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A B S T R A C T

It has become increasingly apparent that the complement system, being an ancient defense mechanism, is not
operative only in the extracellular milieu but also intracellularly. In addition to the known synthetic machinery
in the liver and by macrophages, many other cell types, including lymphocytes, adipocytes and epithelial cells
produce selected complement components. Activation of e.g. C3 and C5 inside cells may have multiple effects
ranging from direct antimicrobial defense to cell differentiation and possible influence on metabolism.
Intracellular activation of C3 and C5 in T cells is involved in the maintenance of immunological tolerance and
promotes differentiation of T helper cells into Th1-type cells that activate cell-mediated immune responses.
Adipocytes are unique in producing many complement sensor proteins (like C1q) and Factor D (adipsin), the key
enzyme in promoting alternative pathway amplification. The effects of complement activation products are
mediated by intracellular and cell membrane receptors, like C3aR, C5aR1, C5aR2 and the complement regulator
MCP/CD46, often jointly with other receptors like the T cell receptor, Toll-like receptors and those of the in-
flammasomes. These recent observations link complement activation to cellular metabolic processes, in-
tracellular defense reactions and to diverse adaptive immune responses. The complement components may thus
be viewed as intracellular alarm molecules involved in the cellular danger response.

1. Introduction

From an evolutionary perspective, the complement system is a very
ancient molecular cascade with homologs of C3 observed already in
invertebrates, like the echinoderms (sea urchin) and mosquitoes [1,2].
Although the study of the complement system for the past century has
focused on its critical role in defense against microbial infections and
regulation of immune homeostasis, the very ancient origin of these
molecular pathways hints at a much broader palette of functions. With
the evidence for local complement production and the more recently
discovered intracellular complement activation, novel functions in
regulating metabolism, inflammasome activation and cell survival have
emerged.

The complement system consists of approximately 50 fluid-phase
and cell membrane-associated molecules. Activation of complement
leads to a number of outcomes relevant to human health. Complement
is activated via three major pathways, the classical, lectin and the al-
ternative pathway. A sufficient density and/or appropriate orientation
of complement activating IgG or IgM antibodies allows binding of C1q
and activation of the classical pathway. In addition, many other

structures like cellular components released from injured cells, can bind
C1q. Analogously, the lectin pathway is activated after binding of
mannose-binding lectin (MBL) or related ficolins to certain carbohy-
drates or acetylated structures. The alternative pathway does not re-
quire specific activators but gets activated by default by structures that
lack complement inhibitors and fail to bind the soluble complement
inhibitor Factor H [3]. Cleavage of C3 to C3a and C3b is the central
event in complement activation. C3 is activated by the classical/lectin
pathway C3 convertase C4bC2a, or by the alternative pathway (AP)
convertase C3bBb, both made of a structural subunit that can bind
covalently to targets (C4b and C3b) and of a serine esterase protease
that is activated after proteolytic cleavage (C2a and Bb). The alternative
pathway can amplify complement activation regardless of the initiating
pathway. Amplification is based on the unique cyclic capacity of the AP
convertase C3bBb to activate C3 to C3b molecules, which become
subunits for new active C3 convertases. The C3 convertases also recruit
C3b directly (C3bBbC3b or C4bC2aC3b) and act as C5 convertases that
generate the anaphylatoxin C5a and C5b to initiate the terminal com-
plement pathway resulting in the formation of the membrane attack
complex (MAC) composed of C5b, C6, C7, C8 and multiple C9
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molecules [4].
To prevent excessive or inappropriate complement activation sev-

eral inhibitors acting at different steps of complement activation exist.
Soluble inhibitors include those in the classical pathway, C1 inhibitor
(C1INH), to prevent C1r and C1s esterase-mediated activation of C2 and
C4, and C4b binding protein (C4bp) that controls the C4bC2a con-
vertase. C1INH also inhibits activation of the lectin pathway associated
serine proteases (MASPs). To control the key amplification step, C3
cleavage by the AP C3 convertase, soluble Factor H and Factor I can
inactivate C3b to inactive iC3b that loses the ability to function in new
C3 convertases. Factor H also has a C3bBb disassembling effect called
“decay accelerating” activity. On autologous cell membranes, comple-
ment activity is controlled by the major membrane regulators CR1
(receptor for C3b/C4b, CD35), decay accelerating factor (DAF, CD55),
membrane cofactor protein (MCP, CD46) and the membrane attack
complex inhibitor protectin (CD59). Of these, CD46 has been shown to
have signaling activity through the cytoplasmic domain (cyt1 or cyt2)
[4,5].

2. Location specific production of complement

Liver hepatocytes remain the major source of systemic complement
production. C1–C9, Factors B, H and I, and as well C4BP and C1INH are
all produced in the liver and delivered to the systemic blood circulation.
However, it has long been known that local complement production by
a vast array of cell types contributes substantially to the pool of com-
plement molecules in the tissues, see Table 1. As such, monocytes and
macrophages, including tissue resident macrophages, have been shown
to produce the full array of complement components [6]. Non-immune
cells such as fibroblasts, epithelial cells, endothelial cells and even
placental syncytiotrophoblasts have all been shown to produce many
complement components, all contributing to the local extracellular pool
of activation molecules [6–8]. Notable examples of proteins with major
synthetic sites outside the liver are C1q (macrophages and epithelial
cells), Factor D (fat tissue), and properdin and C7 (neutrophils), re-
spectively [9,10]. Although little cell specific expression data has been
identified for components of the lectin pathway, it is clear that MBL and
MASP-2 are found expressed in extra-hepatic tissues such as testis and
the small intestine. Likewise, MASP-1 and particularly MASP-3 are
expressed through-out the GI-tract, in the kidneys, as well as in the

heart, lungs, placenta and reproductive organs [11]. The negative
regulator MAp44 is primarily expressed in the heart [12]. Adipocytes
and fat tissue produce most complement components and, interestingly,
the synthesis of components of all the early pathways is increased in
obese individuals, while the production of terminal pathway compo-
nents is decreased [13]. T and B lymphocytes have been shown to
produce C3, C5 and an array of complement receptors. Together, both
myeloid and non-myeloid blood cells contribute with a substantial part
of serum C3 [6,14,15]. While functional levels of plasma complement
components are high, up to 1.3mg/ml for C3, the local tissue levels
may be substantially lower [16]. With this in mind, the kinetics of
complement activation and regulation should be viewed through a lo-
cation-specific perspective. Thus, even in cases where local complement
production is smaller compared to that of hepatocytes, substantial
evidence for a functional relevance has been provided. In im-
munologically privileged sites, such as the brain, local production of
complement is critical for synaptic remodeling and brain development.
In rodents, C3 and C1q are expressed in the developing brain and lo-
calize to the synapses, where classical complement activation plays a
crucial role in refining synaptic development and remodeling [17–19].
Furthermore, in the kidney local complement production by epithelial,
endothelial and mesangial cells has been proposed to contribute to anti-
microbial defense, as well to local inflammation [20]. This may be
particularly relevant for transplant rejection, as has been demonstrated
in animal models with hepatic complement deficiency [21,22]. Com-
plement C3 has also been shown to be synthesized e.g. by keratinocytes,
synoviocytes as well as by malignant skin tumor cells [23–25]. C3
synthesis is upregulated by various cytokines, like IL-1β, IFN-γ and
TNF-α. Most interestingly, glucocorticoids suppress C3 synthesis but
increase the synthesis of the major soluble complement inhibitor Factor
H [23,26]. Thus, suppression of local complement activity could be one
of the mechanisms behind the well-known anti-inflammatory activity of
glucocorticoids.

3. Complement inside cells

It has long been recognized that complement activation products,
such as C3b/iC3b/C3d and C4b, as well as the anaphylatoxins C3a and
C5a play a major role in immune regulation by binding to cell mem-
brane complement receptors, such as CR1 (C3b/C4bR, CD35), CR2

Table 1
Local complement production by myeloid and non-myeloid cells. Updated from [6].

Cell type Soluble complement components Complement receptors References

Hepatocytes C1r/s, C2-C9, C1INH, C4BP, B, H, I, MBL, Ficolin- 2, Ficolin-3,
CL-10, CL-11, MASP-1, MASP-2, MASP-3

C1qR, C3aR, C5aR1/2 [11,14,27–44]

T cells C3, C5, P CR1, CR2, CR4, C3aR, CD46,
C5aR1/2

[45–53]

B cells C3, C5, H, I C1qR, CR1, CR2, CR4, CD46,
C3aR,

[45,48,50–52]

Monocytes C1q, C1r/s, C2-C9, C1INH, C4BP, B, D, H, I, P, MBL, Ficolin-1,
CL-11, MASP-1, MASP-2, MASP-3

C1qR, CR1, CR3, CR4, CD46,
C3aR, C5aR1/2

[11,14,37,38,43,51–64]

Platelets C1INH, H, C5-C9 C1qR, CR1, CR4, C3aR, C5aR1/2 [37,61,65–68]
Neutrophils C3, C6, C7, P, Ficolin-1 C1qR, CR1, CR3, CR4, CD46,

C3aR, C5aR1/2
[37,51,61,64,69–71]

Macrophages (location specific
variation)

C1q, C1r/s, C2-C9, C1INH, B, D, H, I, P, CL-11 C1qR, CR1, CR3, CR4, C3aR,
C5aR1/2

[14,37,43,59–61,72–76]

Fibroblasts C1q, C1r/s, C2-C9, C1INH, B, H C1qR, CD46 [14,59,62,77–82]
Endothelial cells C1s, C2, C3, C1INH, B, H, I, CL-11, CL-12 C1qR, CR1, C5aR1/2, CD46 [14,37,43,59,61,81,83–87]
Epithelial cells (location specific

variation)
C1q, C1r/s, C2-C5, C1INH, B, H, Ficolin-1, Ficolin-3 C1qR, CR3, C5aR1/2, CD46 [14,37,41,59,62,64,72,73,81,86,88–91]

Keratinocytes C3, C1INH, B, H CR1, CR2, C5aR1/2 [92–95]
Adipocytes C1q, C1r/s, C3, B, D, H, I, P CR1, C5aR1/2 [96–99]
Astrocytes C1q, C1r/s, C2-C9, C1INH, B, D, H, I C1qR, CR1, CR2, C3aR, C5aR1/2 [75,100–108]
Pancreatic islets C1q, C1s, C3-C7, B, H, I, C4BP [109]
Retinal cells C1q, C1r/s, C2-C5, B, H, I, MBL, MASP1, MASP2 CR1, CD46 [110,111]
Chondrocytes C1q, C1r/s, C2-C4, C1INH [112]
Myocytes C3-C5, B, H, I CD46 [113,114]
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(C3dR, CD21), CR3 (iC3bR, CD11b/18), C3aR, C5aR1 and C5aR2, re-
spectively [5]. Also, the complement inhibitor CD46 has been proposed
to act as a receptor for activated C3b [115]. The receptors mediate
chemotactic and phlogistic signals to many different types of cells,
especially to leukocytes, to attract and activate them and to induce
release of further mediators of inflammation e.g. from mast cells (his-
tamine, heparin, prostaglandin D2, leukotriene C4, thromboxane and
various cytokines). However, current advances in the field of comple-
ment has shown that receptors such as C3aR, C5aR1 and C5aR2 are
crucial in complement signaling from the intracellular as well as the
extracellular compartment.

3.1. Intracellular C3

Invading microbes will under normal conditions be coated with C3-
cleavage products in the extracellular compartment prior to uptake by
immune cells. While this is recognized to be important for e.g. phago-
cytosis, a recent study demonstrated an intracellular-specific effect of
internalized C3 activation products in non-phagocytic cells [116]. By
incubating adenovirus particles with serum, the authors demonstrated
surface-bound C3-cleavage products, and using confocal microscopy,
the C3-coated viral particles were localized intracellularly in Hela and
HEK293T cells [116]. Endocytosis of adeno-virus led to C3-dependent
NF-κB activation, and this particular response was abolished by
blocking endocytosis. This study thus demonstrates the presence of
intracellular receptors and signaling events based on the presence of C3
cleavage fragments in non-immune cells [116]. Although the specific
intracellular receptor was not identified in this study, C3-products were
found to impact multiple signaling pathways. The study ruled out a
specific effect on NF-κB signaling mediated by CD11b, CD11c, CD18,
CD35, CD46 or CD55. C3-signaling was shown to affect mitochondrial
antiviral signaling (MAVS), leading to virion degradation by the pro-
teasome. The authors demonstrated that other unknown pathways are
also active in these non-immune cells [116]. In line with these ob-
servations, a study of dendritic cell processing of apoptotic debris was
shown to depend on the binding of C3 cleavage products in mice [117].
A lack of C3 deposition was shown to alter the trafficking of the
apoptotic material from phagosomes to lysosomes. Interestingly, the
main phagocytic receptor for iC3b-coated particles, CR3, did not appear
to be involved in the cellular trafficking. The altered cellular trafficking
is thus mediated by intracellular signaling events involving C3-cleavage
products, or by extracellular signaling initiated through an unspecified
extracellular receptor during phagocytosis [117].

With local complement production in a variety of cells, complement
is naturally found intracellularly, even without the presence of mi-
crobes or apoptotic material. However, a landmark paper in 2013
showed that not only is complement present, it is also activated in-
tracellularly [52]. Confocal microscopy and flow cytometry were used
to show the intracellular presence of C3, as well as the C3a neoepitope
occurring only after C3 activation. This was shown in freshly isolated
monocytes, neutrophils, CD8+ T-cells, B-cells, as well as in cultured
epithelial cells (Me-180), endothelial cells (HUVEC) and fibroblasts
[52]. The activation of C3 was studied in detail in T-cells, and activa-
tion products were found to engage intracellular receptors with dif-
ferent outcomes to ligand binding as compared to the same receptors on
the cell surface. C3 was found in endosomal and lysosomal compart-
ments of the resting T-cells, where part of the C3 pool was converted to
biologically active C3a and C3b by the protease cathepsin L [52]. C3a
generation increased upon T-cell activation by extracellular anti-CD3
and/or anti-CD46 stimulation. Although C3 activation products were
identified in other cell types, the mechanisms of C3 activation appear to
vary. The addition of a cell permeable cathepsin L specific inhibitor
abrogated C3a generation in T-cells. However, treatment of human lung
epithelial cells with the cathepsin L specific inhibitor at 1000-fold
higher concentrations, did not affect the intracellular C3a generation
[52].

Many recent reports have demonstrated intracellular complement
activation-mediated signaling. However, a number of controversies still
surround the origin and stimulation of the signaling. In contrast to
studies showing cell-derived C3 as the main source of intracellular C3, a
recent study showed specific uptake of extracellular hydrolyzed
C3(H2O) into B-lymphocytes, T-lymphocytes as well as to epithelial
cells [118]. The authors identified a C3 band in Western blotting of cell
lysates, only after direct contact with human serum. Utilizing confocal
microscopy of T-lymphocytes and ARPE-19, a retinal pigment epithelial
cell line, the authors demonstrated an intracellular localization of C3
into endosomes. The presence of C3 in the internalized endosomes was
time-dependent, showing the effect of a processing-mechanism or ex-
cretion of the internal C3 [118]. In line with other observations, a
“tonic” low level of C3 expression was observed throughout the ex-
perimental time course [52,118].

Interestingly, studies with B-cells revealed that other complement
components may function intracellularly as well. When C3(H2O) was
incubated with both Factor H and Factor I, an intracellular cleavage of
C3(H2O) to iC3(H2O) was observed in resting B-cells [118]. This study
also demonstrated that cleavage of intracellular C3 following extra-
cellular uptake, and the generation of intracellular C3a, were increased
after activation in both B-cells and T-cells [118]. Further in line with
these observations, an intracellular role of Factor H has been demon-
strated in apoptotic cells [119]. Early apoptotic, but not late-apoptotic,
Jurkat T-cells and RPE epithelial cells were shown to actively inter-
nalize Factor H. Interestingly, the uptake of Factor H was an active
process of early apoptotic cells, leading to the appearance of Factor H-
coated internal endosomes, which accordingly led to anti-inflammatory
processing of the apoptotic material by phagocytic cells [119]. In-
tracellular Factor H+ I processing of C3 could thus influence the in-
ternal receptors engaged by C3 cleavage products.

While the study re-produced the observation of cathepsin L depen-
dent cleavage of C3 to C3a and C3b, this was dependent on the presence
of Factor H. The authors demonstrated an interaction between cathe-
psin L and factor H. They also showed a dose-dependent increase in C3b
generation, when increasing levels of Factor H were incubated with a
constant concentration of cathepsin L [119]. The results thus suggest
that Factor H can act as a cofactor for cathepsin L in the intracellular
cleavage of C3, a function that could be involved in apoptosis-related
alarm signaling events and clearance of e.g. released nucleosomes.

Many proteases have been shown to cleave C3, including kallikrein,
trypsin, and some of the coagulation cascade enzymes [120–123]. Ca-
thepsins B and G have been shown to degrade C3, whereas cathepsin L
was demonstrated to produce the active C3a and C3b fragments
[52,119,124]. The outcome of intracellular C3 cleavage and the pro-
teases involved thus appear to be cell- and context-specific. Further
defining the C3a and C3b generating proteases in non-lymphocytic cells
will thus be of great importance.

Tonic generation of intracellular C3a was shown to be crucial for
cell homeostasis and cell survival in T-cells [52]. This is an intriguing
observation, given that C3-deficient patients do have surviving and
proliferating T-cells in circulation. A closer investigation of these pa-
tients revealed that in a number of cases C3-serum deficiency did not
correlate with complete C3 deficiency [125–129]. Thus C3-products
can be observed in isolated cells from apparently C3-deficient patients,
and gene expression profiling has revealed C3 mRNA expression in
peripheral blood mononuclear cells [52,116]. Furthermore, a normal
level of the C3a fragment was detected in CD4+ T-cells from a C3-
deficient patient [52]. Despite the presence of intracellular C3 in the
C3-deficient individuals, impaired function is still observed for B-cells,
T-cells and dendritic cells [52,129]. Sequence analysis of two of our C3-
deficient siblings showed a deletion mutation in the C3 beta chain
(unpublished). This and similar mutations could potentially lead to a
failure in correctly folded C3, and thus inhibit secretion, while si-
multaneously producing a C3a-containing C3 remnant, which would
fulfill the intracellular function [52,127,129]. Whether the C3a
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produced by the peripheral blood mononuclear cells from C3-deficient
patients maintains the ability to stimulate neutrophil oxidative burst, as
described for the cathepsin L generated C3a, remains to be determined
[52].

The evidence from the studies described above suggests that the role
of intracellular complement C3 is highly dynamic. This is to be expected
with a reactive compound such as C3. Thus, it appears that low levels of
C3 and C3-activation products are present in both immune and non-
immune cells. Following activation or stimulation, the cells respond by
increased intracellular activation of C3. This may either be brought
about by an increase in C3 uptake, or by a stimulated co-localization of
intracellular C3-stores with intracellular proteases, such as cathepsin L.

3.2. Intracellular C5

While several studies have described the presence and functional
relevance of C3 in the intracellular compartment, fewer studies have
dealt with the intracellular function of C5. Recent work demonstrated
the presence of C5, as well as the activation product C5a in T-cells.
However, so far most work have dealt with the function of the C5a
receptors, C5aR1 and C5aR2 [53,130–132]. Yet, the understanding of
C5aR1 and C5aR2 signaling has primarily been investigated in the light
of extracellular C5a generation. If C5a, like C3a, is generated in-
tracellularly, this suggests that we should revisit the current under-
standing of C5a receptor signaling.

In humans, the observation of an intracellular localization of both
C5aR1 and C5aR2 has been described in monocytes, neutrophils and T-
cells [53,130–132]. Furthermore, a functional role linked to the in-
tracellular space has been presented for both C5a receptors. C5a and
C5adesArg bind to both C5aR1 and C5aR2, although C5aR2 has a 10-
fold higher affinity for the deactivated C5adesArg than for C5a [133].
While the ligation of C5aR1 induces a proinflammatory response, the
outcome of C5aR2 ligand binding appears more controversial [132].
C5aR2 has been linked to anti-inflammatory regulation by two separate
mechanisms. Unlike C5aR1, C5aR2 does not couple to G proteins,
which has led to the interpretation that it may function as a decoy re-
ceptor. Scola et al. used C5aR2-transfected HEK, Chinese Hamster
Ovary, and Rat Basophilic Leukemia cells, as well as differentiated HL-
60 and Hela cells to show that the non-signaling C5aR2 internalizes
C5a/C5adesArg from the cell surface, thus inhibiting C5aR1 ligation
[134]. However, a study by Bamberg et al. showed an alternative anti-
inflammatory function. While focusing on the intracellular location of
C5aR2 in neutrophils and macrophages, the authors found both C5aR1
and C5aR2 to complex with β-arrestin, leading to a competitive effect
on ERK1/2 phosphorylation in response to C5a stimulation [130,135].
It is important here to note a strong dose-dependent variation in the
signaling outcome [135–138]. Finally, in contrast to both anti-in-
flammatory models, evidence from sepsis models in C5aR2-knockout
mice has shown that C5aR2 is essential for the pro-inflammatory re-
sponse of neutrophils and macrophages, and for the release of a range of
cytokines such as IL-6, TNF-α and the upregulation of CR3 [139,140].

It is clear from the conflicting results obtained thus far, that our
understanding of the functional role of C5aR2 is limited. While the
above described models show the intracellular localization C5aR2,
neither of them investigates the potential of direct ligation of C5aR1/2
by C5a/C5adesArg following C5 activation in the intracellular space.
However, this was recently demonstrated as a mode of action in T
lymphocytes. In resting and activated CD4+ T-cells C5aR1 was ex-
clusively observed in the intracellular compartment, while C5aR2 was
also observed on the cell surface [53]. Using a specific cell impermeable
receptor antagonist, the authors were able to demonstrate that blocking
the function of C5aR2 on the cell surface led to the induction of IFN-γ
production, and thus a Th1-type response. Likewise, extracellular in-
cubation with C5a/C5adesArg or a C5aR2 agonist lead to a reduced
Th1-type response [53]. In contrast, transfecting T-cells with C5aR1
silencing siRNA, to block the intracellular receptor, reduced IFN-γ

production. This data thus suggests that ligation of C5aR1 in the in-
tracellular space induces a Th1-phenotype, while extracellular ligation
of C5aR2 inhibits this effect [53]. Essential for this pathway is the
presence of intracellular C5a or C5adesArg, either produced by the T-
cell or internalized from the surrounding environment.

It thus appears that the interplay between the two C5a-receptors is
cell-type dependent. The studies with neutrophils and monocytes/
macrophages suggest that C5aR1 plays a role on the cell surface, which
may be interfered by C5aR2. In contrast, C5aR1 may primarily function
intracellularly in T-cells, while the presence of C5aR2 on the surface of
the cells may be relevant for fine tuning the cellular response.

Although many observations suggest that complement components
C3 and C5 can indeed become activated inside cells and that this may
lead to physiological consequences, some questions are left un-
answered. Further studies are needed to show that intracellular com-
plement activation, and in particular cleavage of C3 and C5, actually
lead to an alarm response inside the cells and a resulting cellular
adaptation. One of the questions currently challenging our perception
of this complicated intracellular complement signaling cascade, is
which mutations may cause a functional locally produced intracellular
molecule, yet not a liver-derived secreted molecule. In the case of both
C3 and C5 upstream mutations leading to intact C3a/C5a domains, but
interfering with the rest of the molecule has been suggested. Other
explanations could incude lineage-specific mutations that only affect
the liver cells, and not cells of the myeloid lineage. A final explanation
could be deficiency in the C3/C5 secretion mechanisms.

4. Intracellular complement and metabolic stimulation

The link between innate immunity and basic metabolic regulation
has been well established. Specifically, the effect of complement com-
ponents has been shown to affect the metabolism of various tissues such
as liver, pancreas and adipose tissue [141]. C3adesArg induces insulin
secretion from pancreatic beta-cells, while Factor H has been found to
suppress this effect [142,143]. C1q, MBL and C3 have all been im-
plicated in type 1 diabetes, and C3-deficient mice, as well as mice with
hematopoetic specific C3 deficiency were observed to be protected from
diabetes [144–146]. These findings suggest a role for locally produced
complement components, and possible complement activation, in the
regulation of metabolism. It is well worth noticing, however, that
others have tried to replicate the protective effect of C3 deficiency, but
failed [147].

At the cellular level, the complement-mediated effects on adipocytes
have been studied. Adipocytes produce both C3, Factor D and Factor B,
and thus are able to produce C3a and the C3a breakdown product
C3adesArg [148,149]. C3adesArg has been suggested to increase tria-
cylglycerol production in the adipocytes by increasing the uptake of
free fatty acids [149]. Our recent study compared genetically identical
monozygotic twins, where the siblings had an average weight differ-
ence of 18 kg [13]. In obese individuals the genes for components of
both the classical and the alternative pathway were upregulated in fat
tissue and in the isolated adipocytes, while the terminal pathway genes
were downregulated. The upregulated genes included also receptors for
C3a and C5a (C5aR1), and the iC3b receptor (CR3). Gene upregulation
correlated positively with adiposity and hyperinsulinemia and nega-
tively with the expression of insulin signaling-related genes (Fig. 1).
Obesity thus correlates with an inflammatory alarm response in adi-
pocytes and fat tissue. This response includes synthesis of complement
components that may be involved e.g. in the removal of excess or
modified lipid waste [13].

T-lymphocytes have been shown to produce C3 activation products,
and ligand-C3aR interaction was found to play a role in T-lymphocytes
undergoing metabolic reprogramming during activation. The comple-
ment components C4b and C3b bind to the complement regulator CD46
on the surface of T-cells, leading to signaling through the cytoplasmic
tails. By comparing T-lymphocytes isolated from a CD46-deficient
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patient, T-lymphocytes from healthy donors treated with CD46 siRNA,
and a Jurkat T-cell line overexpressing CD46, it was demonstrated that
autocrine stimulation of CD46 following cell activation could be im-
portant for glycolysis and oxidative phosphorylation [150]. T-cell ac-
tivation in both mice and humans depends on increased nutrient uptake
through glucose and amino acid transporters [151,152]. However, in
CD46-deficient T-cells, upregulation of the glucose transporter GLUT1
and the L-type amino acid transporter LAT1 were impaired, thus further
pointing to a potential role of complement activation products in cel-
lular metabolism [150]. While intriguing, however, these studies need
to be confirmed and mechanistically explained.

In macrophages, the specific effect of complement on energy me-
tabolism has not been studied in detail. However, the effect of meta-
bolic inhibition of oxidative phosphorylation and glycolysis on com-
plement mediated phagocytosis has been investigated. The study
revealed that phagocytosis and internalization of complement coated
zymosan was dependent on glycolysis and the availability of glucose
[153]. In the future, it will be interesting to investigate if binding of
opsonized particles to complement receptors directly regulates the level
of glycolysis in macrophages as observed in T cells. Obviously, com-
plement-opsonized particles and the anaphylatoxins have major effects
on macrophages in their normal clearance functions. How, and speci-
fically by which mechanisms, this leads to “silent” removal of host
breakdown products or to a more aggressive inflammatory response
remains to be worked out.

Extracellular stimulation of complement receptors is apparently
essential for activation of many different types of cells. However,
resting T-cells require tonic metabolic stimulation signals for survival,
as well. Mammalian target of rapamycin (mTOR) is one key component
providing such homeostatic signaling [154–156]. Ligation of the C3aR
and C5aR has been shown to induce mTOR activation. Recent work has
proposed that the C3aR stimulation necessary for mTOR activity may
primarily be provided by intracellularly derived C3a [52]. Culturing of
resting and CD4+ T-cells in the presence of increasing concentrations of
the cathepsin L protease, leads to apoptosis. This suggest the im-
portance of C3aR stimulation for the metabolic survival of T-cells. In-
terestingly, the apoptotic phenotype could not be rescued by exogenous
(extracellular) addition of C3a to the culture. The stimulation of mTOR
thus seems to be dependent on the intracellular production of C3a [52].

While extracellular C3a has no effect on the basic homeostatic
mTOR stimulation, engaging extracellular complement receptors are
crucial for T-cell activation. Whereas the C3aR is not found on the
surface of resting T-cells, it translocates to the surface upon T-cell re-
ceptor stimulation [52]. C3a-receptor interaction, as well as C3b in-
teraction with CD46, are crucial components in IFN-γ secretion. This
was shown by incubating activated T-cells in the presence of a non-
lethal dose of cathepsin L inhibitor. This dramatically reduced IFN-γ
secretion, however, in case of the activated T-cells the phenotype could
be rescued by the extracellular addition of C3a and agonistic activation
of CD46 [52]. As a net result, C3 activation and IFN-γ secretion lead to
differentiation of CD4+ T cells into Th1-type cells, whereas the gen-
eration of FoxP3+ regulatory T cells is favored in their absence
[154,156]. Our studies on C3-deficient mice have also shown that C3 is
involved in T helper cell differentiation, and immune responses to
ovalbumin were biased towards Th2 direction in the absence of C3
[157]. In subsequent studies, we further observed that human C3-de-
ficient patients as well as C3 knock-out mice had an impaired intestinal
tolerance, and therefore e.g. an increased tendency to develop anti-
bodies against intestinal microbes [158]. At least in part, the impaired
intestinal tolerance was caused by the absence of C3-mediated signaling
in T cells.

5. Intracellular alarm signaling

With the novel perspectives in our understanding of the role of
complement activation from extracellular danger sensing to also in-
clude intracellular activation, multiple functional avenues open up.
Could this alarm response involve complement-mediated recognition of
intracellular microbes, bacteria, protozoa and viruses and promote their
destruction?

The complement system has already been linked to a number of
cellular danger sensing systems, including the Toll-like receptors
[159,160]. A key component of the innate immune defense system, is
the inflammasome mediated generation of IL-1β and IL-18 [161]. These
cytokines enhance the antimicrobial response of phagocytic cells and
induce the adaptive Th1 and Th17 response [162]. Finally, IL-1β in-
duces the expression of pentraxin 3 (PTX-3) leading to complement
activation, as well as tissue repair and regulation of the clotting cascade

Fig. 1. An example of location-specific gene regulation of
complement component expression. Expression of comple-
ment system genes in subcutaneous adipose tissue and isolated
adipocytes from obese individuals as compared to genetically
identical monozygotic twin siblings. Genes up-regulated are
indicated in red and those down-regulated in blue. ADIPOQ:
Adiponectin, CFHR: complement Factor H related, CLU: clus-
terin, C1QTNF7: C1q and tumor necrosis factor-related pro-
tein 7, FCN: Ficolin.
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[163]. While several types of multiprotein inflammasome-complexes
have been described, a number of studies have shown a link between
complement signaling and the pyrin domains-containing protein 3
(NLRP3) inflammasome [164,165].

Inflammasome activation and IL-1β/IL-18 production take place in
both myeloid and non-myeloid cells. The pathways inducing NLRP3
activation appear to be cell-specific [166]. Generally, a priming signal
is essential for NLRP3 and IL-1β/IL-18 gene transcription, followed by
an activating signal driving the inflammasome complex assembly
[167,168]. C3 and C5, as well as their activation products, have a direct
impact on both the priming (signal 1) and the activation (signal 2) of
the inflammasome. Cytokine stimulation and pattern recognition re-
ceptor ligation are key priming signals. C5a combined with TNF was
identified as a strong inducer of IL-1βmRNA transcription in monocytes
[165]. Likewise, in T-cells, a gene set enrichment analysis revealed a
number of inflammasome-related genes to be upregulated following
TCR/CD46 co-stimulation, including IL1-beta and NLRP3 [53]. In mice
complement was a crucial inducer of Il-1β expression, and C3−/−

knock-out mice display a reduced inflammasome activation in micro-
glial cells following brain inflammation [169].

Complement components can also directly influence inflammasome
assembly (signal 2). C5 and C5a were observed at low levels in resting
monocytes and T-cells by confocal microscopy and flow cytometry.
Following cell activation by TCR and CD46 stimulation, C5 expression
was increased and the generated C5a was able to stimulate the in-
tracellular C5aR1. This directly induced the generation of reactive
oxygen species (ROS) in the cell, leading to inflammasome assembly
[53]. In addition, as highlighted above, C3a-stimulation alters the cel-
lular metabolic programming, and has directly been shown to increase
ATP efflux in monocytes [164]. The available ATP engages the receptor
P2×7, which also leads to NLRP3 activation and increased IL-1β
generation [164]. Complement thus impact a number of intracellular
pathways inducing inflammasome assembly and cellular activation

(Fig. 2).
After activation, intracellularly generated C5a translocates to the

cell surface, where it may act as a negative regulator. In T-cells in-
flammasome activation leads to IFN-γ production, a response which
was exacerbated by blocking of the inhibiting C5aR2 [53]. Interest-
ingly, C1q has also been identified as a driver of inflammasome acti-
vation following priming in murine epithelial cells [170]. In contrast to
this, C1q was shown to exert a negative regulatory effect on macro-
phage inflammasome function [171]. The complement components
therefore appear to be an essential regulatory part of the cellular alarm-
system controlling inflammasome activation. For a more detailed un-
derstanding, please refer to the recent review by Arbore and Kemper
[172].

6. Conclusions

The profile of complement activities has become considerably
broader in recent years. In particular, the window into intracellular
activities has been opened, and it seems clear that active complement
products are produced inside cells where they may have their effect.
Alternatively, they engage cell membrane receptors after excretion
from cells, thus mediating their function in an autocrine or paracrine
fashion. As usual, most of the reports still need to be confirmed to be
able to establish the real significance of these intriguing observations.
Activated complement components, like C3a and C5a, appear to raise
an alarm that promotes cellular defense mechanisms both inside and
outside cells. They also seem to be able to launch cellular differentiation
programs aimed at coordinating the other arms of the immune system
into an active response against invaders, including those digging into
cells. In addition to this, some of the novel complement mechanisms
may include directing physiological clearance mechanisms, metabolic
control, immune suppression and tolerance maintenance.
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