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Abstract

Summary: Genome-wide association studies (GWAS) in microbes have different challenges to

GWAS in eukaryotes. These have been addressed by a number of different methods. pyseer brings

these techniques together in one package tailored to microbial GWAS, allows greater flexibility of

the input data used, and adds new methods to interpret the association results.

Availability and implementation: pyseer is written in python and is freely available at https://

github.com/mgalardini/pyseer, or can be installed through pip. Documentation and a tutorial are

available at http://pyseer.readthedocs.io.

Contact: john.lees@nyumc.org or marco@ebi.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Finding genetic variation associated with bacterial phenotypes such

as antibiotic resistance, virulence and host specificity has great po-

tential for a better understanding of the evolution of these traits, and

may be able to inform new clinical interventions. Genome-wide as-

sociation studies (GWAS) address this in a hypothesis-free manner.

The recent availability of thousands of whole-genome sequences

from bacterial populations has made this approach possible, though

issues of strong clonal population structure and a variable pange-

nome (sequence variation of both core regions present in every iso-

late, and in variably present accessory regions) must be accounted

for in any successful analysis (Power et al., 2017).

One method that addresses these issues in a scalable manner is

SEER (Lees et al., 2016), which uses non-redundant variable length

k-mers between 9-100 bases as a generalized variant to represent

variation across the pangenome. Linear models with a control for

population structure are then used to perform the association. Other

methods include: bugwas, which uses a linear mixed model (LMM)

and also checks for lineage effects (Earle et al., 2016); scoary, which

tests clusters of orthologous genes (COGs) with and without

accounting for population structure (Brynildsrud et al., 2016); and

phylogenetic regression, which uses a known phylogeny to adjust

for the covariance between samples (Garland and Ives, 2000).

Each of these methods has its own set of advantages and limita-

tions, so recent GWAS analyses have used a combination of these

techniques along with methods designed for human genetics, often

in a somewhat ad-hoc manner that requires tedious file format con-

version and familiarity with a wide range of methods and software

packages (Lees et al., 2017).

As the number of large bacterial population datasets increases, we

recognize the need to make these methods more accessible to the field.

We have therefore re-implemented SEER in an easy-to-use and install

python package, pyseer. pyseer also includes many additional features

covering new association models, input sources and output
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processing. This brings together all the methods mentioned above into

a single piece of software, and further enables new combinations of

analysis. Our method is equally applicable to viral GWAS, and indeed

any species with structured populations and/or genomes with signifi-

cant variation in gene content.

2 Materials and methods

The foundation of pyseer is a direct python re-implementation of

SEER (originally written in Cþþ). K-mers of variable length

counted from draft assemblies are used as the input, and their associ-

ation with a phenotype of interest is assessed by fitting a generalized

linear model to each k-mer. To control for population structure,

multi-dimensional scaling of a pairwise distance matrix is performed

and these components are included as fixed effects in each regres-

sion. In the case of a binary phenotype with a highly penetrant vari-

ant (those with high effect sizes), Firth regression is performed to

maintain power. This adds a penalty to the logistic regression likeli-

hood when there is a large error on the slope, which alleviates

underestimation of p-values in cases with nearly separable data

(Heinze and Schemper, 2002). Significant k-mers, after adjusting for

multiple testing, can then be mapped to a reference annotation to

find regions of the genome associated with the phenotype.

After re-implementation, results were the same as SEER

(Supplementary Fig. S1) and pyseer is of comparable speed

(Supplementary Table S1). We then expanded the features in pyseer

to bring together the different methods mentioned above.

2.1 Input sources
In addition to k-mers, the original focus of SEER, it can be conveni-

ent to test for association of SNPs and INDELs called against a ref-

erence genome. These can be used to test for association of close or

adjacent SNPs, which would be split into many low frequency k-

mers. The consequence of these variants can be directly predicted

(e.g. synonymous, frameshifting) which would require more down-

stream processing for k-mers. Presence or absence of COGs and

aligned intergenic regions can also be useful, as shown by scoary

(Brynildsrud et al., 2016).

pyseer can natively read all these types of variant from VCF or

Rtab files, which also allows for any user defined input type (for ex-

ample copy number variants). We also enable grouping of variants

by genomic region to perform burden testing, now allowing users to

perform analysis of rare variation while still accounting for popula-

tion structure.

An important technical difficulty of using SEER, and most com-

mon linear mixed model implementations, is making sure that the

membership and order of samples between the variant calls, pheno-

type file and population structure all match up correctly. Many

methods do not check for this, and can run an incorrect analysis

without producing a warning. In pyseer this label matching is done

automatically, and the intersection of samples used is reported to

the user.

2.2 Association models
pyseer implements the same fixed effect generalized linear regression

model as SEER, including Firth regression. In pyseer we have added

two new multidimensional scaling algorithms and a more stream-

lined interface with mash (Ondov et al., 2016) to compute popula-

tion structure. Alternatively, when a high quality phylogeny is

available, pyseer can use this to adjust for population structure in a

manner analogous to phylogenetic regression.

As a major alternative we have included an LMM, which uses

random effects to control for population structure, and has been

shown to work across a range of scenarios. We have used the

FaST-LMM implementation, which allows association in linear

time (Lippert et al., 2011), using a kinship matrix estimated from a

subset of variants or from a phylogeny. This now allows associ-

ation of all k-mers under the mixed model in a few hours,

which was previously computationally and bioinformatically

challenging.

We have also included a method to estimate possible lineage

effects, based on the procedure used in bugwas. Those variants

which are associated with both the phenotype and with a lineage

(which can be determined by pyseer or defined by the user) associ-

ated with the phenotype can be prioritized for further analysis out-

side of GWAS.

2.3 Output processing
It has been suggested that the number of unique variant patterns is a

sensible way to set the multiple testing threshold, however these can be

difficult to count due to the size of k-mer data. pyseer uses hashing to ef-

ficiently calculate this. We have also added tools to make interpretation

of significant k-mers more streamlined. The user can map their results

against any number of reference genomes for interactive display in

phandango (Hadfield et al., 2018) (Supplementary Fig. S2). We have

added the ability to summarize k-mer results at the gene level by itera-

tively mapping to reference and draft annotations, which can be used to

show complementary information about effect size, coverage and minor

allele frequency (Supplementary Fig. S3).

3 Discussion

Starting with a re-implementation of SEER, we have added the

models and input types used by other microbial and human GWAS

approaches into a single package. Analyses which were previously

challenging to perform, such as association of all variable length k-

mers with a LMM, can be performed in an efficient and user-

friendly manner. We have also enabled new types of analysis, such

as population structure corrected burden testing, and gene level

summaries of k-mers. Our package includes comprehensive docu-

mentation and a tutorial which shows how to perform GWAS

using the new input sources and both association models, as well

as how to interpret significant k-mers. We have implemented unit

tests in our code to ensure consistency of output as features are

added.

With pyseer we have therefore reconciled many of the existing meth-

ods for regression-based microbial GWAS into a single package. Our

focus on documentation and ease-of-use of pyseer will make GWAS

more accessible to the microbial genomics community.
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