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Ion channeling is a well-known radiation effect, important for understanding the passage of en-
ergetic ions and recoils in all crystalline materials. Recently we developed molecular dynamics and
theory-based approaches to calculate ion channeling systematically over all crystal directions, pro-
viding ion ‘channeling maps’ that easily show in which directions channeling is expected [Nordlund
et al., Phys. Rev. B. 94, 214109 (2016)]. As an extension of this work, which only considered pure
elements, we consider here ion channeling in compounds. To obtain a comprehensive understanding
of the effect of varying atom sizes on ion channeling, we compare compounds with pure elements of
the same crystal structure, where the atomic number (nuclear charge) of the element is the average
of that of the ions in the compound. The results show that the channeling effects in the compounds
are very similar to the corresponding pure element, except if there is a really large (>∼ 10) ratio of
atomic numbers. The reasons to this are discussed in terms of channeling theory.

I. INTRODUCTION

Ion channeling is a well-known radiation effect, impor-
tant for understanding the passage of energetic ions and
recoils in all crystalline materials. Remarkably, it was
first predicted by atomistic simulations [1, 2], one of the
first instances of atom-level modelling showing predictive
capability. It has been systematically examined by a wide
range of experiments (e.g. Refs. [3–6]) as well as analyt-
ical theories, binary collision approximation and molecu-
lar dynamics computer simulations [2, 5, 7–12] However,
there have been very few systematic studies of channeling
in a wide angular range outside the principal low-index
ones.

Recently we developed a molecular dynamics-based ap-
proach to calculate ion channeling systematically over all
crystallographically nonequivalent directions, providing
ion ‘channeling maps’ that show immediately in which di-
rections channeling is expected [12]. The results showed
that channeling effects can be quite significant even at
energies below 1 keV, and that in many cases, significant
planar channeling occurs also in a wide range of crystal
directions between the low-index principal ones. In all
the cases studied, a large fraction, 20–60%, of the crys-
tal directions showed channeling. These results have two
significant practical implications. First, modern exper-
iments on individual randomly oriented nanostructures
will have a large probability of channeling [13, 14]. Sec-
ond, when ion irradiations are carried out on polycrys-
talline samples, channeling effects on the results cannot
a priori be assumed to be negligible.

In the previous work, we also implemented channel-
ing theory to give the fraction of channeling directions
in a manner directly comparable to the simulations [12].
The comparison shows good qualitative agreement. In
particular, we found that channeling theory is very good
at predicting which channels are active at a given en-
ergy, down to sub-keV energies, provided the penetration

depth is more than a few atomic layers.
The previous work, however, only considered pure ele-

ments. It is a natural question to ask how the channeling
(in terms of channel width, penetration depth in the mid-
dle of the channel, etc.) is affected by varying atom size in
a multi-element system. Experimentally, ion channeling
techniques have been widely used to analyze both com-
pound semiconductors [15–19] and metal alloys [20, 21].
However, there have been no systematic theoretical anal-
yses of how atoms in a compound being of unequal size
may affect channeling.

To start obtaining an understanding of the effect of
varying atom sizes in compounds on ion channeling, in
this work we compare compounds of varying relative
atomic number (nuclear charge) with pure elements of
the same crystal structure. Channeling for a given crystal
structure of course depends not only on crystal structure
and atom size, but also on lattice constant. To be able
to uniquely determine the effect of atom size, we here
carry out a model study, where we fix the lattice con-
stant to be the same in the compared compounds. To
clearly see the possible effects of varying atomic number,
we also include hypothetical crystal structures with the
same crystal structure and average atomic number Z as
the reference structure, but increasingly large difference
in atomic number of the two parts making up the com-
pound. We use the atomic number as the reference since
channeling theory depends directly on this quantity [8].

II. METHOD

Channeling was for this work simulated with the same
approach as introduced in Ref. [12]. As a brief summary,
the recoil interaction approximation (RIA) of molecular
dynamics (MD) and the MDRANGE code [22–24] were
used to simulate ion penetration depths. The surface
normal orientation was always the [001] crystal direction,
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and the incoming ion direction was tilted with respect to
this. The initial position of the ion was 3 Å outside the
sample surface in the z direction, and randomly selected
in the x and y directions over a surface area of one or
2× 2 unit cells of the crystal structure.

The ion range was determined as the projected range
[25] with respect to the incoming ion direction. To get the
channeling over all crystal directions in crystals with cu-
bic symmetry, we scanned over all angles θ from 0◦ to 89◦

and ϕ from 0◦ to 90◦ in 1◦ intervals. For sufficient statis-
tics, 1000–3000 ions were simulated for each (θ, ϕ) pair.
For the plotting, bilinear interpolation [26] was used in
between the (θ, ϕ) pairs to get a smooth ‘channeling map’
plot. Note that for large θ values, the fraction of reflected
ions starts to increase strongly. When there were no im-
planted ions, the channeling map plots are left empty.
The range values at the largest θ values just before to-
tal reflection may have peculiarly large values, since the
range is counted for only a very few non-reflected ions
which happen to be scattered inwards to the crystal.

Lattice atoms were in all cases given random thermal
displacements with the Debye model [27–29] correspond-
ing to 300 K, using in all Ge-related cases a Debye tem-
perature of 360 K and all NaCl-related cases a 300 K.
The displacement calculation is described in detail in Ap-
pendix A.

To study the atom size effect in compounds, we chose
two systems where there exist an element or compounds
with similar crystal structure and average atom number.

The first set of systems was was NaCl (Z = 11, 17)
and KF (Z = 19, 9), which have the same rock salt (sim-
ple cubic) crystal structure and average atomic number
Z, and a similar lattice constant. Since the compound
effects on channeling turned out to be very small, we also
added two hypothetical crystals with the same structure,
chosen such that the average Z remains the same and
the lighter atom type rises one row upwards in the peri-
odic table at each step. Thus the hypothetical structure
’CoH’ (Z = 27, 1) was added to the set of system stud-
ied. The lattice constant was kept at the NaCl value in
all cases, and the mass of Co was selected such that the
average mass of ’CoH’ is the same as for NaCl. To im-
prove on the understanding of the transformation of the
shape of the channeling maps from NaCl to ’CoH’, we
also created hypothetical crystals of ’Si’ where all atoms
in NaCl are replaced with Si with the same mass as the
average of NaCl, and of ’Ni’ where Na is replaced with
’Ni’ and the second atom sublattice (Cl) is completely re-
moved. The crystal structure of ’Si’ is simple cubic, and
the ’Ni’ sublattice is a regular face-centered cubic lattice.

The second set of systems Ge and InP, which have
essentially the same crystal structure (Ge has the dia-
mond structure, which is the same as the InP zincblende
one if the atom types are equal). Note that both sys-
tems have the same average atomic number (Z = 32
for Ge, Z = 49, 15 for In and P, respectively) and al-
most equal atom masses (m = 72.61u for Ge and average
mave = 72.90u for InP). The lattice constant of real InP

is 5.87 Å. However, as motivated in the introduction,
we used the same lattice as for Ge (5.66 Å). Similar to
the NACl-KF system, two hypothetical structures were
added, namely ’BaO’ (Z = 56, 8) and ’EuH’ (Z = 63, 1).
To emphasize that we do not expect these compounds to
exist in reality with this crystal structure, we mark them
in hyphens. In both hypothetical cases, the lattice con-
stant was kept the same as for Ge, and the heavier atom
mass was also set to a value which gave the same atom
average mass as for Ge.

The NaCl results are also interesting in that the previ-
ous work [12] did not consider any crystal with the simple
cubic structure.

For the Ge-related systems, we simulated irradiation
with 10 keV Ge ions in Ge, InP, ’BaO’ and ’EuH’, as
well as 10 keV N ions in Ge and InP. For the NaCl-related
systems we simulated 1 keV H irradiation of NaCl, KF
and ’CoH’, as well as the elemental case of ’Ni’.

In both sets of simulations, the electronic stopping
power was also kept the same as in the reference crys-
tal (Ge or NaCl, respectively).

In principle, in a compound also the type of the atoms
in the top surface atom layer could affect the range re-
sults. Tests of switching the top atom layer (sublattice
atom types) in InP showed no statistically significant dif-
ference in the results, indicating this is not of significance
when the ion penetration depths are much deeper than
the atom layer thickness.

III. RESULTS

A. NaCl-related systems

Channeling maps for the NaCl-related systems are
shown in Fig. 1. In all cases, the [001] direction clearly
shows the strongest channeling, which is natural consid-
ering the simple cubic structure of the crystal. The 〈110〉
and 〈111〉 directions also show strong channeling, while
the 〈112〉 channels are weaker. There is strong planar
{100} channeling extending from [001] towards the 〈110〉
directions.

The results in Fig. 2 confirm the visual impression of
Fig. 1 that NaCl (Z ratio 1.54) and KF (Z ratio 2.11)
show very similar results. The very artificial ’CoH’ crys-
tal (Z ratio 27) does show clear differences, showing much
deeper penetration in several of the channeling directions.

The channeling of the hypothetical ’Si’ simple cubic
crystal is practically identical to NaCl. The channeling
map of the hypothetical ’Ni’ with NaCl lattice constant
(Fig. 3) is qualitatively similar as that of ’CoH’, in par-
ticular the planar channeling directions are the same, and
clearly different from NaCl.
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a)

b)

c)

FIG. 1. (Color online) Channeling maps for 1 keV H ions in a)
NaCl, b) KF and c) ’CoH’. In these cases, the results for the
azimuthal angle ϕ > 45◦ are reflected by crystal symmetry
from the values ϕ < 45◦.
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FIG. 2. (Color online) Mean ion ranges of 1 keV H ions
in various rocksalt-structured crystals with the NaCl crystal
structure and lattice constant as a function of the polar (off-
normal) angle θ for a) ϕ = 0◦ and b) ϕ = 27◦. Also shown are
the hypothetical elemental crystals of a simple cubic crystal
of NaCl structure where all atoms are ’Si’ with the atom mass
same as the average of NaCl, and a crystal of face-centered
cubic ’Ni’ at atom positions of the Na sublattice of NaCl.
Some of the most important channels are indicated in the
figures.

B. Ge-related systems

Channeling maps for the 10 keV Ge ion irradiation of
Ge, ’BaO’ and ’EuH’ are shown in Fig. 4. The chan-
neling map of Ge in Ge has a qualitatively very similar
form as those for Si in the keV energy range [12], in that
the strongest and widest channeling directions are 〈110〉,
〈211〉, 〈111〉 and 〈100〉, in this order.

The case of Ge on InP is not shown since the figure
is visually indistinguishable from that for the Ge target
(Fig. 4a). Also the channeling maps for 10 keV N ions on
Ge and InP gave practically identical results (not shown).
Even the compound map for ’BaO’ is remarkably similar
to that of Ge, even though the ratio between the atomic
numbers Z of Ba and O is a factor of 7. Only the ’EuH’
map shows clear differences to the Ge map.
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FIG. 3. (Color online) Channeling maps for 1 keV H ions
in hypothetical face-centered cubic ’Ni’ with the same lattice
constant as the Na sublattice in NaCl.

A quantitative comparison of channeling in the Ge sys-
tems is given for ϕ = 0◦ and ϕ = 27◦ in Fig. 5. The
two azimuthal (twist) angles ϕ were chosen to compare
channeling through the strong 〈110〉 channel (ϕ = 0◦,
θ = 45◦) with other weaker channeling regions (ϕ = 27◦).
The results show that the Ge and InP results are indeed
very similar. The ’BaO’ does have a statistically signif-
icant difference, in particular showing stronger channel-
ing around the [211] direction. The very artificial case of
’EuH’, with a Z ratio of 63, does show clearly different
channeling, even showing extra channeling peaks at e.g.
ϕ = 0◦, θ ≈ 20◦ ([103] channel) that are barely visible in
Ge, InP and BaO. These peaks are also visible in pure
FCC metals such as Au [12]. This indicates that the H
atoms are so small that the channeling is dominated by
the FCC Eu sublattice.

From this observation, and that of the ’CoH’ map given
above, we conclude that in the case of very large mass
differences in a compound, the channeling features shift
towards those in the sublattice of the higher Z atom type.

IV. DISCUSSION

The small differences between channeling in pure el-
ements and compounds can be understood in terms of
channeling theory. In the theory [8], the motion of an
ion is described by a continuum potential U (= UR(~x)
and UP(~x) for axial and planar channeling, respectively).
U is given by the sum of the continuum potentials of the
nearby atomic rows or planes. For the Ziegler-Biersack-
Littmark (ZBL) interatomic potential [30], the single-row

a)

b)

c)

FIG. 4. (Color online) Channeling maps for 10 keV Ge in a)
Ge, b) ’BaO’ and c) ’EuH’. The map for Ge in InP is visually
identical to that for Ge in Ge and hence is not shown.
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FIG. 5. (Color online) Mean ion ranges of 10 keV Ge ions
in various crystals with the Ge crystal structure and lattice
constant as a function of the polar (off-normal) angle θ for
ϕ = 0◦ and ϕ = 27◦. Some of the most important channels
are also indicated in the figure.

and single-plane continuum potentials read

UR1(r) =
2Z1Z2e

2

dR

4∑
i=1

aiK0

(
bir

aZBL

)
(1)

and

UP1(r) = 2πN2Z1Z2e
2aZBL

4∑
i=1

ai
bi

exp

(
− bir

aZBL

)
, (2)

respectively. Here Z1 is the atomic number of the ion,
Z2 of the target atoms, ai and bi are screening function
constants (that are the same for all materials) of the uni-
versal ZBL interatomic potential [30], dR is the mean
distance of the atoms in the row and N2 is the areal den-
sity of atoms in the planes. The quantity aZBL is the
ZBL screening length,

aZBL =
0.8854a0

Z0.23
1 + Z0.23

2

(3)

where a0 is the Bohr atomic radius, 0.529 Å.
Figure 6 shows the axial continuum potential UR(~x)

for Ge ions in two channels of InP (solid lines) and Ge
(dotted lines). [110] in a zincblende structure represents
a direction where there exist two kinds of rows, each con-
taining a single atom type. In Fig. 6 the upper left, lower
left, and far right atom rows, indicated by the black dots,
represent rows of the more strongly interacting In, while
the other rows contain P atoms. [111], on the other hand,
represents a direction where all atom rows contain both
atom species. For the former, the continuum potential
UR1 is simply obtained by using the appropriate atomic
number Z2 in Eq. 1, while for the latter UR1 is given by
the average of the UR1 for each Z2.
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FIG. 6. (Color online) Continuum potentials UR(~x) for Ge
in InP (solid lines) and Ge in Ge (dotted lines) in a) the
[110] channel and b) the [111] channel. Black dots mark the
positions of the atom rows. The contour lines range from
15 eV (dark blue) to 1000 eV (dark red) with approximately
equally distributed on a logarithmic scale. The crosses mark
the energy minima.

To understand the relative insensitivity of channeling
to the atom size in compounds, it is important to no-
tice that the average of the continuum potentials for two
atomic numbers Z2 is close to the continuum potential
of the average atomic number, if they are not too dif-
ferent. Both expressions for the continuum potential U ,
Eqs. 1 or 2, have a prefactor that is linear with Z2, so
the averaged continuum potential prefactor will simply
depend on the average of Z2 over the two atom types.
The screening length aZBL does also depend on Z2 and
in a nonlinear manner, i.e., averaging of the whole term
of Eq. 1 or 2, does not exactly give a linear average in Z.
However, the dependence of aZBL on Z2 is weak, via the
term Z0.23

1 + Z0.23
2 .
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In the following, we assume that the dependence of
aZBL on Z2 can be neglected. Then for channels that
mix the atom types in their rows such as the zincblende
[111] direction (Fig. 6b), the continuum potential of the
compound is equal to the continuum potential of the pure
element with the average atomic number. In addition,
one has to consider the critical approach distance which,
for the axial case, can be calculated from [8]

4E/d̂ 2
R =

[
U ′′R1(rcrit)

1.15U ′R1(rcrit)

]2

UR1(rcrit), (4)

and the critical angle for channeling

ψcrit =

√
U(rcrit)− Umin

E
. (5)

E denotes the ion energy and d̂R the maximum distance
between atoms in the row (which differs from the mean
distance dR in case of unequal spacing). From Eq. 4 it
can be seen that UR1(rcrit) is independent of Z2, since the
prefactor of Eq. 1 cancels in the term in square brackets
in Eq. 4. The potential minimum Umin (at the points
marked by crosses in Fig. 6) is equal for the compound
and the pure element with average Z, and so is the critical
angle ψcrit.

For the other kind of channel, where rows are always
composed of one atom kind, the continuum potential dif-
fers even when the dependence of aZBL on Z2 can be ne-
glected, see Fig. 6a. However, if the potential minimum
is a point of high enough symmetry such as in Fig. 6a,
Umin can be considered to be composed of pairs of single-
row potentials of equally distant rows of different atom
type. Since the sum of two values is twice their mean and
the independence of UR1(rcrit) from Z2 holds, ψcrit still
only depends on the average of Z2 also for the second
kind of channel.

We have silently assumed that UR(rcrit) = UR1(rcrit),
which is well fulfilled at high energies where UR1(rcrit)
is high and rcrit is small, so the influence of neighboring
rows can be neglected at r = rcrit from a row. When the
ion energy is lowered, rcrit becomes larger, and the ap-
proximation becomes less valid. In particular, when rcrit

reaches the distance between the channel center and the
atomic rows, channeling ceases to be possible which de-
fines the low-energy limit to channeling for the respective
channel. Close to this limit, the channeling characteris-
tics are expected to not only depend on the average Z2.
This can also be seen from the fact that while UR1(rcrit)
is independent of Z2, this is not true of rcrit, since the
prefactor of UR1(r) contains Z2. Therefore, there should
be an energy range for each channel of the second kind,
where channeling in the pure element is possible while
this is not so in the compound. We do not observe this
in our MD simulations, so we conclude that it is an un-
likely effect.

Channeling theory could certainly be improved for
compounds. For channels where the atom rows contain
only a single atom type each, like [110] in zincblende

(Fig. 6a), dechanneling is dominated by the more
strongly interacting atom type, which controls the criti-
cal radius and thus the minimum energy for channeling.
For rows that contain both atom species (Fig. 6b), the
criterion for determining rcrit (Eq. 4) would need to be
modified. Simulations similar to the ones carried out here
could be used to test such an extension. A mathemati-
cally rigorous channeling theory for compound systems,
however, is beyond the scope of the present Article.

Nevertheless, channeling theory provides a reasonable
explanation to why channeling of compounds is very sim-
ilar to the corresponding pure element, except when there
is a large ratio of the target atomic numbers Z2. Also,
since aZBL depends on Z0.23

1 +Z0.23
2 , deviations between

compound and pure element are more likely to be ob-
served for light ions. In this respect, the H bombard-
ments shown in Figs. 1 and 2 represent a worst case.

Considering possible non-model systems, there can of
course be other compound effects on channeling. When
the lattice constant changes, the interrow and interplanar
spacings will, and hence the channeling will also change in
particular due to a change in Umin and the minimum en-
ergy for channeling. Moreover, the electronic stopping is
weaker in channeling directions [23], which could lead to
differences in the ion ranges in channels (even though ac-
cording to channeling theory, the angular channel widths
should not change). Finally, for very low energies, when
ions move only a few atomic layers, the concept of a con-
tinuum potential breaks down, and one might observe
larger compound effects – although it is doubtful whether
these should be called channeling.

V. CONCLUSIONS

The results presented in this work show that the chan-
neling effects in compounds are, at least in the keV en-
ergy range, very similar to a corresponding pure element
of the same crystal structure and average atomic number
(nuclear charge) Z. The differences become strong only
when the ratio between atomic numbers Z exceeds ∼ 10.
These results imply that channeling simulations or theory
for a pure element can be used as a first approximation
also for compounds and alloys.

APPENDIX A. METHODS TO ESTIMATE
TEMPERATURE DEPENDENCE OF ION

CHANNELING

The thermal displacements of atoms around their equi-
librium positions can affect the ion channeling [28]. This
effect can be esimated from the Debye model. The
one-dimensional root-mean-square displacement ampli-
tude can be obtained using [27, 28]

ui =

√
3h̄2

kB

√
Φ(x)
x + 1

4

mTD
(6)
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where i denotes the x, y, or z direction, x = TD/T , T
is the sample temperature, m the mass of the sample
atoms, and TD the Debye temperature of the material.
If m is given in amu’s, the constants can be calculated to
give

ui = 12.063

√
Φ(x)
x + 1

4

mTD
Å (7)

Φ(x) is the Debye integral

Φ(x) =
1

x

∫ x

0

ξdξ

eξ − 1
(8)

This integral cannot be done in closed form, but can be
readily integrated numerically. In MDRANGE we im-
plement the displacements using one of two numerical
approximations.

An analytically solvable approximation of the integral
(8) can be obtained as follows. If x = TD/T is not too
large (i.e. T >∼ TD), the exponential in the integral can
be approximated with the first three terms of its Taylor
series. Then one obtains

Φ(x) ≈ 1

x

∫ x

0

ξdξ

1 + ξ + 1
2ξ

2 − 1
(9)

=
2

x
log
(

1 +
x

2

)
(10)

≈ 2

x

(
x

2
− 1

2

x2

4

)
= 1− 1

4
x (11)

where in the last stage log(1+x) was approximated with
the first two terms of its Taylor series. This approxima-
tion is compared with the integral evaluated accurately
numerically in the inset of Fig. 7. Inserting this into Eq.
(6) one obtains a simple expression for the displacements
valid at high temperatures:

ui =

√
3h̄2

kB

√
T
m

TD
(12)

Note that this form predicts ui = 0 at 0 K, which is
not consistent with the existence of quantum mechani-
cal zero-point vibrations [31]. However, it can be useful
for model studies of channeling effects in the complete
absence of thermal vibrations.

Alternatively, we implement the thermal vibrations as
a much more accurate series expansion (from the math-
ematical tables by Stegun [32]), following the implemen-
tation in the BCA code MARLOWE [33]. This imple-
mentation also gives the zero-point vibrations. The im-
plementation is provided as computer code in Table I.
A comparison of the three calculation methods (Fig. 7)
shows that at and above room temperature, all 3 mod-
els give very similar results. At temperatures well below
room temperature, naturally the more accurate Stegun
approximation or direct integral evaluations should be
used.

TABLE I. Computer code (C language) segment giving the
thermal displacement amplitude from a series expansion [32]
of the Debye integral.

/*

All variables should be declared as

double, except i,k as int

Inputs to code segment:

W=Atom mass in amu,

TDebye = Debye temperature in K,

T = material temperature in K

*/

cvamp[1]=2.7777777777777778E-02;

cvamp[2]=-2.7777777777777778E-04;

cvamp[3]=4.7241118669690098E-06;

cvamp[4]=-9.1857730746619636E-08;

cvamp[5]=1.8978869988970999E-09;

cvamp[6]=-4.0647616451442255E-11;

cvamp[7]=8.9216910204564526E-13;

cvamp[8]=-1.9939295860721076E-14;

cvamp[9]=4.5189800296199182E-16;

cvamp[10]=-1.0356517612182470E-17;

k=0;

PI=3.141592653589793238;

/* 3*sqrt(hbar^2/kB/u)/1e-10/sqrt(3) */

scale=12.063464;

if (Tdebye<=0.0) tamp = 0.0;

else {

k++;

if (T<=0.0) QX = 0.25;

else {

QZ = Tdebye/T;

QA = QZ * QZ;

if (QZ<2.16) {

/* Convergent expansion of the Debye function: */

QB = 1.0/QZ;

QX = QB;

for (i=1;i<=10;i++) {

QB = QB*QA;

QX = QX+QB*cvamp[i];

}

}

else {

/* Asymptotic expansion of the Debye function: */

QB = QZ;

QX = 0.25 + PI * PI / (6.0 * QA );

QA = exp(-QZ);

QQ = QA;

for (i=1;i<=10;i++) {

QX = QX - ( (1.0 + 1.0 / QB) / QB ) * QQ;

QB = QB + QZ;

if (QB>160.0) break;

QQ = QA * QQ;

}

}

}

tamp = scale*sqrt(QX/(W*Tdebye) );

}

printf("Rms 1D displacement for mass=%gu,

Tdebye=%gK and T=%gK

is %g Angstroms\n",W,Tdebye,T,tamp);
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FIG. 7. (Color online) Comparison of the thermal displace-
ment amplitudes obtained without any approximations (by
highly accurate numerical evaluation of the Debye integral
(8), with the series expansion implementation (Table I), as
well as the high-temperature square root approximation (Eq.
12). The numerical evaluation and Stegun handbook approx-
imation agree to such a high precision that these two curves
are indistinguishable in the graph. The inset shows a compar-
ison of direct evaluation of the Debye integral, Eq. (8) with
the approximation Eq. (11).

In the simulations, the actual atom displacements are
the obtained using

x = x0 + uxG[0, 1] (13)

and correspondingly for y and z. Here G[0, 1] denotes a
Gaussian distributed random number with mean value 0
and standard deviation 1, generated using the standard
Box-Muller method [26]. To ensure the random numbers
do not start to repeat themselves during long simulations,
the underlying uniform random numbers were generated
with the Mersenne Twister [34] which has a repetition
period of 219937 − 1.

The random displacements were generated in this way
for all atoms in the cells several times, generating 10 inde-
pendent “initial state” cells with different displacements.
After this, when new cell was generated in front of the
moving ion, the atom coordinates are always picked from
a randomly selected cell from among the 10 initial state
cells.

As an example of the effect of the displacements on
ion channeling, we simulated the implantation of 10 keV

Ge directly into the [110] channel in InP (with the Ge
lattice constant, as in the main text). The results in Fig.
8 a) show that the range profiles do clearly depend on
the temperature, with higher temperatures (larger dis-
placements) closing the channel. On the other hand, the
results in Fig. 8 b) show that the results of the two dif-
ferent displacement models differ significantly only below
200 K.

The results in the main text of the paper are obtained
using displacements calculated with the square root ap-
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FIG. 8. (Color online) Comparison of the effect of thermal
displacement amplitudes on ion ranges profiles during implan-
tation in the [011] channel in InP. a) Effect on range profiles
for the square root approximation displacements. b) Effect
on mean range, comparing the highly accurate Stegun hand-
book approximation of the Debye integral with the square
root approximation.
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[11] J. Sillanpää, K. Nordlund, and J. Keinonen, “Elec-
tronic stopping of Silicon from a 3D Charge Distribu-
tion,” Phys. Rev. B 62, 3109 (2000).

[12] K. Nordlund, F. Djurabekova, and G. Hobler, “Large
fraction of crystal directions leads to ion channeling,”
Phys. Rev. B 94, 214109 (2016).

[13] G. Greaves, J. A. Hinks, P. Busby, N. J. Mellors, A. Ili-
nov, A. Kuronen, K. Nordlund, and S. E. Donnelly, “Gi-
ant Sputtering Yields from Single-Ion Impacts on Gold
Nanorods,” Phys. Rev. Lett. 111, 065504 (2013).

[14] H. Holland-Moritz, A. Ilinov, F. Djurabekova, K. Nord-
lund, and C. Ronning, “Sputtering and redeposition of
ion irradiated Au nanoparticle arrays: direct comparison
of simulations to experiments,” New J. Phys. 19, 13023
(2017).

[15] A. Turos, A. Stonert, B. Breeger, E. Wendler, W. Wesch,
and R. Fromknecht, “Low temperature transformations
of defects in GaAs and AlGaAs,” Nucl. Instr. Meth. Phys.
Res. 148, 401–405 (1999).

[16] E. Wendler, B. Breeger, and W. Wesch, “In situ investi-
gation of AlAs/GaAs interfaces during ion implantation
at 15 K,” Nucl. Instr. Meth. Phys. Res. B 175, 83–87
(2001).

[17] K. Lorenz, E. Alves, E. Wendler, O. Bilani, W. Wesch,
and M. Hayes, “Damage formation and annealing at low
temperatures in ion implanted ZnO,” Appl. Phys. Lett.
(2005), accepted for publication.

[18] E. Wendler and L. Wendler, “Empirical modeling of the
cross section of damage formation in ion implanted III-V
semiconductors,” Appl. Phys. Lett. 100, 192108 (2012).

[19] T. S. Avila and P. F. P. Fichtner and A. Hentz and P.
L. Grande, “On the use of MEIS cartography for the
determination of Si 1–x Ge x thin-film strain,” Thin Solid
Films 611, 101–106 (2016).

[20] Yanwen Zhang, G. Malcolm Stocks, Ke Jin, Chenyang

Lu, Hongbin Bei, Brian C. Sales, Lumin Wang, Lau-
rent K. Beland, Roger E. Stoller, German D. Samolyuk,
Magdalena Caro, Alfredo Caro, and William J. Weber,
“Influence of chemical disorder on energy dissipation and
defect evolution in concentrated solid solution alloys,”
Nature communications 6 (2015).

[21] F. Granberg, K. Nordlund, M. W. Ullah, K. Jin, C. Lu,
H. Bei, L. M. Wang, F. Djurabekova, W. J. Weber, , and
Y. Zhang, “Mechanism of radiation damage reduction in
equiatomic multicomponent single phase alloys,” Phys.
Rev. Lett. 116, 135504 (2016).

[22] K. Nordlund, “Molecular dynamics simulation of ion
ranges in the 1 – 100 keV energy range,” Comput. Mater.
Sci. 3, 448 (1995).
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