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at Kumpula and Hyytiälä, and my co-authors for making the publications that led to this

thesis possible. I am grateful for Professor Markus Olin and Docent Tomi Raatikainen for

reviewing this thesis and BA Julia Viljanen for proofreading the thesis introduction.

Importantly, I doubt I’d have survived the last few years of this thesis without you - Anniliina,

Eemeli, Johanna, Laura, and Samuli. Academic pursuits require a counterbalance, and you

have certainly provided the (mostly) necessary distraction. Thank you also to my friends at
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Statistical analysis of aerosol mass spectra: chemometrics and chemical speciation

Mikko Yrjö Erik Äijälä

University of Helsinki, 2019

Abstract

Climate change and degraded air quality rank among the most severe environmental problems

that humanity currently faces. Atmospheric aerosols - the fine particles suspended in air –

play a significant role in both of them. Aerosols affect Earth’s radiation balance via their

interactions with radiation (scattering and absorption of light) and atmospheric water vapour

(cloud formation, lifetime, brightness, and rainfall). Overall, aerosols have a cooling effect

on climate. When inhaled, aerosols can cause a range of adverse health effects, from allergies

to lung disease and increased rates of cancer. Air pollution is estimated to result in millions

of premature deaths each year in polluted environments. All of these aerosol effects and

interactions significantly depend on their chemical composition.

This thesis focuses on aerosol chemical composition, measured by mass spectrometry. To

make sense of the vast diversity of chemical compounds present in the atmospheric aerosol

particles, we rely on chemical classifications (speciations). In this work, different types of

traditional aerosol mass spectrometric chemical speciations are evaluated by their ability to

explain measured aerosol physicochemical properties, such as volatility, hygroscopicity, and

optical properties.

While the parameter estimates for aerosol physicochemical properties derived from traditional

chemical classifications do correlate with experimental data, the estimates fail to adequately

capture the observed variabilities. Whether this is due to deficiencies in speciation schemes,

flaws in assumptions or models, or measurement uncertainties, is not apparent. However, it

seems evident that there is room for improvement in all of the above-mentioned fields.

During the course of this work, chemometric methods, (i.e. the application of mathemat-

ical and statistical methods to the analysis of chemical measurements) were implemented

in the analysis of aerosol mass spectra. The results clearly show the value of statistics-

based, machine learning oriented methods for feature extraction and chemical classification.

Such chemometric approaches maximise the amount of information available for an analyst of

aerosol mass spectrometric results, and enable making better informed interpretations. Com-

bining methods such as data factorisation and clustering can overcome typical limitations of

these methods when used as stand-alone techniques. Chemometrics-based, machine-learning-

like methods thus show considerable potential for advancing aerosol chemical analysis.

Finally, chemometric tools were shown to be capable of producing new, comprehensive, math-

ematically and statistically robust chemical classifications, which again contribute to our

understanding of the atmospheric aerosol properties, interactions, and effects.

Keywords: atmospheric aerosols, mass spectrometry, chemometrics, chemical speciation
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1 Introduction

1.1 Aerosols, climate, and air quality

The atmosphere of our world is integral to most of the life forms on our planet, and

breathing the same air is something that connects all of us despite of our differences.

Thus, the many environmental concerns related to Earth’s atmosphere are also common

to all of us.

Anthropogenic climate change certainly ranks among the greatest human challenges

of our time, extending its effects to many areas of life, and it shapes the future for

human societies and lives of other species alike (IPCC, 2018). Another threat which

is less existential, but harder to disregard in the daily lives of people, is the pollution

of our atmosphere. While the most severe outcomes of global warming will not unfold

until in the seemingly distant future, air pollution is the leading contemporary cause

of environment-related illnesses (Lelieveld et al., 2015; Shiraiwa et al., 2017) and pre-

maturely lost lives, resulting in seven million premature deaths every year – five times

the mortality rate related to traffic injuries (WHO, 2016). Addressing and mitigating

the effects of climate change and degraded air quality require grasping the scale and

severity of these issues and gathering the political momentum and scientific knowl-

edge required to act on them. Atmospheric research is integral in solving these grand

challenges (Rockström et al., 2009; Kulmala et al., 2016), as science needs to provide

reliable information for the basis of informed decisions, ways to evaluate and predict

the effectiveness of the possible courses of action, and to provide new solutions in the

form of tools and technologies.

The basic principle of how increased carbon dioxide levels in the atmosphere result

in global warming was understood already more than 120 years ago (Arrhenius, 1896;

Jacobson, 2012). Global warming of the late 20th century was rather accurately pre-

dicted already in the 1970’s (Sawyer, 1972), and its consequences and the necessity of

changes spelled out at that time (Mesarovic and Pestel, 1974; Meadows, 2014). Re-

cently, the remaining deficiencies in our understanding of climate change relate to the

role and importance of various temperature feedbacks of our planet, e.g. heat absorbed

in oceans, decreased albedo due to snow melt at high latitudes, and the effects of atmo-

spheric aerosols, the fine particles suspended in air. Specifically, atmospheric aerosols

interact with (i) incoming sunlight by scattering and absorbing radiation, as well as (ii)
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atmospheric water vapour; aerosols act as “seeds” for cloud droplets, affecting cloud

formation, properties (brightness, lifetime), and rainfall. All of these processes modify

the temperature of our planet, but the knowledge on the magnitudes of the effects

remains inadequate (IPCC, 2013; Burkart et al., 2011; McFiggans et al., 2006).

Along with reactive trace gases, such as nitrous oxides (NOx) and tropospheric ozone

(O3), aerosols are also among the most important air pollutants causing adverse health

effects (McNeill, 2017). Understanding the nature, effects, and interactions of atmo-

spheric aerosols is thus an important piece in the atmospheric puzzle we are hoping to

solve.

1.2 Aerosol sources, effects, and interactions

While the need to label and classify things is profoundly human, attempts to dichoto-

mously classify the extremely diverse assortment of gases and aerosol particles is dif-

ficult. We can try to divide the particles according to their formation mechanisms -

based on if they were injected to the atmosphere (primary aerosols) - or formed therein

via gas-to-particle conversion (secondary aerosols). However, it is usually impossible

to ascertain where the seed of the aerosol particle came from and, for example, many

combustion aerosols are considered primary, even when actually formed in the emis-

sion plume outside of a smokestack or a tailpipe (so called “delayed primary aerosol”;

e.g. Rönkkö et al., 2017). Likewise, the aerosol sources can be from human activity

(anthropogenic) or natural, with the latter often dubbed as biogenic aerosols. This

can cause confusion as well, for e.g. agricultural aerosol emissions or those created

out of cutting down a forest, or aerosols from burning of biomass, all of which can be

thought of as both biogenic (originating from biological processes) and anthropogenic.

To be able to discuss and describe different types of aerosols, use of labels is, however,

certainly useful and necessary – it is just important to note that most of the labels and

classifications are not mutually exclusive.

Aerosol particles originate from a variety of sources. Globally the largest natural

aerosol sources in terms of particle mass are suspended soil dust and sea salt, due

to their typically large particle sizes. Atmospheric secondary aerosol formation also

contributes significantly to aerosol mass, and is a dominant source in terms of aerosol

number concentration (Merikanto et al., 2009). Other natural sources include botanical

debris and pollen, volcanic dust and sulphates, as well as smoke from forest fires. Main
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anthropogenic sources include gas-to-particle conversion as well as primary particles

from e.g. combustion engines (transportation), coal burning in electricity production

and heating, cement manufacturing, metallurgy and waste incineration. (IPCC, 2002).

Atmospheric aerosol particles come in many shapes and sizes. The smallest of them

only consists of a few molecules clumped together, with sizes of few nanometres (nm),

while the coarse particles visible to the eye can have sizes comparable to the diameter

of a human hair (around 100 µm). Similar variability exists in their shape and com-

position, which can be anything from long agglomerate chains of black carbon soot, to

crystallised salt, to liquid droplets of organics. It is thus understandable that the dif-

ferent aerosols also exert different effects when interacting with light and water vapour

of the atmosphere, or when deposited inside human respiratory organs (Atkinson et al.,

2015; Shiraiwa et al., 2017). In physics, such climate-relevant aerosol interactions are

often described with physicochemical parameters, such as hygroscopicity (expressing

the water affinity of a substance), solubility (how easily a compound is dissolved in e.g.

water), volatility (the tendency to evaporate or condense), and scattering and absorp-

tion coefficients (what happens to light or photons when they encounter a surface).

For health effects, the aerosol qualities of interest are their redox activity (capacity

to cause reductive and oxidative stress) as well as toxicity, allergenicity, and carcino-

genicity (whether they are poisonous or cause allergy or cancer). Inhalation of aerosol

particles and their deposition into the respiratory tract can also result in physical scar-

ring (lung fibrosis; Shiraiwa et al., 2017), and small nanoparticles have been shown to

be capable of crossing the epithelial and blood-brain-barriers to enter blood circulation

and even the brain, where they may potentially influence the central nervous system

(Semmler et al., 2004; Oberdörster et al., 2004), and contribute to a wide range of

chronic and acute diseases.

1.3 Mass spectrometry, chemometrics, and chemical specia-

tion

Of the various aerosol particle quantities, basic physical qualities such as size, shape,

and electric charge, are often the easiest parameters to measure. Studying the chemi-

cal composition of particles has traditionally proven much harder, due to the miniscule

particle mass available for chemical analysis. In extremely polluted environments such

as megacities, the total mass of aerosol particles can reach a few milligrams per cubic
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meter, but even these extremely high particle concentrations only represent approxi-

mately one millionth of the mass of air in the same volume. Fortunately, refinement of

mass spectrometric methods in the recent decades has enabled detailed, on-line chemi-

cal analysis of these extremely small amounts of mass. Essentially, a mass spectrometer

measures the elemental or molecular composition of a substance, typically yielding a

spectrum of signals over a range of atomic masses, from which chemical composition

of the analysed sample can be inferred.

While the principle is straightforward for samples containing only a few types of

molecules, an atmospheric aerosol can contain dozens of inorganic and tens to hundreds

of thousands of different organic compounds. An atmospheric aerosol mass spectrum

thus represents the sum of all these components. Although mass spectrometry has

been an established method already from the early 1900’s, the interpretation of mass

spectra has long relied on the expertise of analytical chemists dedicated to the topic.

However, even the most perceptive and experienced analyst can only process a fraction

of all the information present in very complex mass spectra. The problem can be seen

in the context of “big data”, an over-abundance of information for manual analysis,

with interdependencies too complex for human comprehension to pick up from the raw

numbers or typical sample statistics values.

Since the 1990’s, the scene has considerably changed – modern computer capacity and

adoption of advanced statistical methods formerly too cumbersome to run effectively

has made it possible to produce advanced and complex analyses of enormous amounts

of data with relative ease. As a result, the scientific field of chemometrics,“using

mathematical and statistical methods to provide maximum chemical information by

analyzing chemical data”, (Kowalski, 1975) seems to have entered a golden age with

no end in sight.

As the title of this work suggests, one of the focuses of this thesis is the topic of

“chemical speciation”. Here I define it broadly as the process of classifying chemical

components to specific classes, “chemical species”. Analogous to the word “classifica-

tion”, speciation can equally refer to the classifying process or the resulting system of

classes.

Chemical speciation is a practical necessity: with the currently available experimental

techniques and theoretical frameworks it is not possible to construct an exact descrip-

tion of what atmospheric aerosol consists of. Nevertheless, as often is the case in nat-
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ural sciences, this need not deter us from constructing approximate descriptions that

serve as useful tools for understanding the phenomena, despite their in-built, known

limitations.

In this thesis, I approach the topic of chemical speciation both from the traditional

viewpoint of accumulation of chemical knowledge, as well as from an information the-

oretical perspective, where I essentially consider it as an exercise in statistical classifi-

cation.

1.4 Machine learning - new tools for analysis of scientific data

Modern buzzwords like neural networks, machine learning, and artificial intelligence are

frequently and increasingly appearing not only in commercial applications of big data

on consumer behaviour and social networks, but also in the context of scientific data

analysis. Early adopters of advanced statistical tools and machine learning methods

have for a time been found within the practitioners of biological and medical sciences,

who similarly wrestle with problems of large data volumes. A scientific big sister to

chemometrics - bioinformatics, i.e. application of advanced statistical, mathematical,

and machine-learning methods for biological data - has already revolutionised research

in biological sciences, especially in genetics (Diniz and Canduri, 2017). Although not

as of yet equally widespread, aerosol sciences and aerosol mass spectrometry have also

seen some emergent chemometric applications that begin to qualify as machine learning

methods. So far, they have mostly been limited to data dimensionality reduction (i.e.

mapping large sets of data into a more manageable amount of variables with minimal

loss of information), but it is increasingly evident that the potential uses of advanced

statistical methods are much more diverse.

The theme of this dissertation relates to this paradigm shift in the analysis of aerosol

chemical data, for aerosol mass spectrometry in particular. The first publications

(Papers I to IV) present how traditional chemical classifications are used in explaining

aerosol physicochemical properties. While the attempts did meet some success, it

seems evident that there is a gap between the estimates for physicochemical parameters

derived from currently widely used chemical speciations and the actual, experimentally

measured values of those quantities. Although the reasons for these discrepancies are

likely to be many, I suggest in this work that the gap might be partly bridged by using

more relevant and robust chemical classifications. The latter portion of this work
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explores the possibilities of advanced, statistical models and machine learning tools in

deriving an improved description of aerosol chemical composition.

In the end, this thesis forms but one link on the chain from (1) the experimental

measurements of the atmospheric aerosols, to (2) describing their nature, composition,

and interactions, and finally (3) understanding how they affect Earth’s atmosphere

and human health. The value of specific results derived from this work, such as the

improved chemical speciation I propose in Papers V and VI of this thesis, is determined

by their utility in future studies on physicochemical properties, in the theme of Papers

I to IV of this thesis. However, what seems already evident is that advanced statistical

and machine-learning applications will certainly have an important role to play in

further advancement of modern aerosol science.

1.5 Aims of this thesis

The objectives of this thesis are:

1. To derive and develop aerosol chemical classifications from aerosol mass spectro-

metric data, to enable connecting chemical composition to aerosol physicochem-

ical properties regarding aerosol

(a) volatility (Papers I, IV)

(b) hygroscopicity (Paper III)

(c) light scattering (Paper II).

2. To incorporate chemometric and machine learning methods and to combine them

in new ways in the analysis of aerosol mass spectra, in order to

(a) overcome limitations in traditional aerosol speciations (Papers V, VI)

(b) reduce subjective bias in interpretation of mass spectra (Papers V, VI).

3. To develop an improved, objective and statistically robust chemical speciation to

(a) maximise chemical information attainable from aerosol mass spectrometric

data (Paper VI)

(b) provide better chemically speciated data for use in future studies of aerosol

physicochemical properties (Paper VI).
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2 Scientific background

The first part of this thesis work concentrates on testing the usability of traditional

aerosol chemical classifications (speciations) in predicting the observed physical qual-

ities and properties, such as aerosol response to temperature changes and their inter-

actions with light and atmospheric water. In particular, the focus is on the propensity

of particles to take up water (hygroscopicity), as well as their evaporation (volatility)

and light scattering properties.

The latter part of the work concentrates on developing more robust and consistent,

statistics-based methods for aerosol chemical speciations, endeavouring to encompass

a maximal amount of chemical information. Besides exploring chemical classifications,

an equally important theme of the final part of this thesis is to highlight the usefulness

and potential of the selected statistical methods, characteristic of machine learning,

implemented to analysis of aerosol mass spectra.

2.1 Aerosol physicochemical properties

2.1.1 Basic properties of particles: number, size, charge, shape, and phase

Traditionally, the easiest parameters to measure describing the aerosol particles are

physical ones – their number, size, mass, shape, and electric charge. Measuring the

number of particles in a volume of air is an old branch of aerosol science since the

19th century (Aitken, 1889) and has since evolved to comprise of several techniques

(McMurry, 2000b). Real-time particle counting methods are typically based on direct

optical detection (optical particle counter, (OPC; McMurry, 2000a) or additionally

growing particles via condensation of vapour prior to their optical counting (condensa-

tion particle counter, CPC; McMurry, 2000a). If the particles are electrically charged,

or neutralised to their naturally occurring charge distribution (Fuchs, 1963), their de-

tection is relatively easy, as techniques for ion detection are plentiful (e.g. Baron and

Willeke, 2011).

The size of an aerosol particle is one of the most fundamental quantities necessary for

their characterisation, and it strongly influences their interactions with other particles

and surfaces, surrounding carrier gas, as well as radiation, such as visible light (Sein-

feld and Pandis, 2012). While aerosol particles can be spherical, allowing unambiguous
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definition of their diameter, they can equally have other geometries, complicating the

definition of their size, thus there exist several metrics for defining particle size, de-

riving from e.g. their aerodynamic properties or mobility in an electric field (Baron

and Willeke, 2011). Measurement of particle size, or in case of an aerosol particle

population, a distribution of particle sizes, is relatively straightforward for the largest

particles (diameter > 1 µm), which can be detected optically (e.g. APS; Remiarz et

al., 1983). For smaller particles ( < 1 µm), electrical charging or neutralisation and

observing their flight tracks in an electric field by e.g. a differential mobility particle

sizer (DMPS; Aalto et al., 2001) is a typical technique.

Analysis of particle shape and phase state is possible for large particles, which can be

characterised optically using various applications of microscopy (Baron and Willeke,

2011). Similar direct, physical characterisation of smaller particles is much more dif-

ficult. While some information of their shape can be derived from their aerodynamic

properties relative to their size (Hinds, 2012), and clues to their phase state obtained

from e.g. their bouncing or adhesion behaviour when impacting a surface (Baron and

Willeke, 2011), determining the phase and shape of small particles remains problematic

even up to date. Studies have shown that in addition to fully liquid and solid forms,

with one or more liquid or solid layers (Buajarern et al., 2007), particle-phase aerosols

can contain several phases (e.g. solid core particles with a liquid coating; Sobanska et

al., 2014). Particles can also exhibit crystal-like or glassy forms (Virtanen et al., 2010),

and can form long chain-like structures for e.g. soot (Bond et al., 2013).

2.1.2 Volatility

In Papers I and IV of this thesis, the focus is on aerosol volatility, i.e. the tendency

of a substance to shift between gas and liquid or solid phases. Volatility determines

whether a compound will prefer gas or particle phase in given environmental conditions

and therefore connects together atmospheric trace gases and aerosols.

Low-volatile compounds, for example organics with high molecular weights (e.g. or-

ganic acids) typically have a very low saturation vapour pressure and thus prefer parti-

tioning to the particles over the gas phase. Conversely, highly volatile compounds such

as methane, toluene, and monoterpenes with high saturation vapour pressures strongly

favour partitioning to gas phase in atmospheric temperatures and pressures. These pre-

dominantly gas-phase compounds, nitrogen (N2) and oxygen (O2) molecules excluded,
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are often called atmospheric trace gases. Compounds that feature saturation vapour

pressures between these extremes are typically labelled semi-volatile. Depending on

their concentrations, prevailing temperature, and pressure, they partition in significant

amounts to both the particle and gas phases. For the semi-volatiles, this partitioning

is often sensitive to small changes in temperature, so that they may e.g. reside in the

particle phase during the night when the air temperature is low, and volatilise to the

gas phase during the day when the temperature is higher.

Due to the diversity of chemical compounds present in the atmospheric aerosol, the

task of theoretically describing aerosol volatility is difficult. The physical parameter

describing energy required to transfer substance from a liquid to gas phase is enthalpy

of vapourisation (∆Hvap; also commonly known as ‘latent heat of evaporation’). While

there exists an experimental formula connecting vapour pressure to enthalpy of vapouri-

sation for organic compounds of aerosols (Epstein et al., 2009), a practical problem is,

again, that the exact organic compounds present in atmospheric aerosol particles are

counted in thousands (or probably tens to hundreds of thousands; Donahue et al.,

2011). Even if it would be possible to somehow to count exactly the amounts of each

of these compounds, which remains but a dream for an aerosol chemist, the enthalpies

for the majority of these compounds are not available from measurements. Thus,

the only way to currently reliably obtain aerosol volatility is to measure the actual

vapourisation behaviour of the aerosols.

There exist theoretical models to describe evaporative response to the heating of aerosol

particles (e.g. Riipinen et al., 2010) and a framework to describe the organic aerosol

volatility distribution (Donahue et al., 2006; Donahue et al., 2011; Donahue et al.,

2012). Furthermore, a connection between organic aerosol volatility and aerosol ox-

idation level has been shown in several studies probing aerosol response to heating

(Massoli et al., 2010). A typical estimate from these examinations is, that on the order

of 20 of organic aerosol mass is volatilised when heated from 0 to 50 oC (Huffman et

al., 2009a; Huffman et al., 2009b; Raatikainen et al., 2010; Cappa and Jimenez, 2010).

Interestingly, the same studies also show that at the other end of the volatility distri-

bution, there exist some extremely low-volatile aerosols. Even after heating to a very

high temperature (around 280 oC), a considerable fraction of aerosol mass remains in

the particle phase (e.g. Paper I). Although some of this mass is likely soot, also termed

black carbon (BC), with a vapourisation temperature around 4000 K, black carbon

does not fully account for these observations. The nature and composition of these
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practically non-volatile, organic aerosol species remains largely unknown, which is why

aerosol chemical examinations like the one exemplified in Paper I, are necessary.

2.1.3 Hygroscopicity

The changes in cloud cover are one of the main uncertainties in predicting climate

change, and aerosols play an important role in it: they act as seeds for growing cloud

droplets in the atmosphere. The fraction of particles that can begin to grow (also

termed ‘to activate’) by condensation of atmospheric water vapour on their surface,

are termed cloud-condensation nuclei (CCN). Whether or not a particle will activate

for growth depends on several parameters, related both to properties of the particle

(size, phase, composition, and layering) as well as to the environment (water vapour

saturation).

The main parameter determining if a particle will activate as CCN is its size (Junge

and McLaren, 1971; Dusek et al., 2006) – the larger the particle, the lower the vapour

saturation (proportional to relative humidity, RH) it will need to activate. Although

there exist estimates that the particle size distribution could explain 84 to 96 % of

the variability in CCN concentrations (Dusek et al., 2006), this may only be the case

for polluted air masses, as it has later been reported that predictions for CCN con-

centrations based on size distributions alone can be often be inaccurate (Burkart et

al., 2011; Hudson, 2007). Specifically, the activation of smaller particles is sensitive

to chemical composition (e.g. Chang et al., 2017). Thus, for better CCN estimates,

particle composition needs to also be accounted for.

In order to fully understand interactions between aerosols and atmospheric water, a de-

scription of how particles respond to water vapour saturation is needed; that is whether

or not water condenses or evaporates from their surface at the given environmental con-

ditions. This hygroscopic property can be approached from an experimental point of

view, by measuring the change in particle size when environmental RH is changed: the

change in particle size due to condensed water on its surface can be readily measured.

The physical parameter associated with particle growth by water condensation is the

hygroscopic growth factor (HGF) defined as the ratio between the particle size at high

humidity (RH = 90 %) relative to its size when dried (RH < 15%).

The hygroscopic properties of inorganic particles are generally well known. Typical

inorganic salts in atmospheric aerosol, such as ammonium nitrate and sulphate and
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sea-salt, are typically hydrophilic, i.e. highly hygroscopic. On the other hand, black

carbon (BC) is typically hydrophobic and repels water. The hygroscopicity properties

of organics are generally more complex, and vary strongly by compound (Rastak et al.,

2017; Pajunoja et al., 2015). Like in the case of volatility, a connection has been made

between oxidation level and hygroscopicity: oxidised, highly aged particles have been

found to be more hygroscopic than aerosols consisting of fresh, less oxidised organics

(Massoli et al., 2010). To date, the hygroscopicity models are very sensitive to organic

aerosol hygroscopicity estimates (Rastak et al., 2017), and further research is needed

to complete the picture on how both chemical composition and size could be best

accounted for to produce more accurate models on hygroscopic growth and CCN acti-

vation. In Paper III of this work, we touch upon the topic by examining the connection

between experimentally measured HGF and the aerosol chemical composition.

2.1.4 Optical properties

Optical properties of aerosols are important for climate and visibility, as aerosol par-

ticles scatter and absorb incoming radiation. The effect that aerosol particles have on

attenuation of light in the atmosphere is a million times larger than the effect of simi-

lar mass concentration of water vapour molecules and a thousand times more than the

equivalent amount of water present in raindrops. Therefore, aerosol particles can affect

visibility in much lower concentrations (Hinds, 2012). Atmospheric aerosol particles

can impair visibility locally or regionally, in environments with high aerosol loadings

(e.g. desert dust suspended by winds, haze formed from biogenic precursor gases in

forested areas; Went, 1960) or anthropogenic aerosols in polluted cities (White, 1976).

They also affect Earth’s radiative balance by scattering incoming sunlight and to a

lesser extent, outgoing infrared radiation.

Almost all of the atmospheric aerosol particles scatter away incoming sunlight, gener-

ally cooling the atmosphere, but some dark coloured aerosols (mainly BC, brown car-

bon, and dust) can also absorb light, and thus cause atmospheric warming (Moosmüller

et al., 2009). These dark aerosol particles continue to absorb light even after their de-

position, which can decrease surface albedo for e.g. snow. The deposition of BC aerosol

especially affects radiation budget in Arctic regions (Bond et al., 2013).

Important parameters for aerosol optical effects are the scattering coefficient (σa),

which describes how effectively the aerosol particles scatter incoming light and the
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absorption coefficient (σa), which similarly describes the light absorption effect by the

particles. These coefficients strongly depend on particle size. Very small particles, with

diameters less than 10 % of radiation wavelength λ (e.g. 40 - 70 nm particles for visible

light ∼ 400 – 700 nm), interact with radiation in a different way compared to larger

particles, and scatter light quite similarly to molecules (Rayleigh scattering).

Very large particles, cloud, and rain droplets (d > λ, ∼ 100 µm), on the other hand, can

be treated by laws of geometrical optics. The intermediary range, which incidentally en-

compasses a large fraction of aerosol particles, is the domain of the Mie theory, which

describes the interaction between the electromagnetic (plane) fields of photons and

spherical objects (aerosol particles), starting from Maxwell equations (Hinds, 2012).

Although difficult to estimate theoretically due to uncertainties in aerosol refractive

indeces and size distributions, scattering coefficient for a polydisperse aerosol popula-

tion can be readily measured experimentally using a nephelometer (e.g. Anderson et

al., 1996), an aerosol instrument described in Materials and methods.

Beside their size, light scattering by aerosols additionally depends on their refractive

index, albedo, phase, and internal structure. These properties are strongly affected by

their chemical composition. While the size-dependencies of aerosol optical phenomena

are generally well understood, the effects of chemical composition are more ambiguous.

An important optical effect for atmospheric aerosols is the scattering enhancement

by water vapour condensing on aerosol particles. Since water is often abundant in

the troposphere, this process can have pronounced effects for the aerosol scattering

properties due to hygroscopic growth (Malm and Day, 2001; Paper III). In Paper III,

we specifically focus on this RH dependent enhancement of aerosol light scattering,

f(RH), and its relation to particle chemical composition.

2.2 Analysis of aerosol chemistry

2.2.1 Chemical composition and chemical speciation

Chemical characterisation of aerosol particles has historically been difficult, as most

chemical analysis methods require samples with larger mass than is commonly avail-

able in atmospheric aerosol. The traditional solution has been of prolonged (off-line)

sampling of particles for analysis. However, this can result in measurement artefacts

via physical and chemical processes that alter the sample after collection (such as
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evaporation and chemical reactions; e.g. Kristensen et al., 2016). Fortunately, during

recent decades the rapid evolution of aerosol instrumentation has finally enabled on-

line chemical characterisation of aerosols using in-situ mass spectrometry (McMurry,

2000b; Canagaratna et al., 2007). Even so, off-line methods continue to provide comple-

mentary information, such as quantification of functional groups present in molecules

(e.g. Fourier transform infrared spectroscopy, FTIR; Griffiths and De Haseth, 2007;

Corrigan et al., 2013) via spectroscopic methods.

It is currently impossible to describe aerosol chemical composition on an exact,

compound-by-compound basis, due to (1) the abundance of chemical species (likely to

span at least tens of thousands of organic compounds; Goldstein and Galbally, 2007),

and (2) the lack of a universal, quantitative measurement technique applicable for all

the compound types. Thus, cruder classifications to chemical “species” and groups of

compounds are inevitable in practice.

A very typical basic chemical speciation is the dichotomy of ‘organic’ and ‘inorganic’

compounds. This division is also commonly used for atmospheric aerosols, often with

the additional sub-classes for different types of inorganics, such as sulphates (SO4),

nitrates (NO3), ammonium (NH4), and black carbon. BC (also sometimes termed EC

for ‘elemental carbon’) consists of aggregates of small spheres, strongly absorbs visible

light, and vapourises around 4000 K (Bond et al., 2013). Mineral dust species are

usually classified separately, as are sea spray aerosols whose particles mainly consist

of sea salt. Additionally, primary biogenic aerosol particles (such as pollen, spores,

and plant detritus from the biosphere (Després et al., 2012), are sometimes considered

separately.

The portion of aerosol chemical compounds containing organics is usually termed or-

ganic aerosol (OA), and the carbon in organic molecules as organic carbon (OC), in

contrast to inorganic aerosol and elemental carbon (EC), respectively. There are several

ways to divide organics into sub-species and no universal convention exists. However,

as one of the main processes of shaping aerosol chemical composition in the atmosphere

is oxidation, i.e. the chemical processes resulting in an addition of oxygen to molecules

when exposed to atmospheric conditions, it is natural that many of the sub-speciations

relate to this process. Although the rate of oxidation depends on many parameters

(e.g. oxidant concentrations, chemical identity of the precursors, reaction rates, at-

mospheric composition, temperature, radiation), oxidation level, often described by

the ratio between oxygen and carbon molecules in the compound (O:C; Aiken et al.,
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2008), generally increases upon aerosol age, which is the time spent in the atmosphere

after formation. Therefore, various oxidation-based classifications - for example if the

aerosol is fresh or aged - are often used. Notably, as discussed in the sections above,

oxidation level also correlates with aerosol physical properties, making the organic

aerosol oxidation level based classification a useful tool for estimating physicochemical

properties.

2.2.2 Aerosol mass spectrometry

Mass spectrometry is a traditional analytical chemistry method for chemical composi-

tion measurement. As the name suggests, it involves measuring a spectrum of detected

signal from ions and molecules over a range of atomic mass units, which chemically

characterises the measured sample. A mass spectrum is analogous to a light spectrum,

which presents light intensity over a range of wavelengths, and characterises the source

of the light (and/or the medium it was passing through).

The dictionary characterisation (Merriam-Webster online dictionary, 2018) of mass

spectrometry reads:

“: an instrumental method for identifying the chemical constitution of a substance

by means of the separation of gaseous ions according to their differing mass and

charge”

which implies three important stages common to all aerosol mass spectrometry appli-

cations. (1) The particle-phase sample needs to be converted from particles to gaseous

phase, which can be accomplished by heating it (for example with a hot surface or

a laser). (2) the sample gas needs to be ionised, for which there are many methods

(e.g. bombarding the molecules with atoms, ions, electrons or radiation; or relying

on ionisation taking place upon thermal decomposition of molecules). (3), the mass-

to-charge-ratio for the ions resolved by observing movement, which is induced by an

electric field. Within these boundary conditions, there exist a variety of specific meth-

ods of mass spectrometry (Gross, 2006).

Historically, the research field of mass spectrometry arguably already began with elec-

tromagnetic deflection of ion streams by Wien (1898), and resulted in first veritable

mass spectrometers by Thomson (1922) and Aston (1919). The field, now at the ripe
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age of a century, has since emerged as one the indispensable tools of analytical chem-

istry (Griffiths, 2008). Advances such as the quadrupole (Paul and Steinwedel, 1953)

and time-of-flight mass analysers (Stephens, 1946) and electron [impact] ionisation (EI;

Bleakney, 1929), developed during the 20th century have since enabled new applica-

tions, such as the aerosol mass spectrometer (AMS; Canagaratna et al., 2007) used

in this work. The technical details of the AMS used in this work are described in

Materials and methods.

2.3 Statistical methods

2.3.1 Chemometrics

The feat of quantitatively measuring thousands of unknown compounds, however, pro-

duces data in very large quantities, presenting a huge challenge for any early adopters

of mass spectrometry. Even today, the management, storage, and especially analysis

and interpretation of this overabundance of information still challenge an analyst of

aerosol mass spectrometric results. Recognising the issue, Bruce R. Kowalski wrote in

his 1980 article titled “Chemometrics” (Kowalski, 1980):

“[S]ince the measurements made by analytical chemists are associated with some

degree of uncertainty and an analytical result is usually derived from a mathemat-

ical formula, it is difficult to conceive of a more perfect marriage than analytical

chemistry and statistics and applied mathematics. Unfortunately, at this time the

relationship between these fields can be characterized only as an engagement.”

Since then, the rapid development of computer capacity and mathematical analysis

tools has allowed the bridging of the gap between experiments and their scientific

interpretation in many fields of mass spectrometry (Belu et al., 2003), leading to a

variety of statistics applications and forming one of the oldest branches of chemo-

metrics (Kowalski, 1981; Vandeginste, 1982; Kowalski, 1975; Shoenfeld and DeVoe,

1976). Some of the chemometrics themes outlined originally (Kowalski, 1980) involve

de-convolution, pattern recognition, parameter estimation, optimisation (of analysis

procedures and experiments), information theory, wave transform and image analysis.

These recurring themes seem as relevant even currently, nearly 40 years later, with

some obvious additions such as neural nets (again, originally an idea from 1940’s and
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50’s and revived in the late 1980’s; Hebb, 1949; Rosenblatt, 1958, Rumelhart and Mc-

Clelland, 1986). This thesis encompasses several different chemometric applications;

among others parameter estimation (Papers II, III and VI), de-convolution, pattern

recognition and optimisation (Papers V, VI).

2.3.2 Machine learning

The field of machine learning lies at the intersection of the fields of statistics and

computing. It also closely relates to chemometrics. In a previously cited chemometric

article, Kowalski (1975) also notes:

“In 1969 a series of papers concerned with applications of learning machines [. . . ]

to the determination of molecular structural features directly from spectral data

[. . . ] appeared in Analytical Chemistry. Shortly thereafter, a review described

early results of such applications [. . . ]. Thus began a search for new mathematical

methods to solve multivariant problems in chemistry.”

Originally arising from a study of whether a computer could play a game of checkers

(Samuel, 1959), machine learning is generally understood as the study of how com-

puters can be utilised in data analysis, by e.g. making predictions, classifications, or

performing dimensionality reduction. It literally implies that a machine (i.e. computer

machine) learns to perform a task (e.g. among the above mentioned), with or without

human supervision. While is it closely tied to more applicative fields such as chemo-

metrics or bioinformatics, machine learning itself is not limited to a particular domain

of applicability.

While the differentiation between statistical methods, chemometrics, and machine

learning (even artificial intelligence, AI) are ambiguous and overlapping, the multi-

variate methods, feature extraction, and classification tasks described in Papers (II,

III), IV, and V are certainly chemometrical. The (semi)supervised, iterative applica-

tions of multiple chemometric methods and algorithms (Papers V and VI) also fulfil

the definition of what is often considered machine learning. For example, a pioneer

of the field, Tom M. Mitchell (2006) describes the difference between statistics and

machine learning as follows:
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“Whereas Statistics has focused primarily on what conclusions can be inferred

from data, Machine Learning incorporates additional questions about what com-

putational architectures and algorithms can be used to most effectively capture,

store, index, retrieve and merge these data, how multiple learning subtasks can

be orchestrated in a larger system, and questions of computational tractability.”

While the term AI is often very loosely used, I would associate it with deep learning

(e.g. LeCun et al., 2015) and thus do not consider the term an appropriate label for

the methods of this thesis.
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3 Materials and methods

In this section, I have included short descriptions of the instruments and the main

statistical tools used in this thesis work. To keep this article introductionary, I will

refer to the Papers and their references as well as the journal articles mentioned below

for the specific details and technicalities.

3.1 Instrumentation

3.1.1 Aerosol mass spectrometer

The main instrument in this work is the Aerosol Mass spectrometer (AMS; Jayne et

al., 2000; Jimenez et al., 2003; Canagaratna et al., 2007). The AMS was developed in

the late 1990’s by Aerodyne Research Inc. (Billerica, MA, U.S.), and has since become

a household name in aerosol chemical measurements. There exist several variants and

development versions of the AMS, with various improvements from the early versions

as well as modifications catering for specific measurement needs. Due to the difficulties

of measuring the small particle mass amidst the carrier gas of air and trace gases,

advanced technical and data analytical solutions are necessary. This makes the AMS a

relatively complicated instrument, compared to most of the other aerosol instruments

presented above.

The AMS variant used in most of the papers of this thesis (I, V, and VI) is described

by Drewnick and co-workers in their 2005 article (Drewnick et al., 2005), and the

particulars of the specific instrument we used are discussed in Paper V. Other AMS

variants used during the course of this thesis work include the high-resolution AMS

variant (HR-AMS; Papers III and VI; Decarlo et al., 2006) and the “simplified” AMS

version for monitoring use, the Aerosol Chemical Speciation Monitor (ACSM; Ng et

al., 2011). Below, a short description of the main operating principles of an AMS is

given.

As in all spectrometers, the AMS interior contains a vacuum, where the chemical mea-

surement takes place. The interface between the atmospheric pressure and the vacuum

chamber consists of a critical orifice, which limits the inflow, and is followed by an

aerodynamic lens system (Murphy and Sears, 1964). The multiphase lens system fo-

cuses the particles into a tight beam. The losses of large particles at the lens and losses
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of smaller particles from the beam limit the size range of particle AMS can measure

to approximately 40 to 600 nm (Liu et al., 2007). The particle beam from the lens

is directed to impact a heated ceramic plate, the vapouriser, with a temperature of

600 oC. The temperature is one of the main factors defining which species can be de-

tected by the AMS: the species that experience flash-vapourisation upon impacting the

vapouriser are termed ‘non-refractory’, while the ones that have higher vapourisation

temperatures and are not (quantitatively) detected are ‘refractory’ species. Typical

refractory compounds include for example BC, NaCl, metals, and most minerals.

The resulting sample vapour is ionised by bombarding the gas with electrons (70 eV

electron ionization, EI) from a tungsten filament. The side effect of this universal,

well understood ionization method is extensive fragmentation of the sample molecules,

which severely smears out the unique characteristics of the parent molecules. The

positively charged ions and their fragments are then guided to the mass analyser by an

electric field. In the modern ToF mass analyser the ions are orthogonally accelerated

to a flight track by a pulsed electric field. The track is lengthened by curving it

with additional electric fields, termed reflectors (the reflectron ToF analyser). At the

end, the ions are counted and their arrival time registered using a microchannel plate

detector (MCP; e.g. Wiza, 1979).

The signal measured by the detector then needs to be interpreted. A back calculation

is needed through all the processing phases of the measurement. The main phases

include the calculation of sample ion mass-to-charge ratios from the flight time results,

as well as accounting for the fact that only a miniscule fraction of the original vapour

molecules (typically 1 out of 10 million, 10-7) were ionised. These calculations require

various calibrations, outlined in detail in AMS related scientific literature (Jimenez et

al., 2003; Allan et al., 2003; Allan et al., 2004). Performing these calculations allows

for quantification of mass, i.e. representing signal response of the instrument to a mass

concentration of aerosol entering it.

The basic AMS data processing is the ion speciation, which is achieved using a “frag-

mentation table” containing a plethora of accumulated chemical information on frag-

mentation patterns, isotopes, and air composition (Allan et al., 2004). The basic ion

speciation divides the ions of the mass spectrum to organics (org), sulphates (SO4),

nitrates (NO3), ammonia (NH4), and chlorides (chl). This speciation provides the ba-

sis on which further speciations are built, or a reference against which they can be

compared, as done in the final paper of this thesis.
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3.1.2 Aethalometer

The aerosol Aethalometer optically measures black carbon (Hansen et al., 1984; Magee

Scientific, Berkeley, CA, U.S). It derives its name from classical Greek verb ‘aethaloun’,

which translates as “to blacken with soot” (Hansen, 2005). The principle of operation

is simple: an aerosol sample is collected on a spot on a roll tape of quartz filter, which

is automatically rolled forward to the next spot at a set time interval. Optical analysis

of the collected sample is continuously performed as the sample is being collected, al-

lowing for continuous, automated operation. An aethalometer is very suitable for long,

continuous measurements, and requires little maintenance. The optical measurement

technique is based on light attenuation through the filter, and can typically be mea-

sured for seven different wavelengths. As aerosol is gradually collected on the filter, the

sample spot is blackened, increasing the light attenuation, to which BC concentration

is assumed linearly proportional (Hansen et al., 1984). From the measured intake flow

of air and the rate of rise in light attenuation, BC mass concentration in (ng/m3) of

the sample can be calculated with a time resolution of 5 to 10 min (Bond et al., 1999;

Virkkula et al., 2007).

3.1.3 Nephelometer

Another classical aerosol instrument, designed in the 1940’s (Buettel and Brewer, 1949),

the nephelometer also gets its name from classical Greek – the noun ‘nephos’ meaning

‘cloud’. An integrating nephelometer measures the light scatter coefficient of aerosol

particles by illuminating the sample aerosol with light of variable wavelengths and

detecting how much of it is scattered, by integrating the scattered light signal over a

half circle (Uin, 2016; Anderson et al., 1996). The scatter by carrier gas is subtracted

from the result for total aerosol, yielding the light scattering coefficient (σs) due to

particles only.

While a typical nephelometer measures σs for dried particles, the “WetNeph” instru-

ment (Ecotech Pty Ltd., Aurora 3000; Fierz-Schmidhauser et al., 2010) used in in

Paper II of this thesis was equipped with a humidifier unit, allowing for measurements

of scattering coefficients for humidified as well as dried particles. This allows for cal-

culation of scattering enhancement, i.e. ratio of σs for particles at dry and humidified

conditions, f(RH), which was at the focus of research in Paper II.
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3.1.4 V/H-TDMA, V-DMPS

As can be deduced from the name alone, the volatility/hygroscopicity tandem dif-

ferential mobility analyser (V/H-TDMA) is a complex assemblage of aerosol instru-

mentation. It is perhaps easier to begin understanding its function by investigating its

components separately. A differential mobility analyser (DMA; Reischl, 1991; Knutson

and Whitby, 1975) allows the classification of aerosol particles by their electrical mobil-

ity. The particles are typically dried and electrically charged and their flow is then led

through a cylinder with an electric field. Only particles with the requested electrical

mobility diameter survive without impacting the cylinder walls, and can subsequently

be measured. This allows for aerosol size distribution measurement by combining with

e.g. a CPC (McMurry, 2000a), and by scanning over the particle size range by altering

the electric field strength.

In a volatility DMPS (V-DMPS; Ehn et al., 2007), the size distribution is measured

twice: once for the unaltered atmospheric sample, and a second time after directing

it through a thermodenuder (an oven) heated to a set temperature. The difference in

the size distributions represents how much of the sample was vaporised. By altering

the oven temperature, a volatility distribution can be obtained. This setup was used

in Paper I. In a volatility tandem DMA (V-TDMA; Hakala et al., 2017), a certain

particle size is selected with one DMA, after which the particles are passed through a

thermodenuder. The resulting size distribution is measured using a second DMA and

a CPC. The observed particle size is then a function of the volatility, as more volatile

material will have evaporated, causing the particles to shrink. The decrease in diameter

due to heating can be directly related to the volatility of the particles. Typically, the

measurement is performed for several combinations of particle sizes and temperatures.

Alternatively, instead of the thermodenuder, a humidifier can be installed and the sam-

ple flow analogously humidified to a set RH, resulting in a hygroscopicity tandem DMA

(H-TDMA). The difference between the particle size before and after humidification

represents particle hygroscopic growth, and a hygroscopic growth factor (HGF) can

be calculated out of it. Both the volatilisation and hygroscopicity functionalities can

also be combined in an instrument, forming the V/H-TDMA, which was used in Pa-

pers III and IV. Such a setup also allows for additional measurement options, such as

subsequent volatilisation and humidification stages, resulting in increasingly complex

technical solutions and data interpretation. For a non-redacted technical description

please refer to Hakala et al. (2017).
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3.2 Chemometric tools

3.2.1 Factor analysis and Positive Matrix Factorisation

The single most important advanced data analytical tool of this work is doubtlessly

factor analysis (FA). This old statistical method was originally developed for use in

psychology by Charles Spearman (1904), to study the psychological and physiological

variables connected to human intelligence. Subsequently FA developed and expanded

to include multiple factors to explain the observations (Burt, 1917; Carey, 1915; Vin-

cent, 1953).

Statistically, factor analysis aims to describe variability in data, by constructing factors

out of correlated variables. Since the number of factors (f) is usually much lower than

the number of original variables (v), the factor model for a number of observations

(n) contains less dimensions (f x n) than the original data (v x n). Thus, factor

analysis is also a method for data dimensionality reduction. In essence, it is a method

of compressing the information (on data variability) contained in a large number of

variables, into a small number of factors, while minimising the loss of information in

the process. As the number of factors (f) is typically a free parameter selected by the

analyst, and due to lack of decisive mathematical diagnostics available, selecting the

optimal f value for the factor model often forms one of the main challenges in factor

analysis.

From another point of view, factor analysis can be understood as feature extraction,

referring to the notion that the numerous changes we observe in multivariate data

actually reflect changes in a small number of latent, underlying factors. Thus to un-

derstand and interpret complex observations with large numbers of variables, it suffices

to understand a handful of factors – a much more humane task for the data analyst.

In aerosol mass spectrometry, the factor analysis of mass spectra measured from am-

bient aerosol would be understood as uncovering the aerosol types that arrive at the

measurement site. An inherent property of factor analytical models is that the fac-

torisation solution is typically not unique, meaning that there are typically multiple,

statistically sound ways to describe the data with a different number and type of compo-

nents. This common property of factor analytical solutions is often termed ‘rotational

ambiguity’, as mathematically the alternative solutions can be described as rotations

of the factor axes in the multidimensional variable space. The different descriptions
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may for example reflect aerosol differences in relation to their sources, or equally their

chemical characteristics or role in an atmospheric process (e.g. sources and sinks) – all

of these descriptions may be “equally correct”, mathematically and physically – they

are simply alternative views to the scene described by the data. Along with the selec-

tion of f, choosing an appropriate rotation is often challenging and prone to analyst

subjective decisions.

Another important aspect of factorisation is that it assumes that the observation is

a linear sum of all the components, and the components and the observation must

be commeasurable – in the same units. This limits the valid use of factorisation to

solving problems where we can somehow think of the observation to consist of a sum

of components in a rather concrete way. In environmental sciences most valid cases

for factorisation involve positive quantities only (e.g. Paatero, 1997), which rules out

many mathematically sound but physically unrealistic factorisation solutions. Integral

to all experiments in natural sciences is also the concept of uncertainty or the error

estimate of how reliable the observation is. Tailored especially to include these two

characteristics typical of environmental sciences, Pentti Paatero and co-workers devel-

oped in the 1990’s a specific factorisation model named Positive Matrix Factorsation

(PMF; Paatero, 1994, 1999), which caters to the needs of environmental data. The

main differences of PMF in comparison to most other factorisation methods are that

the variables and factors are all constrained to positive values only. PMF also gives

the observations with low relative uncertainty a higher weight in deciding the solution,

and vice versa. This has the positive effect of erroneous or poor quality measurements

not having a large influence on how a larger data set is factorised.

In Papers V and VI, I try to circumvent the traditional factor analytical issues of

subjectivity in selection of f and the rotation (e.g. Paatero et al., 2012, 2014), by

using statistical classification methods to evaluate and interpret the PMF output. As

described in Papers V and VI posteriori classification often reveals which of the data

structures uncovered by PMF are stable and interpretable, and which are mathematical

artefacts or outliers.
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3.2.2 Classification and clustering

Another important statistical method featured in this thesis is unsupervised, statisti-

cal classification of aerosol mass spectra. In the last two Papers (V and VI) of this

work, clustering methods were applied to classify de-convolved mass spectra based on

their chemical characteristics. Like factorisation, clustering has a long history, dating

back to the 1930’s (Blashfield and Aldenderfer, 1988), when it was first developed for

anthropological sciences, for dealing with data on cultural relationships (Driver and

Kroeber, 1932) and soon after adopted in psychology for classifying personality traits

(Zubin, 1938).

Generally, clustering methods aim to classify data objects into a number of groups,

’clusters’, based on their similarities. Analogous to the f parameter in factorisation,

in clustering the number of clusters (k) also needs to be selected by the analyst. The

groups are mutually exclusive in most of the applications, i.e. an object can only

belong to one group, with the notable exceptions of “soft” clustering methods such as

“fuzzy” clustering or Gaussian mixture methods. To function, clustering algorithms

require as input the (dis)similarities (also “distances”) between all the objects in a set

of data (e.g. Kaufman and Rousseeuw, 2009) – in our case the (dis)similarities of mass

spectra. This input data can be additionally pre-processed, to up-weight (or ”scale”)

important, characteristic features in data, such as the less fragmented ions in a mass

spectrum (Stein and Scott, 1994).

In a review of different clustering algorithms and methods H. Späth (1980) list as

the basic clustering problems “selection of distance, selection of algorithm, number of

clusters to be formed and the choice of variables, especially their scaling”. This quote

highlights the fact that any new application of clustering requires decisions on several

metrics and approaches to reach optimal results. The selection of a clustering method

is undoubtedly of high importance in the context of this type of an effort. Lacking clear

precedents for AMS spectra, I decided to select a simple, general, partitive algorithm

that has been proven to perform efficiently and successfully on many different classi-

fication problems - the ‘k-means’ clustering algorithm. While newer and potentially

more powerful clustering methodologies exist, I decided to begin with the traditional,

tried-and-tested and versatile (Jain, 2010) k-means algorithm.
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I refer to A. Jain (2010) in his review article “Data clustering: 50 years beyond K-

means”, where he summarises the history and development of methods:

“In spite of the fact that K-means was proposed over 50 years ago and thousands

of clustering algorithms have been published since then, K-means is still widely

used. This speaks to the difficulty in designing a general purpose clustering algo-

rithm and the ill-posed problem of clustering“,

and, after a comparison of various methods and algorithms, states as one of his main

conclusions:

“In most applications, it may not necessarily be the best clustering algorithm that

really matters. Rather, it is more crucial to choose the right feature extraction

method that identifies the underlying clustering structure of the data“.

In most applications, it may not necessarily be the best clustering algorithm that really

matters. Rather, it is more crucial to choose the right feature extraction method that

identifies the underlying clustering structure of the data“. To make the other important

selections outlined by e.g. Späth (1980) and Jain (2010), I needed a way to evaluate

the solution quality of the clustering outcome. After a brief literature review, I decided

to refer to the work of P. Rousseeuw (1987) on the “silhouette” method of interpreting

the clustering solution quality. The mathematical basis is described in more detail

in Paper V, but in short, the silhouette describes in relative terms how dissimilar a

clustered object is with the members of the same cluster versus the objects in the

nearest neighbouring cluster. The major task of optimising the clustering methods for

aerosol mass spectrometric data is discussed in more detail in Papers V and VI.

3.3 The SMEAR II measurement site

All of the data on atmospheric aerosols for this thesis was collected from an atmospheric

measurement station at Juupajoki, Finland. The research station was established in

1995 alongside the historical Hyytiälä forestry station (established in 1910 as a field

station of the Finnish university, for training forestry experts). The site, Station for

Measuring Ecosystem-Atmosphere Relations II (SMEAR II; Hari and Kulmala, 2005)
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has been in the forefront of comprehensive atmospheric and ecosystem measurements

since, and is currently among the best-known atmospheric research sites in the world.

At the centre of the research focus is the effect of changing climate on forest ecosystems,

using long, continuous time series of energy and mass fluxes between the atmosphere,

ecosystem and soil.

The site is situated in the sub-arctic, boreal forest, and is often considered representa-

tive of the vast Northern Eurasian taiga biome, the largest global forest biome. The

site is generally surrounded by forests in every direction, with an estimated 94 % at lo-

cal 5 km radius (and 90 % of the nearest 50 km) of the nearby land as forest (including

seedling/saplings) (Williams et al., 2011). The SMEAR II site is situated approxi-

mately 500 meters away from the forestry station. The immediate vicinity is a rather

level area with a (monoculture) pine stand planted in 1962 after a prescribed burn, so

at the time of writing this thesis in 2018, it is 56 years of age, with tree canopy height at

approximately 20 meters. The forest is representative of typical, Finnish economically

managed forest.

The station is comprehensively equipped with an extensive suite of state-of-the-art

atmospheric and ecosystem scientific measurements (Hari and Kulmala, 2005), with

emphasis on meteorological, aerosol, and forest ecology instrumentation. An impres-

sive amount of auxiliary data is available for interpreting observations from SMEAR II,

a benefit that becomes evident in the research papers of this work as well. From aerosol

measurement perspective, the important measurements cover the full aerosol size range,

aerosol mass, optical properties, volatility, cloud-condensation nuclei activity, aerosol

mass spectrometry, organic and elemental carbon measurements. Additional shorter-

term measurement campaigns involving additional instruments were conducted peri-

odically, and included e.g. the V/H-TDMA and humidified nephelometer instruments

described above.

The local anthropogenic air pollution sources are limited in magnitude and breadth.

The forestry station houses research personnel around the year, with intensive research

and education activities taking place there in the summertime. Thus, intermittent

cooking, biomass burning, and vehicle emissions are to be expected. The nearby county

of Juupajoki is sparsely populated (5-10 inhabitants / km2; Paper V). The nearest

village of Korkeakoski is located 5 km south-east from the station and notably includes

air pollution emission sources in the form of two sawmills, a pellet factory, and a district

heating plant. The city of Orivesi, with some light industry and a population of 9 500
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is located 20 kilometres to the south of Hyytiälä, and city of Tampere (pop. 213 000),

50 km south-west. The nearby regions also include scattered, small-scale agriculture

in form of livestock and grain farms, as well as swamps and small lakes.

The dominant source of air pollution at SMEAR II is long range atmospheric trans-

port of pollutants from southern, more densely populated and industrialised parts of

Finland, as well as the highly industrial St. Petersburg region (Riuttanen et al., 2013;

Kulmala et al., 2005). Transported air pollution has been shown to also arrive from

continental Europe (Sogacheva et al., 2005; Niemi et al., 2009). The various anthro-

pogenic pollution sources were identified in Paper V of this thesis, and a comprehensive

model for aerosol types constructed in Paper VI.
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4 Results and discussion

In this chapter, I will shortly summarise those main results from the research Pa-

pers that are relevant to this thesis, i.e. regarding the use of chemical speciation in

explaining physicochemical properties (Section 4.1), and chemometric findings (4.2).

4.1 Aerosol chemical speciation and physicochemical proper-

ties

In Papers I through IV, measured aerosol physicochemical properties were interpreted

in the light of chemical information available from the AMS and other instruments.

The experimental results were additionally compared to theoretical predictions, when-

ever those were available. In the following, I present the main findings, arranged

thematically to volatility (Section 4.1.1), hygroscopicity (4.1.2), and optical properties

(4.1.3).

4.1.1 Volatility

In Paper I, Volatility of submicron aerosol was studied using a VDMPS, and the results

on mass fraction remaining (MFR) were examined for different seasons at the boreal

forest site of SMEAR II. On average, 19 % of aerosol at SMEAR II was not volatilised

at the temperature of 280 oC, prompting the question of what the composition of this

remaining mass was. Aethalometer-measured black carbon was found to explains a

maximum of 55 % (winter) to 85 % (summer) of observed MFR, and for the submicron

aerosols at SMEAR II there exist no obvious candidates, as sea salt contributions

are low at this inland site (Saarikoski et al., 2005). Oxidised organics have also been

observed to contribute to the non-volatile fraction (Huffman et al., 2009b), and to form

organic polymers (Kalberer et al., 2004). In 2010 Virtanen and co-workers showed that

biogenic SOA can adopt an amorphous solid, most likely glass-like structure.

Looking at AMS measured ion species, sulphates (SO4) and ammonia (NH4) correlate

markedly with high aerosol mass remaining after heating, at lower temperatures (below

200 oC), but instead show mild anti-correlation at higher temperatures (Figure 1). We

interpreted this behaviour to indicate presence of the inorganic salt (NH4)2SO4. For
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total nitrate (NO3), the temperature response was less clear, but statistically significant

(p < 0.05) correlations were found when nitrates were split into organic and inorganic

components using an ion balance scheme. Inorganic nitrate behaves as expected for

NH4NO3, and seems to evaporate below 200 oC. However, the organic nitrate instead

exhibits the opposite behaviour, and actually features the highest correlation with

MFR at temperatures at 280 oC. This is one of the most interesting findings of this

study yet further conclusions could not be drawn based on the data available. The

organic species also seem to be included in the MFR at 280 oC.

Figure 1: (Paper I). Non-BC mass fraction remaining (MFR) correlations with mass

fractions of AMS ion species and ion balance derived nitrate species (inorganic and

organic NO3). Below 200oC the MFR seems to be explained by inorganic salts, whereas

the MFR at higher temperatures implies connection to organics and organic nitrate.

We conclude the origins for the non-BC MFR may indeed be largely biogenic - a

notion also supported by the wind direction analysis implying higher observed MFR

for air masses arriving from the clean north-west section of SMEAR, where no sig-

nificant anthropogenic sources exist (Sogacheva et al., 2005). We additionally put

forward a hypothesis that the non-BC MFR might be explained by low/non-volatile

organics in amorphous, glass-like structures, as described by of Virtanen et al. (2010).

Other potential candidates include aminium salts (Smith et al., 2010) or organic poly-

mers (Kalberer et al., 2004). However, the actual volatilities of such compounds and

structures remain unknown. Our findings additionally suggest organic nitrate may

be connected to the chemical processes resulting in non-volatile (at 280 oC) aerosol
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species. This notion is also supported by the later study by F. Drewnick et al., (2015),

which reports that the fragmentation patterns of organic nitrates inside the AMS may

be indicative of very slow thermal decomposition, even at very high temperatures (of

around 600 oC).

In Paper IV, we focused on volatility properties of organic aerosols. A V-TDMA was de-

ployed at the SMEAR II station to measure aerosol volatility distributions in the spring

of 2014. An aerosol volatility model (Riipinen et al., 2010; Hong et al., 2017) was then

applied to explain the observed aerosol volatility distributions. The model describes

organic aerosols using three volatility classes (semi-volatile, low-volatile, and extremely

low-volatile) and calculates an estimate for their relative contributions that would best

explain the experimentally measured data. Incidentally, there is also evidence that fac-

torisation of AMS organic mass spectra also carries information on volatilities of the

resulting organic aerosol subtypes (often termed low-volatile organic aerosol, LV-OOA,

and semi-volatile organic aerosol, SV-OOA; Aiken et al., 2008). This has resulted in

the current widespread convention of naming the AMS-derived organic aerosol types

according to their expected volatilities, even when experimental volatility data is not

available. While the connection of chemical composition and volatility certainly exists,

it is understood that the operative definitions for volatility classes do not correspond

exactly (Paciga et al., 2016; Zhang et al., 2011). In Paper IV, we examined if these

differences in classifications could be reconciled by modifying the parameters in the

volatility model of Riipinen et al. (2011).

The Riipinen et al. (2011) volatility model is extremely sensitive to values given for

enthalpies of vapourisation (∆Hvap), yet little data for ∆Hvap of atmospheric organic

aerosols exists. We thus tested the agreement between the volatility model and the

AMS factorisation, using a variety of enthalpy values for the volatility classes in the

model. With optimised enthalpy values the model predictions do correlate with AMS

factorisation results (Figure 2). However, the agreement is moderate at best, implying

that either (1) the operative definition for the volatility classes (derived from AMS

and V-TDMA) may be inherently different, or (2) the volatility model or the AMS

speciation (PMF factorisation combined with an ion balance scheme for inorganic clas-

sification; Paper IV, Paper VI) may need refinement.
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Figure 2: (Paper IV). Modeled mass fraction (V-TDMA) versus PMF-derived mass

fraction (AMS low-volatile and semi-volatile oxidised organic aerosols; LV-OOA and

SV-OOA). For the V-TDMA derived model, LV-OOA class contains also the extremely

low-volatile oxidised organic aerosol type, which was not separately resolvable by the

AMS factorisation.

Overall, volatility is a difficult quantity to (1) measure, due to technical reasons (e.g.

aerosols not reaching thermal equilibrium inside the thermodenuder; Riipinen et al.,

2010), possible thermal decomposition or charring), and (2) model, due to scarcity

of knowledge and data on e.g. enthalpies of aerosol components. The technical and

modelling developments in volatility measurements may in time resolve these issues. In

the meanwhile, improving AMS chemical speciation via new chemometric approaches

may also result in improved agreement.

4.1.2 Hygroscopicity

The connection between aerosol hygroscopic properties and chemical speciation was

examined in Paper III. While there exists a more established theoretical framework

and parameterisations for hygroscopicity than for aerosol volatility, the influence of

chemical composition on hygroscopicity is not easy to capture. Multivariate linear

parameterisations are traditionally used to model hygroscopic growth factor (HGF) for

aerosol consisting of multiple chemical components.
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Hygroscopicities for inorganic aerosols (e.g. pure (NH4)2SO4) are fairly well known from

laboratory data, but less so for atmospheric organic aerosols. Aged, highly oxidised

organics are known to be more hygroscopic than fresh organics, and experimental

parameterisations have been proposed to describe the HGF dependence on organic

aerosol oxidation level, (represented by aerosol oxygen-to-carbon ratio; O:C; Duplissy

et al., 2011; Pajunoja et al., 2015; Massoli et al., 2010).

Figure 3: (Paper III). AMS-derived hygroscopic growth factor (HGF) versus the di-

rectly measured, experimental value from H-TDMA, for aerosol particle sizes of 15 to

145 nm. Organics were considered as single species and inorganics were speciated using

an ion-balance scheme (see e.g. Paper VI). Oxygen-to-carbon-ratio estimate (Aiken et

al., 2008), representing aerosol oxidation level, is plotted in colour.
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In Paper III, we compared H-TDMA-measured HGF to a corresponding estimate de-

rived from AMS data. For inorganic speciation, we used an ion balance scheme (see

Paper VI) to estimate the mass fractions of inorganic salts. In this study, organics

were considered as a single separate class. A simple multilinear model manages to

explain measured hygroscopicity quite well (Figure 3), especially for the larger par-

ticle sizes. As the AMS data is not size segregated, composition of larger particles

dominates the AMS results due to the relatively larger mass and volume, so the AMS

chemical speciation mostly represents the composition of large particles (> 100 nm).

The linear model squared correlation with measured HGF is around 0.62, which can be

interpreted as the model capturing 62 % of variation in measured HGF. While there is

still a lot of room for improvement, we find this to be a promising result, considering

the approximations used.

From Figure 3 (data coloured by O:C) it is apparent that the treatment of organic

aerosols as a single species explains some of the variation not captured by the param-

eterisation. When organic fraction and O:C was included in the experimental param-

eterisation (Figure 4), the correspondence between the model and experimental data

improved markedly, reflected by the slightly higher correlation values and the slope

values of linear fits closer to unity.

The remaining, unexplained variability may be due to (1) non-linear dependences not

captured by the multivariate linear model (2) non-optimal AMS speciation (ion balance

scheme uncertainty; treating organics as single species), (3) effects of refractory aerosol

species not measured by the AMS, such as black carbon, or (4) measurement technical

uncertainties. The nonlinearity of the relationship can arise from many sources, e.g. it

may be due to interactions between the organic and inorganic species. Again improv-

ing the AMS-based speciation may be part of the solution, as well as application of

non-linear chemometric models (for example nonlinear regression or a neural network

approach).
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Figure 4: (Paper III) AMS-derived hygroscopic growth factor (HGF) versus the directly

measured, experimental value from H-TDMA, with the influence of organic aerosol O:C

included (upper panels: Massoli et al., 2010, parameterisation; lower panels: parame-

terisation from Paper III).

4.1.3 Optical properties

Aerosol light scattering and its enhancement in humid environments, f(RH) were

studied in Paper II. Light scattering properties for dry particles depend strongly on

particle size and the effect of chemical composition is relatively minor and well under-

stood. However, for atmospherically relevant humidity levels, the situation changes,

necessitating consideration of particle chemical composition. As discussed in the hy-

groscopicity section (2.1.3), particle water uptake properties do significantly depend

on composition. Besides growing the particles in size, which itself affects scattering,

a layer of condensed water on particle surface or a change of particle phase towards a

liquid droplet may change the particle optical properties dramatically.
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Figure 5: (Paper II unpublished figures, courtesy of Paul Zieger). Magnitude of the

hygroscopic scattering enhancement, described by the γ parameter (Clarke et al., 2002;

Zieger et al., 2015) as a function of AMS-measured ion species fraction; organics (panel

a); NH4 (b), SO4 (c) and sum of inorganics (d).

In the study described in Paper II, nephelometer-measured scattering coefficients were

measured for dry and humidified particles at the SMEAR II site. The humidity en-

hancement in scattering efficiency, was examined as a function of AMS-derived particle

composition. The magnitude of the scattering enhancement effect was estimated from

nephelometer data using an empirical parameterisation (Clarke et al., 2002; Zieger et

al., 2015). The parameterisation provides an RH-independent metric (γ) for estimating

the magnitude of the scattering enhancement, with γ = 0 signifying no enhancement

and higher values corresponding to higher magnitude of the effect. In Figure 5, γ is

shown as a function of mass fraction of various AMS ion species. From the results it

is evident that the magnitude of scattering enhancement strongly and clearly depends

on particle chemical composition. For fully organic particles the scattering enhance-
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ment is close to zero, which indicates that predominantly organic particles are nearly

hydrophobic, and accumulate very little condensed water even in high-humidity con-

ditions. Contrarily, the scattering enhancement is proportional to fraction of AMS ion

species associated with inorganics (SO4, NO3, and NH4). This is to be understood in

the framework of inorganic salt formation ((NH4)4SO2 and NH4NO3) – the common

inorganic salts in aerosol are typically hydrophilic, so particles with high fraction of

these species eagerly take up water from the ambient air. The extra water in these

particles results in enhanced light scattering.

Figure 6: (Paper II unpublished figures, courtesy of Paul Zieger). Panels (a) and (b):

the particle light scattering coefficient σsp,calculated from chemical composition (y-

axis) versus measured (x-axis) values. In panels (c) and (d): the calculated (y-axis)

versus measured f(RH) (x-axis) is described similarly. In panels (a) and (c), refractive

index of ammonium sulphate was used, whereas in panels (b) and (d) the refractive

index was estimated based on aerosol chemical composition.
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A test was also run for estimating if using composition-dependent refractive index for

aerosol (instead of refractive index for ammonium sulphate) would improve estimation

of σsp and f(RH) from aerosol size distributions (Figure 6). From the results it seems

that using the composition-dependent refractive index does improve the correlation

coefficient between measured and predicted f(RH), but decreases the agreement given

by the slope of a linear fit. This was taken to hint that the current method for refractive

index estimate may be inadequate, especially regarding the influence of organics.

4.2 Improved speciations via chemometric methods

Papers V and VI deal with the prospect of improving AMS chemical speciation using

combined chemometric methods. In summary, the problematic issues with the tra-

ditional AMS speciations relate to (i) treating organics as one bulk species and (ii)

the encoded separation of inrganic and organic sub-species. Incorporating various O:C

related parameterisations for oxidation level (Aiken et al., 2007; Aiken et al., 2008)

somewhat improves the handling of biogenic, oxidised organics, but it does not ac-

count for minor organic species. As the inorganic-organic division is “hard-coded” into

most speciation schemes, inorganic-organic mixtures of components are not allowed in

the classifications. This poses problems for e.g. organic nitrates. We know a large

fraction of nitrate in Hyytiälä is organic, but this is not accounted for in many models

where nitrate is assumed to be inorganic by default. The simplified ion balance models

used for inorganic speciation are inadequate to describe organic nitrates or sulphates.

To answer to the problem (i), factor analysis is often presented as a solution. Indeed,

it has been applied to successfully resolve organic sub-species. However, PMF models

suffer from two major problems common to factorisation methods: (a) selection of

number of factors is ambiguous, and the mathematical diagnostics for this problem

are limited. (b) Rotational ambiguity of factor analytical models results in problems

especially for the extraction of minor components, which are not extracted reliably.

Especially the components with smaller loadings (typically anthropogenic aerosol types,

(Crippa et al., 2014)) are affected. This has prompted for the use of constraints in

PMF. However, the problem then becomes (c) the proper selection of these constraints.

Paper V touches the aforementioned organic speciation problem (i), and in Paper VI we

address both of the problems (i) and (ii). Papers V and VI also attempt to remedy the

factor analytical issues surrounding problems (a), (b), and (c) for AMS data analysis.
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4.2.1 Classifying anthropogenic aerosol pollution plumes

While chemometric factorisation methods (specifically PMF) have proven invaluable

for de-convolving organic aerosol sub-species, analyst-selected constraints are often

necessary for resolving subspecies with low total mass contribution (Canonaco et al.,

2013; Crippa et al., 2014; Ulbrich et al., 2009). The selection of these constraints has

traditionally been up to the analyst. Lacking easy-to-use diagnostics and sensitivity

tests for different selections, the selection process is thus prone to subjective bias by

the analyst. As any additional constraints set for the factorisation algorithm strongly

affect the outcome of factorisation, this problem needs addressing.

Paper V shows how reliable constraints and reference spectra for anthropogenic aerosols

can be derived from data. As the anthropogenic aerosols often manifest in the form

of distinct pollution plumes (at non-urban sites), directly observable as increased mass

loadings, I factorised 81 such events with PMF. Crucially, the factorisation of short-

lived pollution events circumvents many of the problems related to rotational ambigu-

ity, as minimisation of factor correlation can be used as a criterion for solution quality.

An example of such a factorisation is described in Figure 7.

Figure 7: (Paper V). Example of a factorisation solution for a pollution event, with a

biomass burning pollution plume separated from background aerosol. PMF was tasked

to separate the data into two components, the mass spectra and loadings of which are

shown in different colour for the background (green) and pollution (turquoise) factors.
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Analysis of pollution events from three measurement campaigns produced a total of 81

pollution spectra. While many of the aerosol types could be identified based on previ-

ous literature, many were too ambiguous. Also, a manual classification would nullify

the effort of avoiding subjective bias. Thus, the pollution spectra were classified algo-

rithmically. A clustering algorithm was optimised (with respect to spectral similarity

metric and data weighting), to maximise classification solution quality (indicated by

silhouette value; Figure 8).

Figure 8: (Paper V). Optimisation of spectra classification procedure with respect to

spectral similarity metric (coloured lines) and data weighting (by a mass scaling factor

sm). Solution quality is described by the silhouette metric (Rousseeuw, 1987).
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The resulting classification algorithm was shown to reproduce the aerosol classes of

anthropogenic aerosols known from previous studies, as well as to identify minor aerosol

species, which would be neglected in a conventional factorisation analysis. In this study,

the anthropogenic organic classes could be divided into classes such as: traffic, cooking,

biomass burning, and pollution from a nearby sawmill. The outlier groups notably

included amine-dominated aerosols from an unknown source. Although adequately

visualising a n-dimensional (n > 3) clustering is difficult, it is possible to project the

clustering solution to a plane (defined by two axes). For this, two important axes which

also have meaning in an aerosol chemical interpretation were identified. A projection

of the resulting classification to these axes - one describing aerosol age (x-axis) and one

connected to aerosol origin (y-axis) - is shown in Figure 9.

Figure 9: (Paper V). Example of a factorisation solution for a pollution event, with a

biomass burning pollution plume separated from background aerosol. PMF was tasked

to separate the data into two components, the mass spectra and loadings of which are

shown in different colour for the background (green) and pollution (turquoise) factors.
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4.2.2 Improved chemometric chemical speciation

Finally, in Paper VI the traditional division into organic and inorganic components is

re-evaluated. This fundamental classification has traditionally served as the starting

point, and sub-classes, such as calculation of inorganic salts from ion balance models,

or organic aerosol factorisation, have been done within the confines of either the in-

organic or the organic dichotomous class. However, it is well known that e.g. aerosol

organonitrates or organosulphates cannot easily be described within the traditional ion

species-based, organic/inorganic classification.

In this study, we combined the traditionally separate organic and inorganic mass spec-

tral results and subsequently factorised a total of eight data sets from SMEAR II. To

avoid the pitfalls of manual factor number selection, I used a data driven approach

with affixed number of PMF factors, and (similarly to Paper V) used clustering to find

the most likely number of aerosol types. The method resulted in a statistically robust

classification of aerosol into seven species (Figure 10).

Figure 10: (Paper VI) Results for the data-driven, comprehensive aerosol classification

mass spectra for the main aerosol species at SMEAR II.
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The resolved aerosol classes were ammonium sulphate (AS), ammonium nitrate (AN),

organic nitrate (ON), SV-OOA, LV-OOA, biomass burning organic aerosol (BBOA)

and hydrocarbon-like organic aerosol (HOA). This classification offers an alternative

perspective for the traditional AMS aerosol species classification (Figure 11). The

speciation is solidly statistics based, and contains much less assumptions and is more

resistant to analyst subjective bias. This classification can be used as a future basis

for predicting aerosol physicochemical properties.

Figure 11: (Paper VI). Traditional AMS speciation, based on division into organic and

ion species (left), and the respective statistics-based 7-component speciation derived

using the combined methodology of Paper VI.
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5 Review of papers and the author’s contribution

Paper I investigates atmospheric aerosol volatility characteristics when heated. Frac-

tion of aerosol mass remaining after heating is examined in light of the aerosol chemical

data on black carbon and the aerosol mass spectrometer (AMS) chemical classification

results. I measured, processed and analysed the AMS data, participated in the data

analysis, and wrote parts of the Methods section.

Paper II studies aerosol light scattering properties, and connects humidity-induced

scattering enhancement to aerosol chemical composition. I measured, processed, and

analysed the AMS data, took part in the wet-nephelometer measurements at SMEAR

II and the chemical composition related analysis of the results, and participated in

commenting and editing of the manuscript.

Paper III examines aerosol hygroscopic growth, and relates it to particle and aerosol

phase chemical composition. I measured, processed, and analysed the AMS data,

participated in the data interpretation as well as commenting and editing of the

manuscript.

Paper IV reports a comparison between an aerosol volatility model and AMS derived

volatility characteristics. I measured, processed, and analysed the AMS data, partici-

pated in the data interpretation as well as commenting and editing of the manuscript.

Paper V describes a data-analytical method of deriving anthropogenic aerosol types

from mass spectrometric measurements. I was responsible for most of the measure-

ments, processing, and analysis of data, interpreting and visualising the results, and

wrote the manuscript with comments from co-authors.

Paper VI reports a study on how to construct a data-driven, statistical aerosol chem-

ical speciation model. I was responsible for most of the measurements, the processing,

and analysis of data, interpreting and visualising the results, and wrote the manuscript

with comments from co-authors.
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6 Conclusions

As outlined in the introduction (Section 1.5), the main aims of this thesis were related

to (1) connecting particle chemical composition to aerosol physicochemical properties,

(2) applying chemometric and machine learning methods to aerosol mass spectral data,

and (3) using them to develop improved chemical speciations for aerosol mass spectral

data.

In conclusion, I find that aim (1) was partially achieved: the existing chemical specia-

tions used in Papers I through IV can mostly explain aerosol hygroscopicity properties.

For volatility and optical properties, the predictions are not as robust, but they are still

clearly useful approximations. The work on aim (2) was certainly successful, as the

results of especially Papers V and VI acutely demonstrate the value of chemometric

and machine learning tools for aerosol mass spectrometric data analysis. As for aim

(3), the study described in Paper VI yielded a promising chemometrics-based specia-

tion that successfully combines the organic and inorganic chemical species. While it

seems potentially advantageous over the more traditional schemes, its usefulness will

be ultimately be decided by its future applications.

Below, the main results and findings, arranged thematically to new aerosol physical

and chemical information (Section 6.1) and chemometric and data analytical insights

(Section 6.2), are summarised.

6.1 Linking chemical composition and aerosol physicochemi-

cal properties

Different levels of aerosol chemical speciation were evaluated in their usability to ex-

plain aerosol physicochemical properties, such as volatility, hygroscopicity, and light

scattering observed at the SMEAR II research site.

In Paper I, aerosol volatility in temperatures between 80 and 280 oC was studied.

Mass fraction remaining (MFR) after heating (with BC subtracted) was correlated

with AMS-derived chemical species. Ammonium (NH4) and sulphate (SO4) ion species

correlated with MFR temperatures below 200 oC, corresponding to ammonium sulphate

vapourisation temperature around 160 oC. Organics correlated with MFR above 200
oC, potentially indicating oligomerisation or amorphous solid phases of organics with
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high vapourisation temperatures. Bulk nitrates (NO3) correlated only marginally, but

when an ion-balance scheme was applied to classify nitrate to organic nitrate and

NH4NO3, the correlations sharpened: NH4NO3 behaves more similarly to (NH4)2SO4

while NO3 presumed to be organic correlates markedly with MFR at high temperatures

( > 200 oC). The suggestion of organic NO3 being low-volatile is supported by later

observations on their slow thermal decomposition leading to increased fragmentation

in the AMS (Drewnick et al., 2015).

In Paper IV, it was found that the AMS-derived speciations suggestive of organic

aerosol volatility classes (SV-OOA and LV-OOA) likely do not exactly match the

volatility classifications used in V-TDMA studies. Reconciling discrepancies between

the model parameterisations is a topic for further study.

Hygroscopicity, on the other hand, was found to be better predicted by AMS-derived

chemical speciation, where both organic factorisation and ion balance models were

used, resulting in a good match between AMS-derived hygroscopic growth factor (HGF)

and that derived from VH-TDMA measurements (Paper III). Specifically, oxygen-to-

carbon ratio-dependent classification seems to improve the correspondence between the

instruments.

In Paper II, optical properties were examined. Directly measured aerosol (dry) particle

scattering coefficient σsp was well predicted by an estimation derived from DMPS and

AMS. However, the hygroscopic scattering enhancement f(RH), was poorly predicted

by the existing models, due to difficulties of the linear model in handling the high

fraction of organics often observed at the rural measurement site. It seems evident

that the hygroscopicity predicting model and/or AMS chemical speciation need to be

improved.

After deriving a comprehensive AMS chemical speciation both for organic and inor-

ganic compounds (Paper VI), the statistics-derived speciation was compared with the

traditional ion-species based classification. The main outlook of traditional versus sta-

tistical speciation is similar, but differences also exist. We find the statistical speciation

to be more flexible and less prone to analyst subjective bias.
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6.2 Summary of chemometric results

As summarised above, theory-derived, traditional speciations for aerosols can to be

prove helpful, but current models are often insufficient for making accurate predictions

– whether this is due to bad speciation, insufficient models or measurement uncertainty,

is largely unknown. However, in Papers I to IV, there are ample examples where more

detailed speciations yield better correspondence with experiments, lending support to

the notion that improving chemical speciation schemes is indeed important and serve

an important mediating function, in explaining the role of chemical composition on

aerosol physical and chemical properties.

In Papers V and VI, new, chemometrics-oriented approaches to chemical speciation

were examined. Incorporating typical machine-learning tools for feature extraction

and unsupervised classification proved fruitful for aerosol chemical data (Paper VI),

but require some initial optimisation to capture the mass spectral features that carry

relevant chemical information. The statistical diagnostics associated with chemometric

methods increase the objectivity of data analysis and help an analyst in making better-

informed decisions and interpretations.

In Papers V and VI, I equally show how combining several chemometric methods can

overcome some of the weaknesses of individual methods. For example, hard classifica-

tion requires discrete or de-convolved samples, an assumption which is rarely fulfilled

for mass spectra of atmospheric aerosol particles. This hinders straightforward classifi-

cation of mass spectral samples and use of typical classification tools such as clustering

in aerosol chemical speciation. The prerequisite can, however, be fulfilled by prior

factorisation of mass spectral data. The above mentioned combination also helps in

mitigating a typical factor analytical problem of rotational ambiguity, which results

in ambiguity in the evaluation of factorisation solutions. Posteriori classification of

extracted factors reveals which of the data structures are likely stable and contain rel-

evant chemical or physical information, and which outputs are e.g. outliers or data

processing artefacts.

Due to the complexity and large size of data produced in aerosol mass spectrometry,

machine-learning methods may be the way to go also in predictive modelling, instead

of the current, theory-derived multilinear models. The wide variety of chemometric

and machine learning tools available should be considered when aiming to improve or

automate data analysis capabilities in aerosol chemical measurements.
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nuder/filter sampling of organic acids and organosulfates at urban and boreal

forest sites: Gas/particle distribution and possible sampling artifacts, Atmo-

spheric Environment, 130, 36-53, 2016.

Baron, P. A., and Willeke, K., (ed. Kulkarni, P.,): Aerosol measurement: prin-

ciples, techniques, and applications, John Wiley & Sons, 2011.
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