variation (Gooskens, 2013). Recently,
several studies have been conducted on European
languages and on Chinese dialects, for example,
(Gooskens and Heeringa, 2004; Heeringa, 2004;
Tang and Heuven, 2007; Tang and Heuven, 2009;
Tang and Heuven, 2015) by employing the Lev-
enshtein algorithm together with the mutual intel-
ligibility and perceptive distance measures. For
instance, Gooskens (2007) compared data from
Scandinavian languages (Danish, Swedish and
Norwegian) with that of West Germanic languages
(Dutch, Frisian and Afrikaans) and reported that
mutual intelligibility can be predicted based on
phonetic and lexical distances. Similarly, Bezooi-
jen and Gooskens (2007) investigated the intelli-
gibility of written Afrikaans and Frisian texts for
Dutch speakers and reported the association be-
tween the Levenshtien distance and mutual intelli-
gibility. Heeringa (2004) also employed the Lev-
enshtein distance for the comparison of Dutch and
Norwegian varieties.

The subjective measures often include percep-
tive distance and functional tests (Gooskens and
Heeringa, 2004; Tang and Heuven, 2007; Tang
and Heuven, 2009). According to Gooskens
(2013), functional intelligibility between related
languages can be measured by employing con-
tent questions, translation, recorded text testing,
observations and performance tasks. Tang and
Heuven (2009) employed word intelligibility test
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and word recognition in a sentence to examine
the mutual intelligibility among the Chinese di-
alects. According to Gooskens (2013) and Tang
and Heuven (2009) , opinion test can be designed
without speech. For example, speakers of a cer-
tain variety can be requested to give their judg-
ment on the speakers of other varieties who live
in certain geographical areas (estimated linguistic
distance). Bezooijen and Gooskens (2007) used
cloze test to measure the functional ineligibility
of written Afrikaans and Frisian for the native
speakers of Dutch. Swarte and Gooskens (2014)
employed a word translation to measure the im-
portance of German for Dutch speaker to under-
stand the Danish language. Hence, in the present
study, the Levenshtein distance and the lexical dis-
tance were combined with intelligibility measure
to determine the distance and the degree of intel-
ligibility between Amharic and the Tigrigna vari-
eties. Only the intelligibility of the Tigrigna var-
ities for the native speakers of Amharic was ex-
amined; the intelligibility measure was one direc-
tional primarly since mesauring the degree of in-
telligibility of Amharic to the Tigrigna speakers
was difficult as many Tigrigna speakrs have an ac-
cess to Amharic.

To measure the phonetic and the lexical dis-
tances, a written short story ’The Baboon Chief’
was transcribed using IPA. Amharic and both
Tigrigna varieties use Ethiopic writing system
which means that there is a correspondance be-
tween the phonemes and graphemes; the dif-
ference is only on a few supra-segmental fea-
tures which may not be captured in the written
form. After the transcription, cognates in the
stories were identified and aligned. Then, the
distance between the cognates of each language
was computed using Levenshtein distance. Lex-
ical distance was determined by dividing non-
cognate words to the total number of words in each
text. Word translation was employed to measure
the mutual intelligibility between the languages.
Word translation was used since it was suitable
for on line administration. Due to the complex
socio-political situation in Ethiopia, the attitude of
Amharic speakers towards the two language va-
rieties and the contact between Amharic speak-
ers and the speakers of the two Tigrigna vari-
eties were also examined. Questionnaire was em-
ployed since it is suitable for on line administra-
tion (Agheyisi and Fishman, 1970). Bezooijen

and Gooskens (2007) also used questionnaires to
examine the language contact and language back-
ground of their participants.

2 Research objectives

The study was conducted to address, among oth-
ers, the following four specific objectives. 1) To
determine the distance between written Tigrigna
varieties and Amharic. 2) To determine the atti-
tude of the native Amharic speakers towards the
Tigrigna varieties. 3) To identify which Tigrigna
variety is more intelligible for the native speak-
ers of Amharic. 4) To indicate the relationship be-
tween the attitude of the speakers and the degree
of mutual intelligibility.

3 Method

3.1 Participants
The participants were 18 native Amharic speakers
who were attending MA program at Groningen,
Rotterdam and Wageningen universities. Four of
them were females and the remaining 14 were
males. The average age of the participants was
27 year. Students who lived outside Ethiopia for
more than two years were not included in the study
since the attrition of Amharic could affect their
responses and their performances on the mutual
intelligibility test. Those whose parents are from
Tigray Regional State-where Tigrigna is spoken or
from Eritrea were also not included in the study;
all of them were working in different colleges in
Ethiopia before joining the three universities. The
attitude and contact questionnaires were sent to
each participant via email.

3.2 Materials and Tests
To measure the phonetic distance, the lexical dis-
tance and the intelligibility of the two Tigrigna va-
rieties for the native speakers of Amharic, a fable
’The Baboon Chief’ was translated from Oromo
to Amharic by the researcher who is a balanced
bilingual. The translation was checked by two
independent bilingual experts (one is Oromo lan-
guage instructor at Haromaya University and the
second one Amharic instructor at Mekelle Uni-
versity). The selection of the fable from Oromo
was to minimize the priming effect that could hap-
pen if it were taken directly from Amharic, see
Tang and Heuven (2009) for the priming effect.
The Amharic version was translated to the two
Tigrigna varieties. The translators were native
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speakers of the two varieties who were MA stu-
dents at University of Groningen. The translated
texts were checked by Tigrigna experts.

3.2.1 The Phonetic and Lexical Distance
The distances between Amharic and the two
Tigrigna varieties were examined at two linguistic
levels: phonetic and lexical. For the phonetic
distance, the Levenshtein distance was employed.
To apply the Levenshtein distance, the words in
the translated written texts were transcribed using
IPA symbols. To compute the phonetic distance,
cognates both in Amharic and in the two Tigrigna
texts were aligned. The distance between the
corresponding cognates were determined based on
a number of symbols which are inserted, deleted
or substituted. The method of costs assignment
was adopted from Gooskens (2007) with just a
minor modification. The coast assignment is as
follows: insertions and deletions 1 point, identical
symbols 0 points, and substitutions of a vowel
by a vowel or of a consonant by a consonant 0.5
point, substitutions of a vowel by a consonant
or a consonant by a vowel 1 point. Below is
an example of cost assignment which shows
the distance between the cognates of Ethiopian
Tigrigna and Amharic. In this example, the total
cost (0.5 + 0.5) is one (1). The phonetic distance
is the ratio of the total cost to the number of
alignment (in this case 6). Thus, the phonetic
distance is one divided by six (1/6) which is
0.167. In terms of percent, the distance between
Tigrigna and Amharic cognates in this particular
example is 16.7%.

k u l l o m Tigrigna
h u l l u m Amharic
.5 0 0 0 .5 0 Cost

The lexical distance between the two Tigrigna
varieties and Amharic was determined based on
the percentage of non-cognates in the total lexi-
cal items; the number of non-cognate words was
divided to the total number of lexical items, based
on Gooskens (2007). The cognates were identified
based on two parameters which were suggested in
Gooskens (2007): words in corresponding texts
with common roots and cognate synonyms-words
which are very similar in written form, but have
slight meaning differences (e.g. hajal ’powerful’
and hajl ’power’). Whether the pairs of words are
cognates or not was determined by two Amharic
and Ethiopian Tigrigna bilinguals and another two

Amharic-Eritrean Tigrigna bilinguals.

3.2.2 Language Attitude and Contact
To examine the attitude of the Amharic speakers
towards the two Tigrigna varieties, questionnaires
were adopted from Bezooijen and Gooskens
(2007). The questionnaires contained items which
focus on the two Tigrigna varieties, on the speak-
ers of the varieties and on areas where the two
Tigrigna varieties are spoken. For each area of in-
terest, three items and the total of eighteen items
were constructed. The participants provided their
responses on the items that contain five point
scales. For example, they rate whether Tigrigna
is an interesting language or not on the scale: 1
(interesting) to 5 (extremely boring).

Similarly, questionnaires were employed for the
assessment of the participants’ contact with the
two Tigrigna varieties. The questionnaires in-
cluded items related to the participants’ frequency
of contact with the speakers of the two varieties,
media, movies, and newsletters of the two vari-
eties. The participants rated the degree of contact
by using five rating scales (very often, often, oc-
casionally, very rarely and not at all). Ten ques-
tions were provided for each variety, and the items
designed to measure each variety were evenly dis-
tributed.

3.2.3 The Mutual Intelligibility
Word translation was used for the mutual intelli-
gibility measure due to its ease of administration.
In the translation task, Tigrigna words in the trans-
lated fable were listed based on alphabetical order,
and 100 words from each Tigrigna variety, a total
of 200 words were selected. Since there were 136
Eritrean and 130 Ethiopian words in the translated
texts, 36 words from Eritrean Tigrigna texts and
30 words from Ethiopian Tigrigna texts were ran-
domly left out, and the remaining 100 words in
each text were used for the test. Since translating
200 words could be a tiresome task for the par-
ticipants, the 200 words in the two Tigrigna vari-
eties were divided across the participants. Hence,
among 18 participants who took part in the test,
nine participants translated the first 50 words in
the lists of each of the varieties, and the remain-
ing nine participants translated the last 50 words
in the lists of each variety. Using this procedure,
each participant translated 100 words (50 from
each variety) to Amharic. Since translating the list
of words of one variety and shifting to the list of
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words of another variety could lead to priming (see
Tang and Heuven (2009)), words from the two va-
rieties were mixed, but were written in a slightly
different font so that the researcher could identify
to which variety each word belongs.

Then, the mixed words were evenly distributed
in such a way that each translator received differ-
ent word order. To achieve this, the mixed 100
words were initially randomly ordered and num-
bered. Then, different word orders were created
using base ten as a point of classification. In this
manner, the first order begins with No.1 and ends
with No.100 (the default order). The second or-
der begins with No.10 followed by from 11-100
and then from 1-9. The third order begins with
No.20 followed by from 21-100 then from 1-19
and so on. In this manner nine different order for
each group, and the total of 18 list of orders were
created. The respondents were instructed to trans-
late each word within 30 seconds. However, it is
important to recognize that the participants could
take less or more than the allotted time since the
task was administered on line. The intelligibility
measure is the number of words which was trans-
lated correctly. One (1) point was given for fully
correct answer, and 0.5 point was given for cor-
rect answers but with tense, aspect, number and
other morphological/grammatical errors. The ap-
propriateness of the translation was checked by the
researcher and by the native speakers of the two
varieties.

4 Results

4.1 The Phonetic Distance

The two Tigrigna varieties have about 30% pho-
netic differences with Amharic. In other words,
the two varieties have equal phonetic distance
from Amharic; Ethiopian Tigrigna (M = 31%) and
Eritrean Tigrigna (M = 28.5%); independent t-
test, t = .023, p = .56. Among 136 total words,
there were 51 Eritrean Tigrigna cognate words,
and 85 non-cognates words. Hence, the lexical
distance between Amharic and Eritrean Tigrigna
variety is 62.5% (85/136). This means that the
lexical similarity between Amharic and the Er-
itrean Tigrigna variety is 37.5%. The Ethiopian
Tigrigna text contains 130 words. Among these,
59 (43.5 %) were cognates, and 71 (56.3) were
non-cognates. This shows that the lexical distance
between Amharic and the Ethiopian Tigrigna va-
riety is 45.4% (71/130). The results indicate that

Amharic is more closer to Ethiopian Tigrigna va-
riety than to the Eritrean Tigrigna Variety.

4.2 Language Attitude and Language
Contact

The Amharic speakers are more positive about
Ethiopian Tigrigna (M = 3.5) than the Eritrea
Tigrigna (M = 3), paired sample t-test, t = -2.754,
p = .01. The attitude of the Amharic speakers was
also examined specifically in terms of the three
areas of interest: attitude towards the language,
attitude toward the people, and attitude towards
the country. As Table 1 shows, Amharic speakers
are more negative about Eritrea. The difference is
significant in all cases except in their attitude to-
wards the people (paired t-test t = .849, p = 0.42).
With regard to the language contact, Amharic
speakers have stronger contact to Ethiopian
Tigrigna than to the Eritrean Tigrigna; paired
sample t-test: t = -7.923, p = .00. Nothing is
surprising about this finding since the speakers
of Amharic do not have a direct contact with
the Eritrean Tigrigna speakers due to the border
conflict between the two countries. Though the
contact between the speakers of Amharic and the
speakers of Ethiopian Tigrigna is higher that the
contact between the speakers of Amharic and
that of the speakers of Eritrean Tigrigna, it does
not seem that Amharic speakers have a frequent
contact with Ethiopian Tigrigna speakers as the
frequency of contact is very low (2.9 on 1-5 scale).

Focus ERT ETT t Sig
Lang 3.3 3.9 3.1 .01
Peop 3.6 3.7 .85 .40
Coun 1.9 2.8 2.8 .02
Mean 3.0 3.5 - 2.8 .01

Contact 1.8 2.9 -7.9 .00

The attitude of Amharic speakers towards
the Tigrigna varieties measured on (1-5) Linker
scale. ’ERT’ refers to Eritrea Tigrigna, ETT refers
to Ethiopian Tigrigna, ’Lang’ is language, and
’Coun’ refers to country.

4.3 Mutual Intelligibility

The mutual intelligibility test results indicate that
Amharic speakers have equal performances on
both languages; (M = 29.78%) on Ethiopian
Tigrigna and (M = 26.11%) on Eritrean Tigrigna,
paired sample t-test, p = 15. Besides, the atti-
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tude and contact results do not correlate with in-
telligibility results, r = -.267 and r = 0.181 re-
spectively. Likewise, there is no correlation be-
tween Amharic speakers’ contact with the Eritrean
Tigrigna speakers and their performance on the Er-
itrean Tigrigna mutual intelligibility test.

5 Discussion

Results obtained from the phonetic and the lexical
distance measures show that the two Tigrigna va-
rieties have almost equal distance from Amharic.
The lexical distance between Amharic and the
Ethiopian Tigrigna is also similar with the one be-
tween Amharic and the Eritrean Tigrigna. The
speakers of Amharic are more negative about Er-
itrean Tigrigna variety than the Ethiopian Tigrigna
variety. The negative attitude towards Eritrea is
not astonishing since there was political and ethnic
hostility between the two countries which might
have affected the Amharic speakers attitude to-
wards Eritrea and Eritrean Tigrigna (Hailemariam
and Walters, 1999; Rena, 2005).

Though the attitude of the Amharic speakers
is more positive towards Ethiopian Tigrigna, the
magnitude of the attitude is not high. This can
be due to political reasons since there has been
a fierce power struggle between the Amhara and
the Tigray ethnic groups (Young, 1998). Amharic
speaker have a stronger contact with the Ethiopian
Tigrigna speakers than with the Eritrean Tigrigna
speakers. However, in both cases, the frequency
of contact is low. As presented earlier, contact-
ing the Eritrean people is almost impossible for the
Amharic speakers as the communication between
the two countries has been blocked due to the bor-
der conflict. The contact between the Amharic
speakers and the Ethiopian Tigrigna speakers is
also small. This could be due to economic, lan-
guage and social situation in the country. Tigray
region is found in the northern tip of the country,
very distant place from the capital. Usually, peo-
ple move from Tigray region to the central part of
the country where Amharic is used to seek job, ed-
ucation, recreation and other purposes. There is a
less possibility for Amharic speakers to move to
Tigray region.

The results obtained from the intelligibility
test show that both Tigrigna varieties are almost
equally difficult to the native Amharic speakers.
This can have two possible interpretations. In
one hand it shows that the two Tigrigna varieties

have almost equal distance from Amharic. On the
other hand, it indicates that native Amharic speak-
ers cannot communicate with the speakers of both
Tigrigna varieties using Tigrigna as a medium of
communication since the Amharic speakers scored
below the average on the mutual intelligibility
tests. According to Gutt (1980), two languages are
considered as intelligible if the speakers of one va-
riety understand more than 80% of another variety.
This means that the two Tigrigna varieties are not
intelligible for the native Amharic speakers. Be-
sides, Amharic speakers’ intelligibility scores on
both language varieties are not affected by both
language contact and attitude. This finding is
consistent with that of Bezooijen and Gooskens
(2007) and Gooskens and Heeringa (2004) that
there may not be a correlation between language
attitude and language intelligibility. The absence
of correlation between language contact and lan-
guage mutual intelligibility shows that the distance
and the magnitude of intelligibility which were
reported in the present study are due to the ge-
nealogical relationship between Amharic and the
two Tigrigna varieties.

In general, this study indicates that both the
Ethiopian and the Eritrean Tigrigna varieties have
almost a comparable phonetic and lexical distance
from Amharic. Native Amharic speakers under-
stand less than half of the two varieties which
hints that the two Tigrigna varieties are not in-
telligible for the Amharic speakers. Further-
more, the speakers of Amharic are more positive
about the Ethiopian Tigrigna variety than the Er-
itrean variety. Nevertheless, their attitude does
not have an impact on their intelligibility of the
two varieties. Moreover, the study has shown
that Amharic speakers have more frequent contact
with the Ethiopian Tigrigna speakers than with the
Ethiopian Tigrigna speakers. However, their fa-
miliarity to the two Tigrigna varieties has nothing
to do with the contact between the speakers of the
two languages.

The present study is perhaps the first attempt
towards establishing the mutual intelligibility and
measuring the relative distance between Amharic
and the two Tigrigna varieties. Future studies
ought to consider a large scale research which in-
cludes all the Amharic and the Tigrigna dialects.
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Abstract

Catalan and Spanish are two related lan-
guages given that both derive from Latin.
They share similarities in several linguistic
levels including morphology, syntax and
semantics. This makes them particularly
interesting for the MT task.

Given the recent appearance and popular-
ity of neural MT, this paper analyzes the
performance of this new approach com-
pared to the well-established rule-based
and phrase-based MT systems.

Experiments are reported on a large
database of 180 million words. Results,
in terms of standard automatic measures,
show that neural MT clearly outperforms
the rule-based and phrase-based MT sys-
tem on in-domain test set, but it is worst in
the out-of-domain test set. A naive system
combination specially works for the latter.

In-domain manual analysis shows that
neural MT tends to improve both adequacy
and fluency, for example, by being able to
generate more natural translations instead
of literal ones, choosing to the adequate
target word when the source word has
several translations and improving gender
agreement. However, out-of-domain man-
ual analysis shows how neural MT is more
affected by unknown words or contexts.

1 Introduction

Machine Translation (MT) is the application that
allows to translate automatically from one source
language to a target language. Approaches vary
from rule-based to corpus-based. Rule-based MT
systems have been the first largely commercial-
ized MT systems (Douglas Arnold and Lorna

Balkan and R. Lee Humphreys and Siety Meijer
and Louisa Sadler, 1994). Years later, corpus-
based approaches have reached both the interest in
the scientific and industrial community (Hutchins,
1986). Recently, neural MT approach has been
proposed. This corpus-based approach uses deep
learning techniques (Kalchbrenner and Blunsom,
2013; Cho et al., 2014; Sutskever et al., 2014) and
it may be taking over previous popular corpus-
based approaches such as statistical phrase or
hierarchical-based (Koehn et al., 2003; Chiang,
2007). As a result, large companies, such as
Google, have been using rule-based MT, then sta-
tistical MT and just very recently, they are replac-
ing some of their statistical MT engines by neural
MT engines (Wu et al., 2016).

This paper analizes how standard neural MT
techniques, which are briefly described in section
4.3, perform on the Catalan-Spanish task com-
pared to popular rule-based and phrase-based MT.
Additionally, we perform a naive system combi-
nation using the standard Minimum Bayes Risk
(MBR) technique (Ehling et al., 2007) which re-
ports slight improvements, in terms of standard
automatic measures, in in-domain test set but large
improvements in out-of-domain test set.

Catalan and Spanish are closely-related lan-
guages, which make them particularly interesting
for MT and translation performance is quite high
for rule-based and statistical-based systems.

Given these similarities, we want to test how
neural MT behaves on such related language pairs.
This leads us to the main question that this paper
tries to solve:

Is neural MT competitive with current well-
performing rule-based and phrase-based MT sys-
tems?

The answer to this question will be specially
useful to industry, since they may decide over re-
sults shown if it is worth it to change their current
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paradigm which may be either rule or statistical or
a combination of both. The aim of this study is to
offer a comparison over these systems in terms of
translation quality, terms of efficiency or compu-
tational cost are out-of-the-scope of this paper.

In this sense, the main contribution of this paper
is the analysis and discussion on how the new neu-
ral MT approach addresses Catalan-Spanish MT
compared to state-of-the-art systems and what are
the remaining challenges for this particular lan-
guage pair.

The rest of this paper is structured as follows.
The next section briefly reports on the related
work. Section 3 analyses details of this language
pair. Section 4 briefly describes each MT ap-
proach: rule, phrase and neural-based, respec-
tively. Section 5 details the experimental frame-
work both in data description and in system pa-
rameters. Section 6 compares systems based on
both automatic and manual analysis and discusses
results. Finally, Section 7 reports the main conclu-
sions of this paper.

2 Related work

Previous related publications on the Catalan-
Spanish language pair are in rule-based MT
(Canals-Marote et al., 2001; Alonso, 2005) and
statitical MT (Poch et al., 2009; Costa-jussà et al.,
2012). It is worth noting that given the similarity
among Catalan and Spanish, Vilar et al (2007) pro-
posed to build a statistical MT system that trans-
lated letters, whose underlying idea is similar to
recent approaches in neural MT that are character-
based (Costa-jussà and Fonollosa, 2016). As far
as we are concerned, there are no previous works
in neural MT covering Catalan-Spanish language
pair.

3 Catalan and Spanish languages

This section reviews several aspects of the lan-
guage pair we are addressing as a motivation of
our study. We point out several social aspects
covering language speakers and countries as well
as commenting on situations of bilingualism. We
also report linguistic aspects of both languages.

3.1 Social aspects

There are around 470 million native speakers for
Spanish compared to 4 million for Catalan (as
claimed in the Wikipedia). As a consequence, re-
sources for Spanish are much larger than resources

Figure 1: Map showing countries/regions where
Spanish (blue) is official and Catalan is spoken
(yellow).

for Catalan. Catalan is mainly spoken in Catalo-
nia, Valencia and Balearic Islands, all regions of
Spain. There are also some remaining speakers in
the south of France and in the island of Sardinia.
It is official language of the small country of An-
dorra. Spanish is official language in 20 countries
including Mexico, Colombia and Spain. See Fig-
ure 1.

Catalan-Spanish bilingualism only occurs in the
regions of Spain and in Andorra. The tendency is
that all Catalan native speakers, in practice, also
speak Spanish. However, it is not the same for
Spanish native speakers. This leads us to a first
example of use case for an MT system for this lan-
guage pair: Spanish (native) speakers that do not
understand Catalan. Other use cases include pro-
fessional translations or web page translations.

3.2 Linguistic aspects

Catalan and Spanish belong to the romance lan-
guages which are the modern languages that
evolved from Latin. Since both languages are from
the same linguistic family, both share similar lin-
guistic features such as morphological inflections
or word reordering. Translation between both lan-
guages is quite straightforward since there are very
few word reorderings and both vocabulary sizes
and morphology inflection are quite similar.

4 MT Approaches

This section briefly reports standard baseline
architectures for rule-based, phrase-based and
neural-based MT. Description for all systems is
done in a generic way, particular details from each
one used in this work are described later in sec-
tion 5.2. It is worth mentioning that the rule-
based system significantly differs from the other
two systems because it is not corpus-based. And
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Figure 2: Standard architecture schema of a Rule-
based MT system.

Figure 3: Standard architecture schema of a
Phrase-based MT system.

phrase-based and neural-based, although both be-
ing corpus-based, they manage data very differ-
ently. The phrase-based system uses frequency
counts and the neural-based system uses non-
linear transformations. The main advantage from
corpus-based approaches over the rule-based is
that they learn from data. While the main advan-
tage of neural-based over phrase-based is that the
architecture allows for an end-to-end optimization.

4.1 Rule-based MT

Rule-based MT combines dictionaries and hand-
made rules to generate the target output given the
source input. Generally, a morphological and syn-
tactic analysis of the source input is needed be-
fore doing the transfer into a simplified target.
The final target is generated adding the appropri-
ate morphology and/or syntax. See Figure 2 for an
schematic representation of this approach.

4.2 Phrase-based Statistical MT

Standard phrase-based statitical MT (Koehn et al.,
2003) focuses on finding the most probable target
text given the source text by means of probabilis-
tic techniques. Given a parallel corpus at the level
of sentences, statistical co-ocurrences are studied
to extract a bilingual dictionary of sequences of

Figure 4: Standard architecture schema of a neural
MT system.

words (phrases) which are ranked using several
features (i.e. conditional and posterior probabil-
ities). Additionally to this bilingual dictionary,
which is considered the translation model, other
models such as reordering or language models are
trained. Note that language modeling is trained
on monolingual corpus and it gives information
about the fluency of a sentence in the target lan-
guage. All models are combined in the decoder
which uses a beam search to extract the most prob-
able target output given a source input. Note that
the system is optimized in several steps since the
word alignment is determined before building the
translation model. See Figure 3 for an schematic
representation of this approach.

4.3 Neural MT

Neural MT computes the conditional probability
of the target sentence given the source sentence
by means of an autoencoder architecture (Kalch-
brenner and Blunsom, 2013; Sutskever et al.,
2014; Cho et al., 2014). First, the encoder reads
the source sentence (s1, s2..., sN ) of N words,
the encoder does a word embedding (e1, e2, ...en)
and encodes it into an intermediate representation
(also refered to as context vector) by means of a
recurrent neural network, which uses the gated re-
current unit (GRU) as activation function. The
GRU function allows for a better performance
with long sentences. Then, the decoder, which is
also a recurrent neural network, generates a cor-
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responding translation (t1, t2...tM ) of M words
based on this intermediate representation. Both
encoder and decoder are jointly trained using the
common statistical technique of Maximum (log-
)likelihood Estimation (MLE).

This baseline autoencoder architecture is im-
proved with an attention-based mechanism (Bah-
danau et al., 2014), in which the encoder uses a bi-
directional recurrent neural network. Now, the de-
coder predicts each target word with the interme-
diate representation plus the information of con-
text given by the attention. See Figure 4.

5 Experimental Framework

This section reports details on the data used for
training, optimizing and testing as well as a de-
scription of the parameters for each system in the
comparison.

5.1 Data
We use a large corpus extracted from ten years
of the paper edition of a bilingual Catalan news-
paper, El Periódico (Costa-jussà et al., 2014).
The Spanish-Catalan corpus is partially available
via ELDA (Evaluations and Language Resources
Dis-tribution Agency) in catalog number ELRA-
W0053. Development and test sets are extracted
from the same corpus, but additionally, to test sys-
tem performance in out-of-domain, we use a test
corpus within the medicine domain. This medi-
cal corpus was kindly provided by the Universal-
Doctor project1. Preprocessing was limited to to-
kenization. Corpus statistics are shown in Table
1.

5.2 System details
Rule-based We use the Apertium rule-based
system (Forcada et al., 2011). Apertium is open-
source shallow-transfer MT system which was ini-
tially designed for the translation between related
language pairs. In particular, this rule-based sys-
tem does not do full syntactic parsing in contrast
to the general rule-based architecture described in
section 4.1. The system is available from Source-
forge2, and we use its last version 1.2.1.

Phrase-based We use Moses (Koehn et al.,
2007) which is an open-source phrase-based MT
system and it has a large community of develop-
ers behind. To build the system, we use stan-

1http://www.universaldoctor.com
2https://sourceforge.net/projects/apertium/

dard/default parameters which include: grow-
diagonal-final-and word alignment symmetriza-
tion, lexicalized reordering, relative frequen-
cies (conditional and posterior probabilities) with
phrase discounting, lexical weights, phrase bonus,
accepting phrases up to length 10, 5-gram lan-
guage model with Kneser-Ney smoothing, word
bonus and MERT (Minimum Error Rate Training)
optimisation.

Neural-based The neural MT system was built
using the open-source software available in
github3. This code implements the auto-encoder
with attention that we presented in section 4.3. We
use the parameters defined in Table 2. Regarding
vocabulary limitation, we use a vocabulary size of
90,000 both in Spanish and in Catalan. We re-
place out-of-vocabulary words (UNKs) using the
standard methodology (Jean et al., 2015): we use
the word-to-word translation model learned with
’fast-align’ (Dyer et al., 2013) or, if not available,
the aligned source word is used. We use an em-
bedding of 512 and a dimension of 1024, a batch
size of 32, and no dropout, learning-rate of 0.001
and adadelta optimization.

6 Results

This section evaluates the three systems in terms
of standard automatic measures. Then, we show
some examples of translation outputs and we do a
manual comparison.

6.1 Automatic measures

Table 3 shows results in terms of METEOR (Lavie
and Agarwal, 2007) and BLEU (Papineni et al.,
2002). The best results for the in-domain test set
are achieved when using the neural MT system
for both translation directions. Best results for
the out-of-domain corpus vary depending on the
translation direction and measure: for Catalan-to-
Spanish, best results are obtained with the phrase-
based system; and for Spanish-to-Catalan, best re-
sults are obtained with the rule-based system in
terms of BLEU, but with the phrase-based sys-
tem in terms of METEOR. In all cases, results are
statistically significant (99%) following the “pair
bootstrap resampling” (Koehn, 2004).

To summarise, neural MT is significantly better
in the in-domain translation, but it is left behind in
out-of-domain. In this out-of-domain task, rule-

3http://github.com/nyu-dl/dl4mt-tutorial/
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Set Sentences Words Vocabulary Singletons

Catalan
Training 6,5 179,9 713 336
Development 2.2 60 11 8
Test 2.2 60 12 7
Test (Out-of-domain) 0.6 4 1 0.5

Spanish
Training 6,5 165,2 737 343
Development 2.2 55 12 8
Test 2.2 56 12 8
Test (Out-of-domain) 0.6 4 1 0.5

Table 1: Corpus details (in thousands) for Catalan-Spanish.

Vocabulary 90,000
Embeddings 512
Dimension 1024
Batch 32
Dropout none
Learning rate 0.001
Optimization Adadelta

Table 2: Neural MT main parameters.

based becomes competitive with corpus-based ap-
proaches.

As expected, a simple naive system combina-
tion like MBR provides the best final translation
results. This means that systems can complement
each other, specially for the out-of-domain test set.

6.2 Manual analysis

Manual analysis in this section is intended to com-
plement information provided by the automatic
measures in previous section.

Table 4 shows several translation examples
from the three systems for the in-domain test set.
Examples show the advantages of the neural MT
system compared to rule and/or phrase-based sys-
tems. Coherently with previous automatic results,
neural MT shows best results. Each example in
Table 4 specifically shows how neural MT is able
to improve translation in the following terms:

1. Better gender agreement (compared to
phrase-based MT), which clearly affects flu-
ency of the final translation.

2. No missing content words (compared to
phrase-based MT) and using the right verb
tense (compared to the rule-based), which has
an impact in adequacy of the translation.

3. Avoiding redundant words like “botar” pro-
duces a better translation since this would not
sound fluent in this context in Catalan.

4. Choosing the right translation from a poly-
semic word improves adequacy and fluency
at the same time, the verb “ser” in Catalan
has mainly two different translations in Span-
ish which are “ser” o “estar”, in this case, the
correct one is the latter.

5. Avoiding using literate translation, if possi-
ble, improves translation, in particular, the
obligation “s’ha de” in Catalan has to be
translated to “hay que” or “han tenido que”
in Spanish.

6. Right preposition translation.

7. Adding words to make translation more flu-
ent. The use of “cuyas” which improves
translation.

Finally, example 8 shows the main mistake that
neural MT does systematically for this pair of lan-
guages: missing initial determiners.

Table 5 shows examples in the out-of-domain
text. In this case, example 1 shows how the neu-
ral MT system correctly uses the pronoun but it
does not coincide with the reference. Example 2,
neural MT uses the wrong translation of “pedir”
which would correspond to a correct translation
in some contexts of the training material. Exam-
ples 3 shows how a new unnecessary (but also
correct) word is added to the translation in the
case of the neural MT. Finally, example 4 shows
a missing translation of a word, which is an out-
of-vocabulary.

Most of neural MT errors could be addressed
by using already existing techniques. The exam-
ple of missing determiners could be solved using
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System CAES ESCA
In-domain Out-domain In-domain Out-domain

METEOR BLEU METEOR BLEU METEOR BLEU METEOR BLEU
Rule 87.11 75.20 67.22 50.53 83.92 70.15 63.77 50.41
Phrase 90.59 81.80 72.31 57.20 90.88 84.24 64.31 49.67
Neural 90.65 83.01 66.87 52.10 92.15 86.31 60.73 47.63
MBR 91.51 83.35 73.15 58.07 92.25 86.33 66.73 53.20

Table 3: METEOR and BLEU results. In bold, best results among individual systems and system com-
bination.

1 SRC una cosa lúdica y divertida
Rule una cosa lúdica i divertida
Phrase una cosa lúdic i divertit
NN una cosa lúdica i divertida
REF una cosa lúdica i divertida

2 SRC los investigadores creen que el cuerpo pudo ser arrastrado desde otro lugar .
Rule els investigadors creuen que el cos va poder ser arrossegat des d’un altre lloc
Phrase els investigadors creuen que el cos va ser arrossegat des d un altre lloc .
NN els investigadors creuen que el cos podria haver estat arrossegat des d un altre lloc .
REF els investigadors creuen que el cos hauria pogut ser arrossegat des d un altre lloc .

3 SRC cerca de 10.000 personas botaron al ritmo de Ruff down (...)
Rule prop de 10.000 persones van botar al ritme de Ruff down (...)
Phrase prop de 10.000 persones van botar al ritme de Ruff down (...)
NN prop de 10.000 persones van al ritme de Ruff down (...)
REF unes 10.000 persones van saltar al ritme de Ruff down (...)

4 SRC quan el pilot ja era a l ’ entrada del parc (...)
Rule cuando el piloto ya era a la entrada del parque (...)
Phrase cuando el piloto era ya a la entrada del parque (...)
NN cuando el piloto estaba ya a la entrada del parque (...)
REF cuando el pelotón ya se hallaba en la entrada del parque (...)

5 SRC i s hi han d afegir dues querelles de particulars .
Rule y han tenido que añadir dos querellas de particulares .
Phrase y se han de añadir dos querellas de particulares .
NN (...) y hay que añadir dos querallas de particulares
REF a estos hay que añadir dos querellas de particulares .

6 SRC (...) ja tenı́em als nostres magatzems un important estoc de peces
Rule (...) ya tenı́amos a nuestros almacenes un importante stock de piezas
Phrase (...) ya tenı́amos nuestros almacenes un importante estoc de piezas
NN (...) ya tenı́amos en nuestros almacenes un importante estoc de piezas
REF (...) ya tenı́amos en nuestros almacenes un importante estoc de piezas

7 SRC va anunciar ahir el començament d un cicle de conferències que analitzaran l obra d Elliot . les conclusions es recolliran en un llibre .
Rule anunció ayer el comienzo de un ciclo de conferencias que analizarán la obra de Elliot . las conclusiones se recogerán en un libro .
Phrase (...) anunció ayer el inicio de un ciclo de conferencias que analizarán la obra de Elliot . las conclusiones se recogerán en un libro .
NN (...) anunció ayer el comienzo de un ciclo de conferencias que analizarán la obra de Elliot , cuyas conclusiones se recogerán en un libro .
REF anunció ayer el inicio de un ciclo de conferencias que analizarán la obra de Elliot y cuyas conclusiones se recogerán en un libro .

9 SRC el cas dels profesionals és diferente .
Rule el caso de los profesionales es diferente .
Phrase en el caso de los profesionales es diferente
NN caso de los profesionales es diferente
REF el caso de los profesionales es diferente .

Table 4: Translation examples.

coverage neural MT (Tu et al., 2016); wrong trans-
lations may be reduced using a language model
(Gulcehre et al., 2017); and out-of-vocabulary
words may be reduced using existing approaches
such as Byte Pair Encoding (BPE) (Sennrich et al.,
2016) or character-based (Costa-jussà and Fonol-
losa, 2016). The integration of these new advances
for Catalan-Spanish language pair is left for future
work.

7 Discussion and Further Work

This paper shows a comparison between rule,
phrase and neural MT systems in the Catalan-

Spanish language pair. Performance is better in
the case of the neural MT system when using the
in-domain test set, but best performance in the
out-of-domain test set is better for the rule-based
system (Spanish-to-Catalan, in BLEU) and for the
phrase-based sytem (Catalan-to-Spanish).

Regarding our research question: Is neural MT
competitive with current well-performing rule-
based and phrase-based MT systems? Based on
the automatic and manual analysis from this pa-
per, the answer is yes, specially, for in-domain
sets. Therefore, it is worth it to use neural MT
for Catalan-Spanish when building domain spe-
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1 SRC Debe ponerse el colları́n .
Rule Ha de posar-se el collet .
Phrase ha de posar el collaret .
NN S ’ ha de posar el collaret .
REF Ha de posar-se el collar .

2 SRC Pedir un informe .
Rule Demanar un informe .
Phrase Demanar un informe .
NN resumeixi un informe .
REF Demanar un informe .

3 SRC No hauria de consumir alcohol
Rule No tendrı́a que consumir alcohol
Phrase No deberı́a consumir alcohol
NN yo no tendrı́a que consumir alcohol
REF No deberı́a consumir alcohol

4 SRC Ha sagnat per algun lloc del cos
Rule Ha sangrado por algún lugar de su cuerpo .
Phrase Ha sangrado por algún lugar del cuerpo .
NN Ha por algún lugar del cuerpo .
REF Ha sangrado por algún lugar de su cuerpo .

Table 5: Out-of-domain translation examples.

cific translation systems. And it is worth it to use
system combination for the out-of-domain case.
Again, mention that we do not consider efficiency
and computational cost comparison in this study.

In this paper, we only implemented a baseline
neural MT. Further work would be to show how
recent improvements in neural MT like the ones
mentioned in previous: Byte Pair Encoding (BPE)
(Sennrich et al., 2016), character-based (Costa-
jussà and Fonollosa, 2016), coverage (Tu et al.,
2016), language model (Gulcehre et al., 2017),
multilingual (Firat et al., 2017) and other strate-
gies (Wu et al., 2016) affect this language pair.
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Fatos T.Ỹarman Vural, and Yoshua Bengio. 2017.
Multi-Way, Multilingual Neural Machine Transla-
tion. Accepted for publication in Computer Speech

61



and Language, Specia l Issue in Deep learning for
Machine Translation.

Mikel L. Forcada, Mireia Ginestı́-Rosell, Jacob Nord-
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B. Mari no, Adolfo Hernández, Carlos A. Henrı́quez
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Abstract

This research suggests a method for ma-
chine translation among two Kurdish di-
alects. We chose the two widely spo-
ken dialects, Kurmanji and Sorani, which
are considered to be mutually unintelli-
gible. Also, despite being spoken by
about 30 million people in different coun-
tries, Kurdish is among less-resourced lan-
guages. The research used bi-dialectal
dictionaries and showed that the lack of
parallel corpora is not a major obstacle in
machine translation between the two di-
alects. The experiments showed that the
machine translated texts are comprehen-
sible to those who do not speak the di-
alect. The research is the first attempt for
inter-dialect machine translation in Kur-
dish and particularly could help in making
online texts in one dialect comprehensible
to those who only speak the target dialect.
The results showed that the translated texts
are in 71% and 79% cases rated as under-
standable for Kurmanji and Sorani respec-
tively. They are rated as slightly under-
standable in 29% cases for Kurmanji and
21% for Sorani.

1 Introduction

This paper discusses Intralanguage Machine
Translation (IMT) among Kurdish dialects. The
two most widely spoken Kurdish dialects are Kur-
manji and Sorani which are considered to be mu-
tually unintelligible (Hassanpour, 1992). Further-
more, the language is among less-resourced lan-
guages (Sheykh Esmaili, 2012; Sheykh Esmaili et
al., 2014). However, this research shows that, in
the absence of large parallel corpora, a word-for-
word translation approach based on a bidialectal

dictionary provides a reasonable translation output
between the dialects. This improves mutual intel-
ligibility among Kurmanji and Sorani users in the
online textual environment.

Our aim is to show that lack of corpus is not
a major obstacle for providing an inter-dialect
(intralingual) machine translation between Sorani
and Kurmanji. Our method intends to transfer the
general meaning of texts in online media in one
dialect to those audience who speak the other. To
that extent, the output is not considered to be a lit-
erary translation nor it is able to transfer all gram-
matic features of the source to the target dialect.

Machine Translation (MT) is primarily under-
stood as using computers for translating a lan-
guage into another, or in other words, as auto-
mated inter-language translation. The main mo-
tive of MT is to make a language L1 intelligible to
whom who do not speak it by presenting it in a lan-
guage L2, which might be the audiences’ own lan-
guage or a language which they are able to under-
stand. However, there are several languages such
as Chinese, Arabic, and Kurdish that encompass
several dialects which are mutually unintelligible
(Tang et al., 2008; Farghaly and Shaalan, 2009;
Sadat et al., 2014). In this respect, the translation
between the dialects are of the intralanguage na-
ture rather than interlanguage.

Kurdish is the name given to a number of dis-
tinct dialects of a language spoken in the geo-
graphical area touching on Iran, Iraq, Turkey, and
Syria. However, Kurds have lived in other coun-
tries such as Armenia, Lebanon, Egypt, and some
other countries since several hundred years ago.
The population who speak the language is esti-
mated about 30 million (Kurdish Academy of Lan-
guages, 2016; Hassani and Medjedovic, 2016).

Dialect diversity is an important characteris-
tic of Kurdish. This diversity, the name of di-
alects, and their geographic distribution have been
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of interest for linguists who have been studying
Kurdish. Kurdish is multi-dialect from the Indo-
European root (Hassanpour, 1992). Although dif-
ferent scholars have categorized its dialects differ-
ently, a considerable majority refer to it as North-
ern Kurdish (Kurmanji), Central Kurdish (Sorani),
Southern Kurdish, Gorani, and Zazaki that include
several sub-dialects (Haig and Öpengin, 2014;
Hassani and Medjedovic, 2016; Malmasi, 2016).
The populations that speak different dialects of
the language differ significantly. The majority of
Kurmanji speakers are located in different coun-
tries, such as Turkey, Syria, Iraq, Iran, Armenia,
Lebanon, just to name the mainlands. The second
popular dialect is Sorani, which is mainly spoken
among Kurds in Iran and Iraq. Zazaki is spoken
in Turkey. Gorani is primarily spoken in Iran and
Iraq (Izady, 1992; Hassanpour, 1992). Kurdish
is written using four different scripts, which are
modified Persian/Arabic, Latin, Yekgirtû(unified),
and Cyrillic. The popularity of the scripts differ
according to the geographical and geopolitical sit-
uations. Latin script uses a single character while
Persian/Arabic and Yekgirtû in a few cases use two
characters for one letter. The Persian/Arabic script
is even more complex with its RTL and concate-
nated writing style auto(of Language, 2016).

We are facing the “knowledge acquisition bot-
tleneck”, which basically occurs in the early
stages of Natural Language Processing (NLP) and
Computational Linguistics (CL) studies (Schu-
bert, 2015), hence we are interested in investigat-
ing of interdialect Kurdish translation in the ab-
sence of parallel corpora. Our hypothesis is that
despite the mutual unintelligibility between the
two dialects, a word-for-word translation would be
able to transfer the core meaning of texts in one di-
alect into the other. To illustrate, Ballesteros and
Croft (1996) have reported on the applicability us-
ing dictionaries in certain situations such as Infor-
mation Retrieval (IR). This solution can be used
while the necessary background knowledge is pre-
pared for statistical MT.

The remainder of the article is organized in the
following sections. Section 2 reviews the litera-
ture. Section 3 provide the method that is used
in developing an IMT for Sorani-Kurmanji. Sec-
tion 4 presents the performed experiments on the
developed IMT and evaluates the results. Sec-
tion 5 discusses the findings and the outcome of
the experiments and analyzes the results. Finally,

section 6 summarizes the findings, provides the
conclusion, and addresses the future work.

2 Related Work

Zhang (1998) discusses inter-dialect MT between
Cantonese and Mandarin as the two most impor-
tant Chinese varieties, which are considered to be
mutually unintelligible. Zhang (1998) discusses
the differences between the two dialects at the
level of sound systems, grammar rules, and vocab-
ulary, based on which a method for inter-dialect
MT between the two dialects has been provided.
Zhang (1998) suggests that as the dialects of a
language usually share a common standard writ-
ten form, the target of inter-dialect MT is bet-
ter to be the spoken dialects. The method has
been implemented by using a Word collocation
list, a Mandarin-Cantonese dictionary and a hand-
ful number of rules to handle syntactic differences.
Zhang (1998) addresses the immediate purposes
of the developed systems as to facilitate language
communication and to help Hong Kong students
to write standard Mandarin Chinese. However,
he has not reported on the evaluation of the sys-
tem and the level of intelligibility of the system’s
output by the targeted audience. Furthermore, the
research reports that a Mandarin-Cantonese cor-
pus has been built, but it does not mention how
it has been created nor how it has been used in
inter-dialect MT. Moreover, although it has been
mentioned that the rules for the syntactic differ-
ence between the dialects are applied based on a
knowledge base, it is not clear whether this knowl-
edge base uses a Part-of-Speech (POS) tagger or
an annotated corpus or it has applied another ap-
proach.

Peradin et al. (2014) suggest a shallow-transfer
rule-based machine translation for Western group
of South Slavic language using Apertium platform
which is a modular machine translation system.
Peradin et al. (2014) have used morphological lex-
icons available on Apertium repository.

Nakov and Tiedemann (2012) worked on
Macedonian-Bulgarian machine translation as
close languages. They have put their assumption
based on the morphological and lexical similari-
ties and have used statistical approach combined
with word-for-word translation to show that MT is
possible without having large corpora. Although
the work technically could be of help for inter-
dialect MT, it is not an IMT study in principle.
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Our search for finding more work on automatic
translation among dialects, which we called IMT,
did not yield any other significant work beyond
what has been done by Zhang (1998). To illustrate,
we refer to a recent publication, a comprehensive
handbook by Chan (2014), which covers different
aspects of MT and MT technologies. However,
although the book addresses the MT status with
regard to different languages, for the work related
to inter-dialect MT it only refers to the studies by
Zhang (1998).

As another evidence for lack of noticeable study
on IMT we refer to “The first workshop on Ap-
plying NLP Tools to Similar Languages, Varieties
and Dialects” was conducted in 2014 (Zampieri
et al., 2014) and consequently a “Joint Workshop
on Language Technology for Closely Related Lan-
guages, Varieties and Dialects” (Ass, 2015) took
place in 2015. Although these events fairly cov-
ered several areas of close languages, none of the
papers discussed IMT.

However, the literature on mutual intelligibility
has a longer background of scholarly work and is
also closely related to our research area in a broad
sense (Voegelin and Harris, 1951; Pierce, 1952;
Yamagiwa, 1967).

Cheng (1997) has measured the relationship
among dialects of Chinese . Also Szeto (2000)
tested the intelligibility of Chinese using a tape-
recorded text (RTT), asking the participant group
members to write down the recognized vocabu-
laries (Szeto, 2000). In a slightly recent attempt,
Kluge (2006) suggested some improvements with
regard to the question-answering approach of stan-
dard RTT. However, in none of theses studies the
computational aspects of the process have been of
concern to the researchers.

Tang and van Heuven (2009) have performed an
experiment on Chinese and assessed intelligibility
among a number of its dialects. They discuss the
adequacy of mutual intelligibility testing “to de-
termine how different two languages or language
varieties are”. Their method is based on speech
recognition at both word and sentence intelligibil-
ity level.

Munday (2009) refers to intralingual translation
as “rewording” and describes it as the process of
summarizing or rewriting a text in the same lan-
guage. However, the majority of this work has fo-
cused on interlingual, particularly bilingual trans-
lation.

From a different perspective, Beijering et
al. (2008) have studied the dialectal and inter-
language intelligibility and perceived linguistic
distance among Scandinavian dialects using Lev-
enshtein algorithm. According to Beijering et
al. (2008) the Levenshtein algorithm is able to
successfully predict intelligibility among different
languages/dialects.

3 Methodology

We were not able to apply the probabilistic ap-
proach in inter-dialect machine translation be-
cause of the lack of required infrastructure in
terms of parallel, annotated, and tagged corpora
at the time of conducting this project. Therefore,
we aimed to use a method for intralingual (inter-
dialect) MT between Sorani and Kurmanji that is
applicable in the absence of large data. As a re-
sult, we used a modified version of the method
suggested by Zhang (1998) in which a word collo-
cation list, a bidialectal dictionary and a series of
rules to handle syntactic differences between the
dialects are used to perform inter-dialect MT be-
tween Mandarin and Cantonese. In our adaptation,
we have not considered the grammatic differences
of Kurmanji. There are two reasons for this, first,
lack of the required resources such as tagged cor-
pora which does not allow us to implement an ef-
ficient syntactic analysis, and second, the regional
variations in Kurmanji (Öpengin and Haig, 2014)
makes the rules more complicated.

Therefore, we have based our method on the de-
velopment of the two bidialectal dictionaries, one
for Sorani to Kurmanji equivalents, and the other
for Kuramnji to Sorani. We have implemented a
word-for-word translation, which is also known as
word-by-word (in a number of texts it is also called
literal) or direct translation. This is an incremen-
tal transformation of the source-language text into
a target-language text without having any knowl-
edge about phrasing or grammatical structure in
the source or target language (Jurafsky and Mar-
tin, 2008).

3.1 Dictionary Development

We used web data, mainly websites of Kurdish
media and universities in Iraqi Kurdistan region,
for our data collection. In terms of the genre, we
selected the texts that were about art, literature,
sport, and education. The reason was that we were
interested in assessing the efficiency/adequacy of
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our method in helping Kurmanji users to be able
to comprehend the online texts of ordinary day-
to-day social genres written in Sorani and vice
versa. We transliterated the texts in Persian/Arabic
to Latin. We processed these texts and extracted
their lexicon. We then used several Kurdish dictio-
naries to set the first sets of word equivalents, the
lexicon, in the target dialect. For this purpose, we
used (Demı̂rhan, 2007; Wı̂kı̂ferheng and Ferhenga
azad (Azad Dictionary), 2015; Ronahı̂, 2015; Mo-
hammed Ali, 2008). The first three items are avail-
able online and the last one is in printed format.
We also used our knowledge about the dialects
and consulted language informants in the cases
that the dictionaries could not resolve. This round
of dictionary development process produced 6792
words out of which 2632 words are in Kurmanji
and 4160 in Sorani.

3.2 Evaluation Method

We evaluated the efficiency of the implemented
IMT by adapting the human raters method, which
uses human experts to rate the translated texts.
In this method several parameters are used such
as fidelity or accuracy, intelligibility or clarity,
and style (Fiederer and O´Brien, 2009; Ahsan et
al., 2010). Although automated methods such
as BLEU ( bilingual evaluation understudy) (Pa-
pineni et al., 2002) have been implemented for
MT evaluation, they perform more efficiently in
the presence of proper corpora and language mod-
els, which were not available in our case.

We followed a combination of qualita-
tive/quantitative approach for the evaluation
process. In our adaptation of human raters, the
translated texts are given to several speakers
whose main dialects are not the same as the origi-
nal text. Also some speakers will be chosen who
have learned one of theses dialects as a second
language and they do not have any familiarity, or
at least any considerable familiarity, with the other
dialect. The method then quantitatively evaluates
the comprehensibility/understandability degree of
the translated texts using this parameter. We also
conduct a short interview with the human raters
after they rated the text to qualitatively assess the
result. We have not considered “style” parameter
of human rating in our experiment because we
have not evaluated the syntactic/parsing aspect of
the translated texts.

For comprehensibility evaluation, Fiederer and

O´Brien (2009) suggest 4 levels while Ahsan et al.
(2010) suggest 5 levels. In our approach the trans-
lated texts is ranked in 5 categories: not under-
standable, slightly understandable, understand-
able, and completely understandable. Neverthe-
less, as it was mentioned, the translation evalu-
ation is a subjective process no matter how one
tries to quantify it. We briefly explain to the par-
ticipants that they should rate a text as not under-
standable if they find that they cannot comprehend
what the text is about; as slightly understandable
if they know the meaning of a number of words
and even a sentence but they do not have an over-
all comprehension of the text; as understandable
if they comprehend the text but they do not know
a few words; as completely understandable if they
comprehend the text and they know the meaning
of all words.

After rating process by each participant, we
hold an interview to verify their understanding
level. In this interview, we ask participants to
tell us what the passages were about in their own
words. Furthermore, if the given rate is slightly
understandable or understandable, we ask the par-
ticipant to explain what is the reason that they have
not rated the text as completely understandable.

We also ask the participants to rank themselves
with regard to their fluency in reading Kurdish
texts in Latin, because many Kurdish speaking
people in Iraqi Kurdistan either cannot read Kur-
dish texts in Latin or they are not fluent in reading
this script 1. We will ask more precise questions
in the interview to verify the comprehensibility of
the text, if a participant rates their Latin reading
fluency below good.

Importantly, this study has not intended to con-
sider the aesthetic aspects of the translation as an
art, rather its intention is to evaluate the adequacy
of this approach in the absence of large data that
could support a high quality translation.

4 Experiments

We developed a transliterator to transliterate texts
in Persian/Arabic script into Latin script. The dic-
tionaries created in Latin script and where it was
necessary the vocabulary was transliterated from
Persian/Arabic into Latin. We manually removed

1In fact, most of the Kurdish speaking people, even if they
are well-educated, might not be fluent in reading Kurdish
texts either in Latin or Persian/Arabic or Cyrillic depending
on the region who they live or have grown up.
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Yekgirtû double-sign letters, such as “sh” in Yek-
girtû and replaced with “ş” in Latin, when the
source was created using Yekgirtû alphabet. We
also uniformed the diacritics, for example by re-
placing “´” with “ˆ”.

For the evaluation of the implemented IMT, we
arbitrarily chose 3 passages from Kurdish media.
For the Sorani texts we transliterated the texts
from Persian/Arabic script into Latin script. We
then machine translated the texts and printed the
output with the intelligibility rating printed along-
side each translated text in the way that we men-
tioned in Section 3. We gave the texts to our partic-
ipants in the human rating process. Out of 11 par-
ticipants who were all native Kurdish speakers, 3
could only speak in Kurmanji, 5 could only speak
in Sorani, 2 could speak in both dialects. There
was one participant who was not native Kurdish
speaker and has learned basic Sorani dialect. Ex-
cept the latter case, the other participant ranked
their fluency in reading Latin texts at least very
good. Although one participant rated their Latin
reading fluency as beginner, we verified the eval-
uation in the interview and found it appropriate.
During the evaluation process, we did not explain
to the participants that the texts were a machine
translated results and only asked them to rate the
text based on their understanding. We did not in-
tervene or help in any case until the rating was fin-
ished.

The interviews showed that in all cases the rat-
ing was almost conforming with what had been
assigned. However, when we asked participants
who had rated a text understandable about why
they did not find it completely understandable, we
realized this was coming from the grammatical is-
sues of the translated text. The participants replied
that they had found the text not fluent from gram-
matical perspective.

Figures 1 and 2 show two snapshots of parts the
documents used in the IMT evaluation.

The results of this experiment is show in
Table 1.

The evaluation shows that none of the human
raters rated the output to be not understandable.
Importantly, the result shows that a significant per-
centage of the human raters have rated the output
as understandable. However, 8% of the partici-
pants in the test, ranked the results as completely

Understandability Sorani to
Kurmanji

Kurmanji
to Sorani

Not Understandable 0% 0%
Slightly Understandable 29% 21%
Understandable 63% 71%
Completely Understandable 8% 8%

Table 1: Understandability of the IMT output -
The table shows that 82% of the human raters,
rated the output of IMT to be quite understand-
able.

understandable.
To the best of our knowledge, there is no base-

line or golden-standard available for inter-dialect
translations at the time of writing this paper. To
illustrate, in the work by Zhang (1998) on inter-
dialect MT, neither a quantitative evaluation of the
developed system, nor any measures and baselines
with which the system’s performance could have
been evaluated, have been provided. This is, per-
haps, because this work seems to be the first study
of the kind. As an another example, Nakov and
Tiedemann (2012) who have studied MT among
closely-related languages have used BLEU (Pap-
ineni et al., 2002) as an evaluation method and
compared their suggested approaches using the
mentioned method. However, we were not able
to apply BLEU for the reasons we mentioned in
Section 3.2. Also in a recent work Shah and
Boitet (2015) have used raw machine translation
for translating Hindi tweets into English and have
used the measure of understandability without re-
ferring to a certain baseline. Therefore we based
our evaluation on the definitions that we suggested
in Section 3.2.

5 Discussion

The experiment showed that the system performs
at an acceptable level as about 82% of human
raters rated the results as understandable. The
evaluation also shows that none of the human
raters rated the output to be not understandable.
However, this rate for Sorani to Kurmanji is less
than the rate for Kurmanji to Sorani outputs. The
reason for this, as participants in the evaluation
also confirm it, is because in the translation pro-
cess, as the consequence of lack of underlying
language resources, we could not apply the tech-
niques of reordering the words and word align-
ment to make the output to completely conform
with the Kurmanji structure. This causes the out-
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Fig. 1: IMT Evaluation - Kurmanji to Sorani

Fig. 2: IMT Evaluation - Sorani to Kurmanji

put to be seemed as an artificial and influent text
which makes the evaluation rate different for So-
rani to Kurmanji translation. But, because Sorani
does not recognize genders and also its structure is
more flexible as a result of borrowing more struc-
tures from other dialects, particularly, in the Iraqi
Kurdistan region, where the evaluation has been
conducted, the translated texts into Sorani have re-
ceived better ratings.

The results showed that the method performs at
an applicable level. However, we are also inter-
ested in finding the justifications for this fact from
computational perspective. As Table 2 shows, the
two bidialectal dictionaries do not share a high
percentage common vocabulary. That is, perhaps
the common vocabulary is not the only reason that
justifies the acceptable performance of the system.
Therefore, we will look into the Levenshtein dis-

Count Total Kurmanji Sorani
Words 6792 2632 4160
Common
Words

208 208 208

Percentage 3% 7% 5%

Table 2: The table shows the number of words
attributed to each dialect alongside the common
words among the dialects. It also shows the per-
centage of the common words to all words and to-
tal words in each dialect dictionary.

tance between our bidialectal dictionaries to assess
whether there is any correlation between this pa-
rameter and the our hypothesis about the efficiency
of IMT.
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5.1 Levenshtein Distance and Intelligibility

We studied the results of our experiments from
the perspective of Levenshtein distance in both
bidalectal dictionaries in order to find any cor-
relations between the efficiency of the suggested
method and the similarities among the dialects vo-
cabulary. Researchers in the NLP and CL have
addressed the issue of intelligibility and similar-
ity among languages and dialects from different
points of view. For instance, Casad (1992) states
that “the set of variables that underlie linguistic
similarity are largely distinct from those that un-
derlie intelligibility”. Unlike “linguistic similar-
ity”, word similarity and word synonymy is one
of the most computationally developed ideas. It
has applications in several areas of NLP and CL
such as Information Retrieval (IR), summariza-
tion, and MT. Two words are considered as similar
if they share common meaning elements (Jurafsky
and Martin, 2008). Word similarity has been in-
vestigated in different contexts. As a related ex-
ample to this research subject, Bondi Johannessen
et al. (2005) have investigated word similarity in
the Scandinavian languages which are assumed as
mutually intelligible dialects. Also Ljubšić and
Kranjčić (2015) have studied Language Identifica-
tion (LI) on Twitter using word similarity (Ljubšić
and Kranjčić, 2015).

Word distance is another perspective of word
similarity. From this perspective, one can mea-
sure the differences between two words (the “dis-
tance”) instead of their similarities. That is, the
less the distance between the words, the more sim-
ilar the words are and the more the distance be-
tween te words, the less similar the words are.
The Levenshtein distance measures the distance
between the two words by counting the number of
deletions, substitutions, and insertions that trans-
fers one sequence into the other (Jurafsky and
Martin, 2008). In the context of our experiment,
Beijering et al. (2008) have applied this method in
their study about the dialectal and inter-language
intelligibility.

We calculated the Levenshtein distance among
our bi-dialectal dictionaries entries. Figures 3 and
4 show the results of this calculation for Kurmanji-
Sorani and Sorani-Kurmanji dictionaries respec-
tively.
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Fig. 3: Levenshtein Distance, Kurmanji-Sorani
Bidialectal Dictionary - The plot shows the num-
bers of words with a certain distance in the dictio-
nary.
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Fig. 4: Levenshtein Distance, Sorani-Kurmanji
Bidialectal Dictionary - The plot shows the num-
bers of words with a certain distance in the dictio-
nary.

As the Figures 3 and 4 show, except in a few
cases, the plots indicate that majority of vocabu-
lary of the two dialects have no more than 2 to 3
distances with each other. Based on this figures
and the data of in Table 2 we suggest two reasons
for the competency of our method. First, the Kur-
manji and Sorani dialects are sharing a common
vocabulary that although does not form a large
portion of their lexicon, plays an important role
as the basis for their lexicon structure. Second, the
differences in a majority of the vocabulary that is
used in social conversations differ by one or two
letters, or sometimes just phonemes, for example,
“ştêk” and “şêwezmanı̂” in Sorani versus “tştêk”
and “şêwezimanı̂” in Kurmanji. Further investiga-
tion is required perhaps with the help of Kurdish
linguists to come up with solid conclusion in the
future studies.
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6 Conclusion

We implemented an Intralingual Machine Trans-
lation for translating texts in Kurmani to Sorani.
We used word-for-word translation (literal or di-
rect translation) among the dialects. The results
were tested using human raters method. The ex-
periments, according to different human raters,
showed that this naive approach could provide a
significantly intelligible results according to dif-
ferent human raters. The experiment also showed
that this approach might be able to be considered
as an immediate remedy for the current lack of
corpus issue. In fact, the approach, if incorporated
to the online resources, allow the speakers of one
dialect to have access to the resources of the oth-
ers with a reasonable degree of understandability.
It also allows Kurdish computational linguists to
focus on other aspects of the computational dialec-
tology through studying the intelligibility issues.

Nevertheless, this study has not intended to con-
sider the aesthetic aspects of the translation as an
art, rather its intention is to evaluate the adequacy
of this approach in the absence of large data that
could support a high quality translation. More-
over, the outcome of this study might help other
linguistics studies about the relation of the diverse
dialects of a language such as Kurdish. The ex-
periments showed that translated texts are under-
standable according to readers in 71% cases for
Kurmanji and 79% for Sorani. They are slightly
understandable in 29% cases for Kurmanji and
21% for Sorani.

However, there are several areas that we believe
might be of interest as future work. For exam-
ple, to investigate the extent to which the word-
for-word translation of Kurdish dialect could be
beneficial. For instance, to develop a system based
on a shallow-transfer and rule-based approach us-
ing Apertium platform (Peradin et al., 2014) and
to compare this method with the previous one in
terms of the quality of the output, the speed of
the system and the simplicity of reapplying the
method to other Kurdish dialects. In addition, the
evaluation approach can be changed from human
rating to automated methods for example, BLEU
(Papineni et al., 2002). Also to assess whether
these approaches eliminates the role of parallel
corpus in intralingual translation by adding gram-
matic rules, can be conducted as another research.
Moreover, to analyze the case of word ambiguity
in the implemented IMT, more investigation on the

role of the Levenshtein distance, the implication of
phonological/morphological differences, and sim-
ilarities between the dialects are other areas that
need to be studied further. Finally, the implemen-
tation of the method for translation between other
Kurdish dialects could reveal more enlightening
facts about the mutual intelligibility among these
dialects. This also helps in better understanding
the role of IMT with respect to making these di-
alects comprehensible among different audience,
particularly web users.
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Abstract

We present a new method to bootstrap
filter Twitter language ID labels in our
dataset for automatic language identifica-
tion (LID). Our method combines geo-
location, original Twitter LID labels, and
Amazon Mechanical Turk to resolve miss-
ing and unreliable labels. We are the
first to compare LID classification per-
formance using the MIRA algorithm and
langid.py. We show classifier perfor-
mance on different versions of our dataset
with high accuracy using only Twitter
data, without ground truth, and very few
training examples. We also show how
Platt Scaling can be use to calibrate MIRA
classifier output values into a probability
distribution over candidate classes, mak-
ing the output more intuitive. Our method
allows for fine-grained distinctions be-
tween similar languages and dialects and
allows us to rediscover the language com-
position of our Twitter dataset.

1 Introduction

Every second, the Twitter microblogging webser-
vice relays as many as 6,0001 short written mes-
sages (less than 140 characters), called tweets,
from people around the world. The tweets are
created and viewed publicly by anyone with inter-
net access. Tweets obtained from the Twitter API
are tagged with metadata such as language ID and
geo-location (Graham et al, 2014).

∗ This material is based upon work supported by the De-
fense Advanced Research Projects Agency under Air Force
Contract No. (FA8721-05-C-0002 and/or FA8702-15-D-
0001). Any opinions, findings and conclusions or recommen-
dations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the Defense Ad-
vanced Research Projects Agency.

1http://www.internetlivestats.com/twitter-statistics/

Currently there is a mismatch between the built-
in language identification support provided by the
Twitter API and the needs of the natural lan-
guage processing (NLP) community. While there
are around 7,0002 human languages spoken to-
day, only 34 of the most common languages are
currently recognized and tagged by Twitter3 us-
ing automatic methods for language identification
(LID). In addition to Twitter’s low-coverage of
languages, Twitter’s default language tags are not
always accurate (Zubiaga et al, 2015; Lui and
Baldwin, 2014; Bergsma et al, 2012) making it
very challenging to obtain the necessary ground-
truth for training a language classifier.

Twitter data is linguistically diverse and has
tremendous global reach and influence. Discrim-
inating languages and dialects automatically is
a critical pre-processing step for more advanced
NLP applications (Dagli et al, 2016). Heavy,
worldwide use of Twitter has created a very rich
landscape for developing NLP applications such
as support for disaster relief (Sakaki et al., 2010;
Kumar et al., 2011), sentiment analysis (Volkova
et al., 2013), as well as recognizing named enti-
ties (Ritter et al., 2011) and temporal reasoning for
events and habits (Williams and Katz, 2012).

In this work we show how geo-location can be
used to identify the language of a tweet when
appropriate language tags are seemingly incor-
rect, or absent. Specifically, we are interested in
discriminating similar languages English, Malay
and Indonesian (en, ms, id) as well as dialects
of Spanish from Europe and Mexico (es-ES, es-
MX) and dialects of Portuguese from Europe and
Brazil (pt-PT, pt-BR). Language names are rep-
resented using the ISO-639-2 language codes and
2-letter country abbreviation added for dialects.
The methods we present in this paper provide a
fast, low-cost approach to filtering Twitter LID la-

2https://www.ethnologue.com/
3https://dev.twitter.com/web/overview/languages
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bels. It is very important to have data with reliable
language labels because it allows us to make fine-
grained distinctions between dialects and similar
languages, in order to expand the linguistic scope
of NLP applications.

This paper is organized as follows: Section 2
describes related work, Section 3 describes the
data collection and preparation, Section 4 de-
scribes classification algorithms, Section 5 shows
our re-annotation experiments and results, Section
6 presents results using Platt Scaling, and finally
Section 7 is discussion and future work.

2 Related Work

Language identification has a rich history in nat-
ural language processing (Cavnar and Trenkle,
1994; Dunning, 1994). Recently, many dif-
ferent language combinations have appeared in
benchmark shared tasks, most notably in the DSL
(Discriminating Similar Languages) Shared Task
2014, 2015, and 2016 (Lui et al, 2014; Zampieri
et al, 2014; Zampieri et al, 2015, Malmasi et al,
2016). In these shared-tasks the train/test data is
not composed entirely of social media while si-
multaneously providing support for the languages
and dialects that we are interested in. Addition-
ally, English is sometimes used by Twitter users
within the country geo-boundaries of Indonesia
and Malaysia. Therefore we cannot rely on user
profile settings as in previous work (Saloot et al.,
2016), including Kevin Scannell’s ongoing Indige-
nous Tweets Project4 which relies on self-reported
minority language usage but does not guarantee
homogeneity of labeled language collections.

Ranaivo-Malançon (2006) was the first to work
on Malay-Indonesian LID using n-gram profiling
and other linguistic features. While their work
capitalizes on nuanced linguistic differences be-
tween Malay and Indonesian, it does not address
whether or not this technique can be expanded
to include English, or dialect pairs, and the re-
sults for classifier accuracy are not reported. We
are also interested in discriminating dialects of
Spanish and Portuguese, as these are widely spo-
ken languages with important dialect distinctions
(Zampieri et al, 2016; Çöltekin and Rama, 2016).

The 2014 DSL Shared-Task was the first
large-scale task for distinguishing between sim-
ilar languages and dialects in a language group,
including: Malay/Indonesian, Brazilian Por-

4http://indigenoustweets.com/

tuguese/Portuguese, and Spanish/Mexican Span-
ish. The data for this shared-task, compiled by Tan
et al (2014), was collected from the web, cleaned,
and consists of 18,000 training sentences per lan-
guage group. Performance results per language
group are reported for the top 8 systems, with
the best performing system, NRC-CNRC (Goutte
et al, 2014), achieving overall accuracy between
91%-99% on the language groups that we are in-
terested in. Our work is distinct from the DSL
Shared-Tasks for language and dialect identifica-
tion because we are interested in learning a classi-
fier using only Twitter data, without ground truth,
using very few training examples.

3 Data Collection

We collected tweets from Twitter using the 10%
firehose that we obtained from GNIP5 between
January 2014 and October 2014. The 10% fire-
hose is a real-time random sampling of all tweets
as they are relayed through the Twitter webservice.
As part of their service, GNIP provided a filtering
with geo-tagging enabled, so that all of the tweets
in our collection were geographically tagged with
longitude and latitude, allowing us to pin-point the
exact location of the tweet. Initially, we collected
over 25.6 million tweets during that time period.
In our collection, 24 languages were automatically
identified by the Twitter API using the ISO-639-2
and ISO-639-3 language codes6.

Figure 1: Twitter LID label composition (relative
frequency) for our collected Twitter dataset

The most commonly occurring languages in our
dataset were English, Spanish, Indonesian, and
Portuguese. We note that our dataset did not con-
tain any tweets initially identified as being in the
Malay language. Figure 1 shows the distribution
of languages relative to the overall collection. The

5https://gnip.com/
6https://dev.twitter.com/rest/reference/get/help/languages
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language distribution in our data does not accu-
rately represent the languages used on Twitter for
two reasons: 1) Twitter’s own language ID codes
are not always accurate in identifying the language
of a tweet, and 2) this distribution in Figure 1 rep-
resents 10% geo-enabled firehose from GNIP col-
lected during a specific time period. Furthermore
without adequate language ID technology and re-
liable language labels, the true distribution of lan-
guages on Twitter is not known with certainty.

4 Classification Algorithms

In this section we describe two classification algo-
rithms that we used in our experiments. We com-
pared performance of the MIRA algorithm with
the popular pre-trained software called langid.py.

4.1 MIRA
Advances in statistical learning theory have made
it possible to expand beyond binary classifica-
tion with perceptrons (Rosenblatt, 1958) to mul-
ticlass online learners such as the Margin Infused
Relaxed Algorithm (MIRA) from Crammer and
Singer (2003). The MIRA algorithm is formulated
as a multiclass classifier which maintains one pro-
totype weight vector for each class. MIRA per-
forms similar to Support Vector Machines (SVM)
without batch training (Crammer et al, 2006).

For multiclass classification, MIRA is formu-
lated as shown in equation (1):

c∗ = arg max
c∈C

fc(d) (1)

where
fc(d) = w · d (2)

and w is the weight vector which defines the
model for class c. The output of the classifier, for
each class, is the dot product between a document
vector d and the weight vector for each class c,
shown in equation (2). Therefore the predicted
class is chosen by selecting the argmax. The val-
ues for each class, from equation (2) are neither
normalized or scaled, and so they do not represent
a probability distribution over candidate classes.
We discuss this in greater depth in Section 6 with
regard to calibrating the classifier output.

To train MIRA, we swept values for the margin
slack (0.0005 to 0.00675) and number of training
epochs (5 to 30). The value for training epochs de-
noted a hard-stop for training iterations and served
as the stopping criterion. The feature vectors con-
tained log-normalized frequency counts for word

and character n-grams, with values for n swept
separately for words (1 to 5) and characters (1
to 5), to allow various word and character-level
n-gram combinations. After sweeping all possi-
ble feature combinations, we report experiment re-
sults based on the highest achieved overall accu-
racy. Words were defined by splitting on whites-
pace and we did not do any pre-processing or
text normalization of the original tweets, similar
to Lui and Baldwin (2014). For MIRA we used
the open-source software suite called LLClass7,
which proved useful for other types of text cate-
gorization tasks (Shen et al, 2013).

4.2 langid.py

For comparison, we used the off-the-shelf tool
langid.py from Lui and Baldwin (2012). This tool
employs a multinomial näive Bayes classifier, and
n-gram feature set. The n-gram features are se-
lected using information gain to maximize infor-
mation with respect to language while minimizing
information with respect to data source. A pre-
trained model also comes off-the-shelf and covers
97 languages, including the specific languages that
we use for this work. At the time of this writing
the pre-trained model does not include support for
dialect distinction. While we did not sweep pa-
rameters for the langid.py software, as we wanted
to evaluate off-the-shelf performance, we did use
their built-in feature “label constraint” which re-
stricts the multinomial distribution to a specified
set of target labels, rather than all 97 supported
languages. For example, with experiments involv-
ing English/Malay/Indonesian, we restricted the
language label set to these three languages.

5 Re-Annotation Experiments

In this section we present our method to bootstrap
filter our Twitter dataset to re-annotated data and
arrive at ground truth labels. Our data processing
technique is fast, easy, cheap, and independent of
the classification algorithm. We also present clas-
sification results for each dataset using MIRA and
langid.py classifiers. All classification results are
reported as the overall average accuracy with an
80/20 train/test split. Each experiment is based on
N total tweets per target language and classes were
stratified irrespective of tweet length.

7https://github.com/mitll/LLClass
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5.1 Exp 1: Twitter Labels
First for Experiment 1, we used Twitter API labels
as ground truth for language classification. Unfor-
tunately, our dataset did not contain Twitter LID
labels for Malay, or the Portuguese and Spanish
dialects.

Languages N/class MIRA langid.py
en, id 500 98.0 90.1
pt, es, en, id 500 93.5 85.95

Table 1: Exp 1 results using Twitter API language
labels as ground truth

The performance shown for the En-
glish/Indonesian pair in Table 1 is competitive
with the DSL Shared Task performance for this
language pair (Zampieri et al, 2016). We also used
Twitter labels to evaluate multiclass classification
for pt, es, en, id and note that the MIRA classifier
outperforms langid.py for this set.

5.2 Exp 2: Geo-Boundary Filtering
In Experiment 2, we filtered our Twitter dataset
by establishing geo-bounding boxes to geographi-
cally define countries where the language of inter-
est is suspected to be most prominent. For exam-
ple, we used the country Malaysia as a represen-
tative geo-source for Malaysian tweets. We used
a free website to set up the latitudinal and longi-
tudinal geo-bounding boxes around the countries
8 and there are additional alternative websites to
obtain similar geo-boundaries910. Each bounding
box corner was defined by a latitude/longitude co-
ordinate pair corresponding to SW, NW, SE, NE.
Multiple bounding boxes were used for approxi-
mating the shape of each country and we made
every effort to include major metropolitan cities
within the bounds. In some cases, our bounding
boxes were slightly overspecified and slightly un-
derspecified depending on the geometric shape of
the country as shown for Portugual in Figure 2.

We recognize that Twitter users in each of the
geo-bounded countries are able to tweet in any lan-
guage. Our data filtering method was based on
the assumption that the majority of tweets from
a country would be composed in that country’s
most common language. We calculated how fre-
quently different Twitter API language labels oc-
curred within the bounds of the target country de-

8http://boundingbox.klokantech.com/
9http://www.naturalearthdata.com/

10https://help.openstreetmap.org/

Figure 2: Example of geo-bounding box to iden-
tify tweets that originated from Portugal

fine a target label purity, with respect to the ex-
pected majority language. This is the conditional
probability of the target Twitter LID label occur-
ring in the target country, shown in equation (3)

p(label|country) =
countlabel

countcountry
(3)

Geo-Bound Country Language Label Purity
Malaysia Malaysian ms 0%
Indonesia Indonesian id 63%
United States English en 85%
Portugal Portuguese pt 68%
Brazil Portuguese pt 71%
Spain Spanish es 72%
Mexico Spanish es 69%

Table 2: Twitter LID label purity within geo-
graphic country boundaries

The majority of tweets originating from
Malaysia were tagged as id and en. We observed
similar scarcity of Malay tweets in Twitter’s pub-
licly released language identification datasets 11.
In fact, Malay tweets make up less than 0.001% of
Twitter’s uniformly sampled dataset despite API
support for Malay language identification. Our
estimates of label purity, in addition to Twitter’s
dataset coverage of Malay, emphasize the persist-
ing need for automatic language disambiguation.
We compared classifier performance using geo-
boundary as a stand-in for ground truth labels, and
our results are shown in Table 3.

5.3 Exp 3: Geo Filtering + Twitter Labels
To generate ground truth in Experiment 3, we took
the intersection of labels from geo-bounds and

11https://blog.twitter.com/2015/evaluating-language-
identification-performance
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Languages N/class MIRA langid.py
en, id, ms 1000 80.8 54.2
en, id 1000 93.5 79.5
id, ms 1000 86.3 51.7
en, ms 1000 86.0 76.6
pt-PT, pt-BR 1000 75.0 –
es-ES, es-MX 1000 66.8 –
en, id, ms, pt-PT,
pt-BR, es-ES, es-MX 1000 68.5 –

Table 3: Exp 2 results using geo-boundaries to
represent ground truth LID labels (i.e. country la-
bels = language labels)

original Twitter LID labels. For example, we ex-
tracted all tweets from Brazil that the Twitter API
had labeled as pt for Portuguese, and re-labeled
them as Brazilian Portuguese, pt-BR. We repeated
the classification experiment using a separate sub-
set of tweets and these new labels. As shown in Ta-
ble 4, the classification results for MIRA in Exper-
iment 3 are competitive with results from related
benchmarking tasks, such as DSL 2016 (Malmasi
et al, 2016).

Languages N/class MIRA langid.py
en, id, ms 1000 85.5 60.7
en, id 1000 99.5 92.8
id, ms 1000 90.5 49.0
en, ms 1000 88.7 78.9
pt-PT, pt-BR 1000 80.5 –
es-ES, es-MX 1000 67.2 –
en, id, ms, pt-PT,
pt-BR, es-ES, es-MX 1000 77.2 –

Table 4: Exp 3 results using combined geo-
boundary definitions and Twitter LID labels

5.4 Exp 4: Mechanical Turk-Verified Labels
Finally, in Experiment 4 we further refined the
ground truth labels obtained from earlier experi-
ments. We verified the target language of tweets
using Amazon Mechanical Turk Human Intelli-
gence Tasks (HITs), using the same train/test data
from Experiment 3 (before classification). Each
HIT contained one tweet. We assigned 3 work-
ers per HIT at the rate of $0.02 USD per HIT
and the total cost for MTurk annotation in this
work was $360.00 USD. In an effort to ensure that
workers were qualified for the task, we allowed
only workers who had an MTurk approval rating
>95%, however we did not administer a language
performance test in this work. To complete a HIT,
workers selected one answer to a multiple-choice
question, described below, and we did not inform
workers that the text was from Twitter.

Instructions: Please indicate which language
the text is in. Some text snippets are full sentences
while others are partial sentences or phrases. If
the text contains more than one language, indicate
that in your response. Note that you can ignore
URLs, punctuation, and emoticons to decide the
language. In order to be paid you must answer
each question correctly.

The authors would like to note that this final
statement of the instructions to workers was to mo-
tivate them to complete the task meaningfully. All
workers who completed tasks in the allotted time
frame were paid automatically.

Workers were asked to select one of the follow-
ing three statements, where language X the lan-
guage label used for train/test in Experiment 3.
A1. The text is entirely composed in language X
A2. The text is composed in language X and at

least one other language
A3. None of the text is composed in language X

Target # HITs A1 A2 A3
ms 900 614 205 81
id 912 736 158 18
pt-PT 904 816 66 22
pt-BR 874 778 66 30
es-ES 889 845 36 8
es-MX 838 762 72 4

Table 5: MTurk annotations per language

The annotation results of our MTurk experiment
are shown in Table 5. Columns A1, A2, and A3
show the frequency that at least 2 of 3 human an-
notators agreed on the language condition. We
began with 1000 tweets per language for annota-
tion. If fewer than 2 annotators agreed on a condi-
tion, the HIT for that tweet was not counted in this
analysis. This method of filtering both reduced
the amount of data and simultaneously increased
our confidence in the labels as ground truth. Our
analysis with MTurk shows that the majority of
train/test tweets in Experiment 3 were composed
entirely in the target language X, with some in-
stances of code-mixing of two or more languages.
We used the tweets verified by Mechanical Turk
to learn another set of classifiers for Experiment
4, shown in Table 6. The number of tweets per
language class is reduced in this dataset, because
we used only tweets verified as being 100% in the
target language (column A1 from Table 5). While
the classifier accuracy between Experiment 3 and
Experiment 4 is similar, we believe that the perfor-
mance is lower in Experiment 4 because of fewer
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training examples.

Languages N/class MIRA langid.py
en, id, ms 600 92.5 63.8
id, ms 600 87.9 53.4
pt-PT, pt-BR 750 79.6 –
es-ES, es-MX 750 70.3 –
en, id, ms, pt-PT,
pt-BR, es-ES, es-MX 1000 79.3 –

Table 6: Exp 4 results using MTurk verified labels

6 MIRA Classifier Calibration

Classifier output scores for MIRA and similar al-
gorithms, like SVM, do not correspond to proba-
bilities. For example, the raw score cannot guide
the researcher or end user to knowing if a tweet is
80% likely to be English or 50% likely to be En-
glish. The ability to transform raw classifier scores
into probabilities is very important if the technol-
ogy is to be used as a consumable for text analytics
or as part of an advanced NLP pipeline. In this sec-
tion, we show how we calibrated scores using out-
put from the MIRA classifier for 3 different exper-
iments from Section 5. As with many classifiers,
the raw score output can be difficult to interpret
intuitively since the scalar values for each class
do not represent a probability distribution over the
classes. We used a technique called Platt Scaling,
which learns logistic regression from the raw score
output of the MIRA classifier. The Platt Scaling
technique provides us with a probability distribu-
tion on classes and is easy to train and test. For
our reliability plots and calibration, we used clas-
sifier output scores of test sets from experiments
described in Section 5. For the purpose of brevity,
we describe classifier scaling using results for one
language pair: Indonesian and Malay.

6.1 Score Reliability Plots
Reliability plots show how well a classifier’s out-
put is calibrated when the true probability distri-
bution for classes is not known (Niculescu-Mizil
and Caruana, 2005; Zadronzy and Elkan, 2002;
DeGroot and Feinberg, 1983). For this visualiza-
tion, the classifier output scores, also called pre-
dicted values, are normalized between 0 and 1 and
then values are binned into 10 bins. The values
plotted are the binned scores s versus the condi-
tional probability of correct class prediction given
the score, P (c|s(x) = s). A classifier that is well-
calibrated will have values that fall close to the di-
agonal line x = y.

We normalized the raw classifier output val-
ues so that the scores fell between 0 and 1, using
exponent-normalization as in equation (4), for a
given tweet:

expc =
esc∑
c∈C es

(4)

where expc is the normalized score for class c,
and sc is the raw classifier output score for class c.
We further divide by the sum, so that the normal-
ized class scores for a given tweet sum to 1.

We created reliability plots for the id, ms pre-
diction task from Experiments 2, 3, and 4. Fig-
ures 3 - 11 show the histogram distribution of nor-
malized classifier scores with the corresponding
reliability plot. Recall that each experiment was
based on different kinds of ground truth. All of
the reliability plots before Platt-scaling exhibit a
sigmoidal distribution. The prevalence of our ob-
served sigmoidal distribution is similar to findings
from Niculescu-Mizil and Caruana (2005), who
noted this shape for learning algorithms based on
maximum margin methods, such as SVM. MIRA
and SVM both use maximum margin principles
and are known to perform similarly, with the ad-
ditional benefit that MIRA does not require batch
training because it is online (Crammer et al., 2006)

6.2 Platt Scaling
Platt scaling uses logistic regression to learn a
mapping between classifier output scores and
probability estimates (Platt, 1999). The output
of Platt scaling is a probability distribution over
candidate classes, rather than raw scores from the
classifier which are often non-intuitive and diffi-
cult to interpret (Zadronzy and Elkan, 2002). Platt
scaling is traditionally used in binary problems,
and adapted to multiclass problems by develop-
ing the original classifier as an ensemble of one-
vs-all classifiers, then fitting logistic regression for
each binary model (Niculescu-Mizil and Caruana,
2005; Zadronzy and Elkan, 2002). We trained and
tested logistic regression on a binary class problem
with MIRA output using the Logistic Regression
library in Python Scikit-Learn, which is designed
to handle binary, one-vs-rest, and multinomial lo-
gistic regression (Pedregosa et al, 2011).

To build and evaluate logistic regression, we
used the test data from our previous experiments,
as in Section 6.1, and divided that data into train
and test sets with an 80/20 split. For example, the
test data from Experiment 2 for id, ms consisted
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Figure 3: Geo-only, normalized scores

Figure 4: Geo-only, reliability plot

Figure 5: Geo-only, with Platt-scaling

Figure 6: Geo+Twitter, normalized scores

Figure 7: Geo+Twitter, reliability plot

Figure 8: Geo+Twitter, with Platt-scaling
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Figure 9: MTurk, normalized scores

Figure 10: MTurk, reliability plot

Figure 11: MTurk, with Platt-scaling

of 200 tweets per class. To do Platt scaling on this
dataset, we used 160 tweets per class for training
and 40 per class for testing.

With each of the datasets, Platt-scaling tends
to affect calibration probabilities for Indonesian
tweets more than for Malay tweets. This is ob-
served as Indonesian data points are closer to the
diagonal line. At the same time, the Platt-scaling
plots also reveal that predicted values, especially
for Malay, are pushed closer to 0 and 1. For exam-
ple, logistic regression will always correctly pre-
dict ms for Malay, when the probability of Malay
is > 0.5, but not for Indonesian. This could indi-
cate a need for further data purification.

We examined the accuracy of logistic regres-
sion, where the predicted class is taken to be the
argmax class probability. In Figure 12, the over-
all classification accuracy on each dataset is simi-
lar for MIRA with and without Platt-scaling. We
think this is an important finding because it shows
that LID classifier output can be converted into
probability distributions without loss of accuracy.

Figure 12: MIRA and Platt-scaling Test Accuracy

What do scores look like for a given tweet?
In Table 7 we show raw classifier output scores,
normalized scores, and probabilities from Platt-
scaling for the following Malay tweet:

Malay: Nak tengok wayang. Rindu tempat
kerja. Hehehe

English12: Want to see a movie. Miss work.
hehehe

ma id
Raw scores 0.514 -0.514
Exponent Normalized 0.737 0.263
Platt + Exponent Normalized 0.535 0.465

Table 7: Score distribution for Malay tweet

12Translation obtained from https://translate.google.com/
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The raw output scores from MIRA, while
clearly separating binary classes, are not easily in-
terpreted as a measure of certainty or probability.
While the exponent normalized scores do sum to
1, and appear to situate probability mass towards
the predicted class, it is not a true probability. The
probabilities that are output during Platt-scaling
are true probabilities and this method preserves
the original MIRA classifier accuracy, thus it is a
valid and meaningful technique, especially when
language ID is a consumable pre-processing tech-
nology for NLP pipelines.

7 Discussion and Future Work

In this work, we showed that geo-bounding com-
bined with “best-guess” language labels can be
used to annotate language labels on easily con-
fused language pairs and dialects, when ground
truth is unreliable. In each experiment, we showed
how our data purification method resulted in in-
creasing accuracy and classifier performance for
both classifiers, MIRA and langid.py. Further,
our method to purify language labels is easy to
implement for tweets that are geo-tagged with
latitude and longitude. Once a model has been
learned from geo-tagged tweets, the model can
also be used for tweets that are not geo-tagged.

We uncovered hidden Malay tweets in our
dataset with high accuracy. We also showed that
MIRA is useful for LID, with performance ac-
curacy near state-of-the-art on very few training
examples without pre-processing or text clean-
ing. While previous work has shown that
Malay/Indonesian can be learned using 18,000
training sentences with accuracy as high as 99.6%
(Goutte et al., 2014), our result of 90.5% trained
on 1600 tweets is competitive with previous work.
We believe performance will further increase as
more training examples are added with high con-
fidence ground truth labels. Using geo-bounding,
we were also able to separate dialects of Spanish
and Portuguese to achieve finer-grained distinc-
tions at the dialect level, which the Twitter API
does not currently provide.

The highest weighted MIRA n-gram features
correspond to high-frequency characters in each
target language, suggesting that MIRA is learn-
ing features of languages and not Twitter artifacts
(URLs, hashtags, @mentions, emoticons, etc).

In future work, we want to explore other eas-
ily confused language pairs, such as Ukrainian and

Russian. Also, since MIRA is well-formulated for
multiclass classification, we are interested in see-
ing how well it performs on a large multi-language
dataset that includes several easily confused lan-
guage pairs. Sometimes a single tweet will be
written in more than one language, for example
with code-switching or code-mixing (Barman et
al, 2014). We are especially interested in adapting
the MIRA classifier for code-switching and lan-
guage segmentation problems. In the case of code-
switching, it may be possible to utilize raw scores
from classifier output or the results of Platt-scaling
to construct a model that predict language mixture
in a single utterance.
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Abstract

This paper deals with the development of
morphosyntactic taggers for spoken va-
rieties of the Slavic minority language
Rusyn. As neither annotated corpora nor
parallel corpora are electronically avail-
able for Rusyn, we propose to com-
bine existing resources from the etymo-
logically close Slavic languages Russian,
Ukrainian, Slovak, and Polish and adapt
them to Rusyn. Using MarMoT as tagging
toolkit, we show that a tagger trained on a
balanced set of the four source languages
outperforms single language taggers by
about 9%, and that additional automat-
ically induced morphosyntactic lexicons
lead to further improvements. The best ob-
served accuracies for Rusyn are 82.4% for
part-of-speech tagging and 75.5% for full
morphological tagging.

1 Introduction

This paper addresses the development of mor-
phosyntactic taggers for spoken varieties of the
Slavic minority language Rusyn by leveraging the
resources available for the neighboring, etymolog-
ically related languages. Due to the lack of anno-
tated and parallel Rusyn data, we propose to create
Rusyn taggers by combining training data from re-
lated resource-richer languages such as Ukrainian,
Polish, Slovak and Russian.
We start by giving a brief introduction to the

characteristics of Rusyn and present related work
in the domain of low-resource language tagging.
After describing the training and test data, we
present a set of experiments on different multi-
source tagging approaches. In particular, we in-
vestigate the impact of majority voting, Brown
clustering, training corpus adaptation, and the ad-

dition of automatically induced morphosyntactic
lexicons. Finally, we give an outlook on future
work.

2 Status of Rusyn and corpus data

Rusyn is a Slavic linguistic variety spoken pre-
dominantly in Transcarpathian Ukraine, Eastern
Slovakia, and Southeastern Poland, and is lin-
guistically close to the Ukrainian language. Its
sociolinguistic status is disputed insofar as some
scholars see Rusyn as a dialect of Ukrainian, oth-
ers claim it to be an independent – the fourth
East Slavic – language. Despite its closeness
to Ukrainian, Rusyn exhibits numerous distinct
features on all linguistic levels, which make
Rusyn look more “West Slavic” as compared to
Ukrainian.1
Nowadays, most speakers of Rusyn are bilin-

gual and have native-like command of, e.g., Pol-
ish or Slovak. This has an impact on their
Rusyn speech and leads to new divergences
within the old Rusyn dialect continuum, which
can be investigated using the Corpus of Spoken
Rusyn (www.russinisch.uni-freiburg.
de/corpus) that is currently in the process of be-
ing built up. The corpus comprises several hours of
transcribed Rusyn speech from the different coun-
tries where Rusyn is spoken. This means that
both diatopic and individual speaker variation is
reflected in the transcription, which is one reason
for the fact that the corpus data is orthographi-
cally (and morphologically) heterogeneous. An-
other reason is that variation in transcription prac-
tices due to several individual transcribers could
not completely be avoided.
The goal of the research presented here is to au-

tomatically provide morphosyntactic annotations
1For further details on the status and the features of Rusyn

see, e.g., Magocsi (2004), Plishkova (2009), Pugh (2009),
Skrypnyk (2013), Teutsch (2001).

84



PL Na początku było Słowo a Słowo było u Boga, i Bogiem było Słowo.
Cyrillicized На почутку было Слово а Слово было у Бога, и Богем было Слово.

RU В начале было Слово, и Слово было у Бога, и Слово было Богом.

SK Na počiatku bolo Slovo a Slovo bolo u Boha a Boh bol to Slovo.
Cyrillicized На почиатку боло Слово а Слово боло у Бога а Бог бол то Слово.

UK На початку було Слово, а Слово в Бога було, і Бог було Слово.

RUE На початку было Слово, а Слово было у Бога, і Бог было Слово.

Figure 1: John 1:1 in the Slavic languages used for the experiments.

for the Corpus of Spoken Rusyn. However, there
are virtually no NLP resources (annotated cor-
pora or tools) available for Rusyn at the moment.
The different types of variation present in the
data complicate the task of developing NLP tools
even more. Crucially, there is no parallel corpus
available for Rusyn, which means that the popu-
lar projection-based approaches cannot be applied
(see below).
Considering the lack of annotated Rusyn data

and the etymological situation of Rusyn, our ap-
proach consists in training taggers for several re-
lated languages – namely, the East Slavic lan-
guages Ukrainian and Russian and the West Slavic
languages Polish and Slovak – and combining and
adapting them to Rusyn. This multi-source setting
makes sense, because the Rusyn dialect continuum
features both West Slavic and East Slavic linguis-
tic traits to a different extent, depending on both
the dialect region and the impact of the respective
umbrella language. In order to get an idea of the
similarities and differences of the Slavic languages
involved, compare the different versions of John
1:1 in Figure 1.

3 Related work

The task of creating taggers for languages lack-
ing manually annotated training corpora has in-
spired a lot of recent research. The most popu-
lar line of work, initiated by Yarowsky and Ngai
(2001), draws on parallel corpora. They annotate
the source side of a parallel corpus with an ex-
isting tagger, and then project the tags along the
word alignment links onto the target side of the
parallel corpus. A new tagger is then trained on
the target side, with some smoothing to reduce the
noise caused by alignment errors. Follow-up work
has focused on the inclusion of several source lan-
guages (Fossum and Abney, 2005), more accu-

rate projection algorithms (Das and Petrov, 2011;
Duong et al., 2013), the integration of external lex-
icon sources (Li et al., 2012; Täckström et al.,
2013), the extension from part-of-speech tagging
to full morphological tagging (Buys and Botha,
2016), and the investigation of truly low-resource
settings by resorting to Bible translations (Agić
et al., 2015). A related approach (Aepli et al.,
2014) uses majority voting to disambiguate tags
proposed by several source languages. However,
these projection approaches are not adapted to our
setting as no parallel corpora – not even the Bible2
– are electronically available for Rusyn.
Another approach consists in training a model

for one language and applying it to another, closely
related language. In this process, the model is
trained not to focus on the exact shape of the
words, but onmore generic, language-independent
cues, such as part-of-speech tags for parsing (Ze-
man and Resnik, 2008), or word clusters for part-
of-speech tagging (Kozhevnikov and Titov, 2014).
A related idea consists in translating the words of
the model to the target language, either using a
hand-written morphological analyzer and a list of
cognate word pairs (Feldman et al., 2006), or using
bilingual dictionaries extracted from parallel cor-
pora (Zeman and Resnik, 2008) or induced from
monolingual corpora (Scherrer, 2014).
Our work mostly follows the second approach:

we train taggers on four resource-rich Slavic lan-
guages and adapt them to Rusyn using a variety of
techniques.

4 Training data

While morphosyntactically annotated corpora ex-
ist for all four source languages, e.g. in the form

2We did not find any Rusyn material in the sources given
by Christodouloupoulos and Steedman (2015) andMayer and
Cysouw (2014). The sentence cited in Figure 1 has been taken
from the printed edition Krajnjak and Kudzej (transl.) (2009).
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ID Origin Training data Test data
Sentences Tokens Tags Sentences Tokens Tags

PL UD 1.4 Polish train / dev 6 800 69 499 920 700 6 887 448
RU1 UD 1.4 Russian train / dev 4 029 79 772 704 502 10 044 410
RU2 UD 1.4 SynTagRus train / dev 48 171 850 689 580 6 250 109 694 501
SK UD 1.4 Slovak train / dev 8 483 80 575 657 1 060 12 440 426

UK UD 1.4 Ukrainian train / dev+test 200 1 281 1 040 55 395 92
Additional data 3 962 70 299

RUE1 Manually annotated gold standard 104 1 050 96
RUE2 Corpus of Spoken Rusyn 5 922 75 201 —

Table 1: Sizes of the training and test corpora used in our experiments.

of national corpora,3 they use disparate tagsets
and are often difficult to obtain in full-text for-
mat. The MULTEXT-East project (Erjavec et al.,
2010; Erjavec, 2012)4 provides annotated versions
of the novel 1984 for several Eastern European lan-
guages, but Ukrainian and Russian versions are not
available.
Fortunately, since version 1.4, the Universal De-

pendencies project5 contains treebanks for the four
relevant languages with unified part-of-speech
tags and morphosyntactic descriptions (Nivre et
al., 2016; Zeman, 2015). Two corpora are avail-
able for Russian, but the Ukrainian corpus is still
rather small (see Table 1). Additionally, we were
able to obtain more Ukrainian data developed by
the non-governmental Institute of Ukrainian6 and
planned to be included in one of the upcomingUni-
versal Dependencies releases; we converted these
additional data from the MultextEast-style tags to
universal tags and morphological features.
As Rusyn is written in Cyrillic script, we con-

verted the Slovak and Polish corpora into Cyril-
lic script. During this process, we applied cer-
tain transformation rules in order to “rusynify” our
training data (e.g., transform Polish ć to Cyrillic
ть or Polish ą to Cyrillic у, which is in line with
well-known historical phonological processes).
Initial experiments have shown that addi-

tional morphological dictionaries, such as those
made available for the four languages within the

3Ukrainian National Corpus: www.mova.info; Rus-
sian National Corpus: www.ruscorpora.ru; Polish Na-
tional Corpus: www.nkjp.pl/; Slovak National Cor-
pus: http://korpus.juls.savba.sk/index_en.
html.

4http://hdl.handle.net/11356/1043
5www.universaldependencies.org
6https://mova.institute

MULTEXT-East project, do not have a positive
impact on Rusyn tagging. We therefore do not in-
clude these additional resources (except for the de-
rived lexicons discussed in Section 5.5).
We evaluate our methods on a small hand-

annotated sample of Rusyn containing 104 sen-
tences and 1 050 tokens and 96 distinct tags
(henceforth RUE1). At the time of conducting
the experiments, the Corpus of Spoken Rusyn
(RUE2), which we aim to annotate with the pre-
sented methods, contains 5 922 sentences with
75 201 tokens. We also report OOV rates on the
latter and use it as additional unlabeled data for
some of the adaptation processes described below.

5 Experiments

5.1 The MarMoT tagger

We use the MarMoT tagger for all of our experi-
ments. MarMoT (Mueller et al., 2013) is a state-
of-the-art toolkit for morphological tagging based
on Conditional Random Fields (CRFs). It has been
shown to work well on full morphological tag-
ging with hundreds of tags (as opposed to part-of-
speech tagging, which typically only uses a few
dozen tags), thanks to pruning and coarse-to-fine
decoding. Unless stated otherwise, we use the de-
fault parameters for morphological tagging.
We evaluate the different models on the devel-

opment sets of the five source corpora as well as
on RUE1. A token is considered correctly tagged
if its part-of-speech tag is correct and if all mor-
phological features present in the gold annotation
are found with the same value.7

7The gold annotation of RUE1 does not distinguish proper
from common nouns, auxiliary from main verbs, and coor-
dinating from subordinating conjunctions; these mismatches
were not penalized.
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Accuracy (%) OOV rate (%)
PL SK UK RU1 RU2 RUE1 PL SK UK RU1 RU2 RUE1 RUE2

PL 85.87 49.08 39.2 40.47 43.15 49.5 ±1.0 20.02 60.61 59.0 65.56 60.87 50.5 46.00
SK 46.77 79.87 37.2 41.94 45.54 43.3 ±0.4 58.05 33.87 57.7 63.72 58.56 53.1 43.73
UK 38.25 35.71 79.8 41.24 44.81 63.4 ±0.4 63.13 67.98 15.4 69.11 66.07 37.1 39.67
RU1 39.19 42.60 36.5 85.73 79.39 46.0 ±0.6 64.93 65.14 62.0 24.53 27.51 54.1 46.58
RU2 40.79 46.33 40.8 80.68 93.79 50.9 ±0.0 59.36 60.35 55.7 19.73 7.98 49.1 42.72

Table 2: Tagging accuracies andOOV rates for single-language taggers. Rows represent models, columns
represent test sets.

5.2 Single-language taggers

We start by training five distinct taggers on the
five training corpora and apply these taggers to the
five source-language test corpora as well as to the
Rusyn corpora. The results are shown in Table 2.
Unsurprisingly, each test set is best tagged with

the tagger based on its own training set. Polish and
Russian fared somewhat better than Slovak and
Ukrainian. The differences between RU1 and RU2
give an indication of the loss resulting from an-
notation/conversion differences as well as domain
differences within the same language. For Rusyn,
the best accuracy is obtained using the Ukrainian
tagger, which is in line with the claims on linguistic
proximity made above, followed by RU2, which is
due to its large size rather than to small etymologi-
cal distance. Also note that for none of the models,
Rusyn is the worst-performing test language, hint-
ing at its role as a bridge language between East
and West Slavic.
In order to quantify the reliability of the Rusyn

tagging results given the somewhat small test cor-
pus, we split it into two equally-sized parts and
computed the accuracies on both parts. The de-
viation of the accuracy values of these parts from
the mean accuracy is indicated after the ± sign in
Table 2.
While no single-language tagger achieves satis-

factory accuracy on Rusyn, the results suggest that
a combination of the five taggers (or of their train-
ing data) could yield improved accuracy on Rusyn.
There are essentially two ways of combining tag-
gers: using the five source language taggers and
choosing the majority vote, or using a single tag-
ger trained on merged data from the five source
corpora.

5.3 Majority-vote tagging

Aepli et al. (2014) develop a tagger for Macedo-
nian by transferring morphosyntactic annotations

from multiple source languages by word align-
ment, choosing one annotation by majority vote,
and training a new tagger on the annotated corpus.
We follow a similar method. We start by annotat-
ing the Rusyn data with the five source language
taggers. A majority annotation is determined in
two steps: first, the majority part-of-speech tag
is determined, and second, the majority morpho-
logical features are determined on the basis of the
taggers that have predicted the majority part-of-
speech tag. We propose two ways of dealing with
ties: we either randomly resolve ties (Random) or
weight the tags on the basis of a priori knowledge
about the etymological distances of the languages
(Weighted).8

We report results on this direct annotation (see
Table 3, rows MAJ-D), but also use the anno-
tated RUE2 corpus to retrain a new tagger (see Ta-
ble 3, rows MAJ-R). Only the weighted method
yields similar tagging accuracies as the best single-
language tagger. The impact of retraining is neg-
ative, probably due to the fact that the OOV rate
on RUE1 hardly decreases. While we could have
tuned the weights of the majority-vote models to
further improve their accuracy, this option did not
look worthwhile in the light of the better results
obtained with the approaches discussed below.

5.4 Creating multi-source taggers

For the multi-source tagger, we concatenate the
five training sets, using only the first 10% of RU2
in order to keep the distribution better balanced.
As shown in Table 3 (rowMS), this simple combi-
nation of training resources yields better accuracy
than all majority-vote systems and outperforms the
best single-language model (UK) by nearly 9%, al-
though with a high variance between the two parts
of the corpus. If only parts-of-speech are eval-

8The following weights are used: PL: 1.5, SK: 3, UK: 4,
RU1: 1, RU2: 1.
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Accuracy (%) OOV rate (%)
PL SK UK RU1 RU2 RUE1 PL SK UK RU1 RU2 RUE1 RUE2

Majority-vote – direct annotation (R=random, W=weighted):
MAJ-D-R 55.35 59.13 46.3 70.31 75.34 54.9 ±0.7 18.08 28.17 11.9 13.37 7.33 24.9 23.83
MAJ-D-W 51.91 57.55 64.1 49.93 55.12 63.4 ±1.3
Majority-vote – after retraining (R=random, W=weighted):
MAJ-R-R 47.38 45.82 42.0 48.30 52.37 54.7 ±0.3 55.34 61.45 31.7 63.54 58.34 23.5 0.00
MAJ-R-W 44.62 43.36 57.2 41.29 46.07 63.0 ±1.2
Multi-source tagger (B=with Brown clusters):
MS 84.23 79.61 81.5 85.91 88.00 72.0 ±1.3 18.66 29.08 13.2 20.17 16.40 26.4 24.99
MS-B 84.07 79.32 83.3 86.44 88.31 72.3 ±2.0
Taggers with additional lexicons (R=rules, L=Levenshtein):
LEX-R 83.72 79.34 81.8 86.03 88.06 73.9 ±0.1 18.51 28.82 11.7 20.03 16.31 9.6 7.94
LEX-L 83.65 79.54 82.0 86.25 88.04 75.5 ±0.0 1.1 1.01

Taggers trained on adapted corpora (R=rules, L=Levenshtein, B=with Brown clusters):
COR-R 83.04 78.30 80.3 85.16 86.68 71.3 ±0.6 20.75 31.54 14.2 22.88 19.81 23.2 22.04
COR-L 80.83 77.59 79.2 84.01 85.71 70.6 ±0.8 26.32 34.22 19.2 26.15 22.69 12.8 12.83
COR-L-B 84.27 78.79 82.3 86.53 88.30 73.0 ±0.9

Table 3: Tagging accuracies and OOV rates for the multi-source tagging experiments.

uated, the multi-source tagger achieves 79.2% of
accuracy, compared to 69.7% for the best single-
language model (UK).
Following e.g. Owoputi et al. (2013), we include

word clusters as an additional feature for tagging.
We obtain hierarchical word clusters (c=1 000)
with the Brown clustering algorithm (Brown et al.,
1992) on the concatenation of all source language
and Rusyn texts (1.5M running tokens), and add
the clusters as an additional feature to the tagger.
This addition yields small improvements for some
source languages and for Rusyn (see Table 3, row
MS-B), although the latter impact is inconclusive
due to the high variance between the two corpus
parts. We observe that all word clusters spread
over words frommore than one language, suggest-
ing that the clustering algorithm generalizes well
over data from different languages. While larger
amounts of unlabeled data will undoubtedly fur-
ther increase source language tagging, it is less
clear whether this will also have a positive impact
on Rusyn tagging. In any case, larger Rusyn cor-
pora will be hard to come by.
The idea behind tagger combination was that

a lot of Rusyn words can be found in one of the
source languages. This has been confirmed, as the
OOV rates of the combined taggers (around 24%
for Rusyn, see Table 3, rows MAJ-D and MS) are
much lower than those of the single language tag-
gers (between 37% and 54% for Rusyn, see Ta-

ble 2). However, we assume that even more Rusyn
words could be found in a source language if some
transformations were applied. In the following
two subsections, we investigate two different ap-
proaches.

5.5 Adding automatically induced lexicons
In Rabus and Scherrer (2017), we describe the au-
tomatic induction of morphosyntactic lexicons for
Rusyn. In a nutshell, we match Rusyn words ex-
tracted from RUE1 and RUE2 with source lan-
guage words extracted from the Polish, Slovak,
Ukrainian and Russian MULTEXT-East lexicons
as well as the morphological dictionary of UGtag9
(Kotsyba et al., 2011), using vowel-sensitive Lev-
enshtein distance, hand-written rules, and a com-
bination of both. The Rusyn words are then as-
sociated with the morphosyntactic descriptions of
the matched source-language words. The result-
ing lexicon contains 51 600 token-tag tuples when
induced with Levenshtein distance, and 28 900 tu-
ples when induced with rules.
Table 3 (rows LEX-R and LEX-L) reports tag-

ging results, where one of the induced lexicons is
added to the multi-source tagger. As expected,
the OOV rates drop considerably.10 Both the

9UGtag is a tagger specifically developed for Ukrainian,
but essentially consists of a large morphological dictionary
and a simple disambiguation component.

10OOV rates do not completely drop to 0 because the induc-
tion methods failed to find correspondences for a few Rusyn
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rule-induced and the Levenshtein-induced lexicon
improve accuracy, the latter by 3.5% to 75.5%,
the best observed result. Moreover, these results
are stable between the two parts of the RUE1
corpus, with only 0.2% difference for the rule-
induced lexicon and less than 0.1% difference for
the Levenshtein-induced lexicon. If evaluated on
the parts-of-speech only, the accuracies increase
from 79.2% to 81.3% for the rule-induced lexicon
and to 82.4% for the Levenshtein-induced lexicon.
Combinations of rule-induction and Levenshtein-
induction do not lead to further tagging improve-
ments with respect to the Levenshtein model.

5.6 Adapting the corpora to Rusyn

An alternative to adding Rusyn data in the form
of lexicons is to modify the source language train-
ing corpora directly by making them look more
Rusyn-like. The idea behind this method is to pro-
vide the tagger with additional Rusyn tokens in
sentential context. We proceed as follows: for
each source language word, we search for the
most similar Rusyn word in the RUE1 and RUE2
corpora, again using Levenshtein distance or the
hand-written rules. If the most similar Rusyn word
is different from the source word, we replace the
source word with the former.11

As the number of known Rusyn words is small
in comparison with the number of source words,
there is a risk of replacing a source word by a non-
related Rusyn word because the related one sim-
ply is not known. In this case, we prevent the re-
placement whenever another source word is closer
to the Rusyn candidate. For example, the word
презыдент in the Polish corpus (converted from
prezydent ‘president’) would be replaced by the
most similar Rusyn word, which happens to be the
word презенті but which is unrelated. This re-
placement is blocked because another Polish word,
презенты (< prezenty ‘gifts’), is even closer to
презенті. When more than one Rusyn word ex-
ists with the same distance, no replacement takes
place. This phenomenon mostly occurs with Lev-
enshtein distance, where 3-5% of tokens are con-
cerned, but more rarely with the rules, where 1-3%
of tokens are concerned. In the end, between 8%
and 12% of source tokens are replaced with Lev-

words.
11For relative Levenshtein distance, we introduce a thresh-

old at 0.25 – as already in the lexicon induction experiments –
above which word matches are considered noise and are dis-
carded.

enshtein, and between 1% and 5% of source tokens
with the rules.
The results presented in Table 3 (rows COR-R

and COR-L) show that these conversions slightly
decrease tagging accuracy for the source languages
(which is expected, as training corpora now look
less like the source languages), but do not improve
the accuracy for Rusyn either compared to the sim-
ple multi-source model. We also reran the word
clustering tool on the Levenshtein-converted data,
under the assumption that the increased frequency
of the Rusyn words would improve the reliability
of the induced clustering. This assumption was in-
deed borne out with an accuracy increase of 2.4%
absolute (row COR-L-B). However, this result did
not surpass the one obtained with induced lexi-
cons.

6 Conclusion and future work

We have investigated several approaches to mor-
phosyntactic tagging of spoken Rusyn without re-
lying on annotated Rusyn training data nor on an-
notation projection from aligned parallel data. In-
stead, we argued that fair tagging accuracy could
be achieved by training taggers on the etymologi-
cally related languages Ukrainian, Slovak, Polish
and Russian. The experiments also showed that al-
though Ukrainian is most closely related to Rusyn,
all four related languages are useful for tagging.
We have shown that a multi-source tagger trained
on a balanced set of source language corpora per-
forms rather well and even outperforms majority
vote approaches. In contrast, Brown clustering has
only been modestly useful in our setting, which
may be due to the low amount of unlabeled data
used.
We have presented two additional techniques

to adapt the taggers to the specificities of Rusyn:
adding automatically induced morphosyntactic
lexicons, or adapting the training corpora. We ori-
ented the first technique towards maximising re-
call (e.g., keeping all possible readings of a Rusyn
word in the induced lexicons) and the second to-
wards high precision (e.g., only replacing unam-
biguous words in the corpus). The first approach
turned out to be more successful.
However, we believe that further improvements

can be achieved. First, the RUE1 corpus – cur-
rently our only gold standard – is not completely
representative of the material found in RUE2. In
fact, the RUE1 test set may actually underesti-
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mate the impact of the tagger adaptation meth-
ods, as it contains only Rusyn varieties spoken in
Ukraine, with a low amount of orthographic vari-
ation, whereas RUE2 also contains Rusyn from
Poland and Slovakia. As an illustration, compare
the OOV rates of the UK tagger (Table 2), which
is 2.5% higher in RUE2 than in RUE1. A cursory
evaluation of the results confirms this hypothesis,
but we cannot quantify it at the moment. Only the
manual annotation of a balanced subset of the dif-
ferent RUE2 parts would provide us with a broader
data basis for evaluation.
Second, it is crucial to keep in mind that both

RUE1 and RUE2 – as opposed to the training
corpora – are oral corpora with distinct features
such as corrections, repetitions, incomplete sen-
tences, unintelligible words or phrases, markers
for pauses, etc. Any tagger trained on written data
and applied to oral data will inevitably perform
worse than when applied to written data (Nivre and
Grönqvist, 2001; Westpfahl, 2014).
The final annotation of the Rusyn corpus is not

only expected to consist of morphosyntactic de-
scriptions, but also of lemmas. Therefore, we in-
tend to train a separate lemmatization model on
the tagged Rusyn corpora. The multi-source ap-
proach will be more problematic here, as we do
not want the predicted lemmas to be a mix of the
four source languages. The prediction of Rusyn
lemmas is prevented by two factors: none of our
Rusyn data are annotated with Rusyn lemmas, and
the orthographic variation would also carry over to
the lemmas, which we would like to avoid. There-
fore, one goal could be to annotate the Rusyn to-
kens with Ukrainian lemmas such as those avail-
able in the UGtag lexicon.
Finally, all source language corpora used in our

experiments are annotated with syntactic depen-
dencies. We assume that a Rusyn dependency
parser could be created using similar methods as
those presented here for morphosyntactic tagging.
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Abstract

We describe several systems for identi-
fying short samples of Arabic or Swiss-
German dialects, which were prepared for
the shared task of the 2017 DSL Workshop
(Zampieri et al., 2017). The Arabic data
comprises both text and acoustic files, and
our best run combined both. The Swiss-
German data is text-only. Coincidently,
our best runs achieved a accuracy of nearly
63% on both the Swiss-German and Ara-
bic dialects tasks.

1 Introduction

The 2017 Distinguishing Similar Languages
Workshop sponsored four shared tasks, and our
team participated in two of them: Arabic dialect
identification, and Swiss-German dialect identi-
fication. The Arabic dialect data includes Au-
tomatic Speech Recognition transcripts of broad-
casts, as well as the most helpful audio features,
which were provided as 400-dimensional I-vector
files. The raw audio data was also available for
download. The Swiss-German data consists of
transcripts only, transcribed to indicate pronuncia-
tion by human linguists.

The training set for Arabic comprises 14000
lines, totaling 1.7MB, each line labeled for one of
five dialect groups. In addition, 1524 lines totaling
318KB of development data were also provided.
The test set is 1492 lines.

We did not use the IS2016 data or the varDial3
shared task data, which have similar characteris-
tics, and might have improved the efficacy of train-
ing.

For the three Arabic runs, we prepared six dif-
ferent text-based classifiers, and five wave-file-
based classifiers, in addition to the two baseline
word and I-vector systems, and combined them in

two groups of four and one group of five classi-
fiers.

Our best run on the Arabic test data has
a weighted F1 score of 0.628; this run com-
bined some of our classifiers with the provided
svm multiclass baseline classifiers.

The Swiss-German data consists of 14478 lines
of data, totalling 700KB, labeled with one of four
dialects. We divided this into a 13032 line training
set, and two 723-line files for development. The
test set is 3638 lines.

Only two of the classifiers prepared for Arabic
were deployed on the Swiss-German test data. Our
best run on this data has an accuracy of 0.63 and a
weighted F1 score of 0.61.

2 Related Work

In Ferguson (1959), which introduced the term
diglossia into English, two of his four principal
examples are Arabic and Swiss-German. In these
languages, every educated native speaker has two
distinct languages, the mother tongue, and the lan-
guage of education.

In both instances, the languages have a pres-
tigous written form with a unified literary tradi-
tion, in which native speakers of all dialects are
educated. In some registers, the spoken language
of various regions is mutually unintelligible. At
more formal registers, the distinctions between
dialects include vocabulary shifts and phonemic
variations, but vocabulary is more similar to the
written language and communication is less diffi-
cult. For example, speakers using the more for-
mal registers of Arabic dialects often claim to
be speaking classical Arabic, albeit with an ‘ac-
cent’ – an accent which drops classical case mark-
ings, changes the vowels, and reassigns many
phonemes.

Among other applications for dialect recogni-
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tion, it might serve as a selector for acoustic and
language models for ASR, as shown in Najafian et
al. (2014), which achieved a 44% improvement in
word error rate after 43 seconds of accent identifi-
cation for British dialects.

Biadsy et al. (2009) distinguish four Arabic
dialects and MSA1 based on (audio) phone se-
quences; the phones were obtained by phone rec-
ognizers for English, German, Japanese, Hindi,
Mandarin, Spanish, and three different MSA
phone-recognizer implementations. The dialects
were distinguished by phoneme sequences, and
the results of classifications based on each phone-
recognizer were combined using a logistic regres-
sion classifier. They train on 150 hours per dialect
of telephone recordings. They report 61% accu-
racy on 5-second segments, and 84% accuracy on
120 second segments.

Zaidan and Callison-Burch (2011) describe
building a text corpus, based on reader commen-
tary on newspaper websites, with significant di-
alect content; the goal is to provide a corpus to
improve machine translation for Arabic dialects.
They used Amazon Mechanical Turk to provide
annotation for a portion of the corpus. Zaidan and
Callison-Burch (2014) describe the same work
in greater detail, including dialect classifiers they
built using the Mechanical Turk data for classes
and origin metadata as additional features. They
say these classifiers are ‘approaching human qual-
ity.’

ElFardy and Diab (2013) classify EGY2 and
MSA sentences from the Zaidan and Callison-
Burch (2011) corpus, that is, from text. Not only
is this a binary task, but orthographic hints, in-
cluding repeated long vowels, emojis and multiple
punctuation, give strong clues of the register, and
hence whether MSA is being employed. They do
a number of experiments comparing various pre-
processing schemes and different training sizes,
ranging from 2-28 million tokens. They achieve
80% – 86% accuracy for all of their attempts.

Malmasi et al. (2015) do Arabic dialect iden-
tification from text corpora, including the Multi-
Dialect Parallel Corpus of Arabic (Bouamor et
al., 2014) and the Arabic Online Commentary
database (Zaidan and Callison-Burch, 2011).

Hanani et al. (2015) perform recognition of sev-
eral Palestinian regional accents, evaluating four

1Modern Standard Arabic – the language of television
news programs.

2Egyptian dialect

different acoustic models, achieving 81.5% accu-
racy for their best system, an I-vector framework
with 64 Gaussian components.

Ali et al. (2016) developed the corpus on which
the DSL Arabic shared task is based. Their
own dialect detection efforts depended largely on
acoustical cues.

Arabic dialect recognition appeared in the 2016
edition of the workshop’s shared task (Malmasi et
al., 2016). The shared task data was text-only. Our
classifiers (Hanani et al., 2016) for that task gave
middling performance relative to other entrants,
but the best classifiers (Malmasi and Zampieri,
2016; Ionescu and Popescu, 2016) for the shared
task performed far below the best results reported
by some of the preceding researchers. Part of the
reason must be that the amount of training data for
the workshop is much smaller than that used by
some of the other researchers; the workshop data
also did not include the audio recordings on which
the transcripts are based.

3 Methodology and Data

The Arabic training and test data are excerpted
from the corpus described in Ali et al. (2016). The
provided .ivec files contain selected audio fea-
tures; a list of .wav files was also provided with
the training data, but not included in the distribu-
tion, presumably for reasons of space. We also
downloaded the .wav files, and build several clas-
sifiers using them, which were combined into our
run3 on the test data.

The Swiss-German data is excerpted from
Samardzic et al. (2016).

The two data sources differ in their presenta-
tion. The Arabic data seems to attempt to present
words in dictionary spelling, independent of how
they were pronounced. If a word is not present in
the dictionary, the transcript shows <UNK>, not
a phonetic transcription. For example, the particle

@ 	Yëh*A that, which is frequently pronounced @Yë
hdA that in Levantine, is always presented in its
MSA written form, which is of course how Levan-
tine speakers would write it – since they are edu-
cated to write standard Arabic, not to indicate their
regional dialect.
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In contrast, the Swiss-German transcripts are
intended for scholarly study of the contrasts be-
tween dialects. They use the transcription guide-
lines of Dieth (1986) for this purpose. The
spellings of words attempt to present those dialect
contrasts, so that the same standard German word
may be spelled in numerous different ways, de-
pending on the pronunciation. There is an attempt
in the transcription toward standardization, but it
is within the dialect, not aimed toward unifying
dialects. The result is that there is a large apparent
vocabulary difference between Swiss-German di-
alects, whereas the corresponding vocabulary dif-
ferences between Arabic dialects correspond to
usage shifts, rather than pronunciation shifts.

In the subsections which follow, we present
the methodology of each of our classifiers. We
combined several classifiers for each run, and we
present the fusion classifiers as well.

3.1 Word-focused baseline
This baseline classifier was provided with the
training data. It treats each training or test seg-
ment as a bag of words and n-grams. The script
which runs it preprocesses each segment into a line
of integers and occurrence counts, with each inte-
ger representing a single word or bigram. (The
setup program can be configured to use n-grams
as features up to n=6. However, if n is greater
than 3, the accuracy of the classifier declines;
the difference between n=2 and n=3 doesn’t
look significant, so we followed the default, us-
ing n=2.) The resulting files are processed by
Thorsten Joachim’s svm multiclass learn
(Tsochantaridis et al., 2004; Joachims, 2008) pro-
gram which produces a model file. This can
be used with the svm multiclass classify
program to provide an output for each test segment
with a best guess for the segment class and the
scores for all classes.

This word-focused baseline classifier was com-
bined with the I-vector baseline classifier, the
word-entropy classifier, and the character string
entropy classifier for ADI run1.

Applying the word-focussed baseline classifier
to the ADI development data gives an accuracy of
48%.

3.2 I-vector baseline
This baseline classifier was also provided with the
training data. It also uses svm multiclass.
The input files consist of one line per training or

test segment, with the class as the first integer on
the line, and the integers from 1 to 400, in order,
each with a real-valued feature value. The output
file, like that of the word-focused baseline classi-
fier, contains one line for each test segment, with
the first integer on the line the class with the high-
est score, followed by scores for this segment for
each class.

This classifier, applied standalone to the ADI
development data, gets an accuracy of 57%.

3.3 Word entropy

This classifier reads through the training file, and
builds a table of word, bigram, and trigram fre-
quencies for each dialect.3

Using the frequencies as estimates of the true
probability of the n-gram occurring in a test sam-
ple if the sample is in the corresponding dialect,
it estimates the probability that the sample is in
each of the dialects which appeared in training. In
other words, it creates n-gram language models for
each dialect, and for each test sentence chooses
the dialect with the best cross-entropy. The clas-
sifier can be configured to ignore words which oc-
cur less than m times. It can write files either in
vardial3 submission format, or in the input format
used by the Focal Multiclass toolkit, for combin-
ing its results with other classifiers.

This classifier is used alone for our GDI run1,
and in combination for our ADI run1.

On the ADI development data, this classifier
gives an accuracy of 52%, and on 723 lines of re-
served GDI data, it gives an accuracy of 84%.

On the test data, it is used standalone only on
GDI run1, where it shows an accuracy of 56%.

3.4 Character-string entropy

This classifier ignores word boundaries.4 It accu-
mulates statistics for all of the strings up to twenty-
five bytes long in the training file, except for those
strings which end in a UTF-8 sequence which is
broken by the 25-byte boundary. For each dialect,
it greedily attempts to pave the test strings with
strings from training, trying the longest strings
first. Once the test segment is completely cov-
ered by strings seen in training, a log-probability is

3The classifier is implemented by the file https:
//github.com/StephenETaylor/vardial4/
blob/master/wordfreq.py.

4The character-string entropy classifier is implemented
by https://github.com/StephenETaylor/
vardial4/blob/master/chars.c.
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computed by adding log-frequencies for the cov-
ering strings. The dialect with the largest log-
probability for the segment is selected as the di-
alect. When the classifier is configured for saving
scores, the log-probabilities for each dialect are
the scores for the test segment.

On the ADI development data, this classifier has
an accuracy of 44%. On the 723 lines of reserved
GDI training data, this classifier has an accuracy
of 79%.

For the test runs, it is used standalone on GDI
run2, where it achieves an accuracy of 63%.

3.5 Fusing estimates

To combine the estimates of the four classifiers
used for ADI run1, we used the Focal Multi-
class Toolkit (Brümmer, 2007), which is written
in MATLAB. We ported it to Octave (Eaton and
others, 2012), a trivial effort.5

The toolkit script calibrates the scores of the
four classifiers (the winning class is always the
largest, but the scores aren’t necessarily in the
same range, let alone a probability distribution)
then applies logistic regression to fit the various
scores to the known correct answers for the devel-
opment data. The same fitting is then used to com-
bine the scores of the classifiers on the test data.

It accepts files in precisely the format produced
by the baseline classifiers, so we modified the
word-entropy classifier and the character n-gram
entropy classifier to produce files in the same for-
mat. We wrote python scripts to convert the output
to the expected format for the workshop test runs.

3.6 ADI run2 combination

We used a combination of 4 classifiers on the sys-
tem level. All four of these classifiers used the
same features: character unigrams, bigrams, and
trigrams derived from the training data, presented
to the software as a feature vector.

Systems are:

• Naive Bayes with multinomial distribution

• SVM with RBF kernel

• Linear logistic regression

• Random forests with 300 trees
5See the goal test.f4 in the file https:

//github.com/StephenETaylor/vardial4/
blob/master/v17/dialectID/Makefile

All these classifiers were trained on the training
dataset part and tested on the development dataset
part. The feature vector used was built based on
character trigram model combined with word un-
igram model and word bigram model. The final
output was generated by applying voting (max was
chosen) on output of the four classifiers for each
class label. To build the language models (char-
acter trigram, word unigram, and word bigram) to
prepare the feature vector and to do the classifica-
tion process we used the Weka toolkit (Hall et al.,
2009), which is written in java.

On the ADI development data, this system gave
an accuracy of 52.03%. It is used in ADI run2,
where it achieves an accuracy of 32%.

3.7 Acoustic processing: ADI run3

3.7.1 Front-end Processing

Each utterance is divided into short frames by a
20-ms window progressing at a 10-ms frame rate;
then 19 Mel-scale Cepstral Coefficients (MFCC)
are extracted from each speech frame. Next,
Shifted-Delta Cepstra (SDC) with 7-3-1-7 config-
uration, are computed and appended to the MFCC
feature vectors resulting in feature vectors with di-
mension equal to 68. RASTA filtration is applied
to the power spectra. A simple energy-based voice
activity detection (VAD) was performed to discard
the non-speech frames.

Finally, Cepstral mean and variance normaliza-
tion (CMVN) was applied on the resulting 68-
dimensional feature vectors.

3.7.2 GMM-UBM AID

A Universal Background Model (UBM) GMM
(Gaussian Mixture Model) is trained on the acous-
tic features (68 feature vectors) extracted from all
training dataset of all Arabic dialects. The K-
means clustering algorithm is used for finding ini-
tial parameters of UBM GMM (means, diagonal
covariance matrices and weights).

A dialect-dependent GMM is obtained by MAP
adaptation (means only) of the UBM using the di-
alect specific enrollment features. This results in
one UBM model and one dialect-dependent model
for each of the target dialects. We have tried dif-
ferent numbers of Gaussians: 64, 256 and 2048.
Applying these three systems to the ADI develop-
ment data gives an accuracy of 35.6%, 36% and
40.16%, respectively.
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3.7.3 GMM Tokenization
This system is similar to the Phonotactic systems
in which a sequence of phones is extracted from
the speech waveform using a phone recognizer.
In GMM tokenization, the phone recognizer is re-
placed by a Multi-Dialect Model (MDM), which
is a GMM trained on training data of all dialects
(same UBM used in the GMM-UBM system de-
scribed above). For each utterance, a sequence of
GMM components (tokens) is extracted by repre-
senting each acoustic vector with the GMM com-
ponent which gives the highest log likelihood.

The n-gram components of the sequence of to-
kens generated from an utterance U can be repre-
sented as a D-dimensional vector p where, D is the
number of all n-grams (in our case GMM compo-
nents), Cj is the jth n-gram and the probability pj

of Cj is estimated using counts of n-grams,

pj =
Count(Cj)∑
i Count(Ci)

(1)

where the sum in (1) is performed over all n-grams
and Count(Cj) is the number of times the n-gram
Cj occurs in the produced sequence of tokens.

Before we apply the SVM, the probabilities
of the n-grams are estimated for each utterance.
Then, these probabilities are weighted to em-
phasize the most discriminative components (i.e.
those which occur frequently in one dialect and
infrequently in others). The n-gram components
which are common in most dialects, such as si-
lence or common phones, contain little discrim-
inative information and are de-emphasized. Nu-
merous weighting techniques are available for this
purpose, such as the Inverse Document Frequency
(IDF) from Information Retrieval (IR) and the
Log-Likelihood Ratio (LLR) weighting. The LLR
weighting wj for component Cj is given by:

wj = gj

(
1

P (Cj |all)

)
(2)

where gj is a function used to smooth and com-
press the dynamic range (for example, gj(x) =√

x, or gj(x) = log(x) + 1). p(Cj/all) is the
probability of n-gram component Cj across all di-
alects. The components which have zero occu-
pancy in all dialects are removed since they do
not carry any useful information. A benefit of
discarding these non-visited components is that it
reduces the feature dimension dramatically, par-
ticularly for the high order n-gram system as the

dimension of the n-gram increases exponentially
O(Mn) with GMM model order (M).

In addition, a feature selection technique is
needed to minimize the number of n-gram compo-
nents by keeping only those which are most dis-
criminative. This is particularly necessary in high
order n-gram systems because the dimension is in-
creased exponentially. Consequently, reducing the
number of n-gram components decreases the com-
putational cost and the required amount of mem-
ory. A powerful iterative feature selection algo-
rithm based on the SVM is proposed by Guyon
et al. (2002). This is applied to phone-based lan-
guage recognition with discriminative keyword se-
lection in Richardson and Campbell (2008), where
more details can be found. A similar algorithm is
applied on the bigram data of the GMM tokens.

For GMM tokenization, we have used UBM
with 256 and 2048 order. Due to resources lim-
itation, bigram and unigram of UBM with 256
components, but only unigram of UBM with 2048
components have been implemented. When ap-
plied to the ADI development data, the unigram,
bigram of 256 UBM and unigram of 2048 are
42%, 45.15% and 46.85%, respectively.

3.7.4 I-vector based system

I-vectors is a technique introduced in Dehak et
al. (2011) for speaker identification. This tech-
nique has also been proven to work well in lan-
guage and dialect identification (Martı́nez et al.,
2011; Hanani et al., 2015). An I-vector classifier
is based on a configuration determined by the size
of the UBM, the number of factor dimensions for
the total variability subspace, as well as the various
compensation methods to attenuate within-dialect
variability.

Feature vectors of each utterance in the training
data are used for adapting means of UBM (which
is trained on all available training data) in order
to estimate an utterance dependent GMM using
eigenvoice adaptation technique.

The eigenvoice adaptation technique assumes
that all the pertinent variability is captured by a
low rank rectangular, total variability matrix T.
Then the GMM supervector (vector created by
concatenating all mean vectors from the utterance
dependent GMM) for a given utterance can be
modeled as follows:

M = m + Tx + ǫ (3)
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where m is the UBM supervector, the I-vector x
is a random vector having a normal distribution
N(0, I), and the residual noise term ǫ ∼ N(0, Σ)
models the variability not captured by the matrix
T . In training total variability matrix for dialect
recognition, we assume that every utterance for a
given dialect is considered a different class. Addi-
tional details on the I-vector extraction procedure
are described in Dehak et al. (2011).

Linear Discriminant Analysis (LDA) is used for
reducing I-vectors dimension. The LDA proce-
dure consists of finding the basis that maximizes
the between classes variability while minimizing
the intra-dialect variability.

Recently, Gaussian-PLDA has been used to
make the I-vector distribution more normal, which
improves performance of I-vector system based on
standard LDA Bousquet et al. (2012). A Gaussian-
PLDA model has been trained on dimensionally-
reduced I-vectors of training data, and then used
for scoring in our I-vector system. In addition to
the text transcription and wav files of each utter-
ance, 400-dimensional I-vectors are provided with
the dataset released for VarDial 2017. These I-
vectors are extracted using a UBM with 2048 com-
ponents and Bottleneck features instead of the tra-
ditional MFCC and SDC (Shifted Delta Cepstral)
acoustic features. More details about the provided
I-vectors can be found in Ali et al. (2016). When
applied to the ADI development data and with set-
ting LDA dimension to four, the accuracy is 58%.

3.7.5 Acoustic Overall system
The best four acoustic sub-systems: GMM-UBM
with 2048 components; bigram of GMM tokeniza-
tion with 256 components; unigram with 2048
components; and I-vector system, are fused to-
gether to get the overall acoustic system, us-
ing Focal multi-class linear logistic regression
(Brümmer, 2007). The fusion parameters were
trained on the ADI Development data. The result-
ing system was used to classify the ADI testing
data (run 3 in the results of ADI task). In order
to have an idea how well the overall acoustic sys-
tem compared with the sub-systems, we divided
the development data of each dialect into two parts
(nearly equally). The fusion parameters were es-
timated using one part and applied to the second
part and vice versa. In this way, we got the sys-
tem performance on the development data without
overlapping between training and evaluation data.
The accuracy of the fused (overall acoustic) sys-

tem on the development data was 61%.

Table 1: Classifier Accuracy on ADI Development
Data, Test Sest

Section Described Dev. Set Test Set
3.1 0.48
3.2 0.57
3.4 0.44
3.3 0.52
3.5 0.63
3.6 0.52 0.32
3.7.2 0.40
3.7.3 (256 bigrams) 0.45
3.7.3 (2048 unigrams) 0.47
3.7.4 0.58
3.7.5 0.61 0.59

4 Results

There were six teams participating in the Arabic
Dialect Identification task for 2017; in contrast,
there were eighteen for 2016.

Given the reduced field, the rise of our team,
AHAQST, from 14th to 4th place, can be ascribed
in part to decreased competition! However, all the
teams who entered both shared tasks posted scores
for 2017 much better than their scores for 2016.

Table 2 shows the best results for each team for
the two years.

Table 2: 2017 versus 2016 ADI results
Team F1 2017 F1 2016
unibuckernel 0.763 0.51316

MAZA 0.717 0.51327

tubasfs 0.697 0.4728

ahaqst 0.628 0.4269

qcri mit 0.616 -new-
deepCybErNet 0.574 -new-

In our own case, some of the improvement is
due to combining the acoustic and the text data.
Table 3 shows our three ADI runs. run1 and run3
both use acoustic data, whereas run2 does not;
run3 uses only acoustic data, while run1 uses both
kinds.

The Swiss-German task was new this year, and
attracted attention from teams who also entered
other tasks, as shown in Table 4.

6Ionescu and Popescu (2016)
7Malmasi and Zampieri (2016)
8Çöltekin and Rama (2016)
9Hanani et al. (2016)
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Table 3: Performance of our merged classifiers
Run (Data) Accuracy F1 (mic) F1 (wt’d)
2 (Text) 0.3231 0.3231 0.3137
3 (Acoust.) 0.5932 0.5932 0.5861
1 (both) 0.6287 0.6287 0.628

Table 4: Participation of Swiss-German teams in
other tasks

Team GDI DSL ADI
MAZA 1 2
CECL 2 1
CLUZH 3
qcri mit 4 5
unibuckernel 5 1
tubasfs 6 4 3
ahaqst 7 4
Citius Ixa Imaxin 8 9
XAC Bayesline 9 3
deepCybErNet 10 11 6

It’s interesting to note the imperfect correlations
between the tasks, but they are less interesting than
the table makes them look, because on the GDI
task the accuracy for the best run of all the teams
except for the first and the last is within a range of
four percentage points.

Table 5 shows our two runs were more widely
separated than that, but only the best run for each
team contributes to the rank above.

Table 5: AHAQST results on GDI task

Run Accuracy F1 (micro) F1 (weighted)
run1 0.5621 0.5621 0.5484
run2 0.6289 0.6289 0.6143

The top run for the GDI task had an accuracy of
68%, and the bottom an accuraccy of 26%. Omit-
ting the bottom outlier, the weighted F1 scores of
the other nine teams are all within 1.35 standard
deviations of the mean. The range of values is not
nearly so interesting as we see for the ADI task.

We would expect the GDI task to be easier,
since only four classes need be distinguished, ver-
sus five for the ADI task, but it looks like there are
other factors at work. Since only the CLUZH team
entered only the GDI task, it may be that other
teams devoted less effort to the task, focussing
their primary attention on one of the other tasks.
Or it may be that there is something else at work.

Since our own classifiers performed much better
on our reserved training data, it may be that the
Swiss-German corpus is inhomogenous, and that
the test data is drawn from a part of the corpus
which is different in some way from the training
data.

However, a simpler theory for differing perfor-
mance is a topic bias. If the training sentences are
drawn from coherent conversation, one would ex-
pect neighboring sentences to have theme words
in common. Since both turns of a conversation
will normally be entirely in one dialect, rare theme
words are trained as dialect-unique, when in fact
they may have no relevance to dialect. Of course,
even when not dialect-specific, theme words may
still be helpful for distinguishing dialect. In the
training data, “Zürich” occurs only in instances
of the ZH dialect. While someone from Berne
may talk about Zürich, Berne is far more likely
to come up in their conversation. Similarly a par-
ticular restaurant or street is probably indicative of
their neighborhood.

5 Discussion

We were pleased to be able to so quickly put into
practice some of the ideas we considered for the
2016 workshop. But we ran out of time to imple-
ment others. For example, deep learning has fared
poorly in the shared tasks in the past, including
in our 2016 submission, but considering its suc-
cess in other machine learning tasks, it seems pos-
sible that there is an approach which will fare bet-
ter, even if the (relatively small by neural-network
standards) 1-2 megabyte training sets typical of
the two ADI tasks and one GDI task we’ve seen
continue to prevail.

Some of our negative results seem surprising.
Why does including larger word n-grams actually
hurt recall? At worst it is noise, and there are
plenty of other sources of noise.

We’d like to revisit tools which can provide ex-
planations of their behavior. For example, for
2016, one of our classifiers reported that the word
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ú

	æ ª K
yEny that is which is very common in all

varieties of Arabic was actually a useful predictor
for dialect, because although it is not uncommon
in MSA, it is very common in all the dialects. The
explanation doesn’t greatly improve the class dis-
crimination, but it is a nice converational tidbit.
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Abstract

In this paper we describe the non-linear
mappings we used with the Helsinki lan-
guage identification method, HeLI, in the
4th edition of the Discriminating between
Similar Languages (DSL) shared task,
which was organized as part of the Var-
Dial 2017 workshop. Our SUKI team par-
ticipated in the closed track together with
10 other teams. Our system reached the
7th position in the track. We describe
the HeLI method and the non-linear map-
pings in mathematical notation. The HeLI
method uses a probabilistic model with
character n-grams and word-based back-
off. We also describe our trials using
the non-linear mappings instead of relative
frequencies and we present statistics about
the back-off function of the HeLI method.

1 Introduction

The 4th edition of the Discriminating between
Similar Languages (DSL) shared task (Zampieri
et al., 2017) was divided into an open and a closed
track. In the closed track the participants were al-
lowed to use only the training data provided by
the organizers, whereas in the open track the par-
ticipants could use any data source they had at
their disposal. This year we did not participate
in the open track, so we did not use any addi-
tional sources for training and development. The
creation of the earlier DSL corpora has been de-
scribed by Tan et al. (2014). This year’s train-
ing data consisted of 18,000 lines of text, ex-
cerpts of journalistic texts, for each of the 14
languages. The corresponding development set
had 2,000 lines of text for each language. The
task had a language selection comparable to the
1st (Zampieri et al., 2014), 2nd (Zampieri et al.,

2015), and 3rd (Malmasi et al., 2016) editions of
the shared task. The languages and varieties are
listed in Table 1. The differences from the previ-
ous year’s shared task were the inclusion of Per-
sian and Dari languages, as well as replacing the
Mexican Spanish variety with Peruvian Spanish.

Country Language
Bosnia and Herzegovina Bosnian
Croatia Croatian
Serbia Serbian
Malaysia Malay
Indonesia Indonesian
Iran Persian
Afghanistan Dari
Canada French
France French
Brazil Portuguese
Portugal Portuguese
Argentina Spanish
Spain Spanish
Peru Spanish

Table 1: The languages and varieties of the 4th

edition of the Discriminating between Similar
Languages (DSL) shared task.

For the 4th edition, we were interested in modi-
fying the HeLI method and use the TF-IDF scores
and some non-linear mappings instead of relative
frequencies. We were inspired by the successful
use of TF-IDF scores by Barbaresi (2016). He
was able to significantly boost the accuracy of his
identifier after the 3rd edition of the shared task by
using the TF-IDF scores. Earlier, Brown (2014)
managed to boost several language identification
methods using non-linear mappings.

2 Related Work

Automatic language identification of digital text
has been researched for more than 50 years. The
first article on the subject was written by Musto-
nen (1965), who used multiple discriminant anal-
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ysis to distinguish between Finnish, English and
Swedish. For more of the history of automatic lan-
guage identification the reader is suggested to take
a look at the literature review chapter of Marco
Lui’s doctoral thesis (Lui, 2014).

There has also been research directly involving
the language groups present in this year’s shared
task. Automatic identification of South-Slavic
languages has been researched by Ljubešic et al.
(2007), Tiedemann and Ljubešic (2012), Ljubešic
and Kranjcic (2014), and Ljubešic and Kranjcic
(2015). Brown (2012) presented confusion matri-
ces for the languages of the former Yugoslavia (in-
cluding Bosnian and Croatian) as well as for Indo-
Iranian languages (including Western and Eastern
Farsi). Chew et al. (2009) experimented distin-
guishing between Dari and Farsi, as well as Malay
and Indonesian, among others. Distinguishing
between Malay and Indonesian was studied by
Ranaivo-Malançon (2006). Automatic identifica-
tion of French dialects was studied by Zampieri
et al. (2012) and Zampieri (2013). Discriminat-
ing between Portuguese varieties was studied by
Zampieri and Gebre (2012), whereas Zampieri
et al. (2012), Zampieri (2013), Zampieri et al.
(2013), and Maier and Gómez-Rodrı́guez (2014)
researched language variety identification between
Spanish dialects.

The system description articles provided for the
previous shared tasks are all relevant and refer-
ences to them are provided by Zampieri et al.
(2014), Zampieri et al. (2015), and Malmasi et al.
(2016). Detailed analysis of the first two shared
tasks was done by Goutte et al. (2016).

The language identification method used by the
system presented in this article, HeLI, was first
introduced by Jauhiainen (2010) and it was also
described in the proceedings of the 2nd edition
of the DSL shared task (Jauhiainen et al., 2015).
The complete description of the method was first
presented in the proceedings of the 3rd VarDial
workshop (Jauhiainen et al., 2016). The language
identifier tool using the HeLI method is available
as open source from GitHub1. The non-linear
mappings evaluated in this article were previously
tested with several language identifiers by Brown
(2014).

1https://github.com/tosaja/HeLI

3 Methodology

In this paper, we re-present most of the descrip-
tion of the HeLI method from the last year’s sys-
tem description paper (Jauhiainen et al., 2016).
We leave out the mathematical description of the
words as features, as they were not used in the
submitted runs. We tried several combinations
of words, lowercased words, n-grams, and lower-
cased n-grams with the development set. The best
results of these trials can be seen in Table 2. In
the table, ”l. nmax” refers to the maximum num-
ber of lowercased n-grams, ”c. nmax” to the n-
grams with also capital letters, ”l. w.” to lower-
cased words, and ”c. w.” to words with original
capitalization. We did similar tests with different
combinations of the language models when choos-
ing the models to be used with the loglike-function
described later.

rec. l. nmax c. nmax l. w. c. w.
0.9107 0 8 no no
0.9107 8 8 no no
0.9099 0 8 yes no
0.9098 8 0 yes yes
0.9098 8 8 yes yes
0.9092 0 8 no yes
0.9060 8 8 yes no
0.9059 8 0 yes no
0.9052 8 0 no no

Table 2: Testing the different combinations of lan-
guage models on the development set.

3.1 On Notation

A corpus C is a finite sequence, u1, ..., ul, of indi-
vidual tokens ui, which may be words or charac-
ters. The total count of all individual tokens u in
the corpusC is denoted by lC . A feature f is some
countable characteristic of the corpusC. When re-
ferring to all features F in a corpus C, we use CF

and the count of all features is denoted by lCF .
The count of a feature f in the corpus C is re-
ferred to as c(C, f). An n-gram is a feature which
consists of a sequence of n individual tokens. An
n-gram of the length n starting at position i in a
corpus is denoted un

i . If n = 1, u is an individ-
ual token. When referring to all n-grams of length
n in a corpus C, we use Cn and the count of all
such n-grams is denoted by lCn . The count of an
n-gram u in a corpus C is referred to as c(C, u)
and is defined by Equation 1.

c(C, u) =

lC+1−n∑
i=1

{
1 , if u = uni
0 , otherwise (1)
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The set of languages is G, and lG denotes the
number of languages. A corpus C in language g is
denoted by Cg. A language model O based on Cg

is denoted byO(Cg). The features given values by
the model O(Cg) are the domain dom(O(Cg)) of
the model. In a language model, a value v for the
feature f is denoted by vCg(f). For each potential
language g of a corpusC in an unknown language,
a resulting score Rg(C) is calculated. A corpus
in an unknown language is also referred to as a
mystery text.

3.2 HeLI Method

The goal is to correctly guess the language g ∈ G
in which the monolingual mystery text M has
been written, when all languages in the set G are
known to the language identifier. In the method,
each language g ∈ G is represented by several
different language models based on character n-
grams from one to nmax. Only one of the language
models is used for every word t found in the mys-
tery text M . The model used is selected by its
applicability to the word t under scrutiny. If we
are unable to apply the n-grams of the size nmax,
we back off to lower order n-grams. We continue
backing off until character unigrams, if needed.

A development set is used for finding the best
values for the parameters of the method. The three
parameters are the maximum length of the used
character n-grams (nmax), the maximum number
of features to be included in the language mod-
els (cut-off c), and the penalty value for those lan-
guages where the features being used are absent
(penalty p). The penalty value has a smoothing
effect in that it transfers some of the probability
mass to unseen features in the language models.

3.2.1 Creating the Language Models
The training data is tokenized into words using
non-alphabetic and non-ideographic characters as
delimiters. The relative frequencies of character
n-grams from 1 to nmax are calculated inside the
words, so that the preceding and the following
space-characters are included. The n-grams are
overlapping, so that for example a word with three
characters includes three character trigrams.

The c most common n-grams of each length
in the corpus of a language are included in the
language models for that language. We estimate
the probabilities using relative frequencies of the
character n-grams in the language models, using
only the relative frequencies of the retained to-

kens. Then we transform those frequencies into
scores using 10-based logarithms.

The derived corpus containing only the n-grams
retained in the language models is called C

′n. The
domain dom(O(C

′n)) is the set of all character n-
grams of length n found in the models of all lan-
guages g ∈ G. The values v′

C′n
g

(u) are calculated

similarly for all n-grams u ∈ dom(O(C
′n)) for

each language g, as shown in Equation 2

v
′
C
′n
g

(u) =

 − log10

(
vCg (u)

)
, if c(C

′n
g , u) > 0

p , if c(C
′n
g , u) = 0

(2)

In the first run of the shared task we used rel-
ative frequencies of n-grams as values vCg(u).
They are calculated for each language g, as in
Equation 3

vCg (u) =
c(C
′n
g , u)

l
C
′n
g

(3)

where c(C
′n
g , u) is the number of n-grams u found

in the derived corpus of the language g and lC′n
g

is
the total number of the n-grams of length n in the
derived corpus of language g.

Brown (2014) experimented with five language
identifiers using two non-linear mappings, the
gamma and the loglike functions. We tested apply-
ing the two non-linear mappings to the relative fre-
quencies. Both functions have a variable (gamma
or tau), the value of which has to be empirically
found using the development set.

The value vCg(u) using the gamma function is
calculated as in Equation 4

vCg (u) =

(
c(C
′n
g , u)

l
C
′n
g

)γ
(4)

The value vCg(u) using the loglike function is
calculated as in Equation 5

vCg (u) =

log(1 + 10τ
c(C
′n
g ,u)

l
C
′n
g

)

log(1 + 10τ )
(5)

3.2.2 Scoring N-grams in the Mystery Text
When using n-grams, the word t is split into
overlapping n-grams of characters un

i , where i =
1, ..., lt + 1 − n, of the length n. Each of the n-
grams un

i is then scored separately for each lan-
guage g.

If the n-gram un
i is found in dom(O(C

′n
g )), the

values in the models are used. If the n-gram un
i
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is not found in any of the models, it is simply dis-
carded. We define the function dg(t, n) for count-
ing n-grams in t found in a model in Equation 6.

dg(t, n) =

lt+1−n∑
i=1

{
1 , if uni ∈ dom(O(C′n))
0 , otherwise (6)

When all the n-grams of the size n in the word
t have been processed, the word gets the value of
the average of the scored n-grams un

i for each lan-
guage, as in Equation 7

vg(t, n) =

{
1

dg(t,n)

∑lt+1−n
i=1 v′

C
′n
g

(uni ) , if dg(t, n) > 0

vg(t, n− 1) , otherwise
(7)

where dg(t, n) is the number of n-grams un
i found

in the domain dom(O(C
′n
g )). If all of the n-grams

of the size n were discarded, dg(t, n) = 0, the
language identifier backs off to using n-grams of
the size n − 1. If no values are found even for
unigrams, a word gets the penalty value p for every
language, as in Equation 8.

vg(t, 0) = p (8)

3.2.3 Language Identification
The mystery text is tokenized into words using the
non-alphabetic and non-ideographic characters as
delimiters. After this, a score vg(t) is calculated
for each word t in the mystery text for each lan-
guage g. If the length of the word lt is at least
nmax − 2, the language identifier uses character
n-grams of the length nmax. In case the word t is
shorter than nmax − 2 characters, n = lt + 2.

The whole mystery text M gets the score
Rg(M) equal to the average of the scores of the
words vg(t) for each language g, as in Equation 9

Rg(M) =

∑lT (M)
i=1 vg(ti)

lT (M)
(9)

where T (M) is the sequence of words and lT (M) is
the number of words in the mystery text M . Since
we are using negative logarithms of probabilities,
the language having the lowest score is returned
as the language with the maximum probability for
the mystery text.

4 Experiments

In order to find the best possible parameters
(nmax, c, and p), we applied a simple form of the
greedy algorithm using the development set. The
best recall for the original HeLI method, 0.9105,
was reached using nmax = 8, c = 170,000, and p
of 6.6.

4.1 TF-IDF

We made a small experiment trying to adapt the
HeLI method to use TF-IDF scores (product of
term frequency and inverse document frequency).
TF-IDF scores were successfully used to boost the
performance of a Naive Bayes identifier by Bar-
baresi (2016). Also Malmasi et al. (2015) used
character n-grams from one to four, which were
weighted with TF-IDF. There are several varia-
tions of TF-IDF weighting scheme and Malmasi
et al. (2015) do not specify whether they used the
basic formula or not. We calculated the TF-IDF as
in Equation 10

vCg (u) = c(Cg, u)log
lG

df(CG, u)
(10)

where df() is defined as in Equation 11. Let lG be
the number of languages in a language segmented
corpus CG. We define the number of languages in
which an n-gram u appears as the document fre-
quency df of u as

df(CG, u) =

lG∑
g=1

{
1 , if c(Cg, u) > 0
0 , otherwise (11)

We used the vCg(u) values from Equation 10
instead of relative frequencies in Equation 2, but
we were unable to come even close to the accuracy
of our original method. We did not submit a run
using the TF-IDF weighting.

4.2 Gamma Function

Using the gamma function in his experiments,
Brown (2014) was able to reduce the error rate of
his own language identifier by 83.9% with 1366
languages and 76.7% with 781 languages. We
tested using the gamma function with the devel-
opment set, which did not manage to improve our
results. It seems that the penalty value p of the
HeLI method and the γ variable have at least partly
the same effect. If we fix one of the values we
are able to reach almost or exactly the same re-
sults by varying the other. Table 3 shows some of
the results on the development set. When using γ
of 1.0 the method is identical to the original HeLI
method. As there were no improvements on the
results at all, we decided not to submit a run using
the gamma function.

4.3 Loglike Function

Table 4 shows some of the results on the develop-
ment set when using the loglike function, nmax =
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Recall Penalty p Gamma γ
0.9105 3.3 0.5
0.9102 4.6 0.7
0.9103 5.3 0.8
0.9105 6.6 1.0
0.9104 7.9 1.2
0.9104 8.6 1.3
0.9105 9.9 1.5
0.9104 11.2 1.7

Table 3: Testing the gamma on the development
set.

8, and c = 170,000. There seemed to be a lo-
cal optimum at around τ = 2.9, so we experi-
mented with a bit different nmax and c around it
as well. The best recall of 0.9109 was provided by
nmax = 7, c = 180,000, and τ = 3.0. The log-
like funtion seemed to make a tiny (about half a
percent) improvement on the error rate when us-
ing the development set. Using the loglike func-
tion, Brown (2014) was able to reduce the errors
made by his own identifier by 83.8% with 1366
languages and 76.7% with 781 languages. Even
though our error reduction was far from Brown’s
numbers, we still decided to submit a second run
using the loglike function.

Recall Penalty p Tau τ
0.9104 6.5 0
0.9103 5.2 2.0
0.9104 4.7 2.7
0.9107 4.6 2.8
0.9106 4.5 2.9
0.9107 4.4 3.0
0.9104 4.3 3.2
0.9101 4.1 3.5
0.9075 3.0 4.5
0.9058 1.2 6.5

Table 4: Testing the loglike function on the devel-
opment set.

5 Results

Our SUKI team submitted two runs for the closed
track. For both of the runs we used all of the train-
ing and the development data to create the lan-
guage models. The first run was submitted us-
ing the relative frequencies as in Equation 3. In
the second run, we used the loglike function as
in Equation 5. The results and the parameters for
each run can be seen in Tables 5 and 6. We have
also included the results and the name of the win-
ning team CECL (Bestgen, 2017).

For the 3rd edition of the task, we used the
HeLI-method without any modifications and the

Run Accuracy F1 (macro)
CECL run1 0.9274 0.9271
SUKI run 2 0.9099 0.9097
SUKI run 1 0.9054 0.9051

Table 5: Results for the closed training.

Run nmax c p
SUKI run 1 8 170,000 6.6
SUKI run 2 7 180,000 4.7

Table 6: Parameters for the closed training.

first run of the 4th edition was run with an iden-
tical system. This year the Peruvian Spanish re-
placed the Mexican Spanish. It seems that it is
more easily distinguished, at least with the HeLI
method, from the Argentinian or Peninsular vari-
eties, as the average F1-score for the Spanish va-
rieties rose from last year’s 0.80 to 0.86. Also the
inclusion of the languages using the Arabic script
helped to raise the overall average F1-score from
0.888 to 0.905.

6 Discussion

After this year’s shared task we also looked into
the backoff function of the HeLI method and cal-
culated how often each of the n-gram lengths were
used with the test set. These calculations can be
seen in Table 7.

Number of words n
176,635 8
57,252 7
56,361 6
56,243 5
88,054 4
27,975 3
3 2
0 1

Table 7: Number of words identified with each
length of n-gram.

Table 8 shows the number of words of each
length after removing non-alphabetic characters
and adding extra space before and after the word.
When comparing the two tables it seems that the
backoff function was used only with a small frac-
tion of words.

7 Conclusions

Using the loglike function with the actual test set
improved the result much more than with the de-
velopment set. The reduction on the error rate
of the accuracy was 4.8%, which was around ten
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Number of words length
60,108 ¿10
33,243 10
41,731 9
46,448 8
56,229 7
54,611 6
54,912 5
87,385 4
27,856 3

Table 8: Number of words of each length.

times higher than with the development set. In the
future, we will be making further experiments try-
ing to introduce discriminating features into the
HeLI method. As it is now, it is still a genera-
tive method, not relying on finding discriminating
features between languages.
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Preslav Nakov, Ahmed Ali, and Jörg Tiedemann.
2016. Discriminating between similar languages
and arabic dialect identification: A report on the
third dsl shared task. In Proceedings of the 3rd
Workshop on Language Technology for Closely Re-
lated Languages, Varieties and Dialects (VarDial),
Osaka, Japan.

Seppo Mustonen. 1965. Multiple discriminant anal-
ysis in linguistic problems. Statistical Methods in
Linguistics, 4:37–44.

107
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Tiedemann, and Preslav Nakov. 2015. Overview
of the dsl shared task 2015. In Proceedings of
the Joint Workshop on Language Technology for
Closely Related Languages, Varieties and Dialects
(LT4VarDial), pages 1–9, Hissar, Bulgaria.

Marcos Zampieri, Shervin Malmasi, Nikola Ljubešić,
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Scherrer, and Noëmi Aepli. 2017. Findings of the
VarDial Evaluation Campaign 2017. In Proceedings
of the Fourth Workshop on NLP for Similar Lan-
guages, Varieties and Dialects (VarDial), Valencia,
Spain.

Marcos Zampieri. 2013. Using bag-of-words to
distinguish similar languages: How efficient are
they? In Computational Intelligence and Informat-
ics (CINTI), 2013 IEEE 14th International Sympo-
sium on, pages 37–41, Budapest.

108



Proceedings of the Fourth Workshop on NLP for Similar Languages, Varieties and Dialects, pages 109–114,
Valencia, Spain, April 3, 2017. c©2017 Association for Computational Linguistics

A Perplexity-Based Method for Similar Languages Discrimination

Pablo Gamallo
CiTIUS

Univ. of Santiago de Compostela
Galiza

pablo.gamallo@usc.es

Jose Ramom Pichel
imaxin|software,

Santiago de Compostela,
Galiza

jramompichel@imaxin.com
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Abstract

This article describes the system submit-
ted by the Citius Ixa Imaxin team to the
VarDial 2017 (DSL and GDI tasks). The
strategy underlying our system is based on
a language distance computed by means of
model perplexity. The best model config-
uration we have tested is a voting system
making use of several n-grams models of
both words and characters, even if word
unigrams turned out to be a very com-
petitive model with reasonable results in
the tasks we have participated. An error
analysis has been performed in which we
identified many test examples with no lin-
guistic evidences to distinguish among the
variants.

1 Introduction

Language detection is not a solved problem if
the task is applied to the identification of simi-
lar languages and varieties. Closely related lan-
guages or language varieties are much more dif-
ficult to identify and separate than languages be-
longing to different linguistic families. In this
article, we describe the system submitted by the
Citius Ixa Imaxin team to the VarDial 2017. We
have participated in two task: Discriminating be-
tween Similar Languages (DSL) and German Di-
alect Identification (GDI). The strategy underlying
our system is based on comparing language mod-
els using perplexity. Perplexity is defined as the in-
verse probability of the test text given the model.
Most of the best systems for language identifica-
tion use probability-based metrics with n-grams
models. This report paper (Zampieri et al., 2017)
describes the shared task and compares all the pre-
sented systems.

DSL is focused on discriminating between sim-
ilar languages and national language varieties, in-
cluding six different groups of related languages
or language varieties:

• Bosnian, Croatian, and Serbian

• Malay and Indonesian

• Persian and Dari

• Canadian and Hexagonal French

• Argentine, Peninsular, and Peruvian Spanish

• Brazilian and European Portuguese

The objective of GDI is the identification of
German varieties (four Swiss German dialect ar-
eas: Basel, Bern, Lucerne, Zurich) based on
speech transcripts.

Analysis about previous results on the two sce-
narios can be found in Goutte et al. (2016) and
Malmasi et al. (2015). The latter is focused on
Arabic varieties but the scenario is similar to the
GDI task.

2 Related Work

2.1 Language Identification and Similar
Languages

Two specific tasks for language identification have
attracted a lot of research attention in recent years,
namely discriminating among closely related lan-
guages (Malmasi et al., 2016) and language detec-
tion on noisy short texts such as tweets (Zubiaga
et al., 2015).

The Discriminating between Similar Languages
(DSL) workshop (Zampieri et al., 2014; Zampieri
et al., 2015; Goutte et al., 2016) is a shared task
where participants are asked to train systems to
discriminate between similar languages, language
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varieties, and dialects. In the three editions or-
ganized so far, most of the best systems were
based on models built with high-order character n-
grams (>= 5) using traditional supervised learn-
ing methods such as SVMS, logistic regression,
or Bayesian classifiers. By contrast, deep learn-
ing approaches based on neural algorithms did not
perform very well (Bjerva, 2016).

In our previous participation (Gamallo et al.,
2016) in the DSL 2016 shared task we pre-
sented two very basic systems: classification with
ranked dictionaries and Naive Bayes classifiers.
The results showed that ranking dictionaries are
more sound and stable across different domains
while basic Bayesian models perform reasonably
well on in-domain datasets, but their performance
drops when they are applied on out-of-domain
texts. We also observed that basic n-gram mod-
els of characters and words work pretty well even
if they are used with simple learning systems. In
the current participation we decided to use basic
n-grams with a very intuitive strategy: to measure
the distance between languages on the basis of the
perplexity of their models.

2.2 Perplexity

The most widely-used evaluation metric for lan-
guage models is the perplexity of test data. In
language modeling, perplexity is frequently used
as a quality measure for language models built
with n-grams extracted from text corpora (Chen
and Goodman, 1996; Sennrich, 2012). It has also
been used in very specific tasks, such as to classify
between formal and colloquial tweets (González,
2015).

3 Methodology

Our method is based on perplexity. Perplexity
is a measure of how well a model fits the test
data. More formally, the perplexity (called PP
for short) of a language model on a test set is the
inverse probability of the test set. For a test set of
sequences of characters CH = ch1, ch2, ..., chn

and a language model LM with n-gram probabili-
ties P (·) estimated on a training set, the perplexity
PP of CH given a character-based n-gram model
LM is computed as follows:

PP (CH, LM) = n

√√√√ n∏
i

1
P (chi|chi−1

1 )
(1)

where n-gram probabilities P (·) are defined in this
way:

P (chn|chn−1
1 ) =

C(chn−1
1 chn)

C(chn−1
1 )

(2)

Equation 2 estimates the n-gram probability by
dividing the observed frequency (C) of a particular
sequence of characters by the observed frequency
of the prefix, where the prefix stands for the same
sequence without the last character. To take into
account unseen n-grams, we use a smoothing
technique based on linear interpolation.

A perplexity-based distance between two lan-
guages is defined by comparing the n-grams of
a text in one language with the n-gram model
trained for the other language. Then, the perplex-
ity of the test text CH in language L2, given the
language model LM of language L1, can be used
to define the distance, Distperp, between L1 and
L2:

Distperp(L1, L2) = PP (CHL2, LML1) (3)

The lower the perplexity of CHL2 given LML1,
the lower the distance between languages L1 and
L2. The distance Distperp is an asymmetric mea-
sure.

In order to apply this measure to language
identification given a test text, we compute the
perplexity-based distance for all the language
models and the test text, and the closest model is
selected.

4 Experiments

4.1 Runs and Data

In the DSL task we have taken part in both tracks:
closed and open. The open model was trained with
the datasets released in previous DSL tasks (Mal-
masi et al., 2016; Zampieri et al., 2015; Zampieri
et al., 2014).

We prepared three runs for each task. All of
them are based on perplexity but using different
model configuration:

• Run1 uses perplexity with a voting system
over 6 n-gram models: 1-grams, 2-grams
and 3-grams of words, and 5-grams, 6-grams
and 7-grams of characters. We observed that
short n-grams of words clearly outperform
longer word n-grams, while long n-grams of
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Run Accuracy F1 (micro) F1 (macro) F1 (weighted)
run1 0.903 0.903 0.9025 0.9025
run2 0.9016 0.9016 0.9013 0.9013
run3 0.8791 0.8791 0.8787 0.8787

Table 1: Results for the DSL task (closed).

Run Accuracy F1 (micro) F1 (macro) F1 (weighted)
run1 0.9028 0.9028 0.9016 0.9016
run2 0.9069 0.9069 0.9065 0.9065
run3 0.8788 0.8788 0.8773 0.8773

Table 2: Results for the DSL task (open).

characters perform better than shorter ones.
In previous experiments, this system configu-
ration reached a similar score to the best sys-
tem in the DSL Task 2016, namely 0.8926
accuracy, very close to 0.8938 reached by the
best system in task A (Çöltekin and Rama,
2016).

• Run2 uses perplexity with just 1-grams of
words. In the development tests, we observed
that this simple model is very stable over dif-
ferent situations and tasks.

• Run3 also uses perplexity but with 7-grams
of characters, since long n-grams of charac-
ters tend to perform better than short ones.

4.2 Results

In the first task (Discriminating between Similar
Languages) we submitted systems generated with
both closed and open training.

4.2.1 DSL Closed
The results obtained by our runs in the DSL task
are shown in Table 1. The random baseline (14
classes) is 0.071 and the references from the best
system in 2016 is 0.8938 accuracy. However, it is
worth noticing that 2016 and 2017 DSL tasks are
not comparable because the varieties proposed for
the two shared tasks are not exactly the same.

The table shows that best results are obtained
using the two first configurations: Run1 and Run2.
Let us notice that the second one reaches good re-
sults even if it is based on a very simple models
(just words unigrams). This is also true for the
GDI task (see below in the Discussion section).

Our best run in task DSL achieved 0.903 accu-
racy (9th position out of 11 systems) while the best
system in this task reached 0.927.
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Figure 1: Confusion matrix: DSL run2

The confusion matrix for Run2 is shown in Fig-
ure 1. Bosnian and Peruvian Spanish seem to be
the most difficult languages/varieties to be distin-
guished.

Comparing confusion matrices for Spanish vari-
ants between Run1 and Run2, we can observe that
although the results are similar in both cases, they
guess and fail in a different way (Table 3). So, they
seem to be quite complementary strategies.

4.3 DSL Open Training

We tried to improve the results by adding more
training data from previous shared tasks. Table 2
shows that the simplest configuration (Run2) gets
better results than in the closed training task, but
only a slight improvement (0.5 %) was obtained.
No comparison can be made with other systems
because the other participants did not take part in
this track.
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run1 run2
es-ar es-es es-pe es-ar es-es es-pe

es-ar 892 67 36 861 81 56
es-es 88 871 35 78 870 48
es-pe 111 126 763 87 104 809

Table 3: Confusion matrices in run1 and run2 for variants of Spanish

Run Accuracy F1 (micro) F1 (macro) F1 (weighted)
run1 0.6262 0.6262 0.6118 0.6108
run2 0.6308 0.6308 0.613 0.612
run3 0.5921 0.5921 0.5785 0.5774

Table 4: Results for the GDI task.

4.4 GDI
The results for the GDI task are shown in Table 4.
The majority class baseline is 0.258 and there were
no previous results to compare with. However, the
best results for Arabic dialects in VarDial 2016 (in
similar conditions to GDI) were 0.513 (F-score).

The results are much lower than in DSL task.
Several factors which can influence these results
are the following:

• the GDI task has unbalanced test sets,

• the data are from speech transcription,

• the task itself is more difficult given the
strong similarity of the varieties.

In this task, our best configuration is Run2,
which, in spite of its simple model, improves the
voting-based system. The confusion matrix for
Run2 (see Figure 2) shows that the scores obtained
for Lucerne dialect are very poor.

Run2 achieved 0.630 accuracy (8th position out
of 10 systems) while the best system in this task
reached 0.680. It is worth noticing that only two
systems also involved in DSL 2016 task improve
our results in GDI.

5 Discussion

The results show that our system, despite its sim-
plicity, performs reasonably well. For the DSL
task 2016 we obtained the second best perfor-
mance even if the results are more discrete in
2017; and for the GDI task the results are better
than the best score in 2016 for the Arabic Dialec-
tal Identification task.

It can be underlined that the configuration of our
run2 is very simple (just unigrams of words) and
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Figure 2: confusion matrix: GDI run2

results using perplexity are very competitive. It
could be considered as a baseline for the future.

In order to find key elements for further im-
provement, we decided to carry out an analysis of
errors on variants that we know quite well (vari-
ants of Spanish).

5.1 Analysis of errors in Spanish

From the list of errors among Spanish texts ex-
tracted from the evaluation carried on the devel-
opment corpus we selected randomly 50 cases.

We decided to classify these texts on the follow-
ing categories:

• Not distinguishable: the dialect is impossi-
ble or very difficult to classify. There are no
specific language features allowing to make
a distinction. For instance: La propuesta de
reunir en un mismo lugar a las etiquetas pre-
mium de las principales bodegas del paı́s ha
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Cases number freq.
not distinguishable 18 0.36
distinguishable by named entities 17 0.34
distinguishable by dialectal uses 7 0.14
others 8 0.16

Table 5: Figures from error analysis on Spanish texts.

logrado cautivar al público amante del buen
vino, siendo hoy el evento del sector más
esperado del año. is classified by our sys-
tem as Spanish from Argentina (es-AR) but
it was annotated as Spanish from Spain (es-
ES). However, the text has no relevant dialec-
tal characteristic.

• Distinguishable by named entities: including
geographical names (Argentina, Galicia, ...),
organizations (PP, PSOE), localization infor-
mation (euro, peso, peruano, Buenos Aires,
etc.). For instance: Los ingresos tributar-
ios totales de la provincia ascendieron en
marzo a 1.305.180.533,54 pesos, un 10,37
por ciento por encima del monto presupues-
tado para ese mes is classified by our system
as es-ES, but it contains the term pesos which
refers to the Argentinian currency.

• Distinguishable by dialectal uses. These are
cases in which it is possible to find words
such as mamá or tercerizar that are more fre-
quent in some of the variants.

• Others: more complex cases in which it is
difficult to make a decision since there are
no clear language features from one partic-
ular variety. In some of the examples, several
hypotheses were possible.

The figures for each case are shown in Table
5. We can observe that the first two cases (i.e not
distinguishable and distinguishable by named en-
tities) are the more frequent in the test test.

5.2 Future Work

Based on the error analysis we are planning to test
a variant of our system with two new features:

• The system will be provided with the none
category for those cases where there is no
enough evidence to make a decision. This
can increase the precision of the system.

• The system will be enriched with lists
(gazetteers) of named entities linked to the
dialects or geographical locations. These
gazetteers could be used to assign weights to
n-grams or as new features in the voting sys-
tem. However, it will be necessary to con-
sider the interferences that this new informa-
tion might add to the system. For instance, in
the following example (Es indudable que los
que utilice en los partidos amistosos que ju-
garemos contra España, en Huelva el 28 de
mayo, y ante México...), the use of localized
named entities could generate a false positive
for Spanish from Spain (es-ES).

Additionally we intend to test the perplexity
strategy to measure the distance among the lan-
guage or dialects in a diachronic mode. This
would allow us to observe the quantitative trans-
formations of the languages/dialects and the rela-
tions among them.

Finally, we will perform further experiments
with different voting systems in order to find the
most appropriate for our models.

Our perplexity-based system to measure the
distance between languages is freely avail-
able at https://github.com/gamallo/
Perplexity.
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Abstract

This paper describes the system developed
by the Centre for English Corpus Linguis-
tics (CECL) to discriminating similar lan-
guages, language varieties and dialects.
Based on a SVM with character and
POStag n-grams as features and the BM25
weighting scheme, it achieved 92.7% ac-
curacy in the Discriminating between Sim-
ilar Languages (DSL) task, ranking first
among eleven systems but with a lead over
the next three teams of only 0.2%. A sim-
pler version of the system ranked second
in the German Dialect Identification (GDI)
task thanks to several ad hoc postprocess-
ing steps. Complementary analyses car-
ried out by a cross-validation procedure
suggest that the BM25 weighting scheme
could be competitive in this type of tasks,
at least in comparison with the sublinear
TF-IDF. POStag n-grams also improved
the system performance.

1 Introduction

This paper presents the participation of the Cen-
tre for English Corpus Linguistics (CECL) in the
fourth edition of the VarDial Evaluation Cam-
paign, which deals with the automatic identifica-
tion of similar languages (such as excerpts of jour-
nalistic texts in Malay and Indonesian), language
varieties (such as excerpts of Canadian and Hexag-
onal French) and dialects (such as Swiss German
dialects) (Zampieri et al., 2017). The VarDial
tasks share many similarities with the Native Lan-
guage Identification (NLI) Task (Tetreault et al.,
2013) so that several teams (Gebre et al., 2013;
Goutte et al., 2013) relied on their participation
in the NLI task to develop a system for VarDial.
As we achieved an excellent level of performance

in the NLI task (Jarvis et al., 2013), we decided
to reuse the approach developed on that occasion,
which was based on n-grams of characters, words
and part of speech (POS) tags, and on global sta-
tistical indices such as the number of tokens per
documents or the word mean length.

In the NLI task, n-grams of characters had
proved to be as effective as the combination of n-
grams of words and POStags. The character n-
grams also obtained the best results in the 2016
Discriminating between Similar Languages (DSL)
shared task (Malmasi et al., 2016) as well as in
previous editions (Goutte et al., 2014; Malmasi
and Dras, 2015). These performances led us to
privilege this approach especially since we did not
have an off-the-shelf POS-tagger for some of the
languages to be discriminated. We nevertheless
used POStag n-grams in addition to character n-
grams for the three languages for which a version
of TreeTagger is available (Schmid, 1994).

The CECL system was specifically developed
for the DSL task in which it obtained the best per-
formance (0.927) according to the weighted F1
measure, but it should be noted that its lead on
the system ranked second is only 0.002. A sim-
plified version, due to the different nature of the
material to be processed, was applied to a second
task, the German Dialect Identification (GDI) task
which was organized for the first time. The task
aim was to distinguish manually annotated speech
transcripts from four Swiss German dialect areas:
Basel (BS), Bern (BE), Lucerne (LU) and Zurich
(ZH). This task is particularly difficult because
many transcripts are very short and because it is
not unusual to find in the learning material iden-
tical transcripts (e.g., aber) belonging to the four
categories. In this task, the CECL system came
second, obtaining a weighted F1 of 0.661, 0.001
less than the system ranked first.

The next section presents the main characteris-
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tics of the system within the context of previous
research. The third section describes the material
of each task in which we participated and the tech-
nical characteristics of the system. The fourth sec-
tion reports the results obtained on the test set, but
also an evaluation of the benefits/losses brought by
the various components of the system by means of
a cross-validation procedure. In the conclusion,
we discuss the main limits of this work and con-
sider a few avenues for improvement.

2 System Characteristics in Relation to
Previous Work

Character n-grams are the main features of the
system. In the previous VarDial campaigns, a
large number of systems obtained excellent per-
formances using them (Çöltekin and Rama, 2016;
Goutte et al., 2014; Zampieri et al., 2015a). Re-
garding the n-gram length, we choose a span of
one to seven characters as in Çöltekin and Rama
(2016), but the possibility to use more characters
for some languages was left open.

In previous editions, named entities received
much attention to such an extent that, in the 2015
edition, the documents of one of the test sets was
preprocessed so as to mask them (Zampieri et al.,
2015b). Their impact on performance is undoubt-
edly complex. On the one hand, as the material
is composed of excerpts of journalistic texts, the
named entities should reflect at least partially the
origin of the texts. On the other hand, they could
also introduce some noise since some of them can
be used in any language. We decided to try to iden-
tify them (at a lower cost) so they could be pro-
cessed in different ways. The solution we ended
in is very similar to that used by King et al. (2014)
which is based on the fact that the first letter of a
named entities is usually capitalised. The goal was
to determine whether performance could be im-
proved by eliminating them. As the initial analy-
ses refuted this hypothesis, we evaluated the oppo-
site option, that is adding them as a supplementary
feature set. The idea was that when these words
are encoded in standard character n-grams, they
are merged with n-grams from common words.
For example, bec (beak) is included in Québec and
in Québecquois.

Many previous systems developed for the DSL
task also used word n-grams (Purver, 2014;
Zampieri et al., 2014). We have not explored this
option because there is a partial overlap between

them and character n-grams. Such a situation does
not occur for POStag n-grams whose usefulness
has been advocated by Lui et al. (2014). There
were added thus to the feature sets for each lan-
guage for which we had a POS-tagger at our dis-
posal.

The last set of features used is composed of
global statistical indices similar to those employed
in previous work (Bestgen, 2012; Jarvis et al.,
2013). They are computed on the basis of the num-
ber of characters, spaces, uppercase letters and
punctuation marks in each document.

An important characteristic of the developed
system lies in the weighting function used for scal-
ing every n-gram feature. The best performing
systems in the previous VarDial editions often em-
ployed TF-IDF (see Zampieri et al. (2015a) for
a detailed presentation) whose most classical for-
mula is:

TF-IDF = tf × log
N

df
(1)

where tf refers to the frequency of the term in the
document, N is the number of documents in the
set and df the number of documents that include
the term. Zampieri et al. (2015a) and Çöltekin and
Rama (2016) took advantage of a variant called
Sublinear TF-IDF:

(sl)TF-IDF = (1 + log(tf))× log
N

df
(2)

Other weighting schemes have been proposed in
the literature, some of them are simpler and some
more complex (Ács et al., 2015). In the NLI
task, we choose the log-entropy weighting scheme
often used in latent semantic analysis (Piérard
and Bestgen, 2006). In Information Retrieval,
the BM25 (for Best Match 25, also called Okapi
BM25) weighting scheme is considered one of the
most efficient (Manning et al., 2008) to the point
that it is strongly advocated by Claveau (2012).
Our first analyses having shown that BM25 sur-
passed log-entropy, we opted for this weighting
scheme for all the n-gram based features.

BM25 is a kind of TF-IDF with specific choices
for each of the two components, but above all
it takes into account the length of the document.
Its classic formula is (Robertson and Zaragoza,
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2009):

BM25 =
tf

tf + k1 ∗ (1− b + b ∗ dl
dl−avgdl

)

× log
N − df + 0.5

df + 0.5
(3)

in which

• tf
tf+k1

is the TF component which, contrarily
to the usual TF-IDF, has an asymptotic max-
imum tuned by the k1 parameter.

• (1− b + b ∗ dl
dl−avgdl

), where dl is the length
of the document and avgdl the average length
of the documents in the set, is the document
length normalization factor whose impact is
tuned by parameter b (and by k1).

• The second part of the formula is a vari-
ant of the usual IDF, proposed by Robertson
and Spärck Jones (Robertson and Zaragoza,
2009).

In our analyses, k1 was set to 2 and b to 0.75
(Claveau, 2012).

3 Data and System Detailed Description

This section first describes the data provided by
the organizers for each of the two tasks in which
we participated and then the implementation of the
various components of the system. Since the sys-
tem set up for the GDI task was a simplified ver-
sion of the one developed for the DSL task, the
emphasis is placed on the latter.

3.1 Data

DSL Task: The organizers have made available
to participants of the task a multilingual dataset
(Tan et al., 2014) containing excerpts of journal-
istic texts in six groups of languages, each com-
posed of two or three varieties:

• Bosnian (bs), Croatian (hr), and Serbian (sr)

• Malay (my) and Indonesian (id)

• Persian (fa-IR) and Dari (fa-AF)

• Canadian (fr-CA) and Hexagonal French (fr-
FR)

• Brazilian (pt-BR) and European Portuguese
(pt-PT)

• Argentine (es-AR), Peninsular (es-ES), and
Peruvian Spanish (es-PE)

For each of the 14 varieties, the learning set con-
sists of 18000 documents and development set of
2000 documents, for a total of 280000 documents.

GDI Task: The dataset for the German Di-
alect Identification task, described in Samardzic et
al. (2016), consists of manually annotated speech
transcripts from four Swiss German dialect areas:
3411 from Basel (BS), 3889 from Bern (BE), 3214
from Lucerne (LU), and 3964 from Zurich (ZH),
for a total of 14478 documents. For each area,
speeches were collected from several speakers and
retranscribed by several annotators using a writing
system designed to express the phonetic properties
of different Swiss German dialects.

3.2 Detailed System Description
The extraction of all the features described
below was performed by means of a se-
ries of custom SAS programs running in
SAS University (freely available for research
at http://www.sas.com/en us/software/university-
edition.html). To construct the predictive models
during the development and test phases, we used
LibSVM (with a linear kernel) (Chang and Lin,
2011), which is significantly slower than LibLIN-
EAR developed by the same authors. This unfor-
tunate choice prevented further optimization trials.

DSL Task: As Goutte et al. (2014), we used a
hierarchical approach with a first model for dis-
criminating language groups and then a specific
model for each language group. From our point
of view, this approach has two advantages. First,
since distinguishing different languages (such as
Persian and French) is much simpler than distin-
guishing language varieties (such as Canadian and
Hexagonal French), the first model can be based
on a reduced number of features and is thus eas-
ier to handle even though it is applied to a much
larger dataset. Then, different models can be con-
structed for each language group in order to try to
optimize their effectiveness both in selecting the
sets of features and in setting the regularization pa-
rameter (C) of the SVM.

1. Features for the identifying the language
groups: This model is based on the charac-
ter n-grams of length one to four, which oc-
curs at least 100 times in the whole dataset,
weighted by means of BM25. These charac-
ter n-grams were substrings of the documents
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Features bs-hr-sr es fa fr id-my pt
CharNgram 1-7 1-7 1-8 1-7 1-7 1-7
CapCharNgram 1-7 1-7 no 1-7 1-7 1-7
POStagNgram no 1-5 no 1-5 no 1-5
GlobStat yes yes yes yes yes yes
C 0.30 0.0001 0.00005 0.001 0.00005 0.00005

Table 1: Set of features and C value for the six language groups.

and include whitespace, punctuation, digits
and symbols. A special character was used to
signal the beginning and the end of the docu-
ment.

2. Features for the language specific models:

(a) Character n-grams: They were ex-
tracted exactly as explained above, but
they contained from 1 to 7 or 8 charac-
ters.

(b) Capitalized word character n-grams:
Every word that starts with a capital let-
ter was extracted from each document
and the character n-grams it contains
were used as supplementary features.
Consideration was given to not taking
into account the first word of each sen-
tence, but since the material consisted
of excerpts from newspaper articles, this
criterion would have eliminated many
named entities as in Ottawa demande
tout de même à la Cour suprême com-
ment.... This approach does not work for
Persian since it does not use capital let-
ters.

(c) POStag n-grams: We used the Tree-
Tagger (Schmid, 1994) to collect
the parts of speech associated with
each token in a document for each
language for which a parameter
file for TreeTagger (http://www.cis.uni-
muenchen.de/ schmid/tools/TreeTagger/)
was available, that is French, Spanish
and Portuguese. It might be useful to
note that each of these parameter files
has been built for a language group (i.e.,
French) and not for a language variety
(i.e., Canadian French), and that they
are not used to identify the language
groups.

(d) Global statistics: We also extracted five
global statistics from each document:

the proportions of capitalized letters,
punctuation marks, spaces, and numer-
als, and the proportion of characters that
are not a space, a numeral or a punctua-
tion mark.

The feature sets and the value of the parame-
ter C used during the test phase are given in Ta-
ble 1. They were determined by means of (non-
systematic) cross-validation analyses using one
fifth of the data for learning and the remaining for
testing.

GDI Task: Since this task was not our prior-
ity, we simply adapted the model designed for the
DSL task by removing all the sets of features that
were not relevant, that is the capitalized word char-
acter n-grams, the POStag n-grams, and the global
statistics. Thus, only the character n-grams and
the BM25 weighting scheme remain.

4 Analyses and Results

4.1 DSL Task

Performance on the Test Set: A single run was
submitted because no attempt to optimize the pre-
dictions was possible due to the use of LibSVM.
We got an accuracy of 92.74% and a weighted F1
of 0.9271. The system ranked first of the eleven
systems that participated in the task but with a lead
over the next three teams of only 0.002 (weighted
F1).

Table 2 gives the confusion matrix on the test
set. As can be seen, the language group of 29 doc-
uments was incorrectly identified during the first
step, which corresponds to a 99.79% accuracy.
It is noteworthy that a document in Persian was
incorrectly categorized as in Portuguese whereas
these are two totally different writing systems. It
is also noted that the varieties within the differ-
ent language groups did not exhibit the same level
of difficulty, the triplet bs-hr-sr being much more
difficult for the system than the others.

The Good (and the Bad) of the System: After
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bs-hr-sr es fa fr ma pt
bs hr sr ar es pe af ir ca fr id my br pt

bs 784 112 102 0 0 0 0 0 0 1 0 0 0 1
hr 119 865 15 0 0 0 0 0 0 1 0 0 0 0
sr 71 7 921 0 0 0 0 0 0 0 0 0 1 0
es-ar 0 2 0 855 70 68 0 0 0 0 0 0 3 2
es-es 0 2 0 69 892 34 0 0 0 1 0 0 0 2
es-pe 0 0 0 11 24 965 0 0 0 0 0 0 0 0
fa-af 0 0 0 0 0 0 968 32 0 0 0 0 0 0
fa-ir 0 0 0 0 0 0 32 967 0 0 0 0 1 0
fr-ca 0 0 0 0 0 0 0 0 956 44 0 0 0 0
fr-fr 1 0 0 0 0 0 0 0 53 946 0 0 0 0
id 0 0 0 1 1 0 0 0 0 1 980 17 0 0
my 0 0 0 0 0 1 0 0 0 0 10 989 0 0
pt-br 0 0 0 1 0 1 0 0 0 2 0 0 939 57
pt-pt 0 0 0 0 0 1 0 0 0 2 0 0 41 956

Table 2: Confusion matrix for the DSL task.

the test period (and because we remembered hav-
ing used LibLINEAR in Jarvis et al. (2013)), we
conducted a series of experiments on the learning
and development sets to determine the gains/losses
made by each component of the system. These ex-
periments were carried out independently for each
language group. Since the optimum values for
the C parameter had not been determined using
a cross-validation procedure, 17 values distributed
between 0.000001 and 4 were tested. The results
given below corresponds to the average accuracy
calculated over all these C values1

The first experiment aimed at comparing the ef-
fectiveness of the BM25 weighting scheme with
that of the sublinear TF-IDF scheme used in
the best performing systems of previous years
(Çöltekin and Rama, 2016; Zampieri et al.,
2015a). In order to be the closest to Çöltekin
and Rama (2016) system, only characters n-grams
were used. Table 3 show that BM25 produced a
superior accuracy in five language groups out of
six, the only exception being Malay with an ad-
vantage for TF-IDF of 0.08, but it is also the lan-
guage group for which performance is nearly per-
fect. The average benefit is 0.47%.

The second experiment used the ablation ap-
proach to assess the independent contribution of
each set of features to the overall performance of
the system. It consists in removing one feature of

1The analyses were also performed on the maximum ac-
curacy obtained by each model, assuming that an oracle al-
lowed to know the ideal value of the C parameter, and pro-
duced very similar results.

Language BM25 TF-IDF Diff.
bs-hr-sr 85.06 84.45 0.61

es 90.30 89.70 0.60
fa 96.32 95.98 0.34
fr 94.72 93.96 0.76

id-my 98.27 98.35 -0.08
pt 93.55 92.99 0.56

Table 3: Accuracy for the two weighting schemes
(DSL).

the system at a time and re-evaluating the model.
The results indicated that, in each language group,
the most comprehensive model (see Table 1) was
always the best. Concerning the different sets of
features (see Table 4):

• Deleting the global statistics reduced the ac-
curacy in a minimal way since the difference
is at most 0.02% and it is even null in three
language groups out of 6.

• Deleting capitalized word character n-grams
reduced accuracy by 0.09% to 0.27% de-
pending on the language group, with an av-
erage decrease of 0.16%.

• Deleting POStag n-grams had a somewhat
greater effect since the decrease is at least
0.23% and can be as high as 0.70%.

4.2 GDI Task
Specificity and Performance of the Three Runs:
The system for the GDI task was developed using
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Features bs-hr-sr es fa fr id-my pt
GlobStat 0.02 0.002 0.001 0 0 0
CapCharNgram 0.23 0.27 0.09 0.12 0.10
POStagNgram 0.70 0.23 0.30

Table 4: Benefits in accuracy for the three complementary sets of features (DSL).

Source BE BS LU ZH
Learning set 26.86 23.56 22.20 27.38
Run 1 26.25 26.36 8.74 38.65
Run 2 24.41 29.49 11.00 35.10
Run 3 23.86 25.12 23.69 27.32

Table 5: Percentage breakdown of the documents
into the four categories (GDI).

a 5-fold cross-validation procedure. It led to se-
lect a model based on n-grams of 1 to 5 characters
and a value of 0.0003 for the C parameter. This
model was used to produce the first submitted run.
It got the seventh place2 with a weighted F1 of
0.625, close enough to the system ranked sixth but
at 0.012 of the fifth place.

When taking a look at the predictions of this
model during the submission period, it appeared
that it attributed an unequal breakdown of the doc-
uments into the four categories, as shown in the
second row of Table 5, and quite different from the
breakdown in the learning set (see first row in Ta-
ble 5). Even if such a distribution were possible, it
does not look optimal. A few additional analyses
were quickly carried out to try obtaining a more
balanced breakdown.

First, we obtained from LibSVM the probability
estimates of each document for each class, an op-
tion not available in LibLINEAR for SVMs. Since
the solution proposed with or without probabil-
ity estimation is not exactly the same for a given
value of C, this solution was submitted as the
second run. As shown in the third row of Table
5, the breakdown into the categories is somewhat
more homogeneous. This run ranked fifth, with a
weighted F1 of 0.638, almost tied with the team
ranked fourth since the difference is only 0.0006
but at 0.015 from third place.

These probabilities were then used to try to
equalize the headcounts in the four categories. To

2To determine this place, we used the ranking provided
by the organizers, which only contains the highest score of
each team, and inserted our different runs. The rank given
therefore includes only the best run of each of the other teams.

BE BS LU ZH # %
0 0 0 0 297 8.16
0 0 0 1 877 24.11
0 0 1 0 615 16.90
0 0 1 1 33 0.91
0 1 0 0 794 21.83
0 1 1 0 112 3.08
1 0 0 0 756 20.78
1 0 1 0 150 4.12
1 1 0 0 4 0.11

Table 6: Categorisation of the documents accord-
ing to the probability estimate ranking (GDI).

do this, the 910 documents3 with the highest prob-
ability estimate of belonging to a category were
tentatively assigned to this category. Obviously,
this procedure allows the classification of a docu-
ment into several categories as shown in Table 6.
A set of ad hoc rules was then applied to take the
final decision. The most obvious one was that doc-
uments categorized into only one category were
assigned to that one. Other rules apply to docu-
ments that were not assigned to any category or
to documents that were assigned to two categories
by giving priority to the least populated one. The
last row of Table 5 confirms that this procedure
made it possible to obtain a more homogeneous
breakdown into the categories compared to the two
other runs.

The resulting submission ranked second in the
GDI task with a weighted F1 of 0.661, close to
the performance of the team ranked first since
the difference is only 0.0013. Thus, these simple
changes in the category breakdown, only justified
by the fact that one of the objectives of a shared
task is to obtain the best performance, made it pos-
sible to gain 0.035 in weighted F1 and to climb
from the seventh place to the second.

Benefits Brought by BM25: In order to de-
termine whether the use of BM25 instead of sub-
linear TF-IDF provided a benefit, a 5-fold cross-

3That is a quarter of the test set. We could also have relied
on the percentages in the learning set given in Table 4.
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C BM25 TF-IDF Diff.
0.0001 82.62 80.58 2.04
0.0002 84.26 82.52 1.73
0.0003 84.68 83.22 1.46
0.0004 84.57 83.46 1.11
0.0005 84.50 83.46 1.05
0.0006 84.43 83.44 0.99
0.0007 84.26 83.42 0.85
0.0008 83.99 83.29 0.70
0.0009 83.87 83.17 0.70
0.0010 83.69 83.11 0.58

Table 7: Accuracy for the two weighting schemes
(GDI).

validation procedure was used to first find the best
C value for each weighting scheme and then to
compare the levels of accuracy achieved. For both
BM25 and sublinear TF-IDF, the optimum value
of C was between 0.001 and 0.0001. Table 7
gives, for different C, the average accuracy on the
5 folds for the two weightings. As can be seen,
BM25 always performed better than sublinear TF-
IDF and the gain in the area where the two weight-
ings got the best results was in the range of 1 to
1.5% accuracy. This gain may seem rather low,
but it is obtained at the cost of a minimal modifi-
cation of the system.

Specific Difficulties with this Task: The pre-
ceding analyses and the 2017 VarDial report
(Zampieri et al., 2017) show that the performances
obtained by a cross-validation procedure on the
learning set (accuracy = 84%) were clearly supe-
rior to those obtained on the test set by any of the
teams (maximum accuracy = 68%). This means
that, although no information had been provided
on this subject in the task description, the tran-
scripts in the test set were quite different from
those in the learning set.

5 Conclusion

This paper describes the system developed by the
Centre for English Corpus Linguistics for partic-
ipating in the fourth edition of the VarDial Eval-
uation Campaign (Zampieri et al., 2017). It was
mainly based on characters n-grams, known for
their effectiveness in this kind of task, to which
less frequently used sets of features were added.
These features were weighted by means of the
BM25 scheme. In the two tasks we participated
in, the CECL system ranked at least second. The

good performance in the GDI task was due to sev-
eral ad hoc adjustments of the breakdown of the
test documents in the categories and cannot there-
fore be seen as a proof of the intrinsic superiority
of the system.

The results obtained and the complementary
analyses carried out by means of a cross-validation
procedure suggest that the BM25 weighting
scheme could be competitive in this type of tasks,
at least when compared to the sublinear TF-IDF.
However, it should be noted that gains were rel-
atively small. Due to the lack of time, a detailed
analysis of BM25 was not carried out to optimize
the two parameters, to evaluate alternative formu-
las (Trotman et al., 2014) or to determine which
difference between BM25 and the sub-linear TF-
IDF is responsible for the performance gain.

Other options for improving the system include
removing the words in English (King et al., 2014)
and pre-processing the sentences entirely in capi-
tal letters. It would also be interesting to determine
whether POStag n-grams could be as effective in
the other languages as they were in French, Span-
ish and Portuguese.
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Abstract

Discriminating between Similar Lan-
guages (DSL) is a challenging task
addressed at the VarDial Workshop series.
We report on our participation in the
DSL shared task with a two-stage system.
In the first stage, character n-grams are
used to separate language groups, then
specialized classifiers distinguish similar
language varieties. We have conducted
experiments with three system configura-
tions and submitted one run for each. Our
main approach is a word-level convolu-
tional neural network (CNN) that learns
task-specific vectors with minimal text
preprocessing. We also experiment with
multi-layer perceptron (MLP) networks
and another hybrid configuration. Our
best run achieved an accuracy of 90.76%,
ranking 8th among 11 participants and
getting very close to the system that
ranked first (less than 2 points). Even
though the CNN model could not achieve
the best results, it still makes a viable ap-
proach to discriminating between similar
languages.

1 Introduction

Language identification is the task of detecting the
language of a given text segment. Although meth-
ods that are able to achieve an accuracy of over
99% for clearly distinct languages like English
and Spanish do exist (Dunning, 1994), it is still a
major problem to distinguish between closely re-
lated languages, like Bosnian and Croatian, and
language varieties, like Brazilian and European
Portuguese (Goutte et al., 2016). The problem of
discriminating between similar languages was ad-
dressed in the DSL shared task at VarDial 2017. In

DSL 2017, participants were asked to develop sys-
tems that could distinguish between 14 language
varieties, distributed over 6 language groups. Two
participation tracks were available: closed and
open training. In closed track, systems should
be trained exclusively in the DSL Corpus Collec-
tion (Tan et al., 2014), provided by the organiz-
ers (see Section 3), while in open training the use
of external resources was allowed. For a detailed
description of the VarDial workshop and of DSL
2017, refer to the shared task report (Zampieri et
al., 2017).

This paper describes our system and the results
of our submissions for closed track at DSL 2017.
Our goal was to experiment with deep neural net-
works in language variety distinction, in partic-
ular word-level Convolutional Neural Networks
(CNN). This kind of network has been success-
fully applied to several natural language process-
ing tasks, such as text classification (Kim, 2014)
and question answering (Severyn and Moschitti,
2015; Wang et al., 2016).

Like other participants did in previous editions
of the DSL shared task (Zampieri et al., 2015), we
chose to use two-stage classification. First, each
sentence gets a group label, that guides the selec-
tion of a model especially trained for that group.
Then, it goes through a classifier that predicts the
final language variety. We experimented with dif-
ferent machine learning techniques for variety pre-
diction while the language group classifier was
kept the same. This allowed us to compare, not
only the overall accuracy of each classifier, but
also its accuracy within each language group.

To distinguish between language groups, the ef-
ficiency of character n-grams was leveraged (Vata-
nen et al., 2010), while three configurations had
their performances comparared for language vari-
ety prediction. One run was submitted for each of
the following configurations: (a) run1: a word-
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level CNN that learns word vectors from scratch;
(b) run2: a multi-layer perceptron (MLP) fed
by tf-idf vectors of word n-grams, and (c) run3:
a hybrid configuration composed by word-level
MLP models and character-level Naive Bayes
models. Our best run (run3) was positioned 8th
among 11 participants, with 90.76% of accuracy
in the test set and with a difference of 1.98 per-
centage points from the first system in the rank.

Although our word-level CNN did not outper-
form the other two configurations, it scored very
close to our best run. We also found that combi-
nations of unigrams and bigrams produce higher
scores than unigrams alone. This was observed in
both convolutional networks and multi-layer per-
ceptron networks.

2 Related Work

Many approaches to discriminating between sim-
ilar languages have been attempted in previous
DSL shared tasks, and best results were achieved
by simpler machine learning methods like SVMs
and Logistic Regression (Malmasi et al., 2016).
However, since deep neural networks have been
successfully applied to many NLP tasks such as
question answering (Severyn and Moschitti, 2015;
Santos et al., 2015; Rao et al., 2016), we wanted
to experiment with similar network architectures,
particularly CNNs, in the task of discriminating
between similar languages.

In the last shared task (DSL 2016), four teams
used some form of convolutional neural network.
The team mitsls (Belinkov and Glass, 2016) de-
veloped a character-level CNN, meaning that each
sentence character was embedded in vector space.
Their system ranked 6th out of seven rank posi-
tions, with 0.830 of overall accuracy, while the 1st
system scored 0.894 using SVMs and character n-
grams.

Cianflone and Kosseim (2016) used a character-
level convolutional network with a bidirectional
long short term memory (BiLSTM) layer. This ap-
proach achieved accuracy of 0.785.

A similar approach was used by the team Res-
Ident (Bjerva, 2016). They developed a residual
network (a CNN combined with recurrent units)
and represented sentences at byte-level, arguing
that UTF-8 encodes non-ascii symbols with more
than one byte, which potentially allows for more
disambiguating power. This system achieved ac-
curacy of 0.849. The fourth team used a word-

level CNN (Malmasi et al., 2016), but details are
not available since a paper was not submitted.

In DSL 2015, Franco-Salvador et al. (2015)
used logistic regression and SVM models fed
by pre-trained distributed vectors. Two strate-
gies were explored for sentence representation:
sentences represented as an average of its word
vectors trained by word2vec (Mikolov et al.,
2013), and sentences represented directly as vec-
tors trained by Paragraph Vector (Le and Mikolov,
2014). This system ranked 7th out of 9 partici-
pants.

Collobert et al. (2011) propose avoiding task-
specific engineering by learning features during
model training. In that work, several NLP tasks
were used as benchmarks to measure the rele-
vance of the internal representations discovered by
the learning procedure. One of these benchmarks
used a convolutional layer to produce local fea-
tures around each word in a sentence.

We intended to experiment with learning word
vectors in the target task, in an approach similar
to that of Collobert et al. (2011). We are partic-
ulary interested in local features captured by con-
volutional networks. We believe these networks
can learn words and language constructions com-
monly used in particular language varieties.

3 Data

Since we participated in the closed track, all mod-
els were trained and tested in the DSL Corpus Col-
lection (Tan et al., 2014), provided by the organiz-
ers. This corpus was composed by merging dif-
ferent corpora subsets, for the purpose of the DSL
shared task, and comprises news data of various
language varieties.

New versions of the DSL Corpus Collection
(DSLCC) are build upon lessons learned by the
organizers. Thus, an overview of the version used
in DSL 2017 is provided in Table 1. It encom-
passes 14 language varieties distributed over 6 lan-
guage groups. Since its first release, the DSLCC
contains 18,000 training sentences, 2,000 develop-
ment sentences and 1,000 test sentences for each
language variety; each sentence contains at least
20 tokens (Tan et al., 2014).

4 Methodology

Three system configurations were experimented,
and one run was submitted for each. We use two-
stage classification, and apply different machine
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Figure 1: Architecture of the convolutional neural network.

Group Language/Variety Code

A
Bosnian bs
Croatian hr
Serbian sr

B
Indonesian id
Malay my

C
Persian fa-IR
Dari fa-AF

D
Canadian French fr-CA
Hexagonal French fr-FR

E
Brazilian Portuguese pt-BR
European Portuguese pt-PT

F
Argentine Spanish es-AR
Peninsular Spanish es-ES
Peruvian Spanish es-PE

Table 1: Language groups and language varieties
contained in DSL Corpus Collection provided for
DSL 2017.

learning techniques to train one classifier per lan-
guage group in each configuration.

Our pipeline starts with language group predic-
tion. After getting a group label, each sentence is
forwarded to the corresponding variety classifier.
In all configurations, the group classifier was kept
fixed.

Character n-grams are used to train a Naive
Bayes classifier1 that distinguishes between lan-
guage groups. Before training, language codes
are replaced with the respective group code (bs,
hr, or sr becomes A, for example), sentences are
tokenized, and each token gets an end mark ($).
Tokens are defined as character segments delim-
ited by whitespaces. Better results were achieved
in the development set when letter case was kept
original, so it was not changed. Named entities
were not changed either. We found 5 to be the best
size for n-grams, with accuracy of 0.9981 in the

1We use scikit-learn multinomial Naive Bayes.

development set. Values greater than 5 also give
good results, but training is much slower.

In the first system configuration, language vari-
eties are classified using convolutional neural net-
works. This is our main approach.

4.1 Convolutional Neural Network
The model, shown in Figure 1, is similar to one
of the architectures experimented by Kim (2014).
It takes raw sentences as input and generates class
probabilities as output. The highest probability is
selected as the predicted class.

Let s = {w1, w2, w3, . . . , wL} be a sentence of
fixed length L. Each word wj must be mapped
to a row vector xj ∈ Rd embedded in matrix
W|V |+1×d, where |V | is the number of distinct
words in the language group. Rows in W follow
the same order as words in the vocabulary, so that
the i-th row in W represents the vector of the i-
th word in the vocabulary V . Words are mapped
to vectors by looking up their corresponding in-
dexes in W (embedding lookup). Words that are
not found in the vocabulary V are skipped.

Matrix SL×d represents the sentence s and is
obtained by concatenation of word vectors xj . No-
tice that W has |V | + 1 rows. The first row cor-
responds to a special token PAD, used to fill up
sentences shorter than L.

Convolution filters are slided over S to gener-
ate intermediate feature vectors known as feature
maps. Filters are always of width d, but there may
be different filter lengths and multiple filters of
each length.

Formally, each feature ci in a feature map c is
computed as

ci = f(w · Si:i+h−1 + b) (1)

where w ∈ Rh×d is a convolution filter, b ∈ R is a
bias term, f(·) is a non-linear function such as the
hyperbolic tangent, and h is the filter length.
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The convolution of 3 filters of length 2 is repre-
sented in Figure 1. Each filter generates one fea-
ture map.

Max-over-time pooling is applied to each fea-
ture map c to take the maximum value ĉ =
max(c). Those pooled values are concatenated to
form a final feature vector that is fed to a fully-
connected layer followed by softmax. For regular-
ization, dropout is applied to the fully-connected
layer. The final output is a probability distribution
over the class labels.

4.1.1 Model Training
To train the model, sentences are tokenized and all
digits (0-9) are replaced with zeros. Letter case
is not changed. Tokens are delimited by whites-
paces, but no end marker is appended to them.
Maximum sentence length L is set to 80, since the
longest sentence found in the training set had 77
tokens.

One model is trained for each language group.
The vocabulary V is the set of unique tokens found
in the training set for the current group. Vocabu-
lary sizes are shown in in Table 2.

Group Languages # of tokens
A bs, hr, sr 175,665
B id, my 74,654
C fa-AF, fa-IR 38,145
D fr-CA, fr-FR 66,891
E pt-BR, pt-PT 72,694
F es-AR, es-ES, es-PE 92,062

Table 2: Vocabulary size for each language group.

Word vectors (matrix W ) are initialized ran-
domly and updated by backpropagation along with
other network weights. Since we intend to mini-
mize the dependence of our model on external re-
sources, that may not be readily available for spe-
cific languages, the use of pre-trained word em-
beddings is entirely avoided.

The model hyperparameters are: vector dimen-
sion d = 200, filters of lengths (h) 1 and 2
with 100 feature maps each, hyperbolic tangent for
non-linearity, drop-rate of 0.20 (or keeping prob-
ability of 0.80) for dropout, and shuffled mini-
batches of size 50. Parameter values were found
by grid search on the development set. All mod-
els are trained for 3 epochs, using Adam opti-
mizer (Kingma and Ba, 2014) to minimize the
cross-entropy, without early stopping. We use

TensorFlow (Abadi et al., 2016) for implementa-
tion.

Group Code Precision Recall F1

A
bs 0.74 0.72 0.73
hr 0.83 0.84 0.84
sr 0.85 0.88 0.86

B
id 0.98 0.97 0.97
my 0.97 0.98 0.98

C
fa-ir 0.95 0.94 0.95
fa-af 0.94 0.95 0.95

D
fr-ca 0.89 0.91 0.90
fr-fr 0.90 0.89 0.89

E
pt-br 0.93 0.91 0.92
pt-pt 0.91 0.93 0.92

F
es-ar 0.85 0.80 0.82
es-es 0.85 0.84 0.85
es-pe 0.82 0.88 0.85

Table 3: Performance of run1 (CNN) in each lan-
guage variety.

4.2 Multi-Layer Perceptron

A vanilla Multi-Layer Perceptron2 (MLP) was
used to compare the CNN performance with that
of another neural model.

In this approach, one classifier is trained for
each language group, just as before. Sentences
are represented as bag of word n-grams structured
as high-dimensional tf-idf vectors. To make n-
grams comparable to filters in the CNN models,
they are extracted from sentences in sizes of 1 and
2 words (unigrams and bigrams). Letter case is not
changed and no transformation is done on digits.

The model has a hidden layer of size 30 and
each language variety corresponds to one unit in
the output layer. The activation function is hyper-
bolic tangent. Models are trained for 10 epochs
without early stopping by stochastic gradient de-
scent with mini-batches of 200 examples. Opti-
mization is carried out by having Adam optimizer
to minimize the cross entropy.

4.3 Hybrid System Configuration

Considering the lower performance of both previ-
ous configurations in group A, relatively to other
groups, we came up with a hybrid system configu-
ration in which all language varieties are predicted
by MLP classifiers, except for group A. For that

2We use the MLP classifier implemented in scikit-learn.
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group, a standard character n-gram model is ap-
plied. It is exactly the model described in Sec-
tion 4 as the first component of our pipeline.

This change caused little impact on perfor-
mance, as discussed later in Section 6.

5 Results

Table 3 shows the performance of our convolu-
tional neural network (run1) in each language va-
riety, while Table 4 shows the corresponding con-
fusion matrix. In Table 4, the horizontal axis in-
dicates predicted labels, while true labels are in-
dicated on the vertical axis. For example, it can
be understood that 28 hr sentences were wrongly
predicted as sr. For fine grained results, we opted
to report on our main approach (CNN) instead of
reporting on our best performing system.

The overall results of our three submitted runs,
along with a random baseline, are summarized on
Table 5. The result of the best performing sys-
tem is also reported, and an extra column was ap-
pended to the table to report on development set
accuracy. Our best run (run3) ranked 8th out
of 11 participants according to the official eval-
uation. It achieved an accuracy of 0.9076, with
a small difference of 0.0198 percentage points to
the best system. Our deep neural network (run1)
achieved an accuracy of 0.8878, indicating that the
CNN scored close to our best run, but could not
outperform it. Accuracy values computed on the
development set behave similarly to that of the of-
ficial evaluation.

The result of a traditional single-stage charac-
ter n-gram model is also reported in Table 5 as a
baseline for the development set. This is the Naive
Bayes model described in Section 4, used to distin-
guish between language groups, but trained over
all 14 language varieties.

6 Discussion

Although we focus on results of our main ap-
proach, all three runs behaved similarly. We can
see in Table 4 that the confusion between language
groups is minimal. This is due to the two-stage
architecture that separates sentences in groups be-
fore discriminating between varieties.

The group classifier performs its task almost
perfectly. In the development set, the group clas-
sifier achieved accuracy of 99.81%. We have con-
ducted an error analysis by sampling misclassi-
fied sentences, and found that most of them really

seems to belong to the predicted language group.
In the following example, the classifier predicted
group D (French) instead of the true label F (Span-
ish):

Jean-Paul Bondoux, chef propietario de
La Bourgogne & Jérôme Mathe, chef de
Le Café des Arts (Figueroa

In most examples, the classifier is misguided by
proper nouns in foreign languages, like names of
soccer players commonly found in news texts.

Prior classification of language groups narrows
down the set of output classes for variety clas-
sifiers, allowing for their optimization in a sin-
gle language. We believe this raises the accuracy
within language groups.

However, some language groups are more chal-
lenging than others, as is shown in Table 3. Groups
A and F are responsible for the lowest scores.
Group A, particulary, contains the most difficult
language to discriminate (bs) for our three system
configurations. Even the change from a neural to
a statistical approach in our hybrid configuration
had little impact in that group performance (Ta-
ble 5). This was observed both in the development
set and the official runs.

The vocabulary of group A may lead to more
sparse language models that hinders performance
of classifiers. Group A contains almost 2 times the
number of tokens in group F, the second largest
group which also comprises 3 language varieties
(Table 2).

Overall, our hybrid configuration showed the
best performance, which is very close to the MLP.
In fact, we would still rank the same position if
the MLP configuration (run2) were considered
instead.

Although the MLP scored higher than the CNN,
difference was small. Also, the convolutional
model is trained relatively fast in appropriate hard-
ware, considering that pre-trained word vectors
are not used and all model values are initialized
randomly. With its minimum preprocessing re-
quirements, these characteristics make our word-
level CNN a viable model for discriminating be-
tween similar languages.

7 Conclusion

In this work we explored word-level convolutional
neural networks to discriminate between similar
languages and language varieties. Our intuition
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hr bs sr es-ar es-es es-pe fa-af fa-ir fr-ca fr-fr id my pt-br pt-pt
hr 837 131 28 0 1 0 0 0 0 1 2 0 0 0
bs 156 718 125 0 0 0 0 0 0 1 0 0 0 0
sr 10 114 876 0 0 0 0 0 0 0 0 0 0 0
es-ar 0 0 0 798 77 123 0 0 0 0 0 0 2 0
es-es 0 0 0 90 842 63 0 1 1 0 0 0 0 3
es-pe 0 0 0 55 67 878 0 0 0 0 0 0 0 0
fa-af 0 0 0 0 0 0 953 47 0 0 0 0 0 0
fa-ir 0 0 0 0 0 0 59 940 0 1 0 0 0 0
fr-ca 0 0 0 0 0 0 0 0 909 91 0 0 0 0
fr-fr 0 1 2 0 1 0 0 0 110 885 0 0 0 1
id 0 0 0 0 1 0 0 0 0 1 971 27 0 0
my 0 0 0 0 0 0 0 0 0 1 19 980 0 0
pt-br 0 0 0 0 0 2 0 0 0 2 0 0 913 83
pt-pt 0 0 0 0 1 1 0 0 0 1 0 0 68 929

Table 4: Confusion matrix for the DSL task, run1 (CNN). The horizontal axis indicates predicted labels,
while true labels are on the vertical axis.

Run Config. Accuracy F1 (micro) F1 (macro) F1 (weighted) Dev Accuracy
Random baseline 0.0710
Best system 0.9274
run1 CNN 0.8878 0.8878 0.8876 0.8876 0.8954
run2 MLP 0.9033 0.9033 0.9029 0.9029 0.9107
run3 Hybrid 0.9076 0.9076 0.9075 0.9075 0.9120
NB baseline 0.8976

Table 5: Results for the DSL task. Last column shows results computed on the development set.

is that language varieties can be distinguished by
particular words and common language construc-
tions. Even though we argue for avoiding task-
specific feature engineering, we believe this kind
of linguistic bias is fundamental to the success of
methods that address the task of discriminating
between similar languages. We believe both the
CNN and the MLP models were able to capture
particular words and common language construc-
tions as features.
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Tiedemann, and Preslav Nakov. 2015. Overview
of the dsl shared task 2015. In Proceedings of
the Joint Workshop on Language Technology for
Closely Related Languages, Varieties and Dialects
(LT4VarDial), pages 1–9, Hissar, Bulgaria.

Marcos Zampieri, Shervin Malmasi, Nikola Ljubešić,
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Abstract

This paper describes the submission from
the University of Helsinki to the shared
task on cross-lingual dependency parsing
at VarDial 2017. We present work on an-
notation projection and treebank transla-
tion that gave good results for all three tar-
get languages in the test set. In particu-
lar, Slovak seems to work well with infor-
mation coming from the Czech treebank,
which is in line with related work. The
attachment scores for cross-lingual mod-
els even surpass the fully supervised mod-
els trained on the target language treebank.
Croatian is the most difficult language in
the test set and the improvements over the
baseline are rather modest. Norwegian
works best with information coming from
Swedish whereas Danish contributes sur-
prisingly little.

1 Introduction

Cross-lingual parsing is interesting as a cheap
method for bootstrapping tools in a new language
from resources in another language. Various ap-
proaches have been proposed in the literature,
which can mainly be divided into data transfer (i.e.
annotation projection, e.g. (Hwa et al., 2005))
and model transfer approaches (e.g. delexical-
ized models such as (McDonald et al., 2013)).
We will focus on data transfer in this paper us-
ing annotation projection and machine translation
to transform source language treebanks to be used
as training data for dependency parsers in the tar-
get language. Our previous work has shown that
these techniques are quite robust and show bet-
ter performance than simple transfer models based
on delexicalized parsers (Tiedemann and Agić,
2016). This is especially true for real-world test

cases in which part-of-speech (PoS) labels are pre-
dicted instead of given as gold standard annota-
tion while testing the parsing models (Tiedemann,
2015a).

Cross-lingual parsing assumes strong syntactic
similarities between source and target language
which can be seen at the degradation of model
performance when using distant languages such
as English and Finnish (Tiedemann, 2015b). The
task at VarDial, therefore, focuses on closely re-
lated languages, which makes more sense also
from a practical point of view. Many pools of
closely related languages and language variants
exist and, typically, the support in terms of re-
sources and tools is very biased towards one of
the languages in such a pool. Hence, one can
say that the task at VarDial simulates real-world
cases using existing resources from the universal
dependencies project (Nivre et al., 2016) and pro-
motes the ideas for practical application develop-
ment. The results show that this test is, in fact,
not only a simulation but actually improves the re-
sults for one of the languages in the test set: Slo-
vak. Cross-lingual models outperform the super-
vised upper bound, which is a great result in favor
of the transfer learning ideas.

More details about the shared task on cross-
lingual parsing at VarDial 2017 can be found in
(Zampieri et al., 2017). In the following, we will
first describe our methodology and the data sets
that we have used, before jumping to the results
and some discussions in relation to our main find-
ings.

2 Methodology and Data

Our submission is based on previous work and ba-
sically applies models and techniques that have
been proposed by (Hwa et al., 2005; Tiedemann,
2014; Tiedemann et al., 2014). We made very lit-
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Figure 1: Annotation projection heuristics with dummy nodes: One-to-many alignments create dummy
nodes that govern the linked target language tokens. Many-to-one alignments are resolved by removing
links from lower nodes in the source language tree. Non-aligned source language tokens are covered
by additional dummy nodes that take the same incoming and outgoing relations. The final picture to
the right illustrates that dumme leaf nodes can safely be deleted and internal dummy nodes with single
daughters can be removed by collapsing relations.

tle changes to the basic algorithms but emphasized
a systematic evaluation of different methods and
parameters which we tested on the development
data provided by VarDial 2017. All our results are,
hence, scored on data sets with predicted PoS la-
bels. In particular, we used three different cross-
lingual model types:

Projection: Annotation projection across word-
aligned parallel corpora using the data sets
provided by the workshop organizers (the
subtitle corpora). Source language parts are
tagged and parsed automatically with super-
vised taggers and parsers.

PBSMT: Treebank translation using a phrase-
based model of statistical machine translation
(SMT). Annotation are then projected from
the original source language treebank to the
translations to create a synthetic target lan-
guage treebank. Alignment is taken directly
from the translation model. The translation
and language models are trained on the pro-
vided parallel corpora. No extra resources are
used.

SyntaxSMT: Treebank translation using a tree-
to-string hierarchical SMT model. Depen-
dencies are transformed into constituency
representations using the spans defined by
the yield of each word in the sentence with
respect to the dependency relations. Con-
stituency labels are taken from the depen-
dency relations and PoS labels are used as
well for the labels of leaf nodes. After trans-
lation, we project the annotation of the source

language treebank using the same procedures
as for the other two approaches. Translation
models are trained on the provided parallel
corpora with automatically parsed source lan-
guage sentences.

There are various improvements and heuristics
for the projection of dependency trees. We ap-
plied two of them: (1) collapseDummy, which
deletes leaf nodes that are labeled as “dummy” and
also removes dummy nodes with just one daugh-
ter node by collapsing the parent and daughter
relations. (2) noDummy, which discards all sen-
tences that still include dummy nodes after apply-
ing collapseDummy. Dummy nodes appear with
the projection heuristics introduced by (Hwa et al.,
2005), which we also use for handling non-one-
ot-one word alignments. For example, unaligned
source language tokens are projected on dummy
target nodes to ensure the proper connection of
the projected dependency tree. This can lead to
dummy leaf nodes that can be ignored or dummy
nodes with single daughters, which can be re-
moved by collapsing the relations to head and de-
pendent. Figure 1 illustrates the projection heuris-
tics and the collapseDummy procedures. More de-
tails and examples are given in (Tiedemann and
Agić, 2016). Overall, noDummy leads to a drop
in performance and, therefore, we do not consider
those results in this paper. The differences were
small and most problems arose with smaller data
sets where the reduction of training data has a neg-
ative impact on the performance.

For annotation projection, we used various sizes
of parallel data to test the impact of data on parsing
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performance. The translation models are trained
on the entire data provided by VarDial. Language
models are simply trained on the target side of the
parallel corpus.

We also tested cross-lingual models that exploit
language similarities on the lexical level without
translating or projecting annotation. The idea is
similar to delexicalized models that are trained
on generic features on the source language tree-
bank, which are then applied to the target lan-
guages without further adaptation. With closely
related languages, we can assume substantial lexi-
cal overlaps, which can be seen at the relative suc-
cess of the second baseline in the shared task (also
shown in Table 1). In particular, we used sub-
strings such as prefixes (simulating simple stem-
ming) and suffixes (capturing inflectional similar-
ities) to add lexical information to delexicalized
models. However, those models did not perform
very well and we omit the results in this paper.

For training the parsers, we used mate-tools
(Bohnet, 2010), which gave us significantly bet-
ter results than UDPipe (Straka et al., 2016) with-
out proper parameter optimization except for some
delexicalized models. Table 1 compares the base-
line models with the two different toolkits. We still
apply UDPipe for PoS and morphological tagging
using the provided tagger models for the target
languages and similar ones trained on the UD tree-
banks for the source languages except for Czech,
which did not work with standard settings due to
the complexity of the tagset and limitations of the
implementation of UDPipe. Instead, we apply
Marmot (Müller and Schütze, 2015) for Czech,
which also provides efficient model training for
PoS and morphology.

The only “innovation” compared to our previ-
ous work is the inclusion of target language tag-
ging on top of annotation projection. Earlier, we
only used projected annotation even for PoS infor-
mation. In this paper, we also test the use of target
language taggers (which are part of the provided
setup) to (i) over-rule projected universal PoS tags
and (ii) add morphological information to the data.
Especially the latter makes a lot of sense espe-
cially for highly-inflecting languages like Slovak
and Croatian. However, the risk of this procedure
is that noisy projection of dependency label may
not fit well together with the tags created by in-
dependent tools that are probably less noisy and
make different kinds of mistakes. This may mis-

lead the training algorithm to learn the wrong con-
nections and we can see that effect in our experi-
ments especially in connection with the tagging of
universal PoS labels. This actually degrades the
parsing performance in most cases. More details
will be presented in the following section in con-
nection with the results of our experiments.

3 Results

We considered all language pairs from the Var-
Dial campaign and here we present the relevant
results from our experiments. First of all, we
need to mention that we created new baselines us-
ing the mate-tools to have fair comparisons of the
cross-lingual models with respect to baseline ap-
proaches. The new figures (on development data)
are given in Table 1. The same table also sum-
marizes our basic results for all language pairs us-
ing the three approaches for data transfer as in-
troduced in the previous section. All projections
are made in collapseDummy mode as explained
above.

Target Croatian Slovak Norwegian
Source Slovenian Czech Danish Swedish

UDPipe
supervised 74.27 70.27 78.10

delex 53.93 53.66 54.54 56.71
cross 56.85 54.61 54.11 55.85

mate-tools
supervised 79.68 71.89 81.37

delex 53.39 55.80 50.07 56.27
cross 60.29 62.21 56.85 59.63

Projected
100,000 58.82 60.29 57.19 63.03
500,000 59.86 62.23 57.58 64.61

1,000,000 62.92 63.57 57.82 64.59
PBSMT 60.81 65.97 57.87 65.96

SyntaxSMT 58.57 63.13 58.36 66.31

Table 1: Basic results of cross-lingual parsing
models in terms of labeled attachment scores
(LAS) on development data: Annotation pro-
jection on automatically parsed bitexts of vary-
ing sizes (projected: number of sentence pairs);
treebank translation models (PBSMT and Syn-
taxSMT); compared to three baselines: delexical-
ized models (delex), source language models with-
out adaptation (cross) and fully-supervised target
language models (supervised).

The first observation is that all cross-lingual
models beat the delexicalized baseline by a large
margin. This is, at least, self-assuring and moti-
vates further developments in the direction of an-
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notation projection and treebank translation. An-
other observation is that Croatian is surprisingly
hard to improve in comparison to the cross-lingual
model that applies a parser for Slovenian without
any adaptation.

Another surprise is the quality of the Norwe-
gian models coming from Danish. Both languages
are very close to each other especially in writing
(considering that we use bokmål in our data sets
for Norwegian). Projection and translation should
work well and should at least be on-par with us-
ing Swedish as the source language. However,
the differences are quite significant between Dan-
ish and Swedish as the source language and this
points to some substantial annotation differences
between Danish and the other two languages that
must be the reason behind this mystery. This con-
clusion is even more supported by the results of
the cross-lingual baseline model without adapta-
tion, which should perform better for Danish as
the lexical overlap is large, greater than the overlap
with Swedish. Yet another indication for the anno-
tation differences is the result of the delexicalized
parsers. There is also a big gap between Danish
and Swedish as the source language. The result
of these experiments demonstrate the remaining
difficulties of cross-linguistically harmonized data
sets, which is a useful outcome on its own.

We can also see, that treebank translation works
rather well. For most language pairs, the perfor-
mance is better than for annotation projection but
the differences are rather small in many cases. An
exception is Croatian for which annotation projec-
tion on parallel corpora works best, whereas trans-
lation is on par with Slovenian models applied to
Croatian data.

In contrast to our previous findings, we can also
see that the amount of data that is useful for an-
notation projection is bigger. Our prior work indi-
cated that small corpora of around 40,000 sentence
pairs are sufficient and that the learning curve lev-
els out after that (Tiedemann and Agić, 2016). In
this paper, we see increasing model performance
until around one million sentence pairs before the
scores converge (additional runs confirm this, even
though they are not reported in the paper). A rea-
son for this behaviour is that we now rely on movie
subtitles instead of sentences from the European
parliament proceedings. Subtitles are shorter in
general and the domain may be even further away
than parliament data, which explains the increased

amount of data to obtain reasonable lexical cover-
age.

Our next study looks at the impact of tag-
ging the target language with supervised models.
Our previous work on annotation projection and
treebank translation relied entirely on annotation
transfer from source to target when training tar-
get language parsing models. This means that we
discarded any language-specific features and mod-
eled parsing exclusively around universal PoS tags
and lexical information. For highly-inflecting lan-
guages, this is not very satisfactory and the per-
formance drops significantly compared to models
that have access to morphological features. There-
fore, we now test models that use projected data
with additional annotation from automatic taggers.
Table2 summarizes the results of those experi-
ments.

projected target-tagged
PoS morph PoS+morph

Projected
sl-hr 62.92 62.10 56.42
cs-sk 63.57 – 70.68
da-no 57.82 58.08 61.40
sv-no 64.59 64.78 62.35
PBSMT
sl-hr 60.81 61.60 61.10
cs-sk 67.81 – 73.90
da-no 57.87 58.46 63.67
sv-no 65.96 66.44 64.15
SyntaxSMT
sl-hr 58.57 60.15 56.85
cs-sk 63.13 64.05 65.02
da-no 58.36 58.59 64.74
sv-no 66.31 66.64 65.43
da+sv-no – 67.80

Table 2: Added PoS and morphological tagging
to projected data sets: LAS scores on develop-
ment data. Only morphological tagging added
(morph) or tagging both, PoS and morphology
(PoS+morph).

There are two models that we evaluate: (i) A
model that adds morphological features to the pro-
jected annotation, and (ii) a model that even over-
writes the universal PoS tags created through pro-
jection. The first variant adds information that
may contradict the PoS labels transferred from the
source. For example, it may assign nominal inflec-
tion categories to a word labeled as verb through
projection. The latter model should be more con-
sistent between PoS and morphology but has the
problem that those categories may not fit the de-
pendency relations attached to the corresponding
words when projecting from the source. This can
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also greatly confuse the learning procedures.
As it turns out, overwriting the projected PoS

labels is more severe in most cases except Slovak
and Norwegian (only when projected from Dan-
ish). There, it seems to be beneficial to run com-
plete tagging after projection. In almost all other
cases the performance drops, often quite dramat-
ical. On the other hand, adding morphology al-
ways helps, except for Croatian annotation projec-
tion (which is a bit surprising again).

There is no clear winner between phrase-based
and syntax-based SMT. For Slovak and Croatian,
phrase-based systems seem to work best whereas
Norwegian performs better with syntax-based
models. A combination of Danish and Swedish
data gives another significant boost (retagging pro-
jected Danish including PoS and adding morphol-
ogy to projected Swedish).

We then used the best results on development
data for each of the three target languages to run
the cross-lingual models on the test set. No further
adjustments were done after tuning the models on
development data. The final results of the official
test are shown in Table 3.

LAS hr no sk
supervised 73.37 81.77 71.41
delex 50.05 58.13 53.87
cross 56.91 60.22 61.17
CUNI 60.70 70.21 78.12
our model 57.98 68.60 73.14

UAS hr no sk
supervised 80.16 85.59 78.73
delex 63.29 67.86 64.55
cross 68.52 69.31 70.60
CUNI 69.73 77.13 84.92
our model 69.57 76.77 82.87

Table 3: Final results on the test set (our model)
compared to baselines and fully supervised mod-
els. CUNI refers to a competing system – the
winning team of VarDial. For the Norwegian
baselines we report the results for Swedish as the
source language, which is much better than using
Danish.

The results on test data mainly confirm the find-
ings from the development phase. Slovak per-
forms clearly best in the cross-lingual scenario.
This is the only language pair for which the cross-
lingual model even outperforms the fully super-

vised “upper bound”. This is quite fascinating and
rather unexpected. Certainly, the Czech treebank
is by far the largest one in the collection and much
bigger than the corresponding Slovak treebank.
The languages are also very close to each other
and their morphological complexity requires suf-
ficient resources. This may explain why the large
Czech training data can compensate for the short-
comings of the small Slovak training data. Other
factors for the positive result may also include the
similarity in domains covered by both treebanks
and the closeness of annotation principles. The
performance for the other target languages is less
impressive. Norwegian performs similar to the
scores that we have seen in related work on anno-
tation projection and cross-lingual parsing. Croa-
tian is rather disappointing even though it also
beats the cross-lingual baselines.

The main scores in our evaluations is LAS but
it is also interesting to look at unlabelled attach-
ment scores (UAS). Table 3 lists those scores as
well and we can see that labelling seems to be a
major problems for our models. The difference to
LAS scores is dramatic, much more than the ab-
solute difference we see between UAS and LAS
in the fully supervised models. Compared to the
winning submission at VarDial (CUNI, see (Rosa
et al., 2017)), we can also see that the main dif-
ference is in LAS whereas UAS are rather similar.
This seems to be a shortcoming of our approach
that we should investigate more carefully.

4 Conclusions

Our experiments demonstrate the use of anno-
tation projection and treebank translation tech-
niques. The models perform well, especially for
Slovak, which even outperforms the fully super-
vised “upper bound” model. In this paper, we have
discussed the use of target language tagging on
top of annotation projection with the conclusion
that adding morphological information is almost
always useful. We observe a large gap between
LAS and UAS, which would require some deeper
investigations. A possible reason is the use of
language-specific dependency labels that are not
available from the projection. However, we actu-
ally doubt that explanation looking at the success
of the winning team. In their results, LAS did not
suffer that much. Some surprising results could
be seen as well, for example, the fact that Danish
does not work as well as a source for Norwegian as
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Swedish does. This cannot be explained in terms
of linguistic grounds but need to refer to unex-
pected annotation differences or possibly a larger
domain mismatch. Croatian as a target language
was also surprisingly difficult and the performance
is the worst in the final among all test cases.
This improvement over the non-adapted Slovenian
parser is only very modest whereas large gains can
be observed for the other language pairs.
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Abstract

This paper presents the CIC UALG’s sys-
tem that took part in the Discriminating
between Similar Languages (DSL) shared
task, held at the VarDial 2017 Workshop.
This year’s task aims at identifying 14
languages across 6 language groups using
a corpus of excerpts of journalistic texts.
Two classification approaches were com-
pared: a single-step (all languages) ap-
proach and a two-step (language group
and then languages within the group) ap-
proach. Features exploited include lexical
features (unigrams of words) and charac-
ter n-grams. Besides traditional (untyped)
character n-grams, we introduce typed
character n-grams in the DSL task. Exper-
iments were carried out with different fea-
ture representation methods (binary and
raw term frequency), frequency thresh-
old values, and machine-learning algo-
rithms – Support Vector Machines (SVM)
and Multinomial Naive Bayes (MNB).
Our best run in the DSL task achieved
91.46% accuracy.

1 Introduction

Discriminating between Similar Languages (DSL)
is a Natural Language Processing (NLP) task aim-
ing at automatically identifying the language in
which a text is written. From the machine-learning
perspective, DSL can be viewed as a multi-class,
single-label classification problem, in which au-
tomatic methods have to assign class labels (lan-
guages) to objects (texts). DSL can be used in
a variety of applications, including security and

forensics, when, for example, identifying the lan-
guage/dialect in which a given threat is written can
help limit the search space of the author of this
threat. Moreover, automated DSL is a useful aid
for machine translation and information retrieval
systems.

Discriminating between Similar Languages
(DSL) shared task1 provides a common platform
for researchers interested in evaluating and com-
paring their systems’ performance on discriminat-
ing between similar languages. The DSL 2017
edition (Zampieri et al., 2017) focuses on a set of
14 language varieties within 6 language groups us-
ing short text excerpts extracted from journalistic
texts. Similar languages or language varieties are
grouped by similarity or by their common origin.

According to (Malmasi and Dras, 2015;
Çöltekin and Rama, 2016; Jauhiainen et al., 2016;
Zirikly et al., 2016), high-order character n-grams
and their combinations have proved to be highly
discriminative for the DSL task, hence this study
examines the variation of n from 1 to 6 on untyped
(traditional) n-grams, but foremost this work in-
troduces in this task the use of typed character
n-grams (with n varying between 3 and 4), that
is, character n-grams classified into the categories
introduced by Sapkota et al. (2015). The authors
defined 10 different character n-gram categories
based on affixes, words, and punctuation. Typed
character n-grams have shown to be predicative
features for other classification tasks, such as Au-
thorship Attribution (Sapkota et al., 2015) and
Author Profiling (Maharjan and Solorio, 2015),
including a cross-genre scenario (Markov et al.,
2016). To the best of our knowledge, this is the

1http://ttg.uni-saarland.de/vardial2017/sharedtask2017.html
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first time typed character n-grams are used in the
DSL task.

Furthermore, a single-step and a two-step clas-
sification approaches were built. In the single-step
approach, all 14 languages are discriminated
against each other. In the two-step approach, first,
the language group is predicted, and then the lan-
guage variety within the group. Besides, two dif-
ferent feature representation methods were tested,
namely, binary feature representation and term fre-
quency weighting scheme. Several threshold val-
ues were evaluated in order to fine-tune the fea-
ture set for the final submission. Finally, the per-
formance of two popular machine-learning algo-
rithms was examined: Support Vector Machines
(SVM) and Multinomial Naive Bayes (MNB).

The remainder of the paper is organized as fol-
lows: Section 2 discusses the related work. Sec-
tion 3 presents the proposed methodology. First,
subsection 3.1 provides some characteristics of the
DSL 2017 corpus, and subsection 3.2 describes
the conducted experiments. Section 4 provides the
obtained results and their evaluation. Next, Sec-
tion 5 discusses these results in the light of the
typed n-gram features, newly introduced in the
DSL task, and based on the results from the ex-
periments carried out on the development set. Sec-
tion 6 draws the conclusions and points to possible
directions of future work.

2 Related Work

The task of identifying the language of a text
has been largely studied, and it is considered a
solved problem. However, recent studies have
shown that the task is more difficult when the
texts are from different domains and have differ-
ent lengths (Lui and Baldwin, 2011), when they
contain code-switching (Solorio et al., 2014), or
when the texts are very similar (Tan et al., 2014).

Motivated by the shared task on Discriminat-
ing between Similar Languages (DSL), there has
been an increasing number of published papers
in this research field. The organizers of the task
compiled and released the DSL Corpus Collec-
tion (DSLCC) (Tan et al., 2014), which includes
short excerpts from journalistic texts. It is divided,
according to the version, in groups of languages.
The different versions of the corpus can be found
in the corresponding overview papers of the DSL
task (Zampieri et al., 2014; Zampieri et al., 2015;
Malmasi et al., 2016). The DSL shared task of-

fers closed and open tracks; the open track allows
the use of additional information or material apart
from the provided training corpus, whereas the
closed track only allows the use of the provided
training corpus. The rest of the section will focus
on the related work on the closed DSL tasks.

Most of the work on the DSL research topic ad-
dresses the task as a classification problem, using
supervised machine-learning algorithms. The best
performing methods for DSL use high-order char-
acter n-gram and word n-gram features (Goutte
et al., 2016; Ionescu and Popescu, 2016). For a
complete guide of the approaches developed for
the DSL shared task, please refer to the overview
papers of each edition (Zampieri et al., 2014;
Zampieri et al., 2015; Malmasi et al., 2016).

In the fist edition of the DSL shared
task (Zampieri et al., 2014), the best perfor-
mance was achieved by the NRC-CNRC (Goutte et
al., 2014) team. They proposed a two-step classifi-
cation approach to predict first the language group
and then the languages within the group. For both
steps, they used Support Vector Machines (SVM)
with word and character n-gram features. In the
2015 edition of the DSL shared task, the best
performing system (Malmasi and Dras, 2015)
proposed an ensemble of SVM classifiers, each
trained on a single feature type. The used feature
types include character n-grams (n = 1–6), word
unigrams, and word bigrams. In the 2016 edition
of the task, the winning approach (Çöltekin
and Rama, 2016) used a single SVM classifier
with linear kernel trained on character n-gram
features of length from 1 to 7. The winning team
also reported additional experiments with deep
learning architectures, concluding that the linear
models perform better in the DSL task.

In summary, DSL approaches can be divided
into single- and two-step classification; the most
popular machine-learning algorithms for this task
are SVM, Logistic Regression, and ensemble clas-
sifiers. Other techniques have been also explored
in the DSL task, including token-based back-
off (Jauhiainen et al., 2016), prediction by partial
matching (Bobicev, 2015), and word and sentence
vectors (Franco-Salvador et al., 2015). It is worth
mentioning that most of the deep learning-based
approaches performed poorly in the DSL shared
task when compared to traditional classifiers, with
one exception, the character-level CNN used by
the MITSLS team (Belinkov and Glass, 2016).
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3 Methodology

This section presents the corpus and the experi-
ments performed in the DSL 2017 task by the sys-
tem.

3.1 Corpus

The corpus compiled for the DSL 2017 shared task
is composed of excerpts of journalistic texts, and it
is divided into training, development, and test sub-
sets. For this work, the training and development
subsets were joined to train the system. The cor-
pus is balanced in terms of sentences per language.
For each of the 14 languages (classes) considered
in the task, the training set consists of 18,000 sen-
tences and the development set of 2,000 sentences.
The entire corpus contains 252,000 sentences for
training, 28,000 for development, and 14,000 for
testing (1,000 sentences per language/variety).

As mentioned above, languages are grouped by
similarity or common origin. Six groups are con-
sidered (each language code is indicated in brack-
ets): (A) Bosnian (bs), Croatian (hr), and Serbian
(sr); (B) Malay (my) and Indonesian (id); (C)
Persian (fa-IR) and Dari (fa-AF); (D) Cana-
dian (fr-CA) and Hexagonal French (fr-FR);
(E) Brazilian (pt-BR) and European Portuguese
(pt-PT); and (F) Argentinian (es-AR), Peruvian
(es-PE), and Peninsular Spanish (es-ES).

3.2 Experimental settings

Let us now move to describe the experimental set-
tings for the three runs submitted to the competi-
tion. Table 1 summarizes the experimental settings
presented below.

For runs 1 and 2, a two-step classification ap-
proach was examined, since it has previously been
proved to be a useful strategy for this task (Goutte
et al., 2014; Goutte et al., 2015). In this approach,
the language group is predicted first, and then the
closely-related languages are discriminated within
the group. This approach was compared against
a single-step classification (run 3), where all the
14 languages of the corpus are discriminated, irre-
spective of their grouping.

The performance of two machine-learning clas-
sifiers was compared using their WEKA’s (Wit-
ten et al., 2016) implementation with default pa-
rameters: Support Vector Machines (SVM) and
Multinomial Naive Bayes (MNB). These classifi-
cation algorithms are considered among the best
for text categorization tasks (Kibriya et al., 2005;

Zampieri et al., 2015). Moreover, SVM was the
classifier of choice of the majority of the teams in
the previous edition of the DSL shared task (Mal-
masi et al., 2016).

In the two-step approach (runs 1 and 2), the first
step is the language group discrimination, which
was performed using SVM classifier. Due to time
constraints, in the second step (language/variety
discrimination within a group) these two runs were
set differently. In run 1, different algorithms were
used for different language groups: SVM was used
for groups B (Malay and Indonesian), C (Per-
sian and Dari), and D (Canadian and Hexago-
nal French); while MNB was used for groups A
(Bosnian, Croatian, and Serbian), E (Brazilian and
European Portuguese), and F (Argentine, Peninsu-
lar, and Peruvian Spanish). In run 2, all language
groups were discriminated using only MNB. For
language group classification (runs 1 and 2), we
increased the number of instances for training the
classifier by duplicating and in some cases trip-
licating the training instances. In the single-step
approach (run 3), only MNB was used to discrim-
inate between the 14 languages (without group
classification).

The performance of different feature sets was
examined, using term frequency (tf ) weighting
scheme. Only features with tf≥5 were selected,
that is, only those features that occur at least five
times in the training corpus. The features used are
the following: (i) unigrams of words, (ii) untyped
(traditional) character n-grams, and (iii) typed
character n-grams, that is, character n-grams clas-
sified into the categories introduced by Sapkota et
al. (2015). The authors defined 10 different char-
acter n-gram categories based on affixes, words,
and punctuation. In more detail, there are 3 main
types, and each one has sub-categories as ex-
plained below:

• Affix character n-grams

prefix An n-gram that covers the first n charac-
ters of a word that is at least n + 1 charac-
ters long.

suffix An n-gram that covers the last n charac-
ters of a word that is at least n + 1 charac-
ters long.

space-prefix An n-gram that begins with a
space and that does not contain any punc-
tuation mark.
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Experimental settings Run 1 Run 2 Run 3

Approach two-step single-step
(6 groups; 14 languages) (14 languages)

ML algorithm 1st step SVM SVM
MNB(WEKA implementation,

2nd step
SVM: groups B, C, and D MNB: all groupsdefault parameters) MNB: groups A, E, and F

Features

untyped char. n-grams (n = 3–5),

same as run 1 same as run 1typed char. 3-grams
(Sapkota et al., 2015),
word unigrams.

Settings tf weighting scheme; frq≥5 same as run 1 same as run 1

Table 1: Experimental settings in the three runs of the system.

space-suffix An n-gram that ends with a space,
that does not contain any punctuation
mark, and whose first character is not a
space.

• Word character n-grams

whole-word An n-gram that encompasses all
the characters of a word, and that is exactly
n characters long.

mid-word An n-gram that contains n charac-
ters of a word that is at least n + 2 charac-
ters long, and that does not include neither
the first nor the last character of the word.

multi-word An n-gram that spans multiple
words, identified by the presence of a space
in the middle of the n-gram.

• Punctuation character n-grams

beg-punct An n-gram whose first character is
a punctuation mark, but the middle charac-
ters are not.

mid-punct An n-gram whose middle character
is a punctuation mark (for n =3).

end-punct An n-gram whose last character is
punctuation mark, but the first and the mid-
dle characters are not.

In this approach, instances of the same untyped
n-gram may refer to different typed n-gram fea-
tures. For example, in the phrase the mother, the
first instance of the 3-gram the is assigned to a
whole-word category and the second instance to a
mid-word category. As an example, let us consider
the following sample sentence:

(1) Ana said, “Tom will fix it tomorrow.”

The character n-grams (n = 3) for the sample
sentence (1) for each of the categories are shown
in Table 2.

SC Category N-grams

af
fix

prefix sai wil tom
suffix aid ill row
space-prefix sa wi fi it to
space-suffix na om ll ix it

w
or

d whole-word Ana Tom fix
mid-word omo mor orr rro
multi-word a s m w l f x i t t

pu
nc

t beg-punct , “ “To
mid-punct ∗ , “ . ”
end-punct id, ow.

∗ In our approach, punctuation marks are separated from adjacent words
and from each other by space for this category. This enables to capture their
frequency.

Table 2: Character 3-grams per category for the
sample sentence (1) after applying the algorithm
by Sapkota et al. (2015).

Different lengths of character n-grams were
tested. Besides, and following previous stud-
ies (Malmasi and Dras, 2015), we examine
whether the performance of the proposed mod-
els could be enhanced when combining differ-
ent feature sets, i.e., typed and untyped character
n-grams and words. In all the runs, the combina-
tion of untyped character n-grams with n from 3
to 5, typed character 3-grams, and words was se-
lected for the final submission.

Finally, several authors (Franco-Salvador et al.,
2015; Jauhiainen et al., 2016) have mentioned us-
ing some pre-processing prior to the feature ex-
traction for the DSL shared task. This often in-
volves removing the distinction between upper-
and lowercase characters, number simplification
(reducing all digits to a single one) or removal
of punctuation. In the previous VarDial edition,
named entities were also replaced by a conven-
tional string. Lastly, pre-processing has proved
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to be a useful strategy for several other classifi-
cation tasks, including Author Profiling in social
media texts (Gómez-Adorno et al., 2016a; Gómez-
Adorno et al., 2016b), cross-genre Author Profil-
ing (Markov et al., 2016), and similarity detec-
tion between programming languages (Sidorov et
al., 2016). Though several experiments have been
conducted using different pre-processing tech-
niques, these failed to improve the results. Hence
all pre-processing techniques have been dropped
altogether, and those experiments are not reported
here. Still, this can indicate that pre-processing re-
moves features relevant to the DSL task.

The appropriate tuning of feature set size has
proved to be important in other NLP tasks, such
as Authorship Attribution (Stamatatos, 2013), and
Author Profiling (Markov et al., 2016). In this
work, an attempt was made to select the most
appropriate frequency threshold based on a grid
search. In more detail, the following frequency
threshold (frq) values were examined: frq = 5, 10,
20, 50, and 100. Other experiments were also car-
ried out by cutting out the most frequently occur-
ring features in the training corpus, namely by dis-
carding the 100 most frequent words. This strat-
egy has proved to be helpful in other classifica-
tion tasks, such as Author Profiling (Markov et al.,
2016). However, in the DSL task discarding the
most frequent features did not lead to improve-
ments in accuracy. This result indicates that the
most frequent words, which are stop-words for the
most part, are important for DSL.

4 Experimental Results

Table 3 shows the final ranking of all the par-
ticipating teams on the closed track of the DSL
shared task. Except for the last system, results
of all the participants are relatively similar, their
accuracy ranging from 0.9274 (CECL) to 0.8894
(BAYESLINE), that is a difference of 0.038. The
best submitted run (run 2) of the CIC UALG team
was ranked 6th among the 11 participants. How-
ever, the difference in accuracy from the 1th place
is only 0.0128.

Next, the results of the three runs on the DSL
2017 test set are presented in Table 4. Firstly,
the results of run 3 (single-step, 14 languages and
no language group classification, using MNB) are
slightly worse than those for runs 1 and 2 (0.0052
and 0.0077, respectively). This seems to confirm
the validity of the two-step approach. Secondly,

Team Rank Accuracy
CECL 1 0.9274
MM LCT 2 0.9254
XAC BAYESLINE 3 0.9247
TUBASFS 4 0.9249
GAUGE 5 0.9165
CIC UALG 6 0.9146
SUKI 7 0.9099
TIMEFLOW 8 0.9076
CITIUS IXA IMAXIN 9 0.9030
BAYESLINE 10 0.8894
DEEPCYBERNET 11 0.2046

Table 3: Final ranking for the closed track of the
DSL shared task.

results of run 2 (two-step classification approach
using SVM for groups and MNB for languages)
slightly outperformed those of run 1 (similar set-
ting to those of run 2, but using SVM or MNB de-
pending on language group). This behavior was
the opposite of the one seen in the experiments
conducted on the development set, where the best
results were achieved using an SVM classifier for
both group and language classification. Since time
constraints precluded repeating in run 1 test set
(mixed SVM/MNB in the second step) exactly the
experimental settings adopted for the development
set (only SVM in both classification steps), it re-
mains to be seen whether such scenario would
change the results, and by how much.

Group classification is extremely important,
since a model is unable to recover from mistakes
made at the group prediction step. Table 5 shows
the performance of run 2 for the language group
classification. The overall results for all the lan-
guage groups are very high and are in line with the
experiments on the development set, where similar
results were achieved.

As one can see from Table 6, the results for lan-
guage classification are lower than those for group
classification. The most challenging languages are
the ones in groups A and F, where the average pre-
cision is 0.85 and 0.88, respectively. In group A,
the Bosnian language showed a precision of 0.79,
which makes it the most difficult language to iden-
tify when compared with Serbian and Croatian.
Another interesting result emerges from the results
concerning the Spanish language (group F), which
also show a wide variation in the performance of
the classifiers. This may be due to the (relatively)
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Run Accuracy F1 (micro) F1 (macro) F1 (weighted)
run 1 0.9121 0.9121 0.9121 0.9121
run 2 0.9146 0.9146 0.9146 0.9146
run 3 0.9069 0.9069 0.9068 0.9068

Table 4: Results in terms of accuracy and F1 measures for the three submitted runs on the test set.

Language Precision Recall F1-score
Group A 0.9980 0.9990 0.9985
Group B 0.9995 0.9975 0.9985
Group C 1.0000 0.9995 0.9997
Group D 0.9965 0.9995 0.9980
Group E 0.9940 0.9970 0.9955
Group F 0.9987 0.9953 0.9970

Table 5: Performance of run 2 per group of lan-
guages.

autonomous evolution of the American varieties
not having followed the innovations of the Penin-
sular variety. Notice that, in comparison, the sys-
tem shows a much more similar behavior when
distinguishing the two Portuguese varieties, whose
historic drift is also very evident.

Language Precision Recall F1-score
hr 0.87 0.83 0.85
bs 0.79 0.79 0.79
sr 0.88 0.93 0.90
id 0.99 0.98 0.98
my 0.98 0.98 0.98
fa-af 0.97 0.94 0.95
fa-ir 0.94 0.97 0.96
fr-ca 0.95 0.93 0.94
fr-fr 0.92 0.95 0.94
pt-br 0.93 0.95 0.94
pt-pt 0.95 0.93 0.94
es-ar 0.87 0.86 0.86
es-es 0.85 0.88 0.87
es-pe 0.92 0.90 0.91

Table 6: Performance of run 2 per language.

The confusion matrix for our best run (run 2)
in the closed DSL task is shown in Figure 1.
The greatest confusion is in the Bosnian-Croatian-
Serbian group, followed by the Spanish and Por-
tuguese dialect groups. Bosnian is the most dif-
ficult language for identification among all the 14
classes.

5 Typed N -grams

A new type of features was introduced for the DSL
task, typed character n-grams. Table 7 shows the
different feature combinations experimented for
the first step (language group) classification task,
the number of features (N) considered in each ex-
periment and the corresponding accuracy (Acc.
(%)). For lack of space, only the experiments with
typed 3-grams (and one experiment with 4-grams),
using a frequency threshold of frq=20 and the
SVM algorithm are shown here.
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N Acc. (%)

3 40,525 99.5607
3 36,626 99.7893

3 43,390 99.7929
3 3 80,016 99.8071

3 3 3 120,541 99.8214
3 3 3 3 240,322 99.8214
3 3 3 3 3 493,075 99.8250
3 3 3 3 3 3 847,782 99.8250
3 3 3 3 3 3 3 956,295 99.8071

Table 7: Results from different feature combi-
nations on the language group classification step
over the development set.

It is possible to observe that the basic
bag-of-words approach (Words) already performs
at a very reasonable level (99.5607%), but also that
this result was always outperformed in all the other
experiments where n-gram features were added.

Secondly, there is a slight increase (0.0036) in
the performance when the typed 3-grams are used,
instead of just the traditional, untyped 3-grams.
The size of the feature set, however, also increases.
Combining typed and untyped 3-grams improves
the results further (0.142), while combining words
and both kinds of n-grams provides an even bet-
ter accuracy (99.8214%), a result 0.2607 above the
simple, bag-of-words approach.
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Figure 1: Confusion matrix of run 2.

In the next experiments, we successively added
larger untyped n-grams to the feature set, with n
from 4 to 6. Naturally, the size of the feature set
increases significantly. Adding larger n-grams in-
creased the results up to 99.8250% accuracy, but
it is noteworthy that the untyped 6-grams did not
improve the results above those already obtained
with the untyped 5-grams, while the feature set in-
creases 1.72 times.

Finally, a new set of typed 4-grams was added to
the previous experimental settings. This, however,
hindered the results, producing the same accuracy
as just combining typed and untyped 3-grams. No-
tice that size of the feature set is approximately 12
times larger than that experiment.

As far as the language classification within lan-
guage groups is concerned, experiments were car-
ried out comparing the use of typed against un-
typed n-grams on the development set. Typed
n-grams systematically outperformed the untyped
ones. Moreover, different feature combinations
were also tested for language classification; how-
ever, none of them was able to outperform the fea-
ture combination selected for the language group
classification (typed 3-grams, untyped n-grams
(n = 3–5), and words), and therefore, this com-
bination was also selected for discriminating be-
tween the languages within the group.

6 Conclusions

This paper presented the description of the three
runs submitted by the CIC UALG team to the Dis-
criminating between Similar Languages (DSL)
shared task at the VarDial 2017 Workshop. The
best performance was obtained by run 2, which
achieved an accuracy of 0.9146 (6th place out of
11). This run implements a two-step classification
approach, predicting first the group of languages
and then discriminating the languages within the
group.

Typed character n-grams was a new type of fea-
tures that had been introduced in the DSL task for
the first time. It was found during the preliminary
experiments (on the development set) that these
features improve the classification accuracy when
used in combination with other types of features
such as word unigrams and untyped n-grams. It
was demonstrated that having increasingly larger
typed or untyped n-grams can only improve re-
sults up to a certain point, and then performance
deteriorates. A careful selection of feature com-
binations is thus required to obtain optimal results
while controlling the increase in the size of the fea-
ture set, which can become computationally too
costly.
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One of the directions for future work would be
to conduct experiments using doc2vec-based (dis-
tributed) feature representation, which has proved
to provide good results for DSL (Franco-Salvador
et al., 2015) and other NLP tasks, such as Au-
thorship Attribution (Posadas-Durán et al., 2016)
and Author Profiling (Markov et al., 2017), among
others. Moreover, classifier ensembles will be ex-
amined, since it has been demonstrated that they
are efficient for DSL (Malmasi and Dras, 2015),
as well as for different real-word problems (Oza
and Tumer, 2008).
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Helena Gómez-Adorno, Ilia Markov, Grigori Sidorov,
Juan-Pablo Posadas-Durán, and Carolina Fócil-
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University of Tübingen, Germany
ccoltekin

@sfs.uni-tuebingen.de

Taraka Rama
Department of Linguistics

University of Tübingen, Germany
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Abstract

This paper describes our systems and re-
sults on VarDial 2017 shared tasks. Be-
sides three language/dialect discrimina-
tion tasks, we also participated in the
cross-lingual dependency parsing (CLP)
task using a simple methodology which
we also briefly describe in this paper. For
all the discrimination tasks, we used lin-
ear SVMs with character and word fea-
tures. The system achieves competitive re-
sults among other systems in the shared
task. We also report additional experi-
ments with neural network models. The
performance of neural network models
was close but always below the corre-
sponding SVM classifiers in the discrim-
ination tasks.

For the cross-lingual parsing task, we ex-
perimented with an approach based on
automatically translating the source tree-
bank to the target language, and training a
parser on the translated treebank. We used
off-the-shelf tools for both translation and
parsing. Despite achieving better-than-
baseline results, our scores in CLP tasks
were substantially lower than the scores of
the other participants.

1 Introduction

In this paper, we describe our efforts in two rather
different tasks during our participation in VarDial
2017 shared tasks (Zampieri et al., 2017). The first
task, which we collectively call language identifi-
cation task, aims to identify closely related lan-
guages or dialects. VarDial 2017 hosted three re-
lated language identification tasks: Discriminat-
ing between similar languages (DSL) shared task
which includes closely related languages in six

groups, Arabic dialect identification (ADI), and
German dialect identification (GDI). The second
task, cross-lingual parsing (CLP), aims to exploit
resources available for a related source language
for parsing a target language for which no syntac-
tically annotated corpora (treebank) is available.
This paper focuses on the language identification,
while providing a brief summary of our methods
and results for the CLP task as well.

Although language identification is a mostly
solved problem, closely related languages and
dialects still pose a challenge for the language
identification systems (Tiedemann and Ljubešić,
2012; Zampieri et al., 2014; Zampieri et al., 2015;
Zampieri et al., 2017). For this task, we experi-
mented with two different families of models: lin-
ear support vector machines (SVM), and (deep)
neural network models. For both models we used
combination of character and word (n-gram) fea-
tures. Similar to our earlier experiments in Var-
Dial 2016 shared task (Çöltekin and Rama, 2016),
the linear models performed better than the neu-
ral network models in all language identification
tasks. We describe both families of models, and
compare the results obtained. In the VarDial 2017
shared task campaign, the DSL and ADI shared
tasks had both open and closed track submissions,
while GDI had only closed tracks. For all the
tasks, we only participate in the closed track.

While discriminating closely related languages
is a challenge for the language identification task,
the similarities can be useful in other tasks. By us-
ing information or resources available for a related
(source) language one can build or improve nat-
ural language tools for a (target) language. This
is particularly useful for low-resource languages,
and tasks that require difficult-to-build language-
specific tools or resources. Parsing fits into this
category well, since treebanks, the primary re-
sources used for parsing, require considerable time
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and effort to create. Hence, transferring knowl-
edge from one or more (not necessarily related)
languages is studied extensively in some recent
work and found to be useful (Yarowsky et al.,
2001; Hwa et al., 2005; Zeman and Resnik, 2008;
McDonald et al., 2011; Tiedemann et al., 2014a,
just to name a few). Particularly, it has been shown
that these approaches tend to perform better than
purely unsupervised methods, which can be an-
other natural choice for parsing a language with-
out a treebank.

There are two common approaches for transfer
parsing. The first one is often called model trans-
fer, which typically involves training a delexical-
ized parser on the source language treebank, and
using it on the target language, with further adap-
tation or lexicalization with the help of additional
monolingual or parallel corpora (McDonald et al.,
2011; Naseem et al., 2012). The second method
is annotation transfer, which utilizes parallel re-
sources to map the existing annotations for the
source language to the target language (Yarowsky
et al., 2001; Hwa et al., 2005; Tiedemann, 2014).
In this work, we use a straightforward annotation-
transfer method using freely available tools. Sim-
ilar to the language identification, we only partici-
pated in the closed track of the CLP task.

The remainder of the paper is organized as fol-
lows. The next section provides brief descriptions
of the tasks and the data sets. Section 3 describes
the methods and the systems we used for both
tasks, Section 4 presents our results and we con-
clude in Section 5 after a brief discussion.

2 Task description

In this section, we provide a brief description of
the tasks, and the data sets. Detailed description
of the task and data can be found in Zampieri et al.
(2017).

2.1 Language identification
VarDial 2017 shared task included three language
identification challenges.

• Discriminating between similar languages
(DSL) shared task includes closely related
languages in six groups:

– Bosnian (bs), Croatian (hr) and Serbian
(sr)

– Malay (my) and Indonesian (id)
– Persian (fa-ir) and Dari (fa-af)

variety characters tokens
mean sd mean sd

bs 196.53 90.80 30.86 14.18
hr 236.91 102.32 36.56 15.59
sr 209.13 97.47 33.64 15.45

es-ar 253.61 96.73 41.48 15.75
es-es 262.58 94.16 43.90 15.62
es-pe 148.48 79.66 25.33 13.26

fa-af 139.24 60.34 27.83 12.12
fa-ir 187.30 72.42 36.61 14.35

fr-ca 174.37 53.82 28.30 8.40
fr-fr 207.95 98.67 33.76 15.82

id 236.53 93.61 33.00 13.03
my 180.28 69.49 25.20 9.72

pt-br 235.51 96.82 38.63 15.66
pt-pt 217.59 90.21 35.46 14.58

Table 1: Average characters and space-separated
tokens in the DSL data (training and development
set combined).

– Canadian (fr-ca) and Hexagonal French
(fr-fr)

– Brazilian (pt-br) and European Por-
tuguese (pt-pt)

– Argentine (es-ar), Peninsular (es-es),
and Peruvian Spanish (es-pe)

• Arabic dialect identification task involves
discriminating between five Arabic varieties:

– Egyptian (egy)
– Gulf (glf)
– Levantine (lav)
– North-African (nor)
– Modern Standard Arabic (msa)

• German dialect identification (GDI) tasks in-
volves identifying four Swiss German di-
alects from the following areas.

– Basel (bs)
– Bern (be)
– Lucerne (lu)
– Zurich (zh)

The organizers provided separate training and
development sets for the DSL task. The training
set consists of 18 000 documents and the devel-
opment set consists of 2 000 documents for each
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variety characters tokens docs
mean sd mean sd

egy 141.50 200.63 25.74 35.78 3 415
glf 125.47 237.55 22.66 42.50 3 008
lav 105.48 145.35 19.37 26.03 3 308
msa 191.67 203.67 33.17 34.91 2 488
nor 80.30 121.13 14.41 21.06 3 305

Table 2: Average characters and space-separated
tokens in the ADI data (training and development
set combined).

variety characters tokens docs
mean sd mean sd

be 36.74 19.40 7.34 3.99 3 889
bs 44.75 26.38 8.41 4.97 3 411
lu 45.55 23.66 8.91 4.65 3 214
zh 39.11 21.57 7.24 3.96 3 964

Table 3: Average characters and space-separated
tokens in the GDI data (only training set, no de-
velopment set was porovided).

language variety. Although the data is balanced
with respect to the number of documents, there is
a slight variation with respect to the number of
characters and tokens among different language
varieties as presented in Table 1. These differ-
ences may explain some of the biases towards cer-
tain varieties within groups. Further details about
the task and the data can be found in Goutte et al.
(2016).

The ADI data includes transcriptions of speech
from five different Arabic varieties. Besides the
transcribed words, the ADI data also includes i-
vectors, fixed-length vectors representing some
acoustic properties of whole utterances. The ADI
data shows slightly more class imbalance than the
DSL data, as shown in Table 2. The lengths of
the documents in the ADI data is also more var-
ied. More information on the data and the task can
be found in Malmasi et al. (2015).

The GDI task includes data from four Swiss
German dialects. This data set includes much
shorter documents compared to the DSL and ADI
data sets. The GDI data statistics are also pre-
sented in Table 3.

2.2 Cross-lingual parsing

The cross lingual parsing tasks involved using one
or more source language treebanks along with

parallel texts to parse the target languages. The
source–target language pairs for this task are,

• Target language: Croatian, Source language:
Slovenian

• Target language: Slovak, Source language:
Czech

• Target language: Norwegian, Source lan-
guages: Danish and Swedish

The source language treebanks are part of the Uni-
versal Dependencies (UD) version 1.4 (Nivre et
al., 2016). The parallel texts are subtitles from the
OPUS corpora collection (Tiedemann, 2012).

3 System descriptions

3.1 Language identification with SVMs

Similar to our past year’s participation, we submit-
ted results using a multi-class (one-vs-one) sup-
port vector machine (SVM) model. Unlike our
last year’s submissions (Çöltekin and Rama, 2016)
where we used only character n-grams as features,
we used a combination of both character and word
n-grams. Both character and word n-gram features
are weighted using sub-linear tf-idf scaling (Juraf-
sky and Martin, 2009, p.805). We did not apply
any filtering (e.g., case normalization), except for
removing features that occur in only a single doc-
ument.

The ADI data set also included fixed-length nu-
meric features, i-vectors, for each document. We
concatenated these vectors with the tf-idf features
in our best performing model for the ADI task. In
all SVM models we combine the features in a flat
manner and predict the varieties directly without
using a two-stage or hierarchical approach. We
also tuned the number of character and word n-
grams, as well as the SVM margin parameter ‘C’
for each task separately. The SVMs were not very
sensitive to the changes in these parameters. Ta-
ble 4 lists the configurations of the SVM models
in our main submission. We present further results
on the effects of these parameters in Section 4.
In all of our experiments, we combined the de-
velopment and training sets for the DSL and ADI
tasks and used 10-fold cross validation for tuning.
We also used 10-fold cross validation for tuning
the parameters of the system for the GDI task for
which no designated development data was pro-
vided.
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Character embeddings Word embeddings

Characters Words

Character features Word features

Group classifier

Language / variety classifier

Language / variety prediction

Group prediction

Figure 1: The schematic representation of our neural network architecture.

Task word char C

DSL 3 7 1.8
ADI 3 10 0.5
GDI 2 7 0.7

Table 4: Maximum word and character n-grams,
and the SVM margin parameter, C, used for each
language identification task, for our main submis-
sion. We use all n-grams starting unigrams up to
the indicated maximum n-gram value.

We also experimented with logistic regression,
using both one-vs-rest and one-vs-one multi-class
strategies. Like the previous year, the SVM mod-
els always performed slightly better than logistic
regression models. In this paper, we only describe
the SVM models and discuss the results obtained
using them.

All linear models were implemented with
scikit-learn (Pedregosa et al., 2011) and trained
and tested using Liblinear backend (Fan et al.,
2008).

3.2 Language identification with neural
networks

The general architecture used for our hierarchical
network model is presented in Figure 1. This is
virtually identical to the general architecture de-
scribed in Çöltekin and Rama (2016).

In this study, we use both task-specific charac-
ter and word embeddings to train our model. They
are trained during learning to discriminate the lan-
guages varieties. As opposed to general-purpose
embeddings, they are expected to capture the in-
put features (characters words) that are indicative
of a particular language variety rather than words
that are semantically similar.

The presented architecture is an instance of
multi-label classification. During training, model
parameters are optimized to guess both the group
and the specific language variety correctly. Fur-
thermore, we feed the model’s prediction of the
group to the classifier predicting the specific lan-
guage variety. For instance, we would use the in-
formation that fr-fr and fr-ca labels belong to the
French group. The intuition behind this model is
that it will use the highly accurate group prediction
during test time to tune into features that are useful
within a particular language group for predicting
individual varieties. For ADI, and GDI tasks, we
do not use the group prediction since these data set
contain only as single language group.

In principle, the boxes ‘Group classifier’ and
‘Language / variety classifier’ in Figure 1 may in-
clude multiple layers for allowing the classifier to
generalize based on non-linear combinations in its
input features. However, in the experiments re-
ported in this paper, we did not use multiple layers
in both the classifiers, since, it did not improve the
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results.

The dashed boxes in Figure 1 turn the sequence
of word and character embeddings into fixed-size
feature vectors. Any network layer/model that ex-
tracts useful features from a sequence of embed-
dings are useful here. The convolutional and re-
current neural networks are typical choices for this
step. We have experimented with both methods, as
well as simple averaging of embeddings.

In the experiments reported below, the docu-
ments are padded or truncated to 512 characters
for the character embedding input, and they are
padded or truncated to 128 tokens for the word
embeddings input. For both embedding layers, we
used dropout with rate 0.40. Both classifiers in
the figure were single layer networks (with soft-
max activation function), predicting one-hot rep-
resentations of groups and varieties. The network
was trained using categorical cross-entropy loss
function for both outputs using Adam optimiza-
tion algorithm. To prevent overfitting, the training
was stopped when validation set accuracy stopped
improving after two iterations. All neural net-
work experiments are realized using Keras (Chol-
let, 2015) with Tensorflow backend (Abadi et al.,
2015).

3.3 Cross-lingual parsing

We adopted the word-based MT approach of
Tiedemann et al. (2014b) for translating the source
language dependency treebank(s) to target lan-
guages. In the first step, we used the efmaral sys-
tem (Östling and Tiedemann, 2016) to word-align
the OPUS parallel corpus of a source-target lan-
guage pair. We word-aligned the parallel corpus
from both source to target and target to source;
and, then proceeded to symmetrize the alignments
using grow-diag-final-and method. Then, we sup-
plied the symmetric alignments to Moses (Koehn
et al., 2007) and constrained the Moses system to
train using phrase translations of length 1. Fi-
nally, we used the Moses decoder with the de-
fault settings to translate the source language tree-
bank to target language. The intuition behind this
approach is that word based translations do not
require heuristics to correct the trees that result
from the default phrase-based translation settings
of Moses. We used this approach to create tree-
banks for Norwegian, Croatian, and Slovak lan-
guages.

Task Run Accuracy F1 (micro) F1 (weighted)

ADI 1 69.71 69.71 69.75
ADI 2 57.44 57.44 56.90
DSL 1 92.49 92.49 92.45
GDI 1 65.28 65.28 62.64

Table 5: Main results of language identification
tasks on the test set as calculated by the organizers.

4 Results

4.1 Language identification

In the language identification subtasks, our best
performing models were SVM models with the pa-
rameters listed in Table 4. We have participated in
the shared task using only these models. For the
ADI task, we submitted two runs, the first one us-
ing both the transcriptions and the i-vectors, and
the second one using only the transcriptions. The
scores of our systems in each task on the test set is
presented in Table 5.

According to rankings based on absolute F1
scores, our results indicate that the systems are in
mid-range in all tasks. More precisely, we get 4th,
3th, 6th, positions in DSL, ADI, and GDI tasks,
respectively. However, for the DSL task, the dif-
ference from the best score is rather small. Our
accuracy scores are behind the top scores in each
task by 0.25 %, 6.57 % and 2.78 % for DSL, ADI,
and GDI respectively. We also present the con-
fusion matrices for each task. For the DSL task,
as shown in Table 6, almost all confusions oc-
cur within the groups. Within the groups, there
seems to be a slight tendency for the members of
the group with shorter documents on average to be
confused more. Looking at inter-language group
confusions on the development set more closely
reveals that all such confusions are difficult to clas-
sify correctly without further context. Table 9 lists
a few of the documents that were assigned a la-
bel from another language group by the classifier.
The confused documents mainly consist of named
entities, addresses, numbers or other symbols.

The confusion tables for ADI and GDI tasks
are presented in Table 7 and Table 8 respectively.
Since these represent a single group of varieties,
the confusions are common in both tables. We
do not observe any clear patterns in the mistakes
made by the classifier in ADI task. Similarly, the
confusion matrix of the GDI task does not indi-
cate very clear patterns, except the Lucerne vari-
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ety seems to be very difficult to identify for our
system. The documents from the Lucerne area
are more often recognized as from Basel or Zurich
than Lucerne itself.

In our last year’s participation, we only used
character n-grams as features. Intuitively, the
character n-grams are useful since they can cap-
ture parts of the morphology of languages. This
helps generalizing over suffixes or prefixes that
were possibly not observed in the training data.
Larger character n-grams also include words, and
also fragments from word sequences. However,
very large character n-grams do not provide much
help since they suffer from data sparsity. In our
experiments, we often found improvements in lan-
guage discrimination up to 7-grams. This may not
be able to capture most variety-specific word bi-
grams or trigrams. As a result, we expect word n-
grams to be also useful, despite the fact the infor-
mation from (large) character n-grams and word
n-grams will overlap considerably. To investi-
gate the relative merits of combining character and
word ngrams, we present the best average accura-
cies scores obtained with 10-fold cross validation
experiments on the DSL training and development
set combination in Table 10. Increasing the max-
imum length of the character n-grams helps in for
all cases up to character n-gram length of 7. In-
creasing maximum word n-grams length also has
a positive effect in all cases, although, the effect
diminishes after bigrams.

As in the previous year, the accuracy of the neu-
ral network model was close to the SVM model,
but despite additional efforts of tuning, the neu-
ral models did not perform better than the SVM
model in any of the tasks. We performed a random
search involving the type of feature extractors for
characters and words, the length of embeddings
for characters and words, the width of the convo-
lutional filter (in case one of the feature extractors
were convolutional networks), length of the em-
bedding representations (number of convolutions,
or length of RNN representations), and the amount
of dropout used in various parts of the network.

In the case of the DSL development set, the best
accuracy score obtained by the neural network
was 90.72 as opposed 92.58 from our best per-
forming SVM model in the same setting. In gen-
eral, the performance of the model was relatively
stable across 200 different random configurations
of hyperparameters listed above, all lying within

the range 0.88–0.91. Convolutional networks per-
formed well over characters, but they yielded bad
scores over the words, likely due to large number
of filters over words that would be needed in the
multilingual corpus processing. Recurrent neural
network flavors (GRUs and LSTMs) were among
the better options for obtaining better document
representations from the word embeddings. How-
ever, simple averaging of the embedding vectors
performed similarly. On character features, recur-
rent networks were impractical in our computing
environment due to longer input sequence (512
characters).

4.2 Cross-lingual parsing

We used UDpipe (Straka et al., 2016) to train our
parsers on the translated treebanks. We report both
the Labeled Attachment Scores (LAS) and the Un-
labeled Attachment Scores (UAS) in Table 11.
In the case of Norwegian, we trained our system
on both individual and combined treebanks from
Swedish and Danish. In the case of Norwegian, we
obtained the best results (9 points more than the
baseline) when we trained the dependency parser
on Norwegian treebank which is translated from
Swedish. We obtained slightly better results than
the baseline in the case of Croatian. In the case of
Slovak, we obtained an improvement of 10 points
over the baseline. In all the cases, our results are
behind the other two participants by a margin of 5
points in Croatian and Norwegian; and, 14 points
in the case of Slovak.

5 Discussion and conclusions

In this paper we described our systems partic-
ipating in the VarDial 2017 shared tasks. We
participated in all the four tasks offered during
this shared task campaign. Although our main
focus has been language identification tasks, we
have also participated in the cross-lingual parsing
shared task with a simple approach, and reported
results in this paper.

Our participation in the language discrimination
tasks, namely Discriminating between similar lan-
guages (DSL), Arabic dialect identification (ADI),
and German dialect identification (GDI), is simi-
lar to to our previous year’s participation (Çöltekin
and Rama, 2016). We experimented with both
SVMs and (deep) neural network models. Simi-
lar to our last year’s experience, SVMs performed
better than neural networks. This is inline with
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hr bs sr es-ar es-es es-pe fa-af fa-ir fr-ca fr-fr id my pt-br pt-pt

hr 873 112 13 0 0 0 0 0 0 1 0 0 1 0
bs 112 783 103 0 1 0 0 0 0 1 0 0 0 0
sr 8 64 927 0 0 0 0 0 0 1 0 0 0 0

es-ar 0 0 0 836 62 93 0 0 0 3 0 0 4 2
es-es 0 0 0 72 879 45 0 0 0 0 0 0 2 2
es-pe 0 0 0 18 28 953 0 0 0 1 0 0 0 0

fa-af 0 0 0 0 0 0 969 31 0 0 0 0 0 0
fa-ir 0 0 0 0 0 0 31 968 0 0 0 0 1 0

fr-ca 0 0 0 0 0 0 0 0 951 49 0 0 0 0
fr-fr 0 0 0 0 0 0 0 0 61 939 0 0 0 0

id 0 0 0 0 2 0 0 0 0 1 983 14 0 0
my 0 0 0 0 0 0 0 0 0 2 10 88 0 0

pt-br 0 0 0 0 0 0 0 0 0 2 0 0 950 48
pt-pt 0 0 0 0 1 0 0 0 0 1 0 0 49 949

Table 6: Confusion matrix for the DSL task.

egy glf lav msa nor

egy 210 18 37 17 20
glf 15 165 45 13 12
lav 36 40 218 17 23
msa 10 16 10 212 14
nor 36 22 36 15 235

Table 7: Confusion matrix for the ADI task.

be bs lu zh

be 634 57 24 191
bs 69 679 41 150
lu 181 263 244 228
zh 21 27 11 818

Table 8: Confusion matrix for the GDI task.

gold std. predicted text

hr fr-FR 2. 27/4 vrt 118 27/2 149,60

fr-FR hr Nadal (Esp) { Cilic (Cro): 6-2, 6-4, 6-3

bs fr-FR - 17.30 Galatasaray - Jadran (Split)

pt-BR fr-FR Shangri-La: 10 Avenue d’Iéna, 16ème arrondissement, Paris.
Tel. (33 1) 5367-1998.

id pt-BR Kiper: Julio Cesar (Inter Milan), Victor (Gremio), Jefferson
(Botafogo), Fabio (Cruzeiro)

Table 9: Examples of inter-group confusions from the DSL task.
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Max word n-gram length

0 1 2 3

0 90.47 91.48 91.53
1 84.25 90.84 91.63 91.84
2 84.25 91.68 92.07 92.22
3 90.16 91.83 92.23 92.24
4 91.69 92.12 92.38 92.40
5 92.17 92.37 92.49 92.53
6 92.34 92.48 92.55 92.55
7 92.39 92.50 92.56 92.58

M
ax

ch
ar

n-
gr

am
le

ng
th

8 92.37 92.48 92.52 92.54

Table 10: Best accuracy scores obtained on the
DSL data by combinations of character and word
n-grams of varying sizes.

target (source) Baseline Translation

LAS UAS LAS UAS

no (sv) 56.63 66.24 65.62 74.61
no (da) 54.91 64.53 58.55 67.48
no (sv+da) 59.95 69.02 64.91 73.50
hr (sl) 53.35 63.94 55.20 66.75
sk (cz) 53.72 65.70 64.05 73.16

Table 11: Labeled (LAS) and unlabeled (UAS) at-
tachment scores obtained by the translation model
in comparison to the baseline provided by the or-
ganizers.

the results of VarDial 2016 shared task, where
linear models (Jauhiainen et al., 2016; Zirikly et
al., 2016; Goutte and Léger, 2016; Herman et al.,
2016; Cianflone and Kosseim, 2016; Barbaresi,
2016; Adouane et al., 2016; McNamee, 2016; Ni-
sioi et al., 2016; Gamallo et al., 2016; Malmasi
and Zampieri, 2016; Ionescu and Popescu, 2016;
Eldesouki et al., 2016, for example), performed
better than the neural network models (Bjerva,
2016; Belinkov and Glass, 2016). Our current ex-
periments also follow the same trend. As in the
last year, our SVM models performed better than
neural network models, and our main results only
include scores obtained by SVM classifiers.

Unlike last year, where we only used character
n-grams, this year we used a combination of char-
acter and word n-grams as features, and tuned the
maximum number of n-grams included for each
task. We obtained scores competitive with the
scores of the other participating teams. In gen-

eral, all scores are slightly higher for the DSL task
compared to the last year. Besides the results on
the shared task, we presented some results from
the additional experiments that we performed in
Section 4. The combination of character and word
n-grams seem to have made a small but consistent
difference in the experiments performed on the de-
velopment data.

For the cross-lingual parsing task, we fol-
lowed a simple method by automatically translat-
ing the source treebank and training an off-the-
shelf parser on the translated treebank. We did
not perform any further adaptation or pre-trained
word representations which may have been help-
ful in this task. Although we obtained results that
are consistently better than the baseline, our re-
sults have been substantially lower than the scores
of the other two participating systems.
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Abstract
We present the results of our participation
in the VarDial 4 shared task on discrimi-
nating closely related languages. Our sub-
mission includes simple traditional mod-
els using linear support vector machines
(SVMs) and a neural network (NN). The
main idea was to leverage language group
information. We did so with a two-layer
approach in the traditional model and a
multi-task objective in the neural network.
Our results confirm earlier findings: sim-
ple traditional models outperform neural
networks consistently for this task, at least
given the amount of systems we could ex-
amine in the available time. Our two-layer
linear SVM ranked 2nd in the shared task.

1 Introduction

The problem of automatic language identification
has been a popular task for at least the last 25
years. From early on, different solutions showed
very high results (Cavnar et al., 1994; Dunning,
1994), while the more recent models achieve near-
perfect accuracies.

Distinguishing closely-related languages, how-
ever, still remains a challenge. The Discriminat-
ing between similar languages (DSL) shared task
(Zampieri et al., 2017) is aimed at solving this
problem. For this year’s task our team (mm lct)
built a model that discriminates between 14 lan-
guages or language varieties across 6 language
groups (which had two or three languages or lan-
guage varieties in them).1

The most popular of the more recent systems,
such as langid.py (Lui and Baldwin, 2012) and
CLD/CLD22 produce very good results based on

1The term language shall henceforth be used for both
‘language’ and ‘language variety’.

2https://github.com/CLD2Owners/cld2

datasets containing fewer than 100 languages, but
even a model trained on as many as 131 languages
(Kocmi and Bojar, 2017) and whatlang (Brown,
2013) with trained on 184 and 1100 languages, are
not able to distinguish closely-related (and there-
fore very similar) languages and dialects to a sat-
isfying degree, at least not to the extent of the data
available.

As part of the DSL 2017 shared task we chose
to further explore traditional linear approaches, as
well as deep learning methods. In the next Sec-
tion we shortly discuss previous approaches to the
task of discriminating between similar languages.
Then in Section 3 we describe our systems and the
data, followed by the results in Section 4, which
are discussed in Section 5. We conclude in Sec-
tion 6.

2 Related Work

Even though a number of researches in dialect
identification have been conducted, (Tiedemann
and Ljubešić, 2012; Lui and Cook, 2013; Maier
and Gómez-Rodriguez, 2014; Ljubešić and Kran-
jcic, 2015, among many others), they mostly deal
with particular language groups or language vari-
ations. We saw as our goal to create a language
identifier that is able to produce comparable re-
sults for languages within all provided groups
with the same set of features for every language
group, so that it can be expanded outside those lan-
guages provided by the DSL shared task without
any changes other than to the training corpus – as
to make the system as language-independent and
universal as possible.

Most of the language identifiers that use lin-
ear classifiers rely on character n-gram mod-
els (Carter et al., 2011; Ng and Selamat, 2011;
Zampieri and Gebre, 2012) and combinations of
character and word n-grams (Milne et al., 2012;
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Vogel and Tresner-Kirsch, 2012; Goldszmidt et
al., 2013), also including top systems from pre-
vious DSL shared tasks (Goutte and Léger, 2015;
Malmasi and Dras, 2015; Çöltekin and Rama,
2016).

The overviews of the previous DSL shared tasks
(Zampieri et al., 2014; Zampieri et al., 2015;
Goutte et al., 2016) showed that SVMs always
produce some of the top results in this task, es-
pecially when tested on same-domain datasets
(Çöltekin and Rama, 2016). Thus, we chose to
put our efforts into improving upon SVM ap-
proaches, but still decided to experiment with an
neural network to see if we could get comparable
results, while using fewer features and reducing
the chance of overfitting.

The popularity of using NNs for NLP tasks is
growing. A few neural language identifiers al-
ready exist as well (Tian and Suontausta, 2003;
Takçi and Ekinci, 2012; Simões et al., 2014,
among others), however on average traditional
systems still seem to outperform them. The re-
sults of the DSL 2016 shared task also show the
same tendency overall (Bjerva, 2016; Cianflone
and Kosseim, 2016; Çöltekin and Rama, 2016;
Malmasi et al., 2016).

3 Methodology and Data

In this section, we first describe the datasets that
were provided for the DSL 2017 shared task. Then
we describe the three systems we used to tackle
the problem: first a two-layer SVM that uses
language-group classification, then a single-layer
SVM that does not use grouping and finally an
neural network-based approach.

3.1 Data

This year’s data is a new version of the DSL Cor-
pus Collection (DSLCC) (Tan et al., 2014), with
again 18,000 instances for training and 2,000 in-
stances for development. The test data consists
of 1,000 instances per language and contains the
same languages as the training and development
data. The test data is furthermore very similar to
the development data, as supported by the results –
during-development performance was almost the
same as the performance on the test set. All in-
stances come from short newspaper texts.

However whereas last year’s version of the
DSLCC contained Mexican Spanish, this year’s
version has Peruvian Spanish (es-PE). Another

new addition is the Farsi language group, with
the two variations Persian (fa-IR) and Dari
(fa-AF). Thus, this year’s version contains 14
languages belonging to 6 groups:

• BCS: containing Bosnian, Croatian and Ser-
bian;

• Spanish: containing Argentine, Peninsular
and Peruvian varieties;

• Farsi: containing Afghan Farsi (or Dari) and
Iranian Farsi (or Persian);

• French: containing Canadian and Hexagonal
varieties;

• Indonesian and Malay; and

• Portuguese: containing Brazilian and Euro-
pean varieties.

An overview of the data is given in Table 1,
which includes the number of instances as well
as the number of tokens for each language in the
training and development data.

In the final submissions we performed no pre-
processing on the data. During development we
explored the usefulness of replacing all characters
for lower case, having placeholders for numbers
and removing punctuation, but we found that it de-
creased performance of the system.

Finally, for the final submission we have had
all our runs trained on the combination of both
training and development datasets, as has been
shown to be effective by last year’s winning team
(Çöltekin and Rama, 2016).

3.2 Run 1 – SVM with grouping

As our first, most promising run we have devel-
oped and submitted a two-layer classifier, which
first predicts for all instances which language
group it belongs to, and then classifies the specific
languages within the guessed language groups.
This method has been used by DSL participants
before (Franco-Salvador et al., 2015; Nisioi et al.,
2016), and has shown to have a positive impact on
the performance. Adopting this method, we have
built a combination of SVMs with linear kernels.

The first SVM is for deciding on the language
group to which the language belongs. As features
it uses character-based uni- to 6-grams (including
whitespace and punctuation characters) weighted
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Training Dev.
Language Code Instances Tokens Instances Tokens

Croatian hr 18,000 658,492 2,000 72,731
Bosnian bs 18,000 555,680 2,000 61,574
Serbian sr 18,000 606,403 2,000 66,494

Argentine Spanish es-AR 18,000 746,531 2,000 83,090
Peninsular Spanish es-ES 18,000 789,870 2,000 88,116

Peruvian Spanish es-PE 18,000 455,630 2,000 51,021

Dari fa-AF 18,000 501,157 2,000 55,249
Persian fa-IR 18,000 659,040 2,000 72,894

Canadian French fr-CA 18,000 510,134 2,000 55,934
Hexagonal French fr-FR 18,000 746,531 2,000 68,136

Indonesian id 18,000 595,187 2,000 64,749
Malay my 18,000 453,326 2,000 50,692

Brazilian Portuguese pt-BR 18,000 695,826 2,000 76,694
European Portuguese pt-PT 18,000 638,124 2,000 71,153

Table 1: The number of instances and number of tokens for all languages in the training data and the
development data.

by tf-idf.3 While testing it on the development set
it appeared to be very reliable, as all misclassified
instances on the group level contained only names
and digits and were, therefore, impossible to be
classified by a human either.

The second SVM predicts the specific lan-
guages within each group (with the same feature
parameters for every group), using word-based
uni- and bigrams, in combination with character-
based n-grams up to 6 characters weighted by tf-
idf, as well.

Figure 1a shows that when trained on a sub-
set of 100,000 randomly selected instances (while
keeping the language distribution the same) of the
training data, the best accuracy is achieved when
using character n-grams from 1 to 6 characters and
no word n-grams. However, when we trained and
tested it on the DSL 2016 data, it scored lower
than the winning team (for the in-domain test set).
We therefore chose a different set of features by
adding word unigrams and bigrams that gave us
a slight advantage over last year’s task’s results.
It did, though, reduce the performance on this

3The formula used to compute tf-idf is as follows, as de-
fined by scikit-learn Python package: tf-idf(d, t) =
tf(t) ∗ idf(d, t) where idf(d, t) = log(n/df(d, t)) + 1 where
n is the total number of documents and df(d, t) is the doc-
ument frequency; the document frequency is the number of
documents d that contain term t (Pedregosa et al., 2011).

year’s development, but the reduction was so min-
imal that we deemed it unlikely to be significant
(accuracies of 0.90296 without word n-grams vs.
0.90206 with word uni- and bigrams), especially
when considering that the difference between the
accuracies becomes smaller the more training data
is available.

Fine-tuning the second SVM for particular lan-
guage groups seemed to defeat the goal of devel-
oping a language-independent classifier – retrain-
ing on other languages would have not been pos-
sible, without largely adjusting the system.

3.3 Run 2 – SVM without grouping

As the second run we submitted a single system,
a linear kernel SVM that does not use language-
group classification first but classifies languages
straight away. When exploring different combina-
tions of word and character n-grams we trained the
system on the 100,000 same instances and found
that the highest results were achieved with a com-
bination of word uni- and bigrams and character
uni- to 6-grams (see Figure 1b). Thus, for this run
we have the same parameters as the within-groups
classifier of run 1.

When trained on this year’s full training set and
tested on the development set, this system per-
forms slightly better than the two-layer system
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Figure 1: Visualisation of the differences in accuracy with changing maximum lengths of word and
character n-grams trained on 100,000 instances of training data and tested on the development dataset.
Where n-grams are 0, n-grams were turned off; the left lower corner, therefore, is the random baseline.
(a) shows the accuracies for the SVM with grouping, (b) for the SVM without grouping.

(but likely to be insignificantly better, with a less
than 0.1% difference in accuracy).

3.4 Run 3 – CBOW multi-task NN

We also experimented with NNs, in particular, an
NN with a multi-task objective. The idea was to
take advantage of language group information to
guide learning. This represents a complimentary
approach to run 1.

Our preliminary experiments confirmed earlier
findings that NN-based approaches are outper-
formed by more simple linear models for language
identification (Çöltekin and Rama, 2016; Gamallo
et al., 2016). We compared recurrent NNs to
simpler models based on continuous bag of word
(CBOW) representations (Mikolov et al., 2013),
which are similar to feedforward NNs and simply
take the mean vector of the input embeddings as
input representation. CBOW was not only quicker
to train, it also outperformed their RNN/LSTM
counterparts, thus resulting in our final submis-
sion.

In particular, run 3 is a simple CBOW NN with
two output layers: the first predicting the actual
language identifier, the second predicting the lan-
guage group. The CBOW multi-task NN training
objective is to minimise the cross-entropy loss on
language identity (L1) and language group iden-
tification (L2), weighted by λ set on the devel-
opment set and trained on a subset of 10,000 in-

stances. The joined training objective was:

L = (1− λ)L1 + λL2, where λ = 0.1

As input features it uses embeddings on char-
acter uni- to 5-grams, which outperforms simple
word input alone. We observed that the multi-task
objective sped up learning, although ultimately the
difference between an MTL and a non-MTL coun-
terpart was minor. We submitted the MTL model
as final run. It was trained on the joined training
and development data without any preprocessing,
as to make it more comparable to our SVM sub-
missions.

Note that due to time constraints we did not
fully explore many directions here, like feature
space, hyperparameters or alternative models, but
overall NN seemed less promising for this task.

4 Results

Based on absolute scores, our first system (SVM
with grouping) performed second best in the DSL
shared task (Zampieri et al., 2017) with an accu-
racy of 0.9254. Both our other systems also per-
formed substantially higher than the random base-
line of 0.0714: accuracies of 0.9236 and 0.8997
for the SVM without grouping and the NN, respec-
tively. See Table 2 for an overview of the accura-
cies and F1-scores of our three systems.

Table 3 presents the confusion matrix for the
SVM with grouping. Out-of-group confusions –
which are very rare in general, in all three runs –
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Run Accuracy F1 (micro) F1 (macro) F1 (weighted)

Random baseline 0.0714
SVM with grouping 0.9254 0.9254 0.9250 0.9250
SVM without grouping 0.9226 0.9226 0.9221 0.9221
CBOW NN 0.8997 0.8997 0.9001 0.9001

Table 2: Accuracies and F1-scores (micro, macro and weighted) for the three systems, along with the
random baseline.
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hr 894 92 13 0 0 0 0 0 0 1 0 0 0 0
bs 120 760 119 0 1 0 0 0 0 0 0 0 0 0
sr 11 71 918 0 0 0 0 0 0 0 0 0 0 0

es-AR 0 0 0 846 69 80 0 0 0 1 0 0 3 1
es-ES 0 0 0 62 893 42 0 0 0 1 0 0 1 1
es-PE 0 0 0 20 29 951 0 0 0 0 0 0 0 0

fa-AF 0 0 0 0 0 0 968 32 0 0 0 0 0 0
fa-IR 0 0 0 0 0 0 27 972 0 1 0 0 0 0

fr-CA 0 0 0 0 0 0 0 0 948 52 0 0 0 0
fr-FR 1 0 1 0 0 0 0 0 61 937 0 0 0 0

id 0 0 0 0 2 0 0 0 0 1 987 10 0 0
my 0 0 0 0 0 0 0 0 0 2 14 984 0 0

pt-BR 0 0 0 0 0 0 0 0 0 2 0 0 943 55
pt-PT 0 0 0 1 1 0 0 0 0 1 0 0 43 954

Table 3: Confusion matrix for the SVM with grouping.

occur notably less often with the SVM with group-
ing (only 2.2% of the confusions it makes are
out-of-group confusions) than with the other runs.
This is to be expected as the SVM with grouping
is designed to group instances of the same lan-
guage group together and then to discriminating
between the particular language variations within
the groups. Within-group confusions also occur
relatively less often with the SVM with grouping
(in all groups, except for French, the accuracy is
higher for the SVM with grouping than the SVM
without grouping; the NN has notably lower accu-
racies for all groups: see Table 4).

Overall, fewest within-group confusions oc-
curred in the Indonesian-Malay group. The most
mistakes were made in the BSC group. This is also
supported by the accuracies. The values, though,
do not necessarily support claims that Bosnian,
Serbian and Croatian must then be more alike

SVM-1 SVM-2 NN

hr-bs-sr 0.8579 0.8518 0.8295
es 0.8991 0.8986 0.8657
fa 0.9705 0.9680 0.9505
fr 0.9434 0.9449 0.9340

id-my 0.9880 0.9840 0.9659
pt 0.9509 0.9498 0.9256

Table 4: Accuracies for all language groups for
the first SVM (with grouping), the second SVM
(without grouping) and the NN.

than, e.g., Indonesian and Malay are: differences
in the amount of training data or the quality of
the data may cause incomparable results. Also the
language groups that contain three languages per-
form, as expected, overall worse than the groups
with two languages.
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Another striking aspect of the confusion ma-
trix is that, in the BSC group, Bosnian seems to
be confused more than Croatian or Serbian. Ser-
bian and Croatian are rarely confused with each
other. This suggests that in a gradual transition
between Croatian and Serbian, Bosnian is some-
where in the middle. A similar gradual transition
does not seem to exist for the Spanish varieties (as
supported by the confusion matrix).

This is also supported by the fact that Bosnian,
of all 14 languages, performs the worst in terms of
both precision and recall (F1 = 0.79). Indonesian
and Malay both perform the best, both with an al-
most perfect F1 = 0.99. A full report of language-
specific performances for the SVM with grouping
can be found in Table 5.

Precision Recall F1-score

hr 0.87 0.89 0.88
bs 0.82 0.76 0.79
sr 0.87 0.92 0.90

es-AR 0.91 0.85 0.88
es-ES 0.90 0.89 0.90
es-PE 0.89 0.95 0.92

fa-AF 0.97 0.97 0.97
fa-IR 0.97 0.97 0.97

fr-CA 0.94 0.95 0.94
fr-FR 0.94 0.94 0.94

id 0.99 0.99 0.99
my 0.99 0.98 0.99

pt-BR 0.95 0.94 0.95
pt-PT 0.94 0.95 0.95

Table 5: Language-specific performance measures
for the SVM with grouping.

5 Discussion

We presented our approaches to tackling the prob-
lem of discriminating between similar languages
and dialects. The SVM which first groups in-
stances based on language group using word uni-
and bigrams and character unigrams to 6-grams as
features works best by a very small margin – in
the DSL shared task it performed second in abso-
lute F1-scores, but also by a small margin.

The margin between our two SVMs, though, is
so small that it might not even be statistically sig-

nificant.4 However, although grouping does not
really improve the performance of the system, it
does make the model noticeably faster. This is
because, when grouping, the system requires less
memory at once, as it fits the data for only one
language group at a time, which is only about a
sixth of the total data (in this dataset), depending
on the group. It only processes the total amount
of the data once – when grouping the instances in
language groups, but then it uses fewer features.

As expected, the SVMs do perform notably
better than the deep-learning approach we tried.
However, our NN uses simple CBOW and still
places itself rather well among other systems.

Figure 1a suggests that the two-layer SVM ap-
proach might perform slightly better when using
no word n-grams altogether. Although we decided
against such a system, it will be interesting to see
what the impact of removing word n-grams for the
two-layer SVM feature set will have on the per-
formance of said approach. It would also be in-
teresting to see if having only longer n-grams (i.e.
only 3-5 character n-grams) or only combinations
of particular lengths would improve the results.

6 Conclusions

Discriminating between similar languages is still
not a fully solved problem – no known system
reaches perfect performance. The models pre-
sented in this paper once again confirm that tra-
ditional models, such as SVMs, perform better
on this task than deep learning techniques. We
also showed that a two-layer approach in which
languages are first classified based on language
groups barely improves performance – yet, in our
experience, it speeds up the system significantly.
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Preslav Nakov, Ahmed Ali, Jörg Tiedemann, Yves
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Abstract

This paper presents three systems submit-
ted to the German Dialect Identification
(GDI) task at the VarDial Evaluation Cam-
paign 2017. The task consists of training
models to identify the dialect of Swiss-
German speech transcripts. The dialects
included in the GDI dataset are Basel,
Bern, Lucerne, and Zurich. The three sys-
tems we submitted are based on: a plu-
rality ensemble, a mean probability en-
semble, and a meta-classifier trained on
character and word n-grams. The best re-
sults were obtained by the meta-classifier
achieving 68.1% accuracy and 66.2% F1-
score, ranking first among the 10 teams
which participated in the GDI shared task.

1 Introduction

German is well-known for its intrinsic dialectal
variation. Standard national varieties spoken in
Germany, Austria, and Switzerland co-exist with a
number of dialects spoken in everyday communi-
cation. The case of Switzerland is particular repre-
sentative of this situation because of the multitude
and importance of dialects which are widely spo-
ken throughout the country.

The German Dialect Identification (GDI) task,
part of the VarDial Evaluation Campaign 2017
(Zampieri et al., 2017), addressed the problem of
German dialectal variation by providing a dataset
of transcripts from interviews with speakers of
Swiss German dialects from Basel, Bern, Lucern,
and Zurich recorded within the scope of the Archi-
Mob1 project (Samardžić et al., 2016). The goal
of the GDI task is to evaluate how well compu-
tational methods can discriminate between these
four Swiss German dialects.

1http://archimob.ch/

In this paper we present the entries submitted
by the team MAZA to the GDI task 2017. We
investigate different combinations of classifiers for
the task, namely: a plurality ensemble method, a
mean probability ensemble method, and a meta-
classifier trained on character and word n-grams.

2 Related Work

Processing dialectal data is a challenge for
NLP applications. When dealing with non-
standard language, systems are trained to recog-
nize spelling and syntactic variation for further
processing in applications such as Machine Trans-
lation. In the case of German, a number of studies
have been published on developing NLP tools and
resources for processing non-standard language
(Dipper et al., 2013), dealing with spelling varia-
tion on dialectal data and carrying out spelling nor-
malization (Samardžić et al., 2015), and improv-
ing the performance of POS taggers for dialectal
data (Hollenstein and Aepli, 2014).

The identification of Swiss German dialects, the
topic of the GDI shared task, has been the focus
of a few recent studies. Methods for German di-
alect identification have proved to be particularly
important for the validation of methods applied to
the compilation of German dialect corpora (Scher-
rer and Rambow, 2010a; Scherrer and Rambow,
2010b; Hollenstein and Aepli, 2015).

The work presented here also relates to studies
on the discrimination between groups of similar
languages, language varieties, and dialects such
as South Slavic languages (Ljubešić et al., 2007),
Portuguese varieties (Zampieri and Gebre, 2012),
English varieties (Lui and Cook, 2013), Romanian
dialects (Ciobanu and Dinu, 2016), Chinese vari-
eties (Xu et al., 2016), and past editions of the DSL
shared task (Zampieri et al., 2014; Zampieri et al.,
2015; Malmasi et al., 2016c).
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3 Methods and Data

3.1 Data
The GDI training/test data was extracted from the
aforementioned ArchiMob corpus (Samardžić et
al., 2016) which contains transcriptions of 34 in-
terviews with native speakers of various German
dialects spoken in Switzerland. The subset used
for GDI contains 18 interviews (14 for training and
4 for testing) from four Swiss German dialects:
Basel, Bern, Lucerne, and Zurich. No acoustic
data was released with the transcriptions.

According to the information provided by the
task organizers, each interview was transcribed us-
ing the ‘Schwyzertütschi Dialäktschrift’ writing
system (Dieth, 1986). The interviews were di-
vided into utterances and each utterance was con-
sidered to be an instance to be classified by the
systems. The training set contains a total of around
14,000 instances (114,000 tokens) and the test set
contains a total of 3,638 instances (29,500 tokens).

We approach the text using ensemble classi-
fiers and a meta-classifier. In the next sections we
describe the features and algorithms used in the
MAZA submissions in detail.

3.2 Features
We employ two lexical surface feature types for
this task, as described below.

• Character n-grams: This is a sub-word fea-
ture that uses the constituent characters that
make up the whole text. When used as n-
grams, the features are n-character slices of
the text. From a linguistic point of view,
the substrings captured by this feature, de-
pending on the length, can implicitly capture
various sub-lexical features including single
letters, phonemes, syllables, morphemes and
suffixes. In this study we examine n-grams
of order 1–6.

• Word n-grams: The surface forms of words
can be used as a feature for classification.
Each unique word may be used as a feature
(i.e. unigrams), but the use of bigram distri-
butions is also common. In this scenario, the
n-grams are extracted along with their fre-
quency distributions. For this study we eval-
uate unigram features.

We did not pre-process2 the data prior to feature
2For example, case folding or tokenization.

extraction. This was not needed as the data are
human-generated transcripts.

3.3 Classifier
For our base classifier we use a linear Support
Vector Machine (SVM). SVMs have proven to de-
liver very good performance in discriminating be-
tween language varieties and in other text clas-
sification problems,3 SVMs achieved first place
in both the 2015 (Malmasi and Dras, 2015a) and
2014 (Goutte et al., 2014) editions of the DSL
shared task.4

3.4 Ensemble Classifiers
The best performing system in the 2015 edition
of the DSL challenge (Malmasi and Dras, 2015a)
used SVM ensembles evidencing the adequacy of
this approach for the task of discriminating be-
tween similar languages and language varieties.
In light of this, we decided to test two ensemble
methods. Classifier ensembles have also proven
to be an efficient and robust alternative in other
text classification tasks such as grammatical error
detection (Xiang et al., 2015), and complex word
identification (Malmasi et al., 2016a).

We follow the methodology described by Mal-
masi and Dras (2015a): we extract a number of
different feature types and train a single linear
model using each feature type. Our ensemble was
created using linear Support Vector Machine clas-
sifiers. We used the seven feature types listed in
Section 3.2 to create our ensemble of classifiers.

Each classifier predicts every input and also as-
signs a continuous output to each of the possible
labels. Using this information, we created the fol-
lowing two ensembles.

• System 1 - Plurality Ensemble
In this system each classifier votes for a sin-
gle class label. The votes are tallied and
the label with the highest number5 of votes
wins. Ties are broken arbitrarily. This voting
method is very simple and does not have any
parameters to tune. An extensive analysis of
this method and its theoretical underpinnings
can be found in the work of (Kuncheva, 2004,
p. 112). We submitted this system as run 1.

3For example, Native Language Identification is often
performed using SVMs (Malmasi and Dras, 2015b)

4See Goutte et al. (2016) for a comprehensive evaluation.
5This differs with a majority voting combiner where a la-

bel must obtain over 50% of the votes to win. However, the
names are sometimes used interchangeably.
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Figure 1: An illustration of a meta-classifier architecture. Image reproduced from Polikar (2006).

• System 2 - Mean Probability Ensemble
The probability estimates for each class are
added together and the class label with the
highest average probability is the winner. An
important aspect of using probability outputs
in this way is that a classifier’s support for
the true class label is taken in to account,
even when it is not the predicted label (e.g.
it could have the second highest probability).
This method has been shown to work well on
a wide range of problems and, in general, it
is considered to be simple, intuitive, stable
(Kuncheva, 2014, p. 155) and resilient to es-
timation errors (Kittler et al., 1998) making it
one of the most robust combiners discussed
in the literature. We submitted this system as
run 2.

3.5 Meta-classifier System

In addition to classifier ensembles, meta-classifier
systems have proven to be very competitive for
text classification tasks (Malmasi and Zampieri,
2016) and we decided to include a meta-classifier
in our entry. Also referred to as classifier stacking.
A meta-classifier architecture is generally com-
posed of an ensemble of base classifiers that each
make predictions for all of the input data. Their
individual predictions, along with the gold labels
are used to train a second-level meta-classifier that
learns to predict the label for an input, given the
decisions of the individual classifiers. This setup
is illustrated in Figure 1. This meta-classifier at-
tempts to learn from the collective knowledge rep-

resented by the ensemble of local classifiers.
The first step in such an architecture is to create

the set of base classifiers that form the first layer.
For this we used the same seven base classifiers as
our ensemble.

• System 3 - Meta-classifier
In this system we combined the probability
outputs of our seven individual classifiers and
used them to train a meta-classifier using 10-
fold cross-validation. Following Malmasi et
al. (2016b), we used a Random Forest as our
meta-classification algorithm. We submitted
this system as run 3.

4 Results

In this section we present results in two steps.
First we comment on the performance obtained us-
ing each feature type and the results obtained by
cross-validation on the training set. Secondly, we
present the official results obtained by our system
on the test set and we discuss the performance of
our best method in identifying each dialect.

4.1 Cross-validation Results

We first report our cross-validation results on the
training data. We began by testing individual fea-
ture types, characters n-grams (2-6) and word un-
igrams. Results are presented in Figure 2.
As expected we observe that character n-grams
outperform word features. Character 3-grams, 4-
grams, and 5-grams obtained higher results than
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Figure 2: Cross-validation performance for each
individual feature type (Y axis - Accuracy (%), X
axis - Feature Type).

those obtained using word unigrams. The best re-
sults were obtained with character 4-grams achiev-
ing 85.13% accuracy. As transcriptions have been
carried out using the same transcription method,
character unigrams were not very informative fea-
tures for the classifier achieving much lower per-
formance than the other feature types, 52.02% ac-
curacy. For this reason, character unigrams were
not included in Figure 2

We next tested our ensemble and meta-classifier
configurations on the training data. Accuracy re-
sults are shown in Table 1.

System Accuracy
Majority Class Baseline 0.2738

Voting Ensemble (System 1) 0.8621
Probability Ensemble (System 2) 0.8674

Meta-Classifier (System 3) 0.8725

Table 1: Cross-validation results for the German
training data.

We note that all of these methods outperform any
individual feature type, with the meta-classifier
achieving the best result of 87.2% accuracy and
the two ensemble methods achieving comparable
performance of 86.2% and 86.7% accuracy. With
this information in hand we proceed to the test set
evaluation.

4.2 Test Set Results

In this section we report the results of our three
submissions generated from the unlabelled test
data. The samples in the test set were slightly un-
balanced with a majority class baseline of 25.8%.

The performance of all participants was evalu-
ated by the shared task organizers and a more de-
tailed description of the results is presented in the
VarDial Evaluation Campaign report (Zampieri et
al., 2017). Teams were ranked according to the
weighted F1-score which provides a balance be-
tween precision and recall. We present the ranks
with the best results for each team in Table 2.

MAZA achieved the best performance overall
with 66.2% weighted F1-score. It is important to
note that this rank is based on absolute scores. In
the shared task report (Zampieri et al., 2017), orga-
nizers are likely to calculate ranks with statistical
significance tests, which is a common practice in
other shared tasks such as the DSL 2016 (Malmasi
et al., 2016c) and the shared tasks from WMT (Bo-
jar et al., 2016).

Rank Team F1 (weighted)
1 MAZA 0.662
2 CECL 0.661
3 CLUZH 0.653
4 qcri mit 0.639
5 unibuckernel 0.637
6 tubasfs 0.626
7 ahaqst 0.614
8 Citius Ixa Imaxin 0.612
9 XAC Bayesline 0.605
10 deepCybErNet 0.263

Table 2: GDI Closed Submission Results

Accuracy, along with macro- and micro-averaged
F1-scores obtained by the three runs submitted by
MAZA are presented in Table 3. We observe that
the results follow the same relative pattern as the
cross-validation results, with the meta-classifier
achieving the best result and ranking first among
the 10 teams that participated in the GDI task.

An important observation is that the test set re-
sults, for all teams, are much lower than the cross-
validation results. It may have been the case that
the test data was drawn from a different distri-
bution as the training data, although this was not
specified by the task organizers.
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System Accuracy F1 (micro) F1 (macro) F1 (weighted)
Majority Class Baseline 0.258 — — —
Voting Ensemble (run1) 0.649 0.649 0.628 0.627

Probability Ensemble (run2) 0.669 0.669 0.648 0.647
Meta-classifier (run3) 0.681 0.681 0.663 0.662

Table 3: MAZA official results for the GDI task.

4.2.1 Accuracy per Dialect
Finally, we discuss the results obtained by our best
method, the meta-classifier, in identifying each di-
alect in the test set. We present a confusion matrix
with a column containing the total number of doc-
uments in each class and the performance for each
dialect in Table 4.

The column ‘Total’ provides us an indication
of the aforementioned imbalance between each di-
alect in the test set. The number of test instances
varied from 939 instances from Basel to 877 from
Zurich.

be bs lu zh Total Acc.
be 659 67 33 147 906 72.8%
bs 47 697 67 128 939 74.2%
lu 157 269 315 175 916 34.4%
zh 23 38 11 805 877 91.8%

Table 4: Confusion Matrix: Per Dialect Results

As expected, the four dialects are not equally dif-
ficult to be identified. The dialect from Lucern
was the most difficult to be identified and the per-
formance of the classifier was only slightly better
than the 25.8% baseline.

An interesting outcome is that the dialect from
Zurich, which was by far the easiest do be identi-
fied obtaining 91.8% accuracy, was also the one
which generated most confusion with the other
three dialects. This seems counter-intuitive on a
first glance, but it might indicate that the algo-
rithm achieves great performance for this dialect
because it tries to label most of its predictions to
Zurich to maximize performance. An error anal-
ysis of the misclassified instances can help under-
stand this outcome.

5 Conclusion

In this paper we presented three systems submit-
ted by the MAZA team to the GDI shared 2017. A
meta-classifier system trained on word and charac-
ter n-grams achieved 66.2% F1-score ranking first
among the 10 teams that participated in the shared

task. We showed that the meta-classifier outper-
forms two ensemble-based methods, namely plu-
rality and mean probability, on both the training
and test sets.

More than the NLP task itself, the GDI task pro-
vided participants with an interesting opportunity
to study the differences between Swiss German di-
alects using computational methods. We observed
that the dialect from Zurich is at the same time
the easiest to be identified and also the one which
causes the most confusion for the classifier. A lin-
guistic analysis along with an error analysis of the
misclassified instances is necessary to determine
the reasons for this outcome.
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Abstract

Our submissions for the GDI 2017 Shared
Task are the results from three different
types of classifiers: Naı̈ve Bayes, Condi-
tional Random Fields (CRF), and Support
Vector Machine (SVM). Our CRF-based
run achieves a weighted F1 score of 65%
(third rank) being beaten by the best sys-
tem by 0.9%. Measured by classification
accuracy, our ensemble run (Naı̈ve Bayes,
CRF, SVM) reaches 67% (second rank)
being 1% lower than the best system. We
also describe our experiments with Recur-
rent Neural Network (RNN) architectures.
Since they performed worse than our non-
neural approaches we did not include them
in the submission.

1 Introduction

The goal of our participation in the newly intro-
duced German Dialect Identification (GDI) Shared
Task of the VarDial Workshop 2017 (Zampieri et
al., 2017) was to quickly test how far we could
get on this classification problem using standard
machine learning techniques (as only closed runs
were allowed for this task).

The task is to predict the correct Swiss Ger-
man dialect for manually transcribed utterances
(Samardzic et al., 2016).1 The Dieth transcrip-
tion (Dieth, 1986)—developed in the 1930s in
Switzerland—is not a scholarly phonetic tran-
scription system. It is designed to be applicable
by laymen to all Swiss German dialects and uses
the Standard German alphabet and a few optional
diacritics.

In this task, the number of possible Swiss Ger-
man dialects is limited to four main varieties: the

1Since the text segments are transcribed speech, with a
slight abuse of terminology, we shall refer to them as utter-
ances.

dialects spoken in the cantons of Basel (BS), Bern
(BE), Lucerne (LU), and Zurich (ZH).

The four approaches that we have worked on
for this task are: i) a powerful baseline that uses
an off-the-shelf Naı̈ve Bayes classifier trained on
bags of character n-gram features; ii) an uncon-
ventional yet effective application of a CRF clas-
sifier to sequence classification—the system per-
forming best on the official test set among all our
runs; iii) a majority-vote ensemble of the Naı̈ve
Bayes, CRF and SVM systems; and iv) an RNN
character-sequence classifier trained on augmen-
ted data, which however has not been included in
our final submission.2

2 Related Work

Scherrer and Rambow (2010) describe dialect
identification approaches to written Swiss Ger-
man. To distinguish among six dialects, they ex-
periment with a word n-gram model. Additionally,
they attempt word-based identification by turning
Standard German words into their dialectal forms
according to hand-written transfer rules. They dis-
cuss the linguistic aspects of the problem and dif-
ficulties in predicting for the multitude and con-
tinuum of Swiss German dialects.

Most of our final submission, except probably
Run 2, is an application of well-established tech-
niques for text classification (Sebastiani, 2002).
We use regularized linear classifiers on a bag-of-
character-n-grams representations of utterances.
Despite its conceptual simplicity, this recipe pro-
duces state-of-the-art results on language identi-
fication tasks (Malmasi et al., 2016) and is par-
ticularly easy to implement given the wide vari-
ety of readily available tools for feature extraction
and classification. Having this as a baseline, we

2Our code is available at https://github.com/
simon-clematide/GDI-task-2017.

170



BE BS LU ZH Total
Training Set 3889 0.27 3411 0.24 3214 0.22 3964 0.27 14478

Test Set 906 0.25 939 0.26 916 0.25 877 0.24 3638
Difference -2% +2% +3% -3%

Training 4+ 3260 0.26 2974 0.24 2865 0.23 3327 0.27 12426

Table 1: Distribution of classes in the training and test sets of the GDI task. Row “Training 4+” shows
the effect of removing sentences with less than 4 tokens on the training set composition.

Tokens 1 2 3 4 5 6 7 8 9 10+
Training 360 731 961 1244 1416 1491 1428 1317 1125 4405

Rel. 2% 5% 7% 9% 10% 10% 10% 9% 8% 30%
Test 495 530 465 450 368 320 1010
Rel. 14% 15% 13% 12% 10% 9% 28%

Table 2: Distribution of numbers of tokens per utterance in the training and test sets of the GDI task.

focus on experimenting with CRFs and character-
sequence neural network classifiers. Zhang et al.
(2015) achieve competitive results on character-
level document classification tasks with Convo-
lutional Neural Networks (CNNs). Word-level
RNNs have been applied to a variety of text clas-
sification tasks (Carrier and Cho, 2014). Xiao
and Cho (2016) present an efficient character-level
RNN document classifier.

3 Data and Methodology

In this section, we first describe the training and
test data sets. Second, we detail the methods that
we apply in our runs as well as report the results
of post-submission experiments using RNNs.

3.1 Properties of the Data
As Table 1 shows, the GDI training data set has
roughly balanced classes (a maximum of ±3 per-
centage points away from a uniform distribution).
The official test set is slightly better balanced (a
maximum of ±1 percentage points away from a
uniform distribution). However, the data sets do
not have the same minority/majority classes.

Another noticeable difference between the
training and test data is the presence of short utter-
ances. The training set has 2,052 utterances (14%)
which consist of only one, two or three words.
This contrasts with the test set, whose utterances
contain four or more words. Predicting the dialect
of a short utterance is much harder than predicting
the dialect of a long one. We systematically drop
very short utterances from the training data in or-
der to compensate for the differences between the

data sets3 and to reduce the noise.
The data only contain lowercase characters.

Due to the variability in the dialects, many of the
14,065 word types appear only once (9,372), twice
(2,032), or three times (929). This extreme Zipfian
distribution makes it hard to build reliable statist-
ics for prediction.

3.2 Our Methods
All our methods except the RNNs use character
n-gram features derived from separate words.

3.2.1 Run 1: Naı̈ve Bayes
Run 1 is our baseline, which has proven hard to
beat. For the final submission, we drop from the
training set short noisy utterances and substitute
character combinations for characters with com-
plex diacritics (e.g. “ü2” for “`̈u”) and single char-
acters for the common digraph “ch” and trigraph
“sch”. All one-character words are dropped. We
represent each utterance with a bag of character n-
grams, ranging from bigrams to six-grams. This
set-up produces the highest average validation ac-

3This violates the default assumption in machine learning
scenarios “that training and test data are independently and
identically (iid) drawn from the same distribution. When the
distributions on training and test set do not match, we are fa-
cing sample selection bias or covariate shift” (Huang et al.,
2007). Different unsupervised domain adaptation techniques
have been developed in order to mitigate this problem, e.g.
instance weighting (Jiang and Zhai, 2007). A very simple
weighting schema consists in assigning a weight of zero to
short utterances, i.e. removing them. Two reviewers had the
opinion that it is a methodological problem to adapt the mod-
els to the evidence in the test set and that one is not supposed
to look at the test set at all. Ultimately, it is a question of
the task guidelines whether unsupervised domain adaptation
is considered legitimate or not.

171



Figure 1: Per-dialect distribution of numbers of tokens and characters per utterance in the training set.

curacy among competing configurations (e.g. dif-
fering in n-gram ranges). We use the scikit-learn
machine learning library (Pedregosa et al., 2011)
to implement the entire pipeline. We fit a Naı̈ve
Bayes classifier with add-one smoothing.

3.2.2 Run 2: CRF
For Run 2, we use wapiti (Lavergne et al., 2010),
an efficient off-the-shelf linear-chain CRF se-
quence classifier (Sutton and McCallum, 2012).
Each word of an utterance is treated as a tagged
item in a sequence and the utterance classification
task is cast as a sequence classification of all items.
For instance, the utterance “jaa ich han ja” with
sequence label ZH is turned into a verticalized
format corresponding to “jaa/ZH ich/ZH han/ZH
ja/ZH”.

The motivation behind this approach is that
a single word is often ambiguous, however, we
know a priori by the definition of the task that all
words in an utterance must have the same class.
Therefore, we rely on the machinery of CRFs to
adjust the weights of the word features in the ex-
ponential model during training in such a way that
sequences get optimally and homogeneously clas-
sified. Indeed, the predicted sequence of classific-
ation tags within one utterance is always consist-
ent, and we take the class of the first word as the
class of the whole utterance.

The features for the CRF are built from indi-
vidual words. We experimented with different re-
placement rules for the diacritics, but in the end
just applied two phonetically motivated replace-
ments (“sch” and “ch”) before feature extraction.

We use 4 types of features for the representation
of a token:

WD The word form using our two replacements.

PS Concatenations of the prefix and suffix of
each word (from 1 to 3 characters depending
on the length of the word).

NG Character n-grams (from 1 to 6 characters).
Before extracting the n-grams, we prefix each
word with an “A” and suffix it with a “Z” in
order to distinguish n-grams at word bound-
aries from n-grams within a word.

CV Word shapes selecting or mapping character
classes for consonants and vowels. Specific-
ally, feature types V and C contain all vow-
els and consonants of a word in the order of
appearance. Feature types Cs and Vs contain
the sets of all consonants and vowels, respect-
ively. Feature types VV and CC contain the
word shape where either all vowels or all con-
sonants get masked with a “C” or a “V”. Fea-
ture type CCVV masks all characters with a
“C” or a “V”.

b Each word also has a so-called bigram output
feature that encodes the transition probabil-
ity of class labels. This ensures that the sys-
tem learns to predict sequences with only ho-
mogeneous class labels. The unigram output
feature “u”, which encodes the global distri-
bution of class labels, was not useful, how-
ever.

CRF tools like wapiti allow each feature to be used
as evidence only for the class of the current token
(feature prefix “u:”) or the class of the preceding
and/or current token (feature prefix “*:”).4 For the
GDI task, we only use “u:” features. Thus, for
a word like “vernoo” (en: heard), the following
features are extracted:

4See Lavergne et al. (2010) for technical details.
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Length in words Replaced with Example
10 ≥ l > 15 a) First 3/4 of words,

and b) last 3/4
“a a de a der annere wand sis schwiizer welo”⇒ a) “a a de a der
annere wand sis”, b) “de a der annere wand sis schwiizer welo”

l ≥ 15 a) First 2/3 of words,
b) last 2/3, and c) 1/3
in the middle

“aber das händ dänn d schuurnalischten am prozss zum biischpil
isch dä saz wider choo” ⇒ a) “aber das händ dänn d schuurn-
alischten am prozäss zum biischpil”, b) “schuurnalischten am
prozäss zum biischpil isch dä saz wider choo”, c) “händ dänn
d schuurnalischten am prozäss zum biischpil isch dä saz”

Table 3: Data augmentation rules.

WD=vernoo b u:PS=vo u:PS=veoo
u:NG=Av u:NG=Ave u:NG=v u:NG=ve
u:NG=ver u:NG=e u:NG=er u:NG=ern
u:NG=r u:NG=rn u:NG=rno u:NG=n u:NG=no
u:NG=noo u:NG=o u:NG=oo u:NG=ooZ
u:NG=o u:NG=oZ u:V=eoo u:C=vrn u:Cs=nrv
u:Vs=eo u:VV=vVrnVV u:CC=CeCCoo
u:CCVV=CVCCVV.

The CV word shape features add about one per-
centage point in accuracy.

A typical training fold (90% of the training
data) results in about 540,000 different feature
candidates. After thirty five training epochs us-
ing the Elastic Net regularization (Zou and Hastie,
2005), around 90,000 features are still active.

The only hyper-parameter that we need to ad-
just is the maximal number of training epochs of
the L-BFGS optimizer (Liu and Nocedal, 1989). A
maximum of thirty five training epochs guarantees
optimal performance. We use a development set
of 10% of the training set to control for overfitting
and finding a reasonable number of epochs. Still,
we find no clear and smooth convergence. Chan-
ging the default parameters for the Elastic Net reg-
ularization or any other hyper-parameter of wap-
iti does not result in systematic and consistent im-
provements.

3.2.3 Run 3: Ensemble of Naı̈ve Bayes, CRF,
and linear SVM

Run 3 is a majority-vote ensemble system built
from the results of Run 1, Run 2, and predictions
generated from a linear SVM over the same fea-
ture model as for Run 1. Whenever all classifiers
disagree with one another, the ensemble falls back
to the prediction by the Run 1 system. We used
scikit-learn’s implementation of linear SVM train-
able with the Stochastic Gradient Descent optim-
ization algorithm and searched for the value of the
regularization parameter with the highest average
cross-validation accuracy.

3.2.4 Experiments with LSTMs
We have invested a considerable amount of ef-
fort in RNN models. We implement particularly
simple Long Short-Term Memory (LSTM) net-
works (Hochreiter and Schmidhuber, 1997): with
and without an initial character embedding layer,
with a recurrent layer, and a softmax output layer.
Like in the other runs, we experiment with single
character and character group replacements. We
fix the size of the character embedding layer to two
thirds the input size, which therefore varies from
model to model as a result of character replace-
ments (twenty five or twenty nine units). The size
of the LSTM layer is fixed to ninety hidden units.
The softmax layer takes as input the values of the
LSTM hidden units at the final character. All the
models are rather small, with the leanest models
having 41,760 parameters and the largest having
48,600 parameters. Adding a character embedding
layer results in a 9% reduction in model paramet-
ers, on average. The reduction in the number of
character types shrinks the model by another 4%,
and the replacement of common di- and trigraphs
shortens input sequences and further speeds up
training. We discarded the idea of using bidirec-
tional LSTMs (Graves and Schmidhuber, 2005):
They are slower to train (the number of model
parameters roughly doubles), which has been the
main bottleneck for us since we have intended to
experiment with multiple model set-ups.

One important theme in our neural network ex-
periments has been data augmentation. Having ex-
amined the predictions of the baseline classifier,
we observed that the longer the utterance the more
likely it is to be classified correctly. We hypothes-
ized that a simple trick of slicing long utterances
into multiple shorter chunks and substituting those
chunks for the original utterances in the training
data would improve performance (Table 3). Like
in the other runs, we drop short utterances com-
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Run 1 Run 2 Run 3
Σ BE BS LU ZH BE BS LU ZH BE BS LU ZH

BE 906 601 56 45 204 623 56 36 191 660 51 23 172
BS 939 48 621 75 195 65 694 58 122 58 683 57 141
LU 916 156 260 278 222 137 268 315 196 183 233 292 208
ZH 877 17 26 24 810 23 26 20 808 25 24 13 815
Precision 73 64 66 57 73 66 73 61 71 69 76 61
Recall 66 66 30 92 69 74 34 92 73 73 32 93
F1 70 65 42 70 71 70 47 74 72 71 45 74
P / R / F1 65 / 63 / 62 69 / 67 / 65 69 / 67 / 65

Table 4: Confusion matrices and result breakdown for our official GDI runs. Rows are true labels,
columns are predicted labels.

Run Accuracy F1 (macro) F1 (weighted)
Baseline 25.80

1 63.50 61.65 61.56
2 67.07 65.38 65.31
3 67.34 65.34 65.27

Table 5: Official results for the GDI task. The
baseline predicts the majority class. For all
classes, F1 (micro) is the same as accuracy.

pletely (in this case, one-word and two-word ut-
terances). As a result of this data augmentation,
the training data for the internal system evaluation
have grown by almost a quarter (from 11,726 to
15,340 utterances).

All neural-network implementation is done us-
ing high-level structures of the keras neural net-
works library (Chollet, 2015). For training the
models, we use the Root Mean Square Propaga-
tion (RMSProp) algorithm (Tieleman and Hinton,
2012), a variant of Stochastic Gradient Descent,
with default hyper-parameters suggested by the
library. We use Dropout (Srivastava et al., 2014)
for regularization. We train for at least 100 epochs
and at most 300 epochs.

4 Results

4.1 Official Results
Table 5 shows the official results of our submitted
runs. Run 3 has the best accuracy among our runs,
but is slightly worse on the macro-averaged F1
score and the weighted F1 score (see Zampieri et
al. (2017) for further information on the evaluation
metrics). The performance in absolute numbers is
much lower than expected from cross-validation.

4.2 Internal Evaluation
Table 6 shows average validation scores of the sys-
tems featured in our submissions. We retrain the
systems with the same hyper-parameter settings
as in the submissions. The ensemble performs
best followed closely by the baseline system of
Run 1. To compare the systems with the best-
performing LSTM from the post-submission ex-
periments, we set aside a stratified sample of one
tenth the size of the training data as an internal
evaluation set. Again, we retrain the models on
the remaining data with the same hyper-parameter
settings. Since these hyper-parameter values have
been found to produce the best performance on the
entire training data, internal evaluation set results
are potentially biased upward for all the systems
but the LSTM.
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Cross-validation results Internal evaluation set results
Run Accuracy F1 (macro) F1 (weighted) Accuracy F1 (macro) F1 (weighted)
1 85.10 (0.82) 84.99 (0.82) 85.10 (0.82) 85.43 85.36 85.44
2 83.96 (0.68) 83.87 (0.70) 83.93 (0.69) 85.01 85.02 85.01
3 85.70 (0.59) 85.57 (0.60) 85.68 (0.60) 85.50 85.42 85.50
SVM 82.46 (0.59) 82.36 (0.64) 82.43 (0.61) 82.39 82.36 82.39
LSTM - - - 83.49 83.30 83.46

Table 6: System comparison: Results for ten-fold stratified cross-validation and performance on an
internal evaluation set. Cross validation results: We report mean scores across the folds and indicate
standard deviations in parentheses. The SVM is a model from the ensemble of Run 3.

Model configuration Development set results Internal evaluation set results
data
aug.

char.
repl.

char.
emb.

Accuracy F1 (macro) F1 (weighted) Accuracy F1 (macro) F1 (weighted)

- - - 81.75 81.57 81.65 81.15 80.79 80.99
- - + 81.52 81.35 81.51 81.98 81.90 81.96
- + - 82.75 82.50 82.69 82.39 82.23 82.34
- + + 80.83 80.60 80.74 79.90 79.71 79.84
+ - - 81.60 81.42 81.53 83.22 83.08 83.18
+ - + 82.82 82.66 82.78 82.60 82.52 82.59
+ + - 82.52 82.35 82.52 83.49 83.30 83.46
+ + + 82.59 82.43 82.56 82.04 81.91 82.00

Table 7: Comparison of RNN sequence classifiers.

5 Discussion

ZH clearly dominates in terms of recall in all our
runs (Table 4). The recognition rates for ZH, BE,
and BS are fine (around 70% F1) in our official
runs. However, the F1 score for LU is much lower
(around 45%) due to severe recall problems. The
numbers show that the recognition of LU suffers
from more frequent predictions in favor of ZH and
BS. This behavior fits the empirical distribution of
the classes from the training set (short sentences
removed) as shown in Table 1 where 27% of all
sequences are ZH, but only 23% LU. As the prob-
lem may also lie in the data, it would be interesting
to see whether all the systems participating in the
shared task exhibit this bias.

The results on the official test data (Table 5)
are unexpectedly lower than our cross-validation
estimates from the training data (67% accuracy
instead of about 88% with short sequences re-
moved). Clearly, the training and test sets have
not been consistently sampled from the same dis-
tribution.

The Naı̈ve Bayes classifier of Run 1 has been
exceptionally strong on same-domain data. Inter-
estingly, it suffers worse compared to other sys-
tems from differently sampled data.

According to our observation during training,
CRFs seem to run a bit into convergence problems.
Therefore, one might try to systematically build
more varying models (for instance, by bootstrap
sampling and randomly selected subsets of extrac-
ted features) in order to have a broader ensemble
system. Another line of work that we could not
complete due to time restrictions is the integra-
tion of a word prediction model into the CRF
system based on character-level CNNs (Xiao and
Cho, 2016). Our expectation would be that con-
volution filters might be better at learning relevant
character-level representations for estimating the
label probability for a given word.

We have struggled to produce strong results
with RNNs. By the submission deadline, no
model had performed on a par with our non-
neural systems. Table 7 presents the results of our
post-submission experiments. Data augmentation
brings about impressive gains of 0.7% on a devel-
opment set and 1.5% on the internal evaluation set,
on average across the three metrics. Character re-
placements largely hurt performance: On average,
we see a drop of 0.2% on the development set and
0.9% on the internal evaluation set. The effects of
a character embedding layer cancel out across the
development and internal evaluation sets (-0.2%
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and +0.3%, respectively). On the other hand, mod-
els with a character embedding layer and/or char-
acter replacements are faster to reach higher ac-
curacy levels. Just like with other models, short
utterances pose the largest difficulty, and perform-
ance goes up with utterance length. Overall, using
slow-to-train neural models on this task has not
paid off: Blazingly fast linear classifiers achieve
very strong results, and so time is better spent on
looking for good features.

6 Conclusion

We show that a character n-gram-based Naı̈ve
Bayes approach gives a very strong baseline for
the classification of transcribed Swiss German dia-
lects, especially when test and training sets are
drawn from the same distribution. The CRF-
based approach works better for the official test
set (ranked third by weighted F1 score among all
the submitted GDI runs). The official test set is
clearly sampled differently from the training set.
Given a rather large performance difference of
4.5% between the Naı̈ve Bayes and the CRF, we
suspect that the CRF-based approach has general-
ized better than the Naı̈ve Bayes. In terms of ac-
curacy, an ensemble approach using Naı̈ve Bayes,
CRF, and linear SVM gives the best results of our
runs and ranks second among all GDI runs.
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Abstract

This paper presents the systems submit-
ted by the MAZA team to the Arabic Di-
alect Identification (ADI) shared task at
the VarDial Evaluation Campaign 2017.
The goal of the task is to evaluate com-
putational models to identify the dialect
of Arabic utterances using both audio and
text transcriptions. The ADI shared task
dataset included Modern Standard Arabic
(MSA) and four Arabic dialects: Egyp-
tian, Gulf, Levantine, and North-African.
The three systems submitted by MAZA
are based on combinations of multiple ma-
chine learning classifiers arranged as (1)
voting ensemble; (2) mean probability en-
semble; (3) meta-classifier. The best re-
sults were obtained by the meta-classifier
achieving 71.7% accuracy, ranking second
among the six teams which participated in
the ADI shared task.

1 Introduction

The interest in Arabic natural language process-
ing (NLP) has grown substantially in the last
decades. This is evidenced by several publica-
tions on the topic and the dedicated series of work-
shops (WANLP) co-located with major interna-
tional computational linguistics conferences.1

Several Arabic dialects are spoken in North
Africa and in the Middle East co-existing with
Modern Standard Arabic (MSA) in a diglossic
situation. Arabic dialects are used in both spo-
ken and written forms (e.g. user-generated con-
tent) and pose a number of challenges for NLP
applications. Several studies on dialectal variation
of Arabic have been published including corpus

1https://sites.google.com/a/nyu.edu/
wanlp2017/

compilation for Arabic dialects (Al-Sabbagh and
Girju, 2012; Cotterell and Callison-Burch, 2014),
parsing (Chiang et al., 2006), machine translation
of Arabic dialects (Zbib et al., 2012), and finally,
the topic of the ADI shared task, Arabic dialect
identification (Zaidan and Callison-Burch, 2014;
Sadat et al., 2014; Malmasi et al., 2015).

In this paper we present the MAZA entries for
the 2017 ADI shared task which was organized
as part of the VarDial Evaluation Campaign 2017
(Zampieri et al., 2017). The ADI shared task
dataset (Ali et al., 2016) included audio and tran-
scripts from Modern Standard Arabic (MSA) and
four Arabic dialects: Egyptian, Gulf, Levantine,
and North-African.

2 Related Work

There have been several studies published on Ara-
bic dialect identification applied to both speech
and text.2 Examples of Arabic dialect identifica-
tion on speech data include the work by Biadsy et
al. (2009), Biadsy (2011), Biadsy and Hirschberg
(2009), and Bahari et al. (2014). Identifying Ara-
bic dialects in text also became a popular research
topic in recent years with several studies published
about it (Zaidan and Callison-Burch, 2014; Sadat
et al., 2014; Tillmann et al., 2014; Malmasi et al.,
2015).

To our knowledge, however, the 2017 ADI is
the first shared task to provide participants with
the opportunity to carry out Arabic dialect identi-
fication using a dataset containing both audio and
text (transcriptions). The first edition of the ADI
shared task, organized in 2016 as a sub-task of the
DSL shared task (Malmasi et al., 2016c), used a
similar dataset to the ADI 2017 dataset, but in-
cluded only transcriptions.

2See Shoufan and Al-Ameri (2015) for a survey on NLP
methods for processing Arabic dialects including a section on
Arabic dialect identification.
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3 Methods and Data

We approach this task as a multi-class classifica-
tion problem. For our base classifier we utilize
a linear Support Vector Machine (SVM). SVMs
have proven to deliver very good performance in
discriminating between language varieties and in
other text classification problems, SVMs achieved
first place in both the 2015 (Malmasi and Dras,
2015a) and 2014 (Goutte et al., 2014) editions of
the DSL shared task.3

3.1 Data
The data comes from the aforementioned Arabic
dialect dataset by Ali et al. (2016) used in the 2016
edition of the ADI shared task. It contains audio
and ASR transcripts of broadcast, debate, and dis-
cussion programs from videos by Al Jazeera in
MSA and four Arabic dialects: Egyptian, Gulf,
Levantine, and North-African. In 2016, the or-
ganizers released only the transcriptions of these
videos and in 2017 transcriptions are combined
with audio features providing participants with
an interesting opportunity to test computational
methods that can be used both for text and speech.
We combined all the train/dev data (25,311 sam-
ples). The test set contained 1,492 instances.

3.2 Features
In this section we describe our features and evalu-
ate their performance under cross-validation.

We employ two lexical surface feature types
for this task, as described below. These are ex-
tracted from the transcriptions without any pre-
processing (e.g. case folding or tokenization) on
texts prior to feature extraction. Pre-processing
was not needed as the data are computer-generated
ASR transcripts. We also used the provided iVec-
tor features, as described below.

• Character n-grams: This sub-word feature
uses the constituent characters that make up
the whole text. When used as n-grams, the
features are n-character slices of the text.
Linguistically, these substrings, depending
on the length, can implicitly capture various
sub-lexical features including single letters,
phonemes, syllables, morphemes & suffixes.
Here we examine n-grams of size 1–8.

3See the 2014 and 2015 DSL shared task reports for more
information (Zampieri et al., 2015; Zampieri et al., 2014) and
Goutte et al. (2016) for a comprehensive evaluation on the
first two DSL shared tasks.

• Word n-grams: The surface forms of words
can be used as a feature for classification.
Each unique word may be used as a feature
(i.e. unigrams), but the use of bigram distri-
butions is also common. In this scenario, the
n-grams are extracted along with their fre-
quency distributions. For this study we eval-
uate unigram features.

• iVector Audio Features: Identity vectors or
iVectors are a probabilistic compression pro-
cess for dimensionality reduction. They have
been used in speech processing for dialect
and accent identification (Bahari et al., 2014),
as well as for language identification systems
(Dehak et al., 2011).

We now report our cross-validation results on the
training data. We began by testing individual fea-
ture types, with results displayed in Figure 1.

We observe that many character n-grams out-
perform the word unigram features. Character
4-grams and above obtained higher results than
those obtained using word unigrams. The best
transcript-based results were obtained with char-
acter 6-grams achieving 76.2% accuracy. The
audio-based iVector features, however, performed
substantially better with 85.3% accuracy. This
is a very large difference of almost 10% accu-
racy compared to the performance obtained using
words and characters.

Having demonstrated that these features are
useful for this task, we proceed to describe our
systems in the next section.

3.3 Systems

We created three systems for our submission, as
described below.

3.4 Voting Ensemble (System 1)

The best performing system in the 2015 edition
of the DSL challenge (Malmasi and Dras, 2015a)
used SVM ensembles evidencing the adequacy of
this approach for the task of discriminating be-
tween similar languages and language varieties.
In light of this, we decided to test two ensemble
methods. Classifier ensembles have also proven
to be an efficient and robust alternative in other
text classification tasks such as language identi-
fication (Malmasi and Dras, 2015a), grammatical
error detection (Xiang et al., 2015), and complex
word identification (Malmasi et al., 2016a).
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Figure 1: Cross-validation performance for each of our individual feature types.

We follow the methodology described by Mal-
masi and Dras (2015a): we extract a number of
different feature types and train a single linear
model using each feature type. Our ensemble was
created using linear Support Vector Machine clas-
sifiers.4 We used all of the feature types listed in
Section 3.2 to create our ensemble of classifiers.

Each classifier predicts every input and also as-
signs a continuous output to each of the possible
labels. Using this information, we created the fol-
lowing two ensembles.

In the first system each classifier votes for a sin-
gle class label. The votes are tallied and the la-
bel with the highest number5 of votes wins. Ties
are broken arbitrarily. This voting method is very
simple and does not have any parameters to tune.
An extensive analysis of this method and its the-
oretical underpinnings can be found in the work
of (Kuncheva, 2004, p. 112). We submitted this
system as run 1.

3.5 Mean Probability Ensemble (System 2)
Our second system is similar to System 1 above,
but with a different combination method. Instead
of a single vote, the probability estimates for each
class6 are added together and the class label with
the highest average probability is the winner. An

4Linear SVMs have proven effective for text classification
tasks (Malmasi and Dras, 2014; Malmasi and Dras, 2015b).

5This differs with a majority voting combiner where a la-
bel must obtain over 50% of the votes to win. However, the
names are sometimes used interchangeably.

6SVM results can be converted to per-class probability
scores using Platt scaling.

important aspect of using probability outputs in
this way is that a classifier’s support for the true
class label is taken in to account, even when it is
not the predicted label (e.g. it could have the sec-
ond highest probability). This method has been
shown to work well on a wide range of problems
and, in general, it is considered to be simple, intu-
itive, stable (Kuncheva, 2014, p. 155) and resilient
to estimation errors (Kittler et al., 1998) making it
one of the most robust combiners discussed in the
literature. We submitted this system as run 2.

3.6 Meta-classifier (System 3)

In addition to classifier ensembles, meta-classifier
systems have proven to be very competitive for
text classification tasks (Malmasi and Zampieri,
2016) and we decided to include a meta-classifier
in our entry. Also referred to as classifier stacking,
a meta-classifier architecture is generally com-
posed of an ensemble of base classifiers that each
make predictions for all of the input data. Their
individual predictions, along with the gold labels
are used to train a second-level meta-classifier that
learns to predict the label for an input, given the
decisions of the individual classifiers. This setup
is illustrated in Figure 2. This meta-classifier at-
tempts to learn from the collective knowledge rep-
resented by the ensemble of local classifiers.

The first step in such an architecture is to create
the set of base classifiers that form the first layer.
For this we used the same base classifiers as our
ensembles described above.
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Figure 2: An illustration of a meta-classifier architecture. Image reproduced from Polikar (2006).

In this system we combined the probability out-
puts of our seven individual classifier and used
them to train a meta-classifier via cross-validation.
Following Malmasi et al. (2016b), we used a Ran-
dom Forest as our meta-classification algorithm.
We submitted this system as run 3.

4 Results

4.1 Cross-validation Results

We first report the cross-validation results of our
three systems on the training data. Results are
shown in Table 1.

System Accuracy
Majority Class Baseline 0.219

Voting Ensemble (System 1) 0.854
Probability Ensemble (System 2) 0.950

Meta-Classifier (System 3) 0.977

Table 1: Cross-validation results for the Arabic
training data.

We note that all of these methods outperform any
individual feature type, with the meta-classifier
achieving the best result of 97.7%. This is a very
large increase over the weakest system, which is
the voting ensemble with 85.4% accuracy. For the
voting ensemble 1,165 of the 25,311 training sam-
ples (4.60%) were ties that were broken arbitrarily.

This is an issue that can occur when there are an
even number of classifiers in a voting ensemble.

4.2 Test Set Results
Finally, in this section we report the results of
our three submissions generated from the unla-
belled test data. The samples in the test set were
slightly unbalanced with a majority class baseline
of 23.1%. Shared task performance was evalu-
ated and teams ranked according to the weighted
F1-score which provides a balance between preci-
sion and recall. Accuracy, along with macro- and
micro-averaged F1-scores were also reported.

We observe that the meta-classifier achieved the
best result among our three entries, following the
same relative pattern as the cross-validation re-
sults. The meta-classifier system ranked second
among the six teams participating in the ADI task.

In Figure 3 we present the confusion matrix
heat map for the output of our best system, the
meta-classifier. The confusion matrix confirms the
assumption that not all classes presented in the
dataset are equally difficult to identify. For ex-
ample, the system is able to identify MSA utter-
ances with substantially higher performance than
the performance obtained when identifying any of
the four Arabic dialects present in the dataset. We
also observe a higher degree of confusion in dis-
criminating between Gulf and Levantine Arabic
compared to the other dialects and MSA.
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System Accuracy F1 (micro) F1 (macro) F1 (weighted)
Majority Class Baseline 0.231 — — —
Voting Ensemble (run1) 0.6086 0.6086 0.6032 0.6073

Probability Ensemble (run2) 0.6689 0.6689 0.6671 0.6679
Meta-classifier (run3) 0.7165 0.7165 0.7164 0.7170

Table 2: MAZA Results for the ADI task.
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Figure 3: Confusion Matrix for Run 3.

Finally, another important observation is that the
test set results are somewhat lower than the cross-
validation results. Although this was not specified
by the task organizers, it may have been the case
that the test data was drawn from a different dis-
tribution as the training data. An analysis of the
most informative features and the misclassified in-
stances in both the training and test sets may pro-
vide an explanation for this difference.

5 Conclusion

We presented three systems trained to identified
MSA and four Arabic dialects using iVectors and
ASR transcripts. The best results were obtained
by a meta-classifier achieving 71.7% accuracy and
ranking second in the ADI shared task 2017. To
the best of our knowledge, this was the first time
that computational methods have been evaluated
on Arabic dialect detection using audio and text.

An important insight is that combining text-
based features from transcripts with audio-based
features can substantially improve performance.
Additionally, we also saw that a meta-classifier
can provide a significant performance boost com-
pared to a classifier ensemble approach.
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Abstract

The present contribution revolves around a
contrastive subword n-gram model which
has been tested in the Discriminating be-
tween Similar Languages shared task. I
present and discuss the method used in
this 14-way language identification task
comprising varieties of 6 main language
groups. It features the following charac-
teristics: (1) the preprocessing and con-
version of a collection of documents to
sparse features; (2) weighted character n-
gram profiles; (3) a multinomial Bayesian
classifier. Meaningful bag-of-n-grams fea-
tures can be used as a system in a straight-
forward way, my approach outperforms
most of the systems used in the DSL
shared task (3rd rank).

1 Introduction

Language identification is the task of predicting
the language(s) that a given document is written
in. It can be seen as a text categorization task in
which documents are assigned to pre-existing cat-
egories. This research field has found renewed in-
terest in the 1990s due to advances in statistical
approaches, and it has been active ever since, par-
ticularly since the methods developed have also
been deemed relevant for text categorization, na-
tive language identification, authorship attribution,
text-based geolocation, and dialectal studies (Lui
and Cook, 2013).

As of 2014 and the first Discriminating between
Similar Languages (DSL) shared task (Zampieri et
al., 2014), a unified dataset (Tan et al., 2014) com-
prising news texts of closely-related language va-
rieties has been used to test and benchmark sys-
tems. The documents to be classified are quite
short and may even be difficult to distinguish for

human annotators, thus adding to the difficulty and
the interest of the task. A second shared task took
place in 2015 (Zampieri et al., 2015). An analy-
sis of recent developments can be found in Goutte
el al. (2016) as well as in the report on the third
shared task (Malmasi et al., 2016).

The present study was conducted on the occa-
sion of the fourth VarDial workshop (Zampieri
et al., 2017). It focuses on submissions to the
DSL task, a 14-way language identification task
comprising varieties of six main language groups:
Bosnian (bs), Croatian (hr), and Serbian (sr); Ar-
gentine (es-AR), Peruan (es-PE), and Peninsu-
lar Spanish (es-ES); Dari Persian (fa-AF) and
Farsi/Iranian Persian (fa-IR); Québec French (fr-
CA) and Hexagonal French (fr-FR); Malay (Ba-
hasa Melayu, my) and Indonesian (Bahasa In-
donesia, id); Brazilian Portuguese (pt-BR) and
European Portuguese (pt-PT).

Not all varieties are to be considered equally
since differences may stem from extra-linguistic
factors. It is for instance assumed that Malay
and Indonesian derive from a millenium-old lin-
gua franca, so that shorter texts have been con-
sidered to be a problem for language identifica-
tion (Bali, 2006). Besides, the Bosnian/Serbian
language pair seems to be difficult to tell apart
whereas Croatian distinguishes itself from the two
other varieties mostly because of political motives
(Ljubeši[Pleaseinsertintopreamble] et al., 2007;
Tiedemann and Ljubešić, 2012).

The remainder of this paper is organized as fol-
lows: in section 2 the method is presented, it is
then evaluated and discussed in section 3.

2 Method

2.1 Preprocessing

Preliminary tests have shown that adding a cus-
tom linguistic preprocessing step could slightly
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improve the results. As such, instances are to-
kenized using the SoMaJo tokenizer (Proisl and
Uhrig, 2016), which achieves state-of-the-art ac-
curacies on both web and CMC data for German.
As it is rule-based, it is deemed efficient enough
for the languages of the shared task. No stop
words are used since relevant cues are expected
to be found automatically as explained below. Ad-
ditionnally, the text is converted to lowercase as it
led to better results during development phase on
2016 data.

2.2 Bag of n-grams approach

Statistical indicators such as character- and token-
based language models have proven to be efficient
on short text samples, especially character n-gram
frequency profiles from length 1 to 5, whose inter-
est is (inter alia) to perform indirect word stem-
ming (Cavnar and Trenkle, 1994). In the con-
text of the shared task, a simple approach using
n-gram features and discriminative classification
achieved competitive results (Purver, 2014). Al-
though features relying on the output of instru-
ments may yield useful information such as POS-
features (Zampieri et al., 2013), the diversity of the
languages to classify as well as the prevalence of
statistical methods call for low-resource methods
that can be trained and applied easily.

In view of this I document work on a refined
version of the Bayesline (Tan et al., 2014) which
has been referenced in the last shared task (Bar-
baresi, 2016a) and which has now been used in of-
ficial competition. After looking for linguistically
relevant subword methods to overcome data spar-
sity (Barbaresi, 2016b), it became clear that taking
frequency effects into consideration is paramount.
As a consequence, the present method grounds on
a bag-of-n-grams approach. It first proceeds by
constructing a dictionary representation which is
used to map words to indices. After turning the
language samples into numerical feature vectors
(a process also known as vectorization), the docu-
ments can be treated as a sparse matrix (one row
per document, one column per n-gram).

Higher-order n-grams mentioned in the devel-
opment tests below use feature hashing, also
known as the “hashing trick” (Weinberger et al.,
2009), where words are directly mapped to in-
dices with a hashing function, thus sparing mem-
ory. The upper bound on the number of features
has been fixed to 224 in the experiments below.

2.3 Term-weighting

The next step resides in counting and normaliz-
ing, which implies to weight with diminishing
importance tokens that occur in the majority of
samples. The concept of term-weighting origi-
nates from the field of information retrieval (Luhn,
1957; Sparck Jones, 1972). The whole op-
eration is performed using existing implementa-
tions by the scikit-learn toolkit (Pedregosa et al.,
2011), which features an adapted version of the tf-
idf (term-frequency/inverse document-frequency)
term-weighting formula.1 Smooth idf weights are
obtained by systematically adding one to docu-
ment frequencies, as if an extra document was
seen containing every term in the collection ex-
actly once, which prevents zero divisions.

2.4 Naive Bayes classifier

The classifier used entails a conditional probabil-
ity model where events represent the occurrence
of an n-gram in a single document. In this context,
a multinomial Bayesian classifier assigns a proba-
bility to each target language during test phase. It
has been shown that Naive Bayes classifiers were
not only to be used as baselines for text classi-
fication tasks. They can compete with state-of-
the-art classification algorithms such as support
vector machines, especially when using approriate
preprocessing concerning the distribution of event
frequencies (Rennie et al., 2003); additionally they
are robust enough for the task at hand, as their de-
cisions may be correct even if their probability es-
timates are inaccurate (Rish, 2001).

2.5 “Bayesline” formula

The Bayesline formula used in the shared task
grounds on existing code (Tan et al., 2014)2 and
takes advantage of a comparable feature extraction
technique and of a similar Bayesian classifier. The
improvements described here concern the prepro-
cessing phase, the vector representation, and the
parameters of classification. Character n-grams
from length 2 to 7 are taken into account.3

1http://scikit-learn.org/stable/modules/feature extrac-
tion.html

2https://github.com/alvations/bayesline
3TfidfVectorizer(analyzer=’char’,

ngram range=(2,7), strip accents=None,
lowercase=True)
followed by MultinomialNB(alpha=0.005), adapted
from https://web.archive.org/web/20161215142013/http://scikit-
learn.org/stable/auto examples/text/document classification 20-
newsgroups.html
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N-gram length 2 3 4 5 6 7 8* 9*
1 .690 .794 .852 .882 .894 .902 .895 .895
2 .705 .798 .854 .883 .895 .902 .899 .899
3 .808 .859 .884 .896 .902 .901 .901

Table 1: Benchmark by F1-weighted of a common range of n-gram length combinations on 2016 DSL
data (*=hashed features)

3 Evaluation

3.1 Data from the third edition

In order to justify the choice of the formula, exper-
iments have been conducted on data from the third
edition of the DSL shared task (Malmasi et al.,
2016); training and development sets have been
combined as training data, and gold data used for
evaluation. The method described above has been
tested with several n-gram ranges; the results are
summarized in Table 1. The best combinations
were found with a minimum n-gram length of 1
to 3 and a maximum n-gram length of 6 to 8. Ac-
cordingly, an aurea mediocritas from 2 to 7 has
been chosen.

Table 2 shows the extraction, training, and test-
ing times for n-gram lengths with a mininum of
2. One can conclude that the method is computa-
tionnally efficient on the shared task data. Execu-
tion with feature hashing is necessary for higher-
order n-grams due to memory constraints; it effec-
tively improves scalability but it also seems to be
a trade-off between computational efficiency and
accuracy, probably due to the upper bound on used
features and/or hash collisions.

Range Extraction Training Testing
2,2 19 0.3 0.0
2,3 41 1.0 0.0
2,4 72 2.0 0.1
2,5 136 4.4 0.3
2,6 230 8.6 0.5
2,7 387 14.0 0.9
2,8* 179 15.4 0.9
2,9* 208 18.2 1.1

Table 2: Evolution of execution time (in seconds)
with respect to n-gram length (*=hashed features)

Table 3 documents the efficiency and accuracy
of several algorithms on the classification task,
without extensive parameter selection. The Ridge
(Rifkin and Lippert, 2007) and Naive Bayes clas-
sifiers would have outperformed the best submis-

sion of the 2016 competition (0.894) with scores
of respectively 0.895 and 0.902, while the Passive-
Aggressive (Crammer et al., 2006) and Linear
Support Vector (Fan et al., 2008) classifiers would
have been ranked second with a score of 0.892.
It is noteworthy that the Naive Bayes classifier
would still have performed best without taking the
development data into consideration (accuracy of
0.898).

3.2 Data from the fourth edition

As expected, the method performed well on the
fourth shared task, as it reached the 3rd place out
of 11 teams (with an accuracy of 0.925 and a
weighted F1 of 0.925). In terms of statistical sig-
nificance, it was ranked first (among others) by the
organizers. The official baseline/Bayesline used
a comparable algorithm with lower results (accu-
racy and weighted F1 of 0.889).

The confusion matrix in Figure 1 details the re-
sults. Three-way classifications between the vari-
ants of Spanish and within the Bosnian-Croatian-
Serbian complex still leave room for improve-
ment, although Peruvian Spanish does not seem
to be as noisy as the Mexican Spanish data from
the last edition. The F-score on variants of Persian
is fairly high (0.960) which proves that the method
can be applied to a wide range of alphabets.

The same method has been tested without pre-
processing on new data consisting in the identi-
fication of Swiss German dialects (GDI shared
task). The low result (second to last with an ac-
curacy of 0.627 and a weighted F1 of 0.606) can
be explained by the lack of adaptation, most no-
tably to the presence of much shorter instances.
The classification of the Lucerne variant is partic-
ularly problematic, it calls for tailored solutions.

4 Conclusion

The present contribution revolves around a con-
trastive subword n-gram model which has been
tested in the Discriminating between Similar Lan-
guages shared task. It features the following char-
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Type Training (s) Accuracy F1-weighted
Naive Bayes 14 .902 .902
Bernoulli NB 16 .882 .883
Nearest Centroid/Rocchio 33 .759 .760
Stochastic Gradient Descent 464 .813 .813
Perceptron 764 .884 .884
Passive-Aggressive 947 .892 .892
Linear Support Vector Classifier 1269 .892 .892
Ridge Classifier 1364 .895 .895

Table 3: Comparison of several classifier types on the extracted feature vectors, ordered by ascending
training time (in seconds) on data from 2016. Classifiers used without extensive parameter tuning, linear
SVC and SGD with L2 penalty.
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Figure 1: Confusion matrix for DSL task (closed training, 2017 data)

acteristics: (1) the conversion of a collection of
preprocessed documents to a matrix of sparse tf-idf
features; (2) weighted character n-gram profiles;
(3) a multinomial Bayesian classifier, hence the
name “Bayesline”. Meaningful bag-of-n-grams
features can be used as a system in a straightfor-
ward way. In fact my method outperforms most of
the systems used in the DSL shared task.

Thus, I propose a new baseline and make the
necessary components available under an open
source licence.4 The Bayesline efficiency as well
as the difficulty to reach higher scores in open
training could be explained by artificial regular-

4https://github.com/adbar/vardial-experiments

ities in the test data. For instance, the results
for the Dari/Iranian Persian and Malay/Indonesian
pairs are striking, these clear distinctions do not re-
flect the known commonalities between these lan-
guage varieties. This could be an artifact of the
data, which feature standard language of a dif-
ferent nature than the continuum “on the field”,
that is between two countries as well as within
a single country. The conflict between in-vitro
and real-world language identification has already
been emphasized in the past (Baldwin and Lui,
2010); it calls for the inclusion of web texts (Bar-
baresi, 2016c) into the existing task reference.
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Abstract

We present a method to discriminate be-
tween texts written in either the Nether-
landic or the Flemish variant of the Dutch
language. The method draws on a feature
bundle representing text statistics, syn-
tactic features, and word n-grams. Text
statistics include average word length and
sentence length, while syntactic features
include ratios of function words and part-
of-speech n-grams. The effectiveness of
the classifier was measured by classify-
ing Dutch subtitles developed for either
Dutch or Flemish television. Several ma-
chine learning algorithms were compared
as well as feature combination methods
in order to find the optimal generalization
performance. A machine-learning meta
classifier based on AdaBoost attained the
best F-score of 0.92.

1 Introduction

Language identification, the task of automatically
determining the natural language used in a docu-
ment, is considered to be an important first step
for many applications. Automatically determin-
ing a document’s language can be a fairly easy
step in certain situations (McNamee, 2005). How-
ever, some bottlenecks have been identified which
leaves language identification unsolved as yet. It
has been argued and demonstrated that one of the
main bottlenecks is distinguishing between similar
languages (Tiedemann and Ljubešić, 2012). Lan-
guages that are closely related such as Croatian
and Serbian or Indonesian and Malay are very sim-
ilar in their spoken and their written forms, which
makes it difficult for automated systems to accu-
rately discriminate between them. Recently, some
advances have been achieved in the automated dis-

tinction between closely related languages, largely
due to the Discriminating between Similar Lan-
guages (DSL) shared task. In the DSL competi-
tions accuracies of over 95% have been reported,
mostly using character and word n-grams with
various classification algorithms.

Despite the fact that the accuracy of systems
discriminating between similar languages is in-
creasing, there are still challenges when it comes
to discriminating between varieties of the same
language, e.g. Spanish from South America or
Spain. It has been claimed that language variety
identification is even more difficult than similar
language identification (Goutte et al., 2016). Re-
sults in the DSL competitions support this claim:
only one system was able to score slightly above
the 50% baseline when distinguishing between
British and American English (Zampieri et al.,
2014).

This work is related to recent studies that ap-
plied text classification methods to discriminate
between written texts in different language va-
rieties or dialects (Lui and Cook, 2013; Maier
and Gómez-Rodriguez, 2014; Malmasi and Dras,
2015; Malmasi et al., 2015; Zampieri et al., 2016).
The aim of the current work is to explore lesser
studied techniques and features that could be ben-
eficial to the accuracy of language variety classi-
fiers. As a case study, classifiers were built to dis-
criminate between Netherlandic Dutch and Flem-
ish Dutch subtitles.

2 Related work

2.1 Language varieties

Research on varieties of the same language is
scarce and the existing body of research on the
topic shows that discriminating between language
varieties is an even bigger challenge compared to
similar languages. Six systems were submitted
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in the 2014 DSL shared task to discriminate be-
tween British English and American English, and
only one of those systems scored above the 50%
baseline (Zampieri et al., 2014). However, it is
possible that the poor results attained in the 2014
DSL shared task were due to problems in the data
set. Some classifiers have been built outside of the
DSL shared task with higher accuracy scores. Lui
and Cook (2013) built a classifier to distinguish
the British, Canadian, and Australian English lan-
guage varieties and tested this classifier on various
corpora. The obtained F-scores varied greatly be-
tween the corpora: an F-score of over .9 was ob-
tained in the best case, but scores were below the
baseline in the worst cases.

Not only English language varieties have been
studied. Maier and Gómez-Rodriguez (2014)
developed a classifier to discriminate between
five Spanish languages with tweets (short mes-
sages posted on the Twitter.com social media plat-
form) as input. They achieved an average F-
score of 0.34, which is somewhat above base-
line, though not particularly high. Furthermore,
Malmasi and Dras (2015) distinguished Dari and
Farsi news texts with an accuracy of 96%. Mal-
masi et al. (2015) developed a classifier for mul-
tiple Arabic dialects. They achieved accuracy
scores as high as 94%, but the results were rel-
atively worse when they classified more closely-
related dialects such as Palestinian and Jordanian
(76%). Similarly, Zampieri et al. (2016) ventured
to classify Portuguese news articles published in
Brazil, Macau, and Portugal with differing accu-
racy scores. Macau versus European Portuguese
was somewhat difficult (74%), while classifying
Brazilian versus Macau Portuguese and Brazilian
versus European Portuguese turned out to be sub-
stantially easier (at accuracies of 90% and 88%,
respectively).

Classifiers that distinguish Dutch language vari-
eties have also been developed. Trieschnigg et al.
(2012) developed a classifier to discriminate be-
tween folktales written in Middle Dutch (the pre-
decessor of modern Dutch, used in the Nether-
lands between 1200 and 1500) and 17th century
Dutch, 20th century Frisian, and a number of 20th
century Dutch dialects using the Dutch folktale
database as a corpus. The performance of the clas-
sifier varied greatly per language variety: near-
perfect to very good identification was achieved
for some varieties (e.g. Frisian was identified with

an F-score of 0.99; Liemers 0.88; Gronings 0.83),
while classification was very difficult for other va-
rieties (e.g. Overijssels at an F-score of 0.09; Wa-
terlands 0.16; Drents 0.31). Tulkens et al. (2016)
used corpora containing texts from mixed media
(newspapers, Wikipedia, internet, social media) to
build a Dutch language variety classifier based on
provinces, and attained a relatively high score on
some language varieties (up to 85% accuracy for
Brabantian as spoken in the Belgian province of
Antwerp), but they also report scores of 0% for
six language varieties and a very low score on two
others.

2.2 Features

While some exceptions exist (Tulkens et al.,
2016), most of the current research in similar
languages and language varieties use the same
types of features, namely n-gram-based features.
The results of the DSL shared task have shown
that these approaches generally perform the best.
However, scholars have argued that adding cer-
tain underused feature types could help improve
the accuracy of state-of-the-art classifiers (Cimino
et al., 2013). With the present study we inves-
tigate this claim by using two types of features
in addition to word n-grams, namely text statis-
tics (e.g. average word length, ratio of long/short
words) and syntactic features (grammar-level fea-
tures, e.g. PoS-tags).

Syntactic features have been used previously,
though scarcely, in the context of language identi-
fication. Lui and Cook (2013) and Lui et al. (2014)
used PoS n-grams as features for a classifier to
make a distinction between English language va-
rieties, while Zampieri et al. (2013) used PoS n-
grams to classify Spanish language varieties. All
three studies report that using POS n-grams leads
to above-baseline results. This lends support to
the notion that systematic differences between lan-
guage varieties can be found using syntactic fea-
tures.

The usage of text statistics for the identifica-
tion of languages is even more uncommon com-
pared to syntactic features. However, text statistics
have been successfully used for similar research
domains. One of these domains is native language
identification (Jarvis et al., 2013; Cimino et al.,
2013).

The successful implementation of text statistics
features in this research domain implies that there
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Language variant Documents Tokens
Netherlandic Dutch 77,430 (70%) 100,527,052 (68%)
Flemish Dutch 32,848 (30%) 47,888,260 (32%)
Total 110.278 148.415.312

Table 1: Document and token counts per language variety.

are systematic differences in stylistic choices be-
tween languages. A study by Windisch and Csink
(2005) is one of the few studies using text statis-
tics features for language identification. The au-
thors found that these features can indeed be used
for language identification. However, it should be
noted that they studied dissimilar languages. The
effectiveness of text statistics features for similar
languages, or language variety identification re-
mains an understudied subject.

2.3 Current work

The current study will explore lesser used tech-
niques in the domain of language variety identi-
fication to see whether the current state-of-the art
accuracy can be improved upon. This is done by
using commonly used word n-grams together with
the more uncommon lexical and syntactic features.
Various approaches for combining these different
feature types will be explored to investigate the
added benefit of an ensemble classifier.

The current study focuses on the discrimina-
tion of Netherlandic Dutch (i.e. Dutch as spo-
ken and written in the Netherlands) vs. Flem-
ish Dutch (i.e. Dutch as spoken and written in
the Dutch-speaking regions of Belgium). Speak-
ers of Netherlandic Dutch and Flemish Dutch ad-
here to the same standard language, but, even so,
linguists have stated that there are differences be-
tween Netherlandic and Flemish Dutch on every
linguistic level, among which the lexical and syn-
tactical level (De Caluwe, 2002). These differ-
ences tend to be subtle. Some examples of dif-
ferences found between the two language vari-
eties are word choice preference (e.g.orange in
Netherlandic Dutch: sinaasappel, Flemish Dutch:
appelsien), plural preference (e.g. teachers in
Netherlandic Dutch: leraren, Flemish Dutch: ler-
aars), and the order in which a particle and finite
verb are preferably used (e.g. I don’t believe he
has come in Netherlandic Dutch: Ik geloof niet
dat hij is gekomen, Flemish Dutch: Ik geloof niet
dat hij gekomen is) (Schuurman et al., 2003).

Dutch language varieties have thus far remained

a scarcely studied topic of research, although re-
searchers have shown an interest in it. A limita-
tion to the study of these varieties has always been
the lack of available data (Zampieri et al., 2014).
However, the recent introduction of the SUBTIEL
corpus offers a usable corpus for such research.
The feasibility of using this corpus is further ex-
plored in this work.

3 Method

3.1 Collection of the corpus

The SUBTIEL corpus contains over 500,000 sub-
titles in Dutch and English. These subtitles were
produced by a professional studio operating in
several countries, among which The Netherlands
and Belgium. The procedure for these countries
is mostly the same: a single translator provides
the subtitles for a series episode or a movie. The
main focus of the studio are movies and television
shows, and to a smaller degree documentaries.

After filtering out the English subtitles and the
Dutch subtitles without information on whether
they were intended for Dutch or Flemish televi-
sion, 110.278 documents remain; cf. Table 1. A
document in this context is the subtitles for one
movie, or one episode of a television show. For the
subtitles used in this study, a distinction is made
between subtitles that were shown on a Dutch or a
Flemish television network. In comparison to sim-
ilar work (Trieschnigg et al., 2012; Tulkens et al.,
2016), the number of documents and tokens that is
used in the current study is relatively large.

Using an automated mining tool, the subtitles
in the corpus were scanned for a match in the In-
ternet Movie Database (IMDb)1, which provides
additional information about the show or movie
(e.g. genre, year, actors). The main interest was
genre, since a vastly different genre distribution
per language variety could have an impact on clas-
sification accuracy. An IMDb match was found
for roughly half of the subtitles. The genre dis-
tribution for these matches did show minor dif-

1http://www.imdb.com
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Genre Netherlandic Flemish
Dutch Dutch

Drama 21.14% 25.11%
Comedy 14.51% 17.96%
Reality-TV 11.31% 5.63%
Crime 7.11% 9.40%
Action 5.52% 5.94%
Mystery 5.40% 4.95%
Documentary 5.88% 2.80%
Romance 5.56% 2.80%
Adventure 3.44% 3.33%
Family 2.87% 3.66%
Subtotal 83.15% 81.16%

Table 2: Distribution of the ten most frequent genres in the SUBTIEL corpus.

ferences between the language varieties, as can
be seen in Table 2 For instance, the Netherlandic
Dutch part of the corpus contained more subti-
tles for Reality-TV, Documentaries and Romance,
while the Flemish Dutch part of the corpus con-
tained more Drama and Comedy. Overall, the dis-
tribution of genres can be said to be reasonably
similar.

Various types of information from the text were
extracted as features to feed machine learning
classifiers; cf. Table 3. Features were adopted
based on previous work by Abbasi and Chen
(2008) and Huang et al. (2010). The extracted fea-
tures can be clustered into three groups: text statis-
tics, syntactic features, and content-specific fea-
tures. Text statistics features are based on counts
at various levels (e.g. sentence/word length and
word length distributions); syntactic features rep-
resent aspects of the syntactic patterns present in
the data (e.g. the number of function words, punc-
tuation and part-of-speech tag n-grams); content-
specific features are any characters, character n-
grams, words, or word n-grams that may be in-
dicative of one particular language variant.

3.2 Classification methods

The five machine learning algorithms used in this
study are AdaBoost with a decision tree core,
C4.5, Naive Bayes, Random Forest Classifier, and
Linear-kernel SVM. These types of algorithms
have been used frequently for Language Identifi-
cation tasks. SVM algorithms (Goutte et al., 2014;
Malmasi and Dras, 2015; Jauhiainen et al., 2016)
and Naive Bayes (King et al., 2014; Franco-Penya
and Sanchez, 2016) are amongst the most popu-

lar algorithms. Decision tree approaches, which
C4.5, AdaBoost, and Random Forest Classifier are
examples of, have been used as well, but less fre-
quently (Zampieri, 2013; Malmasi et al., 2016).
The machine learning algorithms were deployed
using the scikit-learn library (Pedregosa et al.,
2011).

One of the challenges in the current study is
to find an effective method of selecting the best
combination of feature categories. One study
on language variety classification has shown that
an effective feature combination approach could
increase classification accuracy (Malmasi et al.,
2015). Three combination approaches are tested
in the current study, namely the super-vector ap-
proach, two rule-based meta-classifiers, and one
algorithm-based meta-classifier:

Super-vector All features, regardless of feature
category, are merged into a single vector to
predict the language variety.

Sum-rule meta-classifier The probabilistic out-
puts of the most accurate text statistics,
syntactic, and content-specific classifier are
summed, and the language variety with the
highest sum is chosen.

Product-rule meta-classifier The product is cal-
culated for the probabilistic outputs of the
most accurate lexical, syntactic and content-
specific classifier, and the language variety
with the highest product is chosen.

Algorithm-based meta-classifier The proba-
bilistic outputs of the most accurate lexical,
syntactic and content-specific classifier are
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Group Category Description Number
Lexical Average words per minute 1

Average characters per minute 1
Average word length 1
Average sentence length in terms of words 1
Average sentence length in terms of charac-
ters

1

Type/token ratio Ratio of different words to the total number
of words

1

Hapax legomena ratio Ratio of once-occurring words to the total
number of words

1

Dis legomena ratio Ratio of twice-occurring words to the total
number of words

1

Short words ratio Words < 4 characters to the total number of
words

1

Long words ratio Words > 6 characters to the total number of
words

1

Word-length distribution Ratio of words in length of 1–20 20
Syntactic Function words ratio Ratio of function words (e.g. dat, de, ik) to

the total number of words
1

Descriptive words to nominal words ratio Adjectives and adverbs to the total number
of nouns

1

Personal pronouns ratio Ratio of personal pronouns (e.g. ik, jou,
mij) to the total number of words

1

Question words ratio Proportion of wh-determiners, wh-
pronouns, and wh-adverbs (e.g. wie, wat,
waar) to the total number of words

1

Question mark ratio Proportion of question marks to the total
number of end of sentence punctuation

1

Exclamation mark ratio Proportion of exclamation marks to the total
number of end of sentence punctuation

1

Part-of-speech tag n-grams Part-of-speech tag n-grams (e.g. NP, VP) Varies
Content-specific Word n-grams Bag-of-word n-grams (e.g. lat, erg hoog) Varies

Table 3: Features adopted in our experiments.

used to train a higher level classifier, which
is subsequently used to predict the language
variety.

The algorithms tested as algorithm-based meta-
classifier are the same algorithms that are used for
the individual feature categories (AdaBoost, C4.5,
Naive Bayes, Random Forest Classifier, and Lin-
ear SVM).

3.3 Processing and performance increases

Several preprocessing steps were undertaken. The
goal for the content-specific classifier was to de-
crease the number of features, thus increasing
processing speed, while retaining the most use-
ful information. This was done by removing stop
words, number strings and punctuation from the
corpus: tokens that appear frequently, while car-
rying little meaning. Furthermore, words were
normalized using lemmatization2 to decrease the
number of types for the content-specific features.
Finally, words that did not appear more than 10

2Lemmatization was performed with Frog,
https://languagemachines.github.io/frog/

times in the corpus were removed.

To get the syntactic information necessary for
the syntactic features, Pattern (Smedt and Daele-
mans, 2012) was applied to the texts, obtaining the
part-of-speech tags. Part-of-speech tag n-grams
that appeared less than 10 times in the corpus were
removed.

After the frequency-based thresholding selec-
tion, another feature selection step was performed
based on the chi-square weights of all features.
Ranking the features and starting from the features
with the largest weight, the subset of features was
selected at which a saturation point was reached
in performance on held-out data. No more than
10% of the features in the syntactic and content-
free category turned out to be selected.

Besides steps to increase processing speed,
steps to increase classification accuracy were also
undertaken: hyperparameter optimization was ap-
plied to the algorithms. The optimal parameters
were found by using 30-step Bayesian optimiza-
tion on a random sample of 10% of the corpus.
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Method Algorithm # of features Precision Recall F-score Accuracy
Lexical only AdaBoost 5 0.73 0.98 0.83 0.73
Syntactic only AdaBoost 392 0.83 0.92 0.87 0.81
Content-specific only Linear SVM 30,514 0.87 0.95 0.91 0.87
Lexical/Syntactic AdaBoost 407 0.83 0.92 0.87 0.81
Lexical/Content-specific AdaBoost 76.288 0.87 0.95 0.91 0.87
Syntactic/Content-specific AdaBoost 76.325 0.87 0.95 0.91 0.86
Supervector AdaBoost 76,325 0.86 0.94 0.90 0.86
Meta classifier (add) - - 0.87 0.96 0.91 0.87
Meta classifier (product) - - 0.87 0.96 0.91 0.87
Meta classifier (ML) AdaBoost 6 0.88 0.96 0.92 0.88

Table 4: Classification performance.

4 Results

Table 4 lists the results obtained when classify-
ing the Netherlandic Dutch and Flemish Dutch
language varieties. Evaluation was done using
10-fold cross-validation and with precision, re-
call, F-score (with β = 1) and accuracy as met-
rics. Results range from a 73% accuracy score
using lexical features only to 88% accuracy us-
ing an algorithm-based meta classifier. Thus, sim-
ilar to Malmasi et al. (2015), the results of this
study show that the best results are obtained when
combining different types of features, using an
algorithm-based meta-classifier.

AdaBoost appeared to be the most effective al-
gorithm for most feature categories, except for the
content-specific feature type, where the Linear-
kernel SVM algorithm was the most accurate al-
gorithm. This is in line with most DSL Shared
Task entries, where the most common and accu-
rate classifiers are SVM classifiers with content-
specific features.

The recall values turn out to be particularly
high, most of them above 0.95, while the preci-
sion scores are slightly lower: most of the clas-
sifiers obtained a score of around 0.85 for preci-
sion. This is further illustrated in Table 5, where
a confusion matrix for the algorithm-based meta-
classifier is shown: the classifier that obtained the
highest performance.

The confusion matrix shows that Flemish Dutch
documents were markedly harder to classify com-
pared to Netherlandic Dutch documents. Nearly
one third, 10,474 of the 32,848 Flemish docu-
ments, were incorrectly classified as Netherlandic
Dutch, while a substantially smaller proportion of
Netherlandic Dutch documents were incorrectly

Document Language variant
language Flemish Netherlandic
Flemish 22,374 10,474
Netherlandic 3208 74,222

Table 5: Confusion matrix for the algorithm-based
meta-classifier.

classified as Flemish Dutch (3208 out of 77,430).
This may be partly explained by the fact that the
number of Flemish Dutch documents is about half
the number of Netherlandic Dutch documents in
the SUBTIEL corpus.

4.1 Important features
The most important features per feature category
are presented in Table 6. These features could be
an indication of fundamental differences between
the Netherlandic Dutch and Flemish Dutch lan-
guage varieties and may therefore be useful from
a linguistic perspective. The selection of feature
importance is based on Random Forest Classifica-
tion.

At the text statistics level, it can be observed
that the ratio of words, especially shorter words,
highlights important differences between Nether-
landic Dutch and Flemish Dutch. There is a higher
ratio of 1-, 2- and 5-letter words in the Flem-
ish subtitles, while an average Netherlandic Dutch
document contains more 3-letter words compared
to Flemish Dutch documents, surprisingly. Ad-
ditionally, sentences in Netherlandic Dutch subti-
tles contain more characters and words on average,
and the ratio of words and characters per minute is
higher in Netherlandic Dutch.

At the syntactic level, singular proper nouns
(NNP) seem to be an important part-of-speech
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Lexical syntactic Content-specific
Ratio of 1-letter words NNP NN nou
Ratio of 3-letter words NNP PRP$ zandloper
Ratio of 5-letter words NN FW plots
Average amount of sentences in terms of words , NNP jij
Average amount of sentences in terms of characters Personal pronouns ratio hen
Ratio of 2-letter words . PRP$ amuseren
Long words ratio CD orde
Words per minute VB vinden
Characters per minute Function words ratio lief helpen
Short words ratio , ’t

Table 6: Top 10 most important features per feature category.

category to discriminate Netherlandic Dutch from
Flemish Dutch subtitles. Flemish subtitles have a
higher ratio of sequences of singular proper nouns
and singular nouns (NNP NN), singular proper
nouns and possessive pronouns (NNP PRP$), and
commas and singular proper nouns (, NNP). Fur-
thermore, Flemish subtitles seem to contain a
higher degree of singular nouns and foreign words
(NN FW), periods and possessive pronouns (.
PRP$), and commas (,), while Netherlandic Dutch
subtitles contain more personal pronouns, cardinal
numbers, and function words.

Some of the most important content-specific
features indicate typical lexical differences be-
tween language varieties. For instance, nou has
been previously noted to be a word that is not used
as much in Flemish as compared to Netherlandic
Dutch,3 and plots is noted to be a word used more
in Flemish.4 No such categorical status is known
for the other important content-specific features,
although amuseren and lief helpen may arguably
be associated more with Flemish Dutch. Zand-
loper, jij, hen, and orde also appeared more fre-
quently in Flemish subtitles compared to Nether-
landic Dutch, while vinden and 't appeared more
in Netherlandic Dutch subtitles. The relative im-
portance of some of these features in the current
task could be due to hidden artifacts of the corpus.

5 Conclusion and future work

In this paper we presented language identification
experiments carried out with five machine learning

3http://www.taaltelefoon.be/
standaardtaal-verschillen-tussen-belgie-
en-nederland

4http://taaladvies.net/taal/advies/
vraag/665/plotsklaps_eensklaps_plots_
plotseling/

techniques (AdaBoost, C4.5, Naive Bayes, Ran-
dom Forest Classifier, and Linear SVM), and three
feature categories (text statistics, syntactic fea-
tures, and content-specific features) focusing on
the Netherlandic and Flemish variants of Dutch.
Subtitles collected in the SUBTIEL corpus were
used to train and test the classifiers on. With
the exception of a few studies (Lui and Cook,
2013; Lui et al., 2014; Windisch and Csink, 2005;
Zampieri et al., 2013), text statistics and syntac-
tic features have rarely been explored in language
identification tasks. Additionally, there are not
many classification studies focusing on Dutch lan-
guage varieties, exceptions being Trieschnigg et
al. (2012) and Tulkens et al. (2016).

The highest accuracy score was obtained when
using a meta-classifier approach with a machine-
learning algorithm, AdaBoost. In this approach
the probabilistic scores obtained from classifiers
trained exclusively on text statistics features, syn-
tactic features, and content-free classifiers respec-
tively were used as input for training a higher-level
classifier. This result is in agreement with the find-
ings of Malmasi et al. (2015), where the best re-
sults were also obtained using a meta classifier.
This result suggests that a meta-classifier approach
is a viable approach to language (variety) iden-
tification, and also supports the claim by Cimino
et al. (2013) that underused feature types such as
text statistics and syntactic features could improve
classification accuracy. Furthermore, most of the
classifiers performed best using an AdaBoost al-
gorithm with decision tree core.

The accuracy, precision, recall and F-measure
scores obtained with the algorithm-based meta-
classifier are substantially higher than scores ob-
tained with previous Dutch language variety clas-
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sifiers. Trieschnigg et al. (2012) obtained an F-
score of 0.80 versus the F-score of 0.92 in this
study, and Tulkens et al. (2016) achieved an av-
erage accuracy of around 15% versus 88% in
this study. Furthermore, the results seem to be
on par with state-of-the-art methods: Zampieri et
al. (2016) obtained accuracy scores between 74%
and 90% in the binary classification of newspaper
texts in variants of Portuguese, and Malmasi et al.
(2015) obtained accuracy scores between 76% and
94% for binary classification of Arabic language
varieties.

However, it is important to note that direct com-
parison between the current work and previous
language variety identification studies is likely to
be misleading. In this study, the classification
of language varieties was based on the country
the subtitle was developed for. It was not based
on the country the subtitle writer was originally
from, since this information was not known. Fur-
thermore, Zampieri et al. (2016) and Malmasi et
al. (2015) have shown that classification accuracy
could be markedly different depending on how
closely related the language varieties are, Lui and
Cook (2013) have shown that different corpora
could result in different accuracy scores, and the
amount of language varieties that a classifier dis-
criminates between has an effect on the accuracy
as well. Thus, the difference between this study
and the studies of Trieschnigg et al. (2012) and
Tulkens et al. (2016) could be a matter of different
corpora, corpus size, and the fact that the classifier
in this study discriminated between two language
varieties while the classifiers of Trieschnigg et al.
(2012) and Tulkens et al. (2016) between sixteen
and ten varieties, respectively.

Therefore, it would be interesting to see how
the current approach competes against other ap-
proaches using the same corpus. When compet-
ing in such a task, it would be interesting to test
whether the performance of the current approach
could be further increased, for instance by in-
cluding character-level features in the lexical and
content-specific feature categories, since all the
features in the current work reside at the word-
level. Windisch and Csink (2005) have shown
that character-level lexical features (word end-
ings, character ratios, consonant congregations)
are useful features for the classification of differ-
ent languages, and character n-grams are one of
the most popular features for language classifica-

tion (Zampieri, 2013). Furthermore, partial repli-
cation of the current study could be interesting
with modifications to the current corpus and al-
gorithms. Accuracy scores could change if the
Netherlandic Dutch and Flemish Dutch data are
balanced and if proper names are removed from
the corpus (Zampieri et al., 2015). There are also
different types of meta-classifiers (e.g. a voting-
based meta-classifier) and algorithms (e.g. XG-
Boost, Multilayer Perceptron) that were not tested
in the current study and that might improve clas-
sification accuracy, which is worth further explo-
ration.

The ranked list of most useful features found in
this work could be a basis for future linguistic re-
search on differences between Netherlandic Dutch
(as spoken mainly in the Netherlands) and Flem-
ish Dutch (as spoken mainly in Flanders). The
findings for the lexical features suggest a differ-
ence in text difficulty between Netherlandic Dutch
and Flemish Dutch texts: Flemish subtitles con-
tain a higher ratio of short words, shorter sentences
and generally less text. We would like to stress
that these results could be do to differences in the
SUBTIEL corpus. More research would be nec-
essary to investigate whether such a stylistic dif-
ference between Netherlandic Dutch and Flemish
Dutch exists outside of the SUBTIEL corpus.
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Ljubešić, and Jörg Tiedemann, editors, Proceedings
of the First Workshop on Applying NLP Tools to Sim-
ilar Languages, Varieties and Dialects, pages 129–
138, Stroudsburg, PA, August. Association for Com-
putational Linguistics.

Wolfgang Maier and Carlos Gómez-Rodriguez. 2014.
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warianti, editors, Proceedings of the Fourteenth In-
ternational Conference of the Pacific Association for
Computational Linguistics, pages 35–53, Singapore,
May. Springer.

Shervin Malmasi, Marcos Zampieri, Nikola Ljubešić,
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Abstract

We present a machine learning approach
for the Arabic Dialect Identification (ADI)
and the German Dialect Identification
(GDI) Closed Shared Tasks of the DSL
2017 Challenge. The proposed approach
combines several kernels using multiple
kernel learning. While most of our ker-
nels are based on character p-grams (also
known as n-grams) extracted from speech
transcripts, we also use a kernel based
on i-vectors, a low-dimensional represen-
tation of audio recordings, provided only
for the Arabic data. In the learning stage,
we independently employ Kernel Discrim-
inant Analysis (KDA) and Kernel Ridge
Regression (KRR). Our approach is shal-
low and simple, but the empirical results
obtained in the shared tasks prove that it
achieves very good results. Indeed, we
ranked on the first place in the ADI Shared
Task with a weighted F1 score of 76.32%
(4.62% above the second place) and on the
fifth place in the GDI Shared Task with a
weighted F1 score of 63.67% (2.57% be-
low the first place).

1 Introduction

The recent 2016 Challenge on Discriminating be-
tween Similar Languages (DSL) (Malmasi et al.,
2016) shows that dialect identification is a chal-
lenging NLP task, actively studied by researchers
in nowadays. For example, a state-of-the-art Ara-
bic dialect identification system achieves just over
50% (Ionescu and Popescu, 2016b; Malmasi and
Zampieri, 2016), in a 5-way classification setting.
In this context, we present a method based on
learning with multiple kernels, that we designed
for the Arabic Dialect Identification (ADI) and

the German Dialect Identification (GDI) Shared
Tasks of the DSL 2017 Challenge (Zampieri et
al., 2017). In the ADI Shared Task, the partici-
pants had to discriminate between Modern Stan-
dard Arabic (MSA) and four Arabic dialects, in a
5-way classification setting. A number of 6 teams
have submitted their results on the test set, and our
team (UnibucKernel) ranked on the first place with
an accuracy of 76.27% and a weighted F1 score
of 76.32%. In the GDI Shared Task, the partic-
ipants had to discriminate between four German
dialects, in a 4-way classification setting. A num-
ber of 10 teams have submitted their results, and
our team ranked on the fifth place with an accuracy
of 66.36% and a weighted F1 score of 63.67%.

Our best scoring system in both shared tasks
combines several kernels using multiple kernel
learning. The first kernel that we considered is the
p-grams presence bits kernel1, which takes into ac-
count only the presence of p-grams instead of their
frequency. The second kernel is the (histogram)
intersection string kernel2, which was first used in
a text mining task by Ionescu et al. (2014). The
third kernel is derrived from Local Rank Distance
(LRD)3, a distance measure that was first intro-
duced in computational biology (Ionescu, 2013;
Dinu et al., 2014), but it has also shown its ap-
plication in NLP (Popescu and Ionescu, 2013;
Ionescu, 2015). All these string kernels have
been previously used for Arabic dialect identi-
fication by Ionescu and Popescu (2016b), and
they obtained very good results, taking the sec-
ond place in the ADI Shared Task of the DSL
2016 Challenge (Malmasi et al., 2016). While

1We computed the p-grams presence bits kernel using the
code available at http://string-kernels.herokuapp.com.

2We computed the intersection string kernel using the
code available at http://string-kernels.herokuapp.com.

3We computed the Local Rank Distance using the code
available at http://lrd.herokuapp.com.
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three of our kernels are based on character p-grams
from speech transcrips, we also use an RBF ker-
nel (Shawe-Taylor and Cristianini, 2004) based on
i-vectors (Ali et al., 2016), a low-dimensional rep-
resentation of audio recordings, available only for
the Arabic data. To the best of our knowledge,
none of the string kernels have been previously
combined with a kernel based on i-vectors or used
for German dialect identification.

We considered two kernel classifiers (Shawe-
Taylor and Cristianini, 2004) for the learning task,
namely Kernel Ridge Regression (KRR) and Ker-
nel Discriminant Analysis (KDA). In a set of pre-
liminary experiments performed on the GDI train-
ing set, we found that KDA gives slightly better
results than KRR. On the other hand, KRR seems
to yield a better performance on the ADI training
and development sets. In the end, we decided to
submit results using both classifiers. However, our
best scoring system in both shared tasks employs
Kernel Ridge Regression (KRR) in the learning
stage. Before submitting our results, we have also
tuned our string kernels for the task. First of all,
we tried out p-grams of various lengths, including
blended variants of string kernels as well. Second
of all, we have evaluated the individual kernels
and various kernel combinations. The empirical
results indicate that combining kernels can help to
improve the accuracy by at least 1%. When we
added the kernel base on i-vectors into the mix,
we found that it can further improve the perfor-
mance, by nearly 5%. All these choices played a
significant role in obtaining the first place in the
final ranking of the ADI Shared Task.

The paper is organized as follows. Work related
to Arabic and German dialect identification and
to methods based on string kernels is presented in
Section 2. Section 3 presents the kernels that we
used in our approach. The learning methods used
in the experiments are described in Section 4. De-
tails about the experiments on Arabic and German
dialect identification are provided in Sections 5
and 6, respectively. Finally, we draw our conclu-
sion in Section 7.

2 Related Work

2.1 Arabic Dialect Identification

Arabic dialect identification is a relatively new
NLP task with only a handful of works to ad-
dress it (Biadsy et al., 2009; Zaidan and Callison-
Burch, 2011; Elfardy and Diab, 2013; Darwish et

al., 2014; Zaidan and Callison-Burch, 2014; Mal-
masi et al., 2015). Although it did not received
too much attention, the task is very important for
Arabic NLP tools, as most of these tools have
only been design for Modern Standard Arabic. Bi-
adsy et al. (2009) describe a phonotactic approach
that automatically identifies the Arabic dialect of
a speaker given a sample of speech. While Bi-
adsy et al. (2009) focus on spoken Arabic dialect
identification, others have tried to identify the Ara-
bic dialect of given texts (Zaidan and Callison-
Burch, 2011; Elfardy and Diab, 2013; Darwish
et al., 2014; Malmasi et al., 2015). Zaidan and
Callison-Burch (2011) introduce the Arabic On-
line Commentary (AOC) data set of 108K la-
beled sentences, 41% of them having dialectal
content. They employ a language model for au-
tomatic dialect identification on their collected
data. A supervised approach for sentence-level
dialect identification between Egyptian and MSA
is proposed by Elfardy and Diab (2013). Their
system outperforms the approach presented by
Zaidan and Callison-Burch (2011) on the same
data set. Zaidan and Callison-Burch (2014) ex-
tend their previous work (Zaidan and Callison-
Burch, 2011) and conduct several ADI experi-
ments using word and character p-grams. Differ-
ent from most of the previous work, Darwish et
al. (2014) have found that word unigram models
do not generalize well to unseen topics. They sug-
gest that lexical, morphological and phonological
features can capture more relevant information for
discriminating dialects. As the AOC corpus is not
controlled for topic bias, Malmasi et al. (2015)
also state that the models trained on this corpus
may not generalize to other data as they implic-
itly capture topical cues. They perform ADI ex-
periments on the Multidialectal Parallel Corpus of
Arabic (MPCA) (Bouamor et al., 2014) using var-
ious word and character p-grams models in order
to assess the influence of topic bias. Interestingly,
Malmasi et al. (2015) find that character p-grams
are “in most scenarios the best single feature for
this task”, even in a cross-corpus setting. Their
findings are consistent with the results of Ionescu
and Popescu (2016b) in the ADI Shared Task of
the DSL 2016 Challenge (Malmasi et al., 2016),
as they ranked on the second place using solely
character p-grams from Automatic Speech Recog-
nition (ASR) transcripts. However, the 2017 ADI
Shared Task data set (Ali et al., 2016) contains
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the original audio files and some low-level au-
dio features, called i-vectors, along with the ASR
transcripts of Arabic speech collected from the
Broadcast News domain. Our experiments indi-
cate that the audio features produce a much bet-
ter performance, probably because there are many
ASR errors (perhaps more in the dialectal speech
segments) that make Arabic dialect identification
from ASR transcripts much more difficult.

2.2 German Dialect Identification
German dialect identification is even less stud-
ied than Arabic dialect identification. Scherrer
and Rambow (2010) describe a system for writ-
ten dialect identification based on an automati-
cally generated Swiss German lexicon that asso-
ciates word forms with their geographical exten-
sions. At test time, they split a sentence into words
and look up their geographical extensions in the
lexicon. Hollenstein and Aepli (2015) present a
Swiss German dialect identification system based
on character trigrams. They train a trigram lan-
guage model for each dialect and score each test
sentence against every model. The predicted di-
alect is chosen based on the lowest perplexity. Al-
though Samardzic et al. (2016) present a corpus
that can be used for GDI, they do not deal with
this task in their paper. Nonetheless, their corpus
was used to evaluate the participants in the GDI
Shared Task of the DSL 2017 Challenge.

2.3 String Kernels
In recent years, methods of handling text at
the character level have demonstrated impres-
sive performance levels in various text analysis
tasks (Lodhi et al., 2002; Sanderson and Guenter,
2006; Kate and Mooney, 2006; Grozea et al.,
2009; Popescu, 2011; Escalante et al., 2011;
Popescu and Grozea, 2012; Ionescu et al., 2014;
Ionescu et al., 2016). String kernels are a com-
mon form of using information at the character
level. They are a particular case of the more gen-
eral convolution kernels (Haussler, 1999). Lodhi
et al. (2002) used string kernels for document cat-
egorization with very good results. String kernels
were also successfully used in authorship identi-
fication (Sanderson and Guenter, 2006; Popescu
and Grozea, 2012). For example, the system de-
scribed by Popescu and Grozea (2012) ranked first
in most problems and overall in the PAN 2012
Traditional Authorship Attribution tasks. More
recently, various blended string kernels reached

state-of-the-art accuracy rates for native language
identification (Ionescu et al., 2016) and Arabic di-
alect identification (Ionescu and Popescu, 2016b).

3 Kernels for Dialect Identification

3.1 String Kernels
The kernel function captures the intuitive notion
of similarity between objects in a specific domain
and can be any function defined on the respec-
tive domain that is symmetric and positive definite.
For strings, many such kernel functions exist with
various applications in computational biology and
computational linguistics (Shawe-Taylor and Cris-
tianini, 2004). String kernels embed the texts in a
very large feature space, given by all the substrings
of length p, and leave it to the learning algorithm
to select important features for the specific task,
by highly weighting these features.

Perhaps one of the most natural ways to mea-
sure the similarity of two strings is to count how
many substrings of length p the two strings have
in common. This gives rise to the p-spectrum ker-
nel. Formally, for two strings over an alphabet Σ,
s, t ∈ Σ∗, the p-spectrum kernel is defined as:

kp(s, t) =
∑
v∈Σp

numv(s) · numv(t),

where numv(s) is the number of occurrences of
string v as a substring in s.4 The feature map
defined by this kernel associates to each string a
vector of dimension |Σ|p containing the histogram
of frequencies of all its substrings of length p (p-
grams). A variant of this kernel can be obtained
if the embedding feature map is modified to as-
sociate to each string a vector of dimension |Σ|p
containing the presence bits (instead of frequen-
cies) of all its substrings of length p. Thus, the
character p-grams presence bits kernel is obtained:

k0/1
p (s, t) =

∑
v∈Σp

inv(s) · inv(t),

where inv(s) is 1 if string v occurs as a substring
in s, and 0 otherwise.

In computer vision, the (histogram) intersec-
tion kernel has successfully been used for ob-
ject class recognition from images (Maji et al.,
2008; Vedaldi and Zisserman, 2010). Ionescu et

4The notion of substring requires contiguity. Shawe-
Taylor and Cristianini (2004) discuss the ambiguity between
the terms substring and subsequence across different do-
mains: biology, computer science.
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al. (2014) have used the intersection kernel as a
kernel for strings. The intersection string kernel is
defined as follows:

k∩p (s, t) =
∑
v∈Σp

min{numv(s), numv(t)},

where numv(s) is the number of occurrences of
string v as a substring in s.

For the p-spectrum kernel, the frequency of a p-
gram has a very significant contribution to the ker-
nel, since it considers the product of such frequen-
cies. On the other hand, the frequency of a p-gram
is completely disregarded in the p-grams presence
bits kernel. The intersection kernel lies some-
where in the middle between the p-grams presence
bits kernel and p-spectrum kernel, in the sense that
the frequency of a p-gram has a moderate contri-
bution to the intersection kernel. In other words,
the intersection kernel assigns a high score to a p-
gram only if it has a high frequency in both strings,
since it considers the minimum of the two frequen-
cies. The p-spectrum kernel assigns a high score
even when the p-gram has a high frequency in only
one of the two strings. Thus, the intersection ker-
nel captures something more about the correlation
between the p-gram frequencies in the two strings.
Based on these comments, we decided to use only
the p-grams presence bits kernel and the intersec-
tion string kernel for ADI and GDI.

Data normalization helps to improve machine
learning performance for various applications.
Since the value range of raw data can have large
variation, classifier objective functions will not
work properly without normalization. After nor-
malization, each feature has an approximately
equal contribution to the similarity between two
samples. To obtain a normalized kernel matrix of
pairwise similarities between samples, each com-
ponent is divided by the square root of the product
of the two corresponding diagonal components:

K̂ij =
Kij√
Kii ·Kjj

.

To ensure a fair comparison of strings of differ-
ent lengths, normalized versions of the p-grams
presence bits kernel and the intersection kernel
are being used. Taking into account p-grams of
different lengths and summing up the correspond-
ing kernels, new kernels, termed blended spectrum
kernels, can be obtained. We have used various
blended spectrum kernels in the experiments in or-
der to find the best combination.

3.2 Kernel based on Local Rank Distance
Local Rank Distance (Ionescu, 2013) is a re-
cently introduced distance that measures the non-
alingment score between two strings. It has al-
ready shown promising results in computational
biology (Ionescu, 2013; Dinu et al., 2014) and na-
tive language identification (Popescu and Ionescu,
2013; Ionescu, 2015).

In order to describe LRD, we use the following
notations. Given a string x over an alphabet Σ, the
length of x is denoted by |x|. Strings are consid-
ered to be indexed starting from position 1, that
is x = x[1]x[2] · · ·x[|x|]. Moreover, x[i : j] de-
notes its substring x[i]x[i+ 1] · · ·x[j − 1]. Given
a fixed integer p ≥ 1, a threshold m ≥ 1, and
two strings x and y over Σ, the Local Rank Dis-
tance between x and y, denoted by ∆LRD(x, y),
is defined through the following algorithmic pro-
cess. For each position i in x (1 ≤ i ≤ |x|−p+1),
the algorithm searches for that position j in y (1 ≤
j ≤ |y|−p+1) such that x[i : i+p] = y[j : j+p]
and |i−j| is minimized. If j exists and |i−j| < m,
then the offset |i − j| is added to the Local Rank
Distance. Otherwise, the maximal offset m is
added to the Local Rank Distance. LRD is focused
on the local phenomenon, and tries to pair identi-
cal p-grams at a minimum offset. To ensure that
LRD is a (symmetric) distance function, the algo-
rithm also has to sum up the offsets obtained from
the above process by exchanging x and y. LRD
is formally defined in (Ionescu, 2013; Dinu et al.,
2014; Ionescu and Popescu, 2016a).

The search for matching p-grams is limited
within a window of fixed size. The size of this
window is determined by the maximum offset pa-
rameter m. We set m = 300 in our experi-
ments, which is larger than the maximum length
of the transcripts provided in both training sets. In
the experiments, the efficient algorithm of Ionescu
(2015) is used to compute LRD. However, LRD
needs to be used as a kernel function. We use the
RBF kernel (Shawe-Taylor and Cristianini, 2004)
to transform LRD into a similarity measure:

k̂LRD
p (s, t) = exp

(
−∆LRD(s, t)

2σ2

)
,

where s and t are two strings and p is the p-grams
length. The parameter σ is usually chosen so that
values of k̂(s, t) are well scaled. We have tuned σ
in a set of preliminary experiments. In the above
equation, ∆LRD is already normalized to a value
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in the [0, 1] interval to ensure a fair comparison of
strings of different length. The resulted similarity
matrix is then squared to ensure that it becomes a
symmetric and positive definite kernel matrix.

3.3 Kernel based on Audio Features

For the ADI Shared Task, we also build a kernel
from the i-vectors provided with the data set (Ali
et al., 2016). The i-vector approach is a power-
ful speech modeling technique that comprises all
the updates happening during the adaptation of
a Gaussian mixture model (GMM) mean compo-
nents to a given utterance. The provided i-vectors
have 400 dimensions. In order to build a kernel
from the i-vectors, we first compute the euclidean
distance between each pair of i-vectors. We then
employ the RBF kernel to transform the distance
into a similarity measure:

k̂i-vec(x, y) = exp

−
√√√√ j=1∑

m

(xj − yj)2

2σ2

 ,

where x and y are two i-vectors and m represents
the size of the two i-vectors, 400 in our case. For
optimal results, we have tuned the parameter σ in
a set of preliminary experiments. As for the LRD
kernel, the similarity matrix is squared to ensure
its symmetry and positive definiteness.

4 Learning Methods

Kernel-based learning algorithms work by embed-
ding the data into a Hilbert feature space and by
searching for linear relations in that space. The
embedding is performed implicitly, by specify-
ing the inner product between each pair of points
rather than by giving their coordinates explicitly.
More precisely, a kernel matrix that contains the
pairwise similarities between every pair of train-
ing samples is used in the learning stage to assign
a vector of weights to the training samples. Let
α denote this weight vector. In the test stage, the
pairwise similarities between a test sample x and
all the training samples are computed. Then, the
following binary classification function assigns a
positive or a negative label to the test sample:

g(x) =
n∑

i=1

αi · k(x, xi),

where x is the test sample, n is the number of
training samples, X = {x1, x2, ..., xn} is the set
of training samples, k is a kernel function, and αi

is the weight assigned to the training sample xi.

The advantage of using the dual representation
induced by the kernel function becomes clear if
the dimension of the feature space m is taken into
consideration. Since string kernels are based on
character p-grams, the feature space is indeed very
high. For instance, using 5-grams based only on
the 28 letters of the basic Arabic alphabet will re-
sult in a feature space of 285 = 17, 210, 368 fea-
tures. However, our best models are based on a
feature space that includes 3-grams, 4-grams, 5-
grams, 6-grams and 7-grams. As long as the num-
ber of samples n is much lower than the num-
ber of features m, it can be more efficient to use
the dual representation given by the kernel matrix.
This fact is also known as the kernel trick (Shawe-
Taylor and Cristianini, 2004).

Various kernel methods differ in the way they
learn to separate the samples. In the case of bi-
nary classification problems, kernel-based learn-
ing algorithms look for a discriminant function,
a function that assigns +1 to examples belonging
to one class and −1 to examples belonging to the
other class. In the ADI and GDI experiments, we
used the Kernel Ridge Regression (KRR) binary
classifier. Kernel Ridge Regression selects the
vector of weights that simultaneously has small
empirical error and small norm in the Reproduc-
ing Kernel Hilbert Space generated by the kernel
function. KRR is a binary classifier, but dialect
identification is usually a multi-class classification
problem. There are many approaches for com-
bining binary classifiers to solve multi-class prob-
lems. Typically, the multi-class problem is bro-
ken down into multiple binary classification prob-
lems using common decomposition schemes such
as: one-versus-all and one-versus-one. We con-
sidered the one-versus-all scheme for our dialect
classification tasks. There are also kernel meth-
ods that take the multi-class nature of the problem
directly into account, for instance Kernel Discrim-
inant Analysis. The KDA classifier is sometimes
able to improve accuracy by avoiding the mask-
ing problem (Hastie and Tibshirani, 2003). More
details about KRR and KDA are given in (Shawe-
Taylor and Cristianini, 2004).
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Figure 1: Accuracy rates of the KRR based on
the intersection kernel with p-grams in the range
2-7. The results are obtained in a 10-fold cross-
validation procedure carried out on the ADI train-
ing set.

5 Experiments on Arabic Dialects

5.1 Data Set

The ADI Shared Task data set (Ali et al., 2016)
contains audio recordings and ASR transcripts of
Arabic speech collected from the Broadcast News
domain. The task is to discriminate between
Modern Standard Arabic (MSA) and four Ara-
bic dialects, namely Egyptian (EGY), Gulf (GLF),
Levantine (LAV), and North-African or Maghrebi
(NOR). As the samples are not very evenly dis-
tributed, an accuracy of 23.10% can be obtained
with a majority class baseline on the test set. It is
worth mentioning that the test set from the 2016
ADI Shared Task was included as a development
set in this year’s task.

5.2 Parameter and System Choices

In our approach, we treat ASR transcripts as
strings. Because the approach works at the char-
acter level, there is no need to split the texts into
words, or to do any NLP-specific processing be-
fore computing the string kernels. The only edit-
ing done to the transcripts was the replacing of
sequences of consecutive space characters (space,
tab, and so on) with a single space character. This
normalization was needed in order to prevent the
artificial increase or decrease of the similarity be-
tween texts, as a result of different spacing.

For tuning the parameters, we fixed 10 folds in
order to evaluate each option in a 10-fold cross-
validation (CV) procedure on the training set. We
first carried out a set of preliminary experiments to
determine the optimal range of p-grams for each
kernel using the 10-fold CV procedure. We fixed
the learning method to KRR based on the inter-

section kernel and we evaluated all the p-grams in
the range 2-7. The results are illustrated in Fig-
ure 1. Interestingly, the best accuracy (65.93%)
is obtained with 5-grams. Furthermore, experi-
ments with different blended kernels were con-
ducted to see whether combining p-grams of dif-
ferent lengths could improve the accuracy. More
precisely, we evaluated combinations of p-grams
in five ranges: 3-5, 3-6, 4-6, 4-7 and 3-7. For
the intersection kernel and the LRD kernel, the
best accuracy rates were obtained when all the p-
grams with the length in the range 3-7 were com-
bined. For the presence bits kernel, we obtained
better results with p-grams in the range 3-5. Fur-
ther experiments were also conducted to estab-
lish what type of kernel works better, namely the
blended p-grams presence bits kernel (k̂0/1

3−5), the
blended p-grams intersection kernel (k̂∩3−7), the
kernel based on LRD (k̂LRD

3−7 ), or the kernel based
on i-vectors (k̂i-vec). Since these different kernel
representations are obtained either from ASR tran-
scripts or from low-level audio features, a good
approach for improving the performance is com-
bining the kernels. When multiple kernels are
combined, the features are actually embedded in
a higher-dimensional space. As a consequence,
the search space of linear patterns grows, which
helps the classifier to select a better discriminant
function. The most natural way of combining two
or more kernels is to sum them up. Summing up
kernels or kernel matrices is equivalent to feature
vector concatenation. The kernels were evaluated
alone and in various combinations, by employing
either KRR or KDA for the learning task. This
time, we used the development set to evaluate the
kernel combinations and compare them with the
top two systems from the last year’s ADI Shared
Task (Ionescu and Popescu, 2016b; Malmasi and
Zampieri, 2016) and the state-of-the-art system
of Ali et al. (2016). All the results obtained on
the development set are given in Table 1.

The empirical results presented in Table 1 re-
veal several interesting patterns of the proposed
methods. The difference in terms of accuracy be-
tween KRR and KDA is almost always less than
1%, and there is no reason to chose one in favor
of the other. Regarding the individual kernels, the
results are fairly similar among the string kernels,
but the kernel based on i-vectors definitely stands
out. Indeed, the best individual kernel is the ker-
nel based on i-vectors with an accuracy of 59.84%
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Method Accuracy
Ionescu and Popescu (2016b) 51.82%
Malmasi and Zampieri (2016) 51.17%
Ali et al. (2016) 60.20%
Kernel KRR KDA
k̂

0/1
3−5 52.36% 51.18%

k̂∩3−7 51.64% 52.17%

k̂LRD
3−7 51.77% 52.55%

k̂
0/1
3−5 + k̂∩3−7 52.30% 52.49%

k̂
0/1
3−5 + k̂LRD

3−7 52.48% 52.42%

k̂∩3−7 + k̂LRD
3−7 52.05% 52.66%

k̂
0/1
3−5 + k̂∩3−7 + k̂LRD

3−7 52.63% 52.82%

k̂i-vec 59.84% 58.99%

k̂i-vec + k̂
0/1
3−5 + k̂∩3−7 + k̂LRD

3−7 64.17% 63.85%

Table 1: Accuracy rates of various kernels com-
bined with either KRR or KDA versus several
state-of-the-art methods. The results are obtained
on the ADI development set. The submitted sys-
tems are highlighted in bold.

Run Accuracy F1 (macro) F1 (weighted)
1 76.27% 76.40% 76.32%
2 75.54% 75.94% 75.81%

Table 2: Results on the test set of the ADI Shared
Task (closed training) of KRR (run 1) and KDA
(run 2) based on a combination of three string ker-
nels and a kernel based on i-vectors.

when it is combined with KRR, and an accuracy
of 58.99% when it is combined with KDA. By
contrast, the best individual string kernel yields
an accuracy of 52.55%. Thus, we may conclude
that the i-vector representation extracted from au-
dio recordings is much more suitable for the task
than the character p-grams extracted from ASR
transcripts. This is consistent with the findings
of Ali et al. (2016). Interestingly, the best accu-
racy is actually obtained when all four kernels are
combined together. Indeed, KRR reaches an ac-
curacy of 64.17% when the blended p-grams pres-
ence bits kernel, the blended intersection kernel,
the blended LRD kernel and the kernel based on
i-vectors are summed up. With the same kernel
combination, KDA yields an accuracy of 63.85%.
In the end, we decided to submit two models for
the test set. The first submission (run 1) is the
KRR classifier based on the sum of k̂i-vec, k̂0/1

3−5,
k̂∩3−7, and k̂LRD

3−7 . The second submission (run 2)
is the KDA classifier based on the sum of the same
four kernels. For a better generalization, the sub-
mitted models are trained on both the provided
training and development sets.

Dialects EGY GLF LAV NOR MSA
EGY 244 12 29 6 11
GLF 14 177 43 8 8
LAV 36 26 231 23 18
NOR 10 13 10 222 7
MSA 24 16 31 9 264

Table 3: Confusion matrix (on the test set) of KRR
based on the sum of three string kernels and a ker-
nel based on i-vectors (run 1).

5.3 Results

Table 2 presents our results for the Arabic Di-
alect Identification Closed Shared Task of the DSL
2017 Challenge. Among the two classifiers, the
best performance is obtained by KRR (run 1). The
submitted systems were ranked by their weighted
F1 score, and among the 6 participants, our best
model obtained the first place with a weighted F1

score of 76.32%. As the development and the test
sets are from the same source (distribution), we
obtained better performance on the test set by in-
cluding the development set in the training. The
confusion matrix for our best model is presented
in Table 3. The confusion matrix reveals that our
system has some difficulties in distinguishing the
Levantine dialect from the Egyptian dialect on one
hand, and the Levantine dialect from the Gulf di-
alect on the other hand. Overall, the results look
good, as the main diagonal scores dominate the
other matrix components. Remarkably, both of
our submitted systems are more than 4% better
than the system ranked on the second place.

6 Experiments on German Dialects

6.1 Data Set

The GDI Shared Task data set (Samardzic et al.,
2016) contains manually annotated transcripts of
Swiss German speech. The task is to discriminate
between Swiss German dialects from four differ-
ent areas: Basel (BS), Bern (BE), Lucerne (LU),
Zurich (ZH). As the samples are almost evenly dis-
tributed, an accuracy of 25.80% can be obtained
with a majority class baseline on the test set.

6.2 Parameter and System Choices

As for the ADI task, we edit the transcripts by re-
placing the sequences of consecutive space char-
acters with a single space character. For tuning
the parameters and deciding what kernel learning
method works best, we fixed 5 folds in order to
evaluate each option in a 5-fold CV procedure on
the training set. We first carried out a set of prelim-

206



1 2 3 4 5 6 7
74

76

78

80

82

84

The length of p−grams

Th
e 

10
−f

ol
d 

C
V 

ac
cu

ra
cy

 ra
te

Figure 2: Accuracy rates of the KRR based on the
intersection kernel with p-grams in the range 2-6.
The results are obtained in a 5-fold CV procedure
carried out on the GDI training set.

Kernel KRR KDA
k̂

0/1
3−6 83.99% 84.10%

k̂∩3−6 83.96% 84.09%

k̂LRD
3−5 83.85% 84.25%

k̂
0/1
3−6 + k̂∩3−6 84.03% 84.15%

k̂
0/1
3−6 + k̂LRD

3−5 84.25% 84.33%

k̂∩3−6 + k̂LRD
3−5 84.22% 84.35%

k̂
0/1
3−6 + k̂∩3−6 + k̂LRD

3−5 84.39% 84.49%

Table 4: Accuracy rates of various kernels com-
bined with either KRR or KDA. The results are
obtained using 5-fold CV on the GDI training set.
The submitted systems are highlighted in bold.

inary experiments to determine the optimal range
of p-grams for each kernel. We fixed the learning
method to KRR based on the intersection kernel
and we evaluated all the p-grams in the range 2-6.
The results are illustrated in Figure 2. We obtained
the best accuracy (82.87%) by using 4-grams. We
next evaluated combinations of p-grams in three
ranges: 3-5, 3-6, 4-6. For the intersection and the
presence bits kernels, the best accuracy rates were
obtained when all the p-grams with the length in
the range 3-6 were combined. For the LRD ker-
nel, we obtained better results with p-grams in
the range 3-5. Further experiments were also per-
formed to establish what type of kernel works bet-
ter, namely the blended p-grams presence bits ker-
nel, the blended p-grams intersection kernel or the
kernel based on LRD. The kernels were evaluated
alone and in various combinations, by employing
either KRR or KDA for the learning task. All the
results obtained in the 5-fold CV carried out on
the training set are given in Table 4. As in the
ADI experiments, the empirical results presented
in Table 4 show that there are no significant dif-
ferences between KRR and KDA. The individual
kernels yield fairly similar results. The best in-

Run Accuracy F1 (macro) F1 (weighted)
1 66.36% 63.76% 63.67%
2 65.81% 63.63% 63.54%
3 65.64% 63.44% 63.36%

Table 5: Results on the test set of the GDI Shared
Task (closed training) of KRR (run 1) and KDA
(run 2 and 3) based on various combinations of
string kernels.

Dialects BE BS LU ZH
BE 662 53 19 172
BS 76 676 38 149
LU 185 260 249 222
ZH 14 29 7 827

Table 6: Confusion matrix (on the test set) of KRR
based on the sum of three string kernels (run 1).

dividual kernel is the kernel based on LRD with
an accuracy of 84.25% when it is combined with
KDA. Each and every kernel combination yields
better results than each of its individual compo-
nents alone. The best accuracy rates, 84.39% for
KRR and 84.49% for KDA, are indeed obtained
when all three kernels are combined together. In
the end, we submitted the following models. The
first submission (run 1) is the KRR based on the
three kernels sum. Our second submission (run 2)
is the KDA based on the sum of k̂0/1

3−6 and k̂∩3−6.
Our third submission (run 3) is the KDA based on
the combination of all three kernels.

6.3 Results

Table 5 presents our results for the German Di-
alect Identification Closed Shared Task of the DSL
2017 Challenge. Among the three systems, the
best performance is obtained by KRR (run 1).
Among the 10 participants, our best model ob-
tained the fifth place with a weighted F1 score of
63.67%. However, our best performance is only
2.57% below the performance achieved by the sys-
tem ranked on the first place. The confusion ma-
trix presented in Table 6 indicates that our model is
hardly able to distinguish the Lucerne dialect from
the others.

7 Conclusion

We have presented an approach based on learn-
ing with multiple kernels for the ADI and the
GDI Shared Tasks of the DSL 2017 Chal-
lenge (Zampieri et al., 2017). Our approach at-
tained very good results, as our team (UnibucK-
ernel) ranked on the first place in the ADI Shared
Task and on the fifth place in the GDI Shared Task.
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Malostranské náměstı́ 25, Prague, Czech Republic

{rosa, zeman, marecek, zabokrtsky}@ufal.mff.cuni.cz

Abstract

DWe once had a corp,

or should we say,C it once hadDus
DThey showed us its tags,

isn’t it great,CunifiedDtags
DmiThey asked us to parse

and they told us to useGeverything
DmiSo we looked around

and we noticed there was nearEmnothingAA7

We took other langs,

bitext aligned: words one-to-one

We played for two weeks,

and then they said, here is the test

The parser kept training till morning,

just until deadline

So we had to wait and hope what we get

would be just fine

And, when we awoke,

the results were done, we saw we’d won

So, we wrote this paper,

isn’t it good, Norwegian wood.

1 Introduction

This paper describes the winning submission to
the Cross-lingual Dependency Parsing shared task
at VarDial 2017 (Zampieri et al., 2017).

The goal was to devise a labeled dependency
parser for a target language with no treebank avail-
able, utilizing treebanks of other very close source
languages, and plaintext sentence-aligned source-
target parallel data. The task is simulated on target
languages for which treebanks do exists, but are
not provided to the participants.

As the focus of the task is on parsing per se,
a supervised part-of-speech (POS) tagger for each
target language is provided. Moreover, all of the
treebanks come from the Universal Dependencies
(UD) collection v 1.4 (Nivre et al., 2016), which
means that their syntactic and morphological an-

notation – tree topology, dependency relation la-
bels (deprels), universal POS tags (UPOS), and
morphological features (morpho feats) – follows
the universal cross-lingual UD scheme.1

Consonantly with the focus of the VarDial
workshop on similar languages, the source and tar-
get languages are very close to each other, with
very similar grammars and a nearly one-to-one
correspondence on the level of individual words.
Therefore, we decided to mostly disregard sys-
tematic structural heterogeneity between the lan-
guages, and focus primarily on lexical differences.

Our method relies on a context-independent
word-by-word machine translation (MT) of the
source treebank into the target language, based on
a one-to-one word alignment provided by a heuris-
tic aligner for similar languages. This switch from
a cross-lingual to a pseudo-monolingual setting al-
lows us to easily apply source-trained taggers and
parsers to the target data and vice versa.

We also employ several homogenization tech-
niques, mostly to overcome systematic differences
in treebank annotations. Specifically, we normal-
ize the deprels in the source treebanks to better
correspond to the target deprels, and we subselect
only cross-lingually consistent morpho feats.

2 Related Work

The notorious fact that there are several thousand
languages used around the globe makes it nec-
essary to search for NLP methods that could be
applicable to a wider range of languages, ide-
ally without too much effort invested into build-
ing language-specific resources for new languages
again and again. This is by far not specific to de-
pendency parsing, for which—like for most other
“traditional” NLP tasks—various approaches have

1See http://universaldependencies.org/
docsv1 for a description of the UD scheme.
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been developed, ranging from fully unsupervised
methods (whose performance seems to be limited)
to supervised methods with radically economy-
driven annotation management.

We limit the scope of the following overview
only to cross-lingual transfer of dependency
parsers from a resource-rich source language(s) to
a resource-poor target language. In addition, this
paper does not touch the discussions whether a
tree (and what kind of tree) is a reasonable rep-
resentation for a sentence structure, and whether
all languages do really share their structural prop-
erties to such an extent that a single type of rep-
resentation is viable for all of them. Though
such issues deserve intensive attention, and per-
haps even more so now when UD have gained
such a fascinating momentum, we take the two
assumptions simply for granted. Neither do we
present the genesis of the current UD collection,
preceded by HamleDT treebank collection by Ze-
man et al. (2014), going back to the CoNLL 2006
and 2007 tasks (Buchholz and Marsi, 2006; Nivre
et al., 2007), and to earlier POS standardization
efforts. In this overview, we limit ourselves to the
scope outlined by the VarDial shared task, whose
goal is to develop a parser for a (virtually) under-
resourced language closely related to a resource-
rich language.2

We believe that most of the published ap-
proaches could be classified into two broad fam-
ilies which we call tree-transfer-based methods
and common-abstraction-based methods. The for-
mer project individual dependency trees across the
language boundary prior to training a target parser.
The latter methods transfer a parser model trained
directly on the source treebank, but limited only to
abstract features shared by both languages.

2.1 Tree-transfer-based approaches
In the tree-transfer-based approaches, a synthetic
pseudo-target treebank is created by some sort of
projection of individual source trees into the tar-
get language. Then a standard monolingual parser
can be trained using the pseudo-target treebank in
a more or less standard way. As it is quite un-
likely that a manually annotated source treebank

2Crosslingual transfer is not used only in truly under-
resourced scenarios, but also in situations in which it is hoped
that features explicitly manifested in one language (such as
morphological agreement) could boost parsing performance
in some other language in which they are less overt. Such
bilingually informed parsing scenarios are studied e.g. by
Haulrich (2012).

with high-quality human-made target translations
and high-quality alignment exists, one or more of
the necessary components must be approximated.
And even if all these data components existed,
the task of dependency tree projection would in-
evitably lead to collisions that have to be resolved
heuristically, especially in the case of many-to-one
or many-to-many alignments, as investigated e.g.
by Hwa et al. (2005) and more recently by Tiede-
mann (2014) or Ramasamy et al. (2014).

This family embraces the following approaches:
• using a parallel corpus and projecting the

trees through word-alignment links, with au-
thentic texts in both languages but an auto-
matically parsed source side,
• using a machine-translated parallel corpus,

with only one side containing authentic texts
and the other being created by MT; both
translation directions have pros and cons:

– source-to-target MT allows for using a
gold treebank on the source side,

– target-to-source MT allows the parser to
learn to work with real texts in the target
language, for which, in addition, a gold
POS labeling might be available.

Obviously there are certain trade-offs related to
this family of tree transfer approaches. For exam-
ple, using MT to create a synthetic parallel cor-
pus often results in a considerably lower text qual-
ity, but provides more reliable alignment links. In
addition, such alignment typically has a higher
amount of one-to-one word alignments, which fa-
cilitates tree projection; in case of extremely close
languages, as in this paper, the MT system can be
constrained to produce only 1:1 translations.

There are two additional advantages of the tree-
transfer-based approach:
• the feature set used by the target language

parser is independent of the features that are
applicable to the source language,
• we can easily use only sentence pairs (or tree

fragments) with a reasonably high correspon-
dence between source and target structures,
as done by Rasooli and Collins (2015).

2.2 Common-abstraction-based approaches

By using a “common abstraction” we mean us-
ing features that have the same or very similar
“meaning” both in the source and target language.
Obviously, word forms cannot be easily used di-
rectly, as there are various spelling and morpho-
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logical differences even between very close lan-
guages. Using such shared features allows a parser
that was trained on a source treebank to be used di-
rectly on target texts; i.e. the source-target “trans-
fer” of the parser is trivial, compared to a source-
target transfer of the treebank as described in §2.1.

The common abstraction features used by the
parser can be linguistically motivated, or induced
by mathematical methods such as clustering and
vector space representation:

• Unified POS tags: a POS tagset simplified
and unified to the extent that it was usable for
both source and target languages was behind
one of the first experiments with delexical-
ized parsing by Zeman and Resnik (2008).
The advantage of such approaches lies in
their linguistic interpretability. On the other
hand, in spite of the substantial progress in
tagset harmonization since the work of Ze-
man (2008), this approach can end up in
a very limited intersection of morphological
categories in case of more distant languages.
• Word clusters have been successfully applied

in many NLP fields, with the clusters of
Brown et al. (1992) being probably the most
prominent representative. Täckström et al.
(2012) showed that cross-lingually induced
clusters can serve as the common abstract
features for cross-lingual parsing.
• Word embeddings, if induced with some

cross-lingual constraints and mapped into a
shared low-dimensional space, can also be
used, as shown e.g. by Duong et al. (2015).

An obvious trade-off that appears with this
family of methods is associated with the speci-
ficity/generality of the shared abstract representa-
tion of words. For example, in the case of delex-
icalization by a common POS tagset, the ques-
tion arises what is the best granularity of shared
tags. The more simplified tags, the more language-
universal information is captured, but the more in-
formation is lost at the same time. Moreover, even
if two languages share a particular morphological
category, e.g. pronoun reflexivity, it is hard to pre-
dict whether adding this distinction into the shared
tagset helps the resulting parser or not.

A variation that appers with this family of meth-
ods is the usage of “relexicalization”. The base
parser resulting from the transfer is applied on (un-
seen) target data, and a new parser is self-trained
on this data; a successful application of this ap-

proach is documented by Täckström et al. (2013).

2.3 Other variations

Aufrant et al. (2016) combines both main strate-
gies described above by adapting the word order
in source sentences to be more similar to that of
the target language, e.g. by swapping the order
of an attribute and its nominal head; the infor-
mation about these configurations was extracted
from the WALS World Atlas of Language Struc-
tures (Dryer and Haspelmath, 2013). Such pro-
cessing of source language trees fits to the first
family of approaches, as it resembles a (very lim-
ited) MT preprocessing; but after this step, a POS-
delexicalized parser transfer is used, which fits the
second family.

When processing more than a few under-
resourced languages, choosing the best source lan-
guage should be ideally automatized too. One
could rely on language phylogenetic trees or on
linguistic information available e.g. in WALS, or
on more mechanized measures, such as Kullback-
Leibler divergence of POS trigram distributions
(Rosa and Žabokrtský, 2015).

In addition, we might want to combine informa-
tion from more source languages, like in the case
of multi-source transfer introduced by McDonald
et al. (2011). Choosing source language weights to
be used as mixing coefficients becomes quite intri-
cate then as we face a trade-off between similarity
of the source languages to the target language and
the size of resources available for them.

3 Task and Data

The task was to perform labeled dependency pars-
ing of each of the three target languages, Slovak
(SK), Croatian (HR), and Norwegian (NO), with-
out using target treebanks. In the constrained track
of the task, we were only allowed to use provided
source treebanks and source-target parallel data
for source languages closely related to the target
languages: Czech (CS) as a source for SK, Slove-
nian (SL) for HR, and Danish (DA) and Swedish
(SV) for NO. Because of reported good perfor-
mance in the baselines, we use the DA and SV
data concatenated into “Dano-Swedish” (DS).

For development testing of our systems, small
target dev treebanks were provided, with golden
syntactic annotation, and morphological annota-
tion (UPOS and morpho feats) predicted by super-
vised taggers; the taggers were also provided. Fi-
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nal test treebanks were annotated in the same way.
For an exact description of the task, the datasets,

models, baselines and upper-bounds, please refer
to (Zampieri et al., 2017) and the task webpage.3

The task specifies Labeled Attachment Score
(LAS) as the primary metric, and Unlabeled At-
tachment Score (UAS) as a secondary one.

4 Components

In §4.1 we describe the baseline setup, which we
further enrich by the components described in the
following sections; the final setups used for each
of the target languages are specified in §5.

The development and employment of the com-
ponents was guided by continual evaluation on the
dev treebanks. We evaluated several variations of
each component, and selected the best performing
variant separately for each target language.4 Hy-
perparameter tuning was performed neither for the
tagger and parser nor for any of the components,
as this was forbidden by the shared task rules.5

4.1 Baseline
As our starting point, we took the task baseline. It
consists of a UDPipe tagger and parser (Straka et
al., 2016),6 trained on the source treebank with the
default settings, except:
• the parser is trained without using the morpho

feats (i.e. only using word form and UPOS)7

• the tagger is trained to only produce UPOS.8

We train the tagger and parser together, which
means that UDPipe trains the tagger, applies it
to the treebank, and trains the parser using mor-
phological annotation predicted by the tagger. We
have found this setup to perform better than train-
ing on gold annotation by +1.6 LAS on average.

4.2 Annotation Normalization
Unlike some older work in this area, we work with
multi-lingual data that is harmonized across lan-

3https://bitbucket.org/tiedemann/
vardial2017

4We evaluated 114 different setups: 63 were evaluated for
all 3 target languages, 12 for 2, and 39 for 1 target language;
in total, 252 LAS scores were computed on the dev treebanks.

5Following the UDPipe manual, we deviated from the de-
fault tagger hyperparameters in case of CS (due to its huge
treebank), setting them to: guesser suffix rules=6;
guesser enrich dictionary=4

6Version 3e65d69 from 3rd Jan 2017, obtained from
https://github.com/ufal/udpipe

7Parameter: embedding feats=0
8Parameters: use lemma=0;provide lemma=0;

use xpostag=0;provide xpostag=0;
use feats=1;provide feats=1

guages, i.e. all languages should be syntactically
and morphologically annotated according to the
same UD guidelines. However, the current level
of harmonization is still far from perfect. Certain
deprels occur in the source treebanks but not in the
target treebank (or vice versa), but not due to dif-
ferences in the treebank languages or domains – it
is just because of differences in annotation, despite
the intention of UD to annotate the same things in
the same way. We obviously cannot modify the
test data in any way, but we can make the source
data as similar to the target annotation as possible.
By doing so, we simulate a likely real-world sce-
nario: when people want to parse a resource-poor
language, they supposedly know what kind of de-
prels they want in the output.

For example, CS contains a language-specific
nummod:gov deprel, which never occurs in SK.
We do not want the parser to learn to assign that
deprel, because we are not going to score on such
relations. Hence, we replace all occurrences of
nummod:gov in the source treebank by the more
general nummod deprel, which is also used in SK.

Similarly, one may want to modify the UPOSes
and morpho feats, which the parser gets as input
and can use them to improve syntactic analysis. It
seems reasonable to adjust or hide tags unavail-
able in the target data; e.g., the SK treebank does
not distinguish SCONJ from CONJ, and DET from
PRON; or, the Scandinavian treebanks disagree on
when participles are VERB and when ADJ.

Finally, we tried to normalize several rather ran-
domly spotted phenomena whose analysis system-
atically differs across languages. The most promi-
nent example is the Scandinavian word både in
både A och/og B “both A and B”. In SV, the word
is tagged CONJ and attached via the advmod de-
prel, in DA it is ADV/advmod, and in NO it is
CONJ/cc. Normalizing instances of både alone
increased LAS on NO by almost 1 point!

Our normalization is based on manual error
analyses of parser outputs on the dev treebanks.

4.3 Word-by-Word Machine Translation

The core of our approach is a move from a cross-
lingual to a pseudo-monolingual setting by trans-
lating the word forms in the source treebank into
the target language. It has three steps: word-
alignment of the parallel data, extraction of a
translation table from the aligned data, and the
treebank translation itself.
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We employ a simple word-based MT approach,
which we tried as a first attempt but found it good
enough for our purpose; we have yet to evaluate
how it compares to more sophisticated methods.

4.3.1 Word-alignment

Since the source and target languages in our task
are very close to each other, we decided to use
the heuristic Monolingual Greedy Aligner (MGA)
of Rosa et al. (2012),9 rather than e.g. the usual
Giza++ (Och and Ney, 2003) – most standard
word aligners ignore word similarity, which we
believe to be useful and important in our setting.

MGA utilizes the word, lemma, and tag sim-
ilarity based on Jaro-Winkler distance (Winkler,
1990), and the similarity of relative positions in
the sentences, to devise a score for each potential
alignment link as a linear combination of these,
weighted by pre-set weights. The iterative align-
ment process then greedily chooses the currently
highest scoring pair of words to align in each step;
each word can only be aligned once. The process
stops when one of the sides is fully aligned, or
when the scores of the remaining potential links
fall below a pre-set threshold.

We used MGA as is, with the default values
of the hyperparameters and with no adaptation
to the UD annotation style or the specific lan-
guages of the task. Even though MGA was orig-
inally designed for aligning same-language sen-
tences (especially Czech), we found it to perform
well enough in our setting, and therefore left po-
tential tuning and adaptations for future work.

Before aligning, we preprocess the parallel data
by the Treex tokenizer, the provided target tagger,
and a source tagger trained on the source treebank.

4.3.2 Translation table extraction

For our methods to be easily applicable, we re-
quire a one-to-one translation, which we can af-
ford due to the high similarity of the languages.
Therefore, we extract a translation word table
rather than the more usual phrase table from the
aligned data. Moreover, due to the simplicity of
the subsequent translation step, it is sufficient for
us to only store the best (most frequent) translation
for each word; we use Jaro-Winkler similarity of
the source and target word forms as a tie breaker.

9https://github.com/ufal/treex/
blob/master/lib/Treex/Tool/Align/
MonolingualGreedy.pm

Identical source word forms with differing
UPOS or morpho feats annotations are treated as
distinct words, serving as a basic source-side dis-
ambiguation; we rely on these source annotations
being available at inference for selecting the trans-
lation. To reduce the OOV rate, two backoff layers
are also stored, the first disregarding the morpho
feats, and the second also disregarding the UPOS.

An option that we leave for future research is
to use the alignment scores provided by the MGA
when constructing the translation table.

For simplicity, we create only one joint transla-
tion table for translating DS into NO.

4.3.3 Treebank translation

We translate each source treebank into the tar-
get language word-by-word, independent of any
source or target context. We use the golden an-
notation of UPOS and morpho feats for source-
side disambiguation; a backoff layer is used if
the translation table does not contain the source
word form with the given annotations. OOVs are
left untranslated. This results in a pseudo-target
treebank, with golden annotations from the source
treebank and word forms in the target language.

In preliminary experiments, the opposite target-
to-source translation led to worse results (by -1.3
LAS on average), possibly because the parser re-
lies more on the correctness of the source, mak-
ing it less robust when applied to the machine-
translated target. Moreover, in case of DS-NO, the
target-to-source translation is not straightforward.

4.4 Pre-training Word Embeddings

Because UDPipe uses a neural network parser, all
input features have to be converted to vectors. By
default, it trains embeddings of each input feature
on the pseudo-target treebank jointly with training
the parser. As larger data can provide better em-
beddings, we pretrain word form embeddings on
the target side of the parallel data, pretokenized
by the Treex tokenizer (Popel and Žabokrtský,
2010),10 and provide them to UDPipe. We use
word2vec (Mikolov et al., 2013), with the param-
eters suggested in the UDPipe manual.11

10https://github.com/ufal/treex/blob/
master/lib/Treex/Block/W2A/Tokenize.pm

11-cbow 0 -size 50 -window 10
-negative 5 -hs 0 -sample 1e-1 -binary 0
-iter 15 -min-count 2 -threads 12
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4.5 Morphological Features Subselection
We found out that in the default setting, not us-
ing the morphological features leads to better LAS
than using them. This is probably caused by the
fact that UDPipe treats the morpho feats string as a
single unit and is not able to split it and assign dif-
ferent importance to individual features. We there-
fore try to find an effective subsection of the mor-
phological features.

4.5.1 Keep useful
Collins et al. (1999) showed that Case was the
most valuable feature for parsing Czech; indeed,
when we discard all features but Case, we observe
better accuracy for all target languages.

One other feature they use with words that do
not have Case is called SubPOS and is specific to
the tagset of their corpus. In UD, there are sev-
eral features with similar function, e.g. PronType
subcategorizing pronouns or NumType subcatego-
rizing numerals. Unfortunately, we found neither
of them to help in our setting.

4.5.2 Keep shared
Another possibility is to keep only those features
that are highly consistent cross-lingually. For each
feature-value pair in the tagged and aligned paral-
lel data, we count the number of times it appears
on both sides of an alignment pair. The consis-
tency c of feature-value pair f is computed as:

c(f) =
1
2

(
#(f ∈ s, f ∈ t)

#(f ∈ s)
+

#(f ∈ s, f ∈ t)
#(f ∈ t)

)
where #() indicates the number of times the fea-
ture is present in the source (s), target (t), or both
aligned words. We only keep feature-value pairs
with consistency higher than a threshold, which
we set to 0.7 after having evaluated the values of
0.6, 0.7, and 0.8. We also tried to condition the
consistency scores on UPOS, which did not im-
prove LAS.

The two described feature selection mecha-
nisms can also be combined, e.g. by providing the
Case feature in the morhpo feats field, and the
other shared features in the XPOS field, thus en-
abling the parser to treat them separately.

4.6 Cross-Tagging
There is a considerable body of work on projecting
POS taggers across aligned corpora, dating back to
(Yarowsky and Ngai, 2001). In combination with
cross-language parsing, such techniques are used

to provide the parser with target-side POS tags.
Our task is specific in that a supervised target POS
tagger is available; however, there are still several
possibilities of combining tagger and parser mod-
els in order to make the parsed data as similar as
possible to what the parser was trained on.
• Baseline. Train a parser on the source tree-

bank. Tag the target data by a supervised tar-
get tagger and parse it by the trained parser,
hoping that the tags produced by the target
tagger are similar enough to the source tags.
• Source data cross-tagging (source-xtag).

Translate source treebank into the target lan-
guage, tag it by a supervised target tagger and
train a parser on it. Tag the target data by the
supervised target tagger and parse it by the
trained parser.
• Target data cross-tagging (target-xtag).

Translate the source treebank into the target
language and train a tagger and parser on in.
Tag the target data by the trained tagger and
then parse it by the trained parser.

In addition, we always train the parser jointly
with a tagger, so that the parser is trained on mono-
lingually predicted tags, as explained in §4.1.

We have found source-xtag to work well for het-
erogeneous source data, such as the DS mixture.

Conversely, target-xtag proved useful for SK,
where the source treebank is much larger than the
target data used to train the target tagger. A tag-
ger trained on the large source treebank provides
much better tags, which in turn boosts the parsing
accuracy, despite the noise from MT and xtag.

Note that if no target tagger is available, we
must either use target-xtag, or we may project
a tagger across the parallel data in the style of
Yarowsky and Ngai (2001) and use the resulting
tagger in our baseline or source-xtag scenarios.12

We also experimented with cross-tagging of
only the UPOS or only the morpho feats, with dif-
ferent setups being useful for different languages.

Although the UDPipe tagger can also be trained
to perform lemmatization, we have not found any
way to obtain and utilize lemmas that would im-
prove the cross-lingual parsing.13

12Our approach still needs a target tagger to perform the
word alignment, but we believe that for very close languages,
the word forms alone might be sufficient to obtain a good-
enough alignment; or, a different word aligner could be used.

13We tried to translate the lemmas, as well as to perform
simple stemming, such as cropping or devowelling.
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Component SK HR NO
§4.2 Normalize source annotations X X X
§4.3 Translate word forms X X X
§4.4 Pre-train form embeddings X X X
§4.6 Source-xtag of UPOS × × X
§4.5 Add Case morpho feat X X X
§4.5 Add shared morpho feats X × ×
§4.6 Target-xtag of morpho feats X × X
§4.6 Target-xtag of UPOS X × ×

Table 1: Components used for the various lan-
guages, listed in the order in which they are ap-
plied. The Case feature was used in the best (after-
deadline) SK setup, but not in the submitted setup.

5 Individual Language Setups

In our final setup, we enrich the baseline (§4.1) by
various components (§4), as listed in Table 1:

1. Normalize source treebank annotations
2. Translate source treebank to target language
3. Pre-train target word form embeddings
4. For NO: Cross-tag UPOS in source treebank
5. Prune source treebank morphological fea-

tures, keeping only Case
6. For SK: Put frequently shared morpho feats

into the “XPOS” field in source treebank
7. Train a tagger on source treebank, tagging

UPOS and Case (for SK also “XPOS”)
8. Retag source treebank by the trained tagger
9. Train a parser on source treebank, using the

pre-trained word form embeddings, UPOS,
and Case (for SK also “XPOS”)

10. For HR: Prune target morphological features,
keeping only Case

11. For NO and SK: Cross-tag Case in target
12. For SK: Cross-tag UPOS and morphological

features in target
13. Parse target corpus by the trained parser

We believe that the utility of the language-
specific components owes to the following:
• For NO, there are two different source lan-

guages. Translating them both to NO and re-
tagging them with the NO tagger makes the
training data more homogeneous.14

• SK and CS seem to be the closest languages
in the shared task, both being morphologi-
cally very rich, which explains the usefulness
of employing additional shared morpho feats.
• The CS treebank is extremely large, leading

to the fact that a pseudo-SK tagger, trained on
14However, it is better to use the original morphological

features in source treebank and cross-tag them on target tree-
bank, presumably because annotation of Case in SV is much
richer than in NO.

SK HR NO
Setup LAS on test
Baseline 53.72 53.35 59.95
Our 78.12 60.70 70.21
Supervised 69.14 68.51 78.23
Reaching supervised 158% 48% 56%
Setup LAS on dev
Baseline 55.97 55.88 59.31
Our 77.49 64.32 69.99
Supervised 70.27 74.27 78.10
Reaching supervised 145% 48% 56%

Table 2: Evaluation using LAS. Reaching super-
vised is how far we got on the scale between the
baseline and the supervised setup.

the CS treebank translated to SK, performs
far better than the original SK tagger.

6 Results

The results we achieved on the dev and test tree-
banks are listed in Table 2. For SK, we got an even
better result of 79.37% LAS (78.63% on dev) just
6 minutes after the deadline by combining shared
morphological features and Case, while the sub-
mitted setup only contained the shared features
without Case. The baseline and supervised LAS
are shown as reported by organizers.

We can see that for both HR and NO, we
achieve a score that is approximately half the way
from the baseline to the supervised setup. The fact
the CS and SK are very close, and that the CS
treebank is huge, leads to amazing results for SK,
leaving the supervised “upper-bound” far behind.

Table 3 shows our results in comparison to the
second-best system of (Tiedemann, 2017). When
evaluating with LAS, our system clearly outper-
forms them by a large margin for all three lan-
guages; however, the score difference practically
disappears for NO and HR and is greatly dimin-
ished for SK when UAS is used for evaluation in-
stead. We hypothesize that most of these addi-
tional gains in LAS are due to the deprel normal-
ization, which (Tiedemann, 2017) might not have
employed, and which is bound to have negligible
effect on UAS. This belief is also strongly sup-
ported by the estimated improvement brought by
the normalization component according to the ab-
lation analysis (see next paragraph), which very
tightly corresponds to the amount of lead we lose
when going from LAS to UAS evaluation.

Table 4 reports the ablation analysis performed
on the dev treebanks to estimate the effect of in-
dividual components. We report the deterioration
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System SK HR NO
LAS
Our 78.12 60.70 70.21
Tiedemann 73.14 57.98 68.60
UAS
Our 84.92 69.73 77.13
Tiedemann 82.87 69.57 76.77

Table 3: Comparison of LAS and UAS scores of
our system and the second-best system.

Component SK HR NO
Normalize source annotations 2.50 3.11 1.67
Translate word forms 7.04 5.02 6.66
Pre-train form embeddings 2.83 3.88 5.28
Cross-tag 11.36 — 2.92
Add morphological features 2.09 1.70 1.43

Table 4: Ablation analysis: reduction of LAS
score when removing various components.

in LAS versus our best setup15 that occurs when
a given component is removed.16 This serves as
an indication of the improvement brought by the
component; it is not exact due to some interplay
of the components and overlapping of their effects.
The “Cross-tag” component refers to the joint ef-
fect of any cross-tagging steps used for the re-
spective languages. Similarly, “Add morphologi-
cal features” refers to adding only the Case feature
for HR and NO, but adding both Case and shared
morphological features for SK.

Overall, the most important component seems
to be the translation of word forms, leading to im-
provements of +5 to +7 LAS. This seems to con-
firm our initial hypothesis that for very close lan-
guages, much of the gap between the baseline and
the supervised parser can be bridged by appro-
priate lexicalization. However, the single largest
improvement (+11.36 LAS) is achieved by target-
xtag of SK, probably because the CS treebank is
enormous and because CS and SK are extremely
close languages. Other components also brought
very nice improvements, amounting to +2.7 LAS
on average per component and language.

7 Discussion and Future Work

Overall, our setup has achieved very good results.
It surpassed all other submissions to the shared
task on each language in both LAS and UAS, halv-

15For SK, we use the post-deadline setup which combines
Case and shared morphological features.

16For MT, we take the best setup without cross-tagging as
the basis, since the performance of the cross-tagger without
MT is low and would obscure the effect of the MT itself.

ing the gap between the baseline and the super-
vised parser for two of the languages and even far
exceeding supervised for the third. The result for
CS-SK shows that for pairs of very similar lan-
guages, the usefulness of cross-lingual methods
can go beyond the realm of under-resourced lan-
guages, improving even upon respectable super-
vised setups; even better results could probably be
obtained by a combination of both.

As we use many of the components in the same
way for all of the languages with no need of man-
ual adaptation or evaluation on target data, our ap-
proach could also be easily applied to other lan-
guages; we plan to do that in the near future.

Other components are unfortunately not appli-
cable to new data in a straightforward manner. We
employed cross-tagging in a different way for each
of the languages, and although we offered pos-
sible explanations of why particular setups work
best for particular languages, it is an open ques-
tion whether these explanations can also be used
to guide setting up a system for a new language
pair. Furthermore, the annotation normalization
has to be devised manually for each of the source
and target languages.17

Although we found that the translation is the
most important component of our pipeline, we
have yet to evaluate it properly and identify po-
tential ways to improve its performance.

We also believe that further increases in accu-
racy may be obtained by substituting UDPipe with
a brand new tagger and/or parser that would fea-
ture current improvements in the field.

To allow other researchers to examine and/or
apply our approach, we have freely released the
source codes18 and models.19
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Scherrer, and Noëmi Aepli. 2017. Findings of the
VarDial evaluation campaign 2017. In Proceedings
of the Fourth Workshop on NLP for Similar Lan-
guages, Varieties and Dialects (VarDial), Valencia,
Spain.

Daniel Zeman and Philip Resnik. 2008. Cross-
language parser adaptation between related lan-
guages. In Workshop on NLP for Less-Privileged
Languages, IJCNLP, Hyderabad, India.

Daniel Zeman, Ondřej Dušek, David Mareček, Mar-
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