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1 Introduction

Over the past decades, modeling volatility has been one of the most rapidly growing

areas of research in empirical finance. This development has been spurred especially

by the introduction of multivariate GARCH models (MGARCH), such as the so-called

VEC model of Bollerslev et al. (1988), the BEKK model of Engle and Kroner (1995),

or the DCC model of Engle (2002). These modeling frameworks generalize the classical

univariate GARCH models of Engle (1982) and Bollerslev (1986), and allow us to deal

with multi-dimensional problems such as portfolio allocation and optimization, portfolio

risk evaluation, and asset pricing.

In the wake of a growing dependence across markets and countries, evidenced during

the financial and economic crisis, 2007-2009, and the European debt crisis, concern has

risen among central bankers, regulators, policy makers and portfolio managers about un-

derstanding the volatility linkages between countries, markets, and asset classes from a

more fundamental perspective. In empirical assessments of contagion and transmission,1

one may rely on either variance impulse response functions (e.g., Lin (1997), Hafner and

Herwartz (2006a)), tests of specific parameter restrictions in MGARCH models (see, for

example, Nakatani and Teräsvirta (2009), Billio et al. (2012), Woźniak (2015)), or tests

for causality in variance, e.g. Hafner and Herwartz (2006b). Providing an alternat-

ive perspective, Diebold and Yilmaz (2009) suggest to model contemporaneous variance

transmissions by aggregating the forecast error variance decomposition of an underlying

vector autoregression (VAR) of realized variance measures into a ‘spillover index’ . For the

purpose of measuring (co-)variance transmission in a timely manner at high frequency,

Fengler and Herwartz (2018) extend this approach to a BEKK framework.

While conveying insightful information about the volatility and correlation dynamics,

both realized volatility VAR and MGARCH models are limited in the sense that in most

1See, among others, Engle et al. (1990), Hamao et al. (1990), Forbes and Rigobon (2002), and Bali
and Hovakimian (2009)
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studies the underlying model of shock transmissions lacks identification in a strictly struc-

tural sense. For instance, Diebold and Yilmaz (2009) use the order-dependent Cholesky

factorization and justify this choice by showing that alternative variable orderings obtain

similar time profiles of aggregate volatility spillovers. Fengler and Herwartz (2018) mo-

tivate their model based on the economic plausibility of the estimated volatility spillover

patterns. Indeed, identified structural models of realized volatility dynamics are scarce.

As a notable example, Dimpfl and Jung (2012) exploit the chronological order of trading

hours to estimate a structural VAR (SVAR) of realized volatilities. Similarly, MGARCH

specifications often include an ad-hoc decomposition, mostly the symmetric square root,

of the conditional covariance matrix.

Identification of structural MGARCH models has been addressed previously by, for

example, van der Weide (2002), Rigobon (2003) and Weber (2010). The orthogonal

GARCH model of van der Weide (2002) and Rigobon (2003) linearly combines ortho-

gonal conditionally heteroskedastic shocks, where the weights of the linear combinations

are time-invariant. The structural conditional correlation model of Weber (2010) builds

upon a flexible form of vector-valued volatilities coupled with correlations of the underly-

ing structural shocks which are constant or dynamic in the sense of Bollerslev (1990) and

Engle (2002), respectively. It is worth mentioning that both identified MGARCH models

- orthogonal GARCH and structural conditional correlation - come at the cost of imposing

reduced form dynamic profiles that are more restrictive than those of the BEKK model.

An example of using external information to identify an unrestricted BEKK model is

Herwartz and Roestel (2016), who exploit a-priori assumptions on transient patterns of

market dominance, and hence, volatility transmission. Under high frequency sampling,

however, external economic information that could be employed for identification is gen-

erally scare and often not consensual.

In this paper, retaining the full flexibility of unrestricted BEKK models, we build

upon recent advances in data based identification of SVARs to develop a new structural
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MGARCH model. In particular, we exploit the uniqueness of non-Gaussian structural

shocks for MGARCH identification (Moneta et al., 2013; Lanne et al., 2017; Gouriéroux

et al., 2017).2 The starting point is the definition of structural shocks as stochastically

independent innovations, not merely orthogonal. This definition, which has been used

before e.g. in Hafner and Herwartz (2006a), exploits the full information of the joint

distribution of shocks, and not only their second order moment structure. For the identi-

fication of independent shocks we suggest a feasible loss (test) statistic that is a weighted

sum of squared differences between empirical third and fourth order moments and their

theoretical counterparts under the independence assumption. We show theoretically and

via a simulation study that the minimization of the proposed test statistic consistently

identifies the structural MGARCH model that has been estimated by quasi maximum

likelihood (QML).

Intuitively, the idea is that under our assumptions, higher order moments, as opposed

to second-order moments, are not invariant with respect to rotations of a decomposed

conditional covariance matrix. The assumptions exclude the case of a multivariate nor-

mal distribution, under which no identification would be possible. In the univariate case,

the conditional kurtosis of GARCH process only depends on the kurtosis of the i.i.d. in-

novations, which is a constant. In the multivariate case, however, the conditional kurtosis

of portfolio returns is not constant under rotations of the i.i.d. innovation vector. This

crucial information can be exploited empirically to identify structural innovations.

The identified structural model is particularly helpful in modelling the higher order

moment structure of portfolio returns which is an important ingredient for modern risk

management and regulatory purposes. For example, ESA (2016) prescribes the use of

Cornish-Fisher expansions, based on empirical skewness and kurtosis, to estimate Value-

at-Risk (VaR) measures for certain financial investment products. Consequently, these

2The recent literature on identifying SVARs comprises various data based approaches relying on
unconditional heteroskedasticity, mixture distributions and iid non-Gaussian models. For an up-to-date
textbook treatment of identification in SVARs the reader may consult Lütkepohl and Kilian (2017).
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VaR measures will directly depend on the particular choice of the structural model. Fur-

thermore, the structural model is also helpful in quantifying uncertainties inherent in

conditional VaR and ES statistics. To further improve the modelling of tail events, we

introduce a higher order risk measure by considering the difference between squared re-

turns and conditional variances. While the conditional mean of this variable is zero,

its conditional variance is directly linked to the conditional kurtosis of portfolio returns.

Analysing the variation and tail risk of this variable provides important insights for risk

management with respect to variations of classical risk measures over time.

The merits of our approach are discussed in detail based on an application to a four

dimensional system of weekly stock returns of US and Latin American markets. In par-

ticular and opposite to an ad-hoc symmetric covariance decomposition, the estimation

results suggest an active role of US markets in transmitting volatilities to Latin American

markets. We show via simulations that VaR and expected shortfall (ES) measures are well

approximated using the estimated structural model, as opposed to a symmetric model.

We also show that this holds for quantities measuring the higher order type risk.

The next section introduces the structural MGARCH model and discusses the mo-

ment based identification criterion. In Section 3 we highlight how structural information

can be beneficial for both types of risk analysis. A simulation study in Section 4 sheds

light on the discriminatory strength of the identification criterion in finite samples. Sec-

tion 5 provides an empirical illustration of identified volatility transmission patterns. The

empirical analysis in Section 6 shows how structural information improves practical mat-

ters of monitoring portfolio risks. Section 7 concludes. Appendix A provides additional

material on the marginal processes of simulated vector systems, and Appendix B on the

QML BEKK model estimates.
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2 Structural MGARCH and identification

Similar to modelling univariate conditionally heteroskedastic processes by means of GARCH

models and its variants, MGARCH processes have been widely applied to quantify system

covariances for speculative returns in a conditional manner. Let Ft−1 denote the inform-

ation set that is available at time t − 1. For an N -dimensional vector valued system of

speculative returns, denoted rt, let

rt = µt + et, (1)

where µt = E[rt|Ft−1] =: Et−1[rt], and et an error term with conditional mean equal

to zero. In the analysis of daily (weekly) data one often assumes µt = 0 (or µt = µ).

Conditional on Ft−1, MGARCH models specify the time varying covariance of et in a

fully deterministic manner, i.e.

Cov[et|Ft−1] = Covt−1[et] = Ht, (2)

where the matrix process {Ht} is symmetric and positive definite. Alternative approaches

to modelling the conditional covariance Ht can be distinguished according to their flex-

ibility of approximating the entire space of positive definite covariance matrices on the

one hand, and the numerical tractability of their parameter space on the other hand, see

Bauwens et al. (2006) for a review.

The so-called BEKK model (named after an early working paper by Baba, Engle, Kraft

and Kroner) has become a widespread approach to formalize the conditional covariance

of et (Engle and Kroner, 1995). The most flexible BEKK(p, q,K) model reads as

Ht = CC ′ +
K∑
k=1

q∑
i=1

A′kiet−ie
′
t−iAki +

K∑
k=1

p∑
i=1

B′kiHt−iBki , (3)

where C is a lower triangular matrix and Aki and Bki are N × N parameter matrices.
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Complementing theoretical results in Engle and Kroner (1995), Boussama et al. (2011)

show that, given some regularity conditions, the MGARCH process {et} is ergodic and

strictly and weakly stationary if

ρ

(
K∑
k=1

q∑
i=1

Aki ⊗ Aki +
K∑
k=1

p∑
i=1

Bki ⊗Bki

)
< 1, (4)

with ρ(Z) denoting the spectral radius of a square matrix Z and ⊗ the Kronecker mat-

rix product. Furthermore, Stelzer (2008) points out that, except for a few degenerate

covariance processes, the space of BEKK models covers (approximately) the entire space

of positive definite vec MGARCH processes of Bollerslev et al. (1988). While it is only

mildly costly in terms of model flexibility, the BEKK model has the convenient feature

to issue positive definite covariance paths under mild regularity and initial conditions.3

The vast majority of applications of the BEKK model use the parsimonious order

specification BEKK(1,1,1). Omitting respective matrix indices for notational convenience,

the BEKK(1,1,1) model is given by

Ht = CC ′ + A′et−1e
′
t−1A+B′Ht−1B. (5)

Accordingly, for N = 2, 3, 4 low order BEKK(1,1,1) models comprise 11, 24, and 42 para-

meters, respectively. Henceforth, the parameters of the BEKK(1,1,1) model are stacked

into the parameter vector θ = (vech(C)′, vec(A)′, vec(B)′)′. To express the dependence of

the conditional covariance matrix in (5) on θ, we will sometimes write Ht(θ).

To relate the conditional covariance in (2) and the MGARCH process in (1), one

often considers an i.i.d. vector valued innovation process {ξt} with mean zero and unit

covariance as the source of stochastic variation of et (and, hence, rt). This relation is often

formalized by means of ad-hoc decompositions of Ht such as, for example, the symmetric

3Selected applications of the BEKK model are provided by Chan et al. (1992); Bekaert and Harvey
(1995); Baele (2005); Fountas and Karanasos (2007); Hassan and Malik (2007).
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eigenvalue decomposition or Cholesky factors. Denoting by H
1/2
t the matrix square root

of Ht obtained by eigenvalue decomposition, the MGARCH process reads as

et|Ft−1 = H
1/2
t ξt, ξt ∼ iid(0, IN). (6)

Viewing the expression in (6) as a structural scheme, the j-th column of H
1/2
t formalizes

how single orthogonalized shocks ξjt in ξt affect the returns (or their reduced form resid-

uals) collected in rt (et). Similarly, the i-th row of H
1/2
t unravels the contribution of each

shock in ξt to uncertainty/volatility received by a single market rit (eit). Importantly, the

eigenvalue decomposition implies for each market a symmetry of cross market volatility

reception and transmission.4 On a priori grounds one might argue that this implication

lacks economic justification in many contexts. For instance, it appears intuitive to expect

a wedge between patterns of market specific volatility transmission and reception if the

considered markets differ considerably in terms of economic importance and functioning

or market valuation. An analyst might at least warrant a more flexible model framework

which could also nest as special cases particular a-priori schemes.

Generalizing the exposition in (6), the identification problem in MGARCH models can

be made more explicit in terms of a structural transmission scheme as

et|Ft−1 = Dtξt, (7)

where Cov[et|Ft−1] = DtD
′
t = Ht. As a main consequence this generalization implies that

the decomposition is not unique without further assumptions. For instance, under the

assumption of conditional normality all possible covariance decompositions of the form

4The symmetric square root H
1/2
t of Ht is obtained as H

1/2
t = ΓtΛ

1/2
t Γ′t, where the eigenvectors of Ht

are the columns of Γt, and the diagonal matrix Λt has the eigenvalues of Ht along its diagonal. Opposite

to choosing the symmetric decomposition factors H
1/2
t , a-priori opting for a (triangular) Cholesky factor

of Ht renders the analysis conditional on the presumed ordering of variables. Opting for a lower triangular
Cholesky factor, shocks ξ1t would contribute to all system returns, while r1t (or e1t) would not receive
any effects of shocks other than ξ1t.
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Ht = DtD
′
t are observationally equivalent. Hence, in this case the determination of a

particular decomposition scheme, i.e. of a structural representation of the MGARCH

model, has to rely on external non-data based information. Unlike a-priori choices, the

structural approach followed in this paper processes data-based information to determine

the most convenient specification of Dt. We next describe the identification problem and

our approach to solving it.

2.1 The identification problem

Following (7), the identification problem can be stated more explicitly by formalizing the

space of structural covariance decompositions as

Ht = H
1/2
t H

1/2
t = H

1/2
t RδR

′
δH

1/2
t = DtD

′
t, (8)

where Rδ is a rotation matrix such that RδR
′
δ = IN , and Dt = H

1/2
t Rδ.

5 When choosing

Rδ = IN , for instance, the structural model in (7) corresponds to the symmetric model in

(6). More specific, Rδ is parameterized as the product of distinct forms of Givens rotation

matrices where the elements of δ, denoted δi, 0 ≤ δi < π, are rotation angles. For a model

of dimension N , δ comprises N(N − 1)/2 rotation angles. For instance, in the case of

N = 3,

Rδ =


1 0 0

0 cos(δ1) − sin(δ1)

0 sin(δ1) cos(δ1)

×


cos(δ2) 0 − sin(δ2)

0 1 0

sin(δ2) 0 cos(δ2)

×


cos(δ3) − sin(δ3) 0

sin(δ3) cos(δ3) 0

0 0 1

 .
(9)

Apparently, the matrices Dt depend on both the reduced form MGARCH parameters

θ ∈ Θ and the rotation angles δ, i.e., Dt(θ, δ) = Ht(θ)
1/2Rδ. Consequently, model implied

5The supposition of H
1/2
t as baseline factor of Ht is without loss of generality. With a respective

adaptation of the rotation matrix other factors (e.g., Cholesky factors) might be used as well.
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structural shocks read as ξt(θ, δ) = D−1t (θ, δ)et. While the vector of coefficients θ can be

uniquely determined by means of QML estimation, δ lacks identification without addi-

tional information. Put differently, the specification of Dt focuses on the most appropriate

choice of Rδ for given (estimates of) θ and {Ht}.

The selection of Dt (i.e., of Rδ) is similar to the identification problem in structural

VAR models. Main examples of SVAR identification strategies which rely on external

information are the narrative approach (see, e.g., Romer and Romer, 2010), the sign

restrictions approach (see, e.g., Faust, 1998; Uhlig, 2005), and a-priori choices of spe-

cific models (e.g. the Cholesky decomposition by Sims, 1980). Given the high-frequency

nature of financial return data, one may favor data-based external information for identi-

fication rather than economic (or a-priori) assumptions which are likely to lack sufficient

motivation when analysing speculative returns sampled at medium or high frequency

(daily or weekly, say). The recent literature on identification in SVARs has shown that

the data-based identification of structural relations offers unique solutions if structural

shocks are non-Gaussian and independently distributed (Lanne et al., 2017; Gouriéroux

et al., 2017). In empirical applications of GARCH models the supposition of Gaussian

GARCH residuals is regularly confirmed as overly restrictive and models incorporating

leptokurtic innovations have been put forward (e.g, Bollerslev, 1990). This naturally al-

lows to draw upon the branch of identification techniques for non-Gaussian systems, and

to exploit the particular structure of third and fourth order co-moments that is implied

by independently distributed non-Gaussian model innovations.

2.2 Moment based identification

The main theoretical motivation for our approach is the following result of Lancaster

(1954), which is a characterization of the multivariate normal distribution: If ξt is a vector

of independent standardized random variables with finite cumulants, and the non-trivial

transformation ξ∗t = Rδξt gives a vector of independent standardized random variables,
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then each component of ξ∗t is normal (and hence so is each component of ξt). Thus, under

the requirement of independence, the only situation where non-identifiability occurs is

the case of a normal distribution. In other words, structural innovations are identifiable

if the innovation vector is not normally distributed.

Under non-normality, the core idea to identify the structural MGARCH model is to

start with an a-priori decomposition Ht(θ)
1/2, obtaining standardized reduced form errors

estdt := Ht(θ)
−1/2et. In a second step, this factor is subjected to systematic rotations Rδ

to obtain a specific (rotated) matrix Dt(θ, δ) = Ht(θ)
1/2Rδ that implies innovations which

are best in matching a set of co-moment conditions that apply to independent shocks.

Before characterizing the identification technique, we need to impose some assump-

tions on the vector of innovations ξt(θ, δ) = D−1t (θ, δ)et. In the following, we distinguish

between the vector of independent structural error terms which is related to rotation

angle δ0 by ξt := ξδ0t = ξt(θ, δ0) and the general vector of structural shocks ξδt = ξt(θ, δ)

which depends on rotation angle δ and is not necessarily independent. The following

assumptions are imposed on ξt.

Assumption 1 ξt, t = 1, . . . , T, is an N-dimensional vector with the following properties:

(i) At most one of the components of the random vector ξt has a normal distribution.

(ii) The components ξit are mutually independent with E[ξit] = 0 and Var[ξt] = IN .

(iii) For some ε > 0, E|ξkt|6+ε <∞, k = 1, . . . , N .

In the following, we discuss moment properties of independent shocks in order to pro-

pose a diagnostic statistic in Section 2.3 to identify them based on higher order moments.

We first introduce some notation and define respectively the marginal skewness and kur-

tosis of innovations, m
(3)
i := E[ξ3it] and m

(4)
i := E[ξ4it], i = 1, . . . , N . Furthermore, let

m(g) := (m
(g)
1 , . . . ,m

(g)
N )′ denote N -dimensional moment vectors for g ∈ N. In particular,

the skewness vector corresponds to m(3), the kurtosis vector to m(4), and the second order
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moment m(2) is unity by definition. The operator diag(a) stacks an n-dimensional vector

a into a diagonal (n× n) matrix.

Let us now define the matrices of third and fourth order cross-products of ξt as

Φt := (ξt ⊗ ξt)ξ′t and Ψt := ξtξ
′
t ⊗ ξtξ′t

and corresponding expectations,

Φ := E[Φt] = diag(m(3))LN

Ψ = E[Ψt] = 2DND
+
N + vec(IN)vec(IN)′ + diag(vec(diag(m(4) − 3ιN)))

where LN is the unique N2 × N matrix defined by the property diag(A) = L′vec(A)

for any N × N matrix A, DN is the duplication matrix, D+
N its generalized inverse, and

ιN := (1, 1, . . . , 1)′ an N -dimensional vector of ones. A derivation of these expressions is

straightforward following the lines of Proposition 5.3 of Hafner and Rombouts (2007). An

elementwise characterization of the matrix Ψ was derived in Fengler and Herwartz (2018).

Furthermore, define φt as the vector containing the non-redundant elements of vec(Φt),

except for the terms ξ3it, i = 1, . . . , N . That is, φt contains all cross-products of the type

ξ2itξjt and ξitξjtξkt, so that φt is of dimension qφ := N(N − 1)(N + 4)/6. Similarly,

define the vector ψt as the vector containing the unique elements of vec(Ψt), except for

the terms ξ4it, i = 1, . . . , N . That is, ψt contains all cross-products of the type ξ3itξjt,

ξ2itξjtξkt, ξ
2
itξ

2
jt and ξitξjtξktξlt, and it can easily be checked that ψt is of dimension qψ :=

N(N − 1)(N2 + 7N + 18)/24.

Finally, let φ := E[φt] and ψ := E[ψt] be the vectors of expectations of third- and

fourth-order cross-products of innovations. Table 1 gives the dimensions of φ and ψ as a

function of N for N = 2, 3, 4. Note that qφ = O(N3) and qψ = O(N4).
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N qφ qψ

2 2 3
3 7 12
4 16 31

Table 1: Number of third and fourth order cross-products as a function of N . The func-
tions are qφ = N(N − 1)(N + 4)/6 and qψ = N(N − 1)(N2 + 7N + 18)/24.

The variance-covariance matrix of φt can be obtained as

vech (Var(φt)) = C1


0

1

vecl(m(3)m(3)′)

m(4)


where vecl(·) denotes the operator that stacks the lower triangular part of a matrix,

excluding the diagonal, into a column vector, and C1 is a qφ(qφ + 1)/2 × N(N + 1)/2 +

2-dimensional binary selection matrix, that is, each row contains exactly one entry of

unity, and zeros elsewhere. For example, in the bivariate case (N = 2), we have φt =

(ξ21tξ2t, ξ1tξ
2
2t)
′ and

Var(φt) =

 m
(4)
1 m

(3)
1 m

(3)
2

m
(3)
1 m

(3)
2 m

(4)
2


such that C1 has dimension 3× 5 and is given by

C1 =


0 0 0 1 0

0 0 1 0 0

0 0 0 0 1
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Similarly, the variance-covariance matrix of ψt is given by

vech (Var(ψt)) = C2



0

1

m(4)

vecl(m(4)m(4)′)− ιN(N−1)/2

m(6)


where C2 is a qψ(qψ+1)/2×(2(N+1)+N(N−1)/2)-dimensional binary selection matrix.

To construct the covariance-matrix of the vector (φ′t,ψ
′
t)
′, it remains to calculate the

covariance between φt and ψt, which is obtained as

vec (Cov(φt,ψt)) = C3


0

m(3)

m(5)

vec(m(3)m(4)′)

 ,

where C3 is a qφqψ × (N + 1)2 binary selection matrix.

We now stack both vectors into the q-dimensional vector St = (φ′t, ψ
′
t)
′ (e.g. q = 47

for N = 4), and q = qφ + qψ. All variances and covariances of φt and ψt are then

used to construct Σ := Var((φ′t,ψ
′
t)
′). Furthermore, φ̂t and ψ̂t (Ŝt) define the respective

estimators obtained from ξ̂t = ξt(θ̂, δ0). We discuss consistency of these estimators in the

following Section 2.3.

2.3 A diagnostic and its asymptotic properties

The co-moment structure detailed above holds for the case where the independent struc-

tural shocks in ξt can be distinguished from the space of dependent distributions obtaining

non-trivial relations among third and fourth order relations. Noticing that alternative

choices of δ in (8) obtain shocks ξδt with distinct joint distributions, we suggest to select
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the vector of rotation angles in a way such that implied empirical third and fourth order

co-moments of ξδt are best in line with the moments of ξt. For the vector E[Sδt ] of stacked

theoretical third and fourth order moments of ξδt , let S̄δT = 1
T

∑T
t=1 S

δ
t =

(
φ̄δ

′
T , ψ̄

δ′
T

)′
denote

the empirical counterpart. To discriminate between distinct choices of the rotation angle

δ we consider the statistic

λTδ = T (S̄δT − E[St])
′Σ−1δ (S̄δT − E[St]), (10)

where the covariance matrix Σδ collects the second order (co-)moments of the elements in

Sδt =
(
φδ

′
t , ψ

δ′
t

)′
. The entries in Σδ are calculated under the assumption of independence

with respect to rotation angle δ. Similarly, the expectation vector E[St] comprises E[φt]

and E[ψt] defined under independence.6

If independence is violated, and under non-sphericity, the third and fourth order mo-

ment conditions provided in Section 2.2 are (partly) violated such that λTδ in (10) is

expected to diverge for increasing T . Hence, minimizing λTδ provides a particular decom-

position of Ht which implies weakest dependence among corresponding orthogonalized

shocks. Using the statistic in (10), the identified structural model reads as

D̂t = Dt(θ, δ̂),with δ̂ = argminδ{λδ| ξt = Dt(θ, δ)
−1et}. (11)

Regarding the identification scheme in (10) and (11) we make the following two remarks.

First, while the asymptotics for the statistic in (10) hold for the true independent shocks

ξt, consistency of QML MGARCH estimation θ̂ coupled with continuous mapping argu-

ments motivate that the result remains valid even for estimated (and rotated) MGARCH

innovation estimates. A rigorous proof of these considerations is provided below. Second,

6For the class of spherical distributions, of which the standard normal is a special case, the above
moment conditions hold as well and they are invariant with respect to orthogonal rotations. However,
the standard normal is the only member of this class with independent components, so that spherical
distributions are excluded by Assumption 1(i) − (ii). In practice, observing a statistic λTδ that is a
non-trivial function of δ is an indicator of non-sphericity.
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the covariance matrix Σ is characterized by a sparse structure, mostly comprising elements

of zero or unity, see the results of Section 2.2. Only a few higher order moments have to

be estimated. Accordingly, the asymptotic distribution of λTδ in (10) requires finiteness

of marginal moments of the order of 6 + ε, ε > 0 (see e.g. White, 1984, p. 119).7

This section focuses on the theoretical derivation of the asymptotic properties of the

estimator D̂t, or rather δ̂. The decomposition Dt(θ, δ) depends on both estimated coef-

ficients in θ and δ. In empirical practice the parametric specification of the MGARCH

model is typically unknown such that model parameters θ are subjected to QML es-

timation. Accordingly, a feasible evaluation of (10) relies on estimated rather than true

innovation estimates ξ̂δt = Dt(θ̂, δ)
−1et.

For the derivation of asymptotic properties in this section we proceed in three steps.

Firstly, keeping the rotation angles δ0 fixed, we derive consistency of the shocks ξ̂t =

Dt(θ̂, δ0)
−1et based on the QML estimator θ̂ which implies consistency of estimates Ŝt =

(ψ̂′t, φ̂
′
t)
′. Secondly, we show the asymptotic properties of λTδ0 and λ̂Tδ0 (based on θ̂).

Thirdly, we study the properties of the statistic λTδ to finally establish consistency of δ̂.

To implement QML estimation of the parameters, the assumption of conditional nor-

mality of ξt, and hence et ∼ N(0, Ht), is commonly adopted. Jeantheau (2000) initiated

the derivation of asymptotic properties of QML estimators in MGARCH models. In

particular, he provides regularity conditions, such as ergodicity and compactness to es-

tablish consistency of QML estimates. Comte and Lieberman (2003) show consistency

and asymptotic normality of the QML estimator of the BEKK model assuming existence

of, respectively, second and eighth order moments of the MGARCH process. Weakening

these requirements, Hafner and Preminger (2009) show consistency of QML estimators

under the condition of finite second order moments of the (non-Gaussian) innovations ξt,

and establish asymptotic normality of QML estimators given sixth order moments of the

MGARCH process.

7In the case where cross products of the form ξ3itξjt are removed from ψt, St and S̄T accordingly, the
asymptotics of (10) can be established with the weaker assumption of finite moments of order 4+ε, ε > 0.
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Consistency of the QML estimator, i.e. θ̂
p−→ θ, and application of a continuous

mapping theorem imply that Ht(θ̂)−Ht(θ)
p−→ 0 for T →∞. Consequently, the estimated

decomposition Dt(θ̂, δ0) converges to the true decomposition, Dt(θ̂, δ0) − Dt(θ, δ0)
p−→

0, T →∞. Furthermore, for T →∞,

ξ̂t − ξt = Dt(θ̂, δ0)
−1et −Dt(θ, δ0)

−1et
p−→ 0 and ξ̂2t − ξ2t

p−→ 0. (12)

Convergence of the estimated structural innovations implies convergence of the vectors of

third and fourth order cross products:

ψ̂t −ψt
p−→ 0 and φ̂t − φt

p−→ 0, T →∞. (13)

In the following, we establish consistency of the empirical third and fourth order mo-

ments φ̄ = 1
T

∑T
t=1φt and ψ̄ = 1

T

∑T
t=1ψt. Under Assumption 1, the empirical moments

converge in probability by the application of a weak law of large numbers. For instance,

1

T

T∑
t=1

ξ2tiξ
2
tj

p−→ E(ξ2i ξ
2
j ) = 1, T →∞. (14)

Similarly, the remaining third and fourth order empirical moments defined in Section

2.2 converge to their expectation. For the vector of co-moments it follows that

φ̄
p−→ E(φ) and ψ̄

p−→ E(ψ) for T →∞. (15)

Consistency of the QML estimator of the MGARCH model implies that the struc-

tural model determination by means of the statistic in (10) also applies asymptotically

to estimated vectors of orthogonalized shocks ξ̂t. Combining the result from (15) with

the convergence of the estimated moments stated in (13) establishes consistency of the
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estimated empirical moments, i.e.

¯̂
φ

p−→ E(φ) and
¯̂
ψ

p−→ E(ψ) for T →∞. (16)

While we have derived convergence under the assumption of δ = δ0, the results hold

for any rotation angle δ ∈ [0, 2π]. Consequently, for the statistic in (10) it follows that for

any rotation angle δ,

|λTδ − λδ|
p−→ 0, T →∞. (17)

The limit λδ measures the distance between the expected third and fourth moments under

rotation angle δ and δ0.

Under the assumption of independence, i.e. ST = Sδ0T , the centered vector of empirical

third and fourth order moments converges to a multivariate normal distribution, i.e., for

T →∞,
√
T (S̄T − E[St])

d−→ N (0,Σ) (18)

with covariance matrix Σ. This result follows from a multivariate central limit theorem

and is, for instance, stated in Davidson (1994) in its general form. Accordingly,

T (S̄T − E[St])
′Σ−1(S̄T − E[St])

d−→ χ2(q), T →∞. (19)

With the result of (16) and equivalent statements for the other moments the estimated

counterpart Ŝ has the same asymptotic distribution as given in (19). Similarly, the

covariance matrix Σ can be substituted by its estimated version Σ̂ so that

T (ŜT − E[St])
′Σ̂−1(ŜT − E[St])

d−→ χ2(q), T →∞. (20)

Based on results from the independent component analysis literature, the decomposi-

tion Ht = DtD
′
t is unique for independent non-Gaussian components ξk,t (Comon, 1994;

Lancaster, 1954). In the following, we derive that minimizing the statistic λδ with respect
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to the rotation angles δ provides a consistent estimator of this unique decomposition Dt.

For the standardized version of the vector of reduced form errors estdt = Ht(θ)
−1/2et, we

are interested in determining the rotation angles δ so that the components of ξδt = R−1δ estdt

are independent. Recall that S̄δT contains the empirical counterparts of E(St) dependent

on the rotation angles δ. Thus, the statistic λδ contains the sum of squared elements of

the weighted difference between S̄δT and E[St], i.e. Σ
−1/2
δ (S̄δT − E[St]). This converges in

probability to a zero vector under independence, i.e. for ξt = R−1δ0 e
std
t .

Given this background, the statistic λδ minimizes the sum of squared standardized

elements of the matrices of third and fourth order co-moments, except for the marginal

skewness and kurtosis. Alternatively, one could maximize the information contained in

the marginal skewness and kurtosis. This technique is used in a classical independent

component analysis algorithm, the so-called joint approximate diagonalization of eigen-

matrices (JADE). Following, for instance, Miettinen et al. (2015), the described identi-

fication technique can be formulated as the counterpart to standard ICA methodologies.

While we are interested in minimizing the standardized cross-moments, JADE maxim-

izes the standardized marginal fourth order moments. We obtain from Miettinen et al.

(2015) that the minimum of λδ0 = 0, i.e. at ξt = R−1δ0 e
std
t , is unique up to permutation,

sign-changes, and scaling. Thus, for independent ξt the criterion λδ is minimal, i.e. the

minimum of λδ is obtained at rotation angle δ0.

It remains to show that the consideration of alternative rotation angles δ leads to a

consistent estimator of δ0, i.e. δ̂ → δ0 for T →∞. For this, we follow the argumentation

of Matteson and Tsay (2017). From the foregoing considerations we know that λδ̂ ≥ λδ0

and λTδ0 ≥ λT
δ̂
. Consequently, λTδ0 − λδ0 ≥ λT

δ̂
− λδ0 ≥ λT

δ̂
− λδ̂. Using (17) it follows

|λT
δ̂
− λδ0| ≤ max(|λTδ0 − λδ0|, |λ

T
δ̂
− λδ̂|)

≤ supδ|λTδ − λδ|
p−→ 0, T →∞.

By continuity it follows that Rδ̂

p−→ Rδ0 and, following Matteson and Tsay (2017), δ̂
p−→
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δ0 for T →∞.

3 Portfolio risk analysis

MGARCH models have become a widespread tool for the risk analysis of investment

portfolios. Since these models provide a reduced form evaluation of time varying co-

variances, alternative structural specifications do not materialize in the assessment of

portfolio variances. Moreover, alternative structural MGARCH models cannot be further

discriminated under conditional normality, since this distribution is fully characterized

by its first two moments. However, in a non-Gaussian framework, alternative structural

models exhibit distinct higher order characteristics, and identification can be achieved by

defining structural innovations as independent.

In this section we argue that higher order characteristics are important for risk man-

agement in two respects:8 First, in the context of approximations of tail risk measures

such as Value-at-Risk, and second, for measures of variability of squared portfolio returns

around their conditional expectation. The latter risk type will be shown to be directly

related to the conditional kurtosis of portfolio returns and will therefore be termed ‘kur-

tosis risk’ while the former is about approximating ‘first order’ risks. In the following we

show the importance of conditional fourth order moments for both types of (portfolio)

risk. Henceforth, let w denote an N -dimensional vector of portfolio weights. Accordingly,

the stochastic part of portfolio returns reads as τt = w′et, and the conditional portfolio

8The importance of higher order moments for risk measures has also been recognized by regulatory
authorities. For example, the European supervisory authorities EBA, EIOPA and ESMA have deviced
regulatory technical standards for packaged retail and insurance-based investment products (see ESA
(2016)) that include the use of skewness and kurtosis via Cornish-Fisher expansions to evaluate market
risk measures.
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variance is

σ2
t = Var[τt|Ft−1] = E[τ 2t |Ft−1]

= tr[w′Htw] = tr[W̃Ht], (21)

where W̃ = ww′. The following outline of risk concepts is conditional on a specific choice

of portfolio weights w. Next, we (i) describe our simulation based approach to first order

risk assessment, (ii) derive conditional fourth order moments of portfolio returns, and (iii)

outline the measurement of kurtosis risk.

3.1 First order risk

The main measures for evaluating market risk, recommended by the Basel committee of

Banking Supervision, see e.g. Chapter 2 of McNeil et al. (2nd edition, 2016), are the

Value-at-Risk (VaR) and the expected shortfall (ES). In a non-Gaussian context VaR

and ES may depend on higher order moments such that the choice between a structural

or symmetric model for the decomposition of Ht is not innocuous for first order risk

assessment.

In the empirical part of this work, we demonstrate the relevance of the model choice for

higher order moments by simulating risk measures for alternative models. It will turn out

that, for our data, risk measures based on an asymmetric structural model tend to give a

better approximation of actual risks in comparison with a symmetric model. To be precise,

at each point in time t, conditional on the information set Ft−1, we simulate a very large

number (i.e. 106) of portfolio returns τt using independent bootstrap draws from model

implied innovations ξt, and then obtain the α-quantile of their empirical distribution,

which will give an approximation of the conditional VaR at time t.9 Formally,

VaR•α(τt|Ft−1) = −F−1•,α(τt|Ft−1), (22)

9We provide a more detailed description of the resampling scheme in Section 6.1.

20



where F is short for the (portfolio) return distribution function, ‘•’ indicates alternative

model choices (Dt vs. H
1/2
t ), and α is a nominal probability which we set alternatively to

α = .010, .025, .050, .100, .250.10

In the same vein, we can simulate the conditional ES, i.e.,

ES•α(τt|Ft−1) = −E• [τt| (τt < −VaR•α(τt|Ft−1)) ,Ft−1] , (23)

where the expectation on the right hand side is taken with respect to the simulated

distribution of portfolio returns.11 To highlight the role of tail events for the determination

of ES, one might also consider the expected excess shortfall, i.e.

EES•α(τt|Ft−1) = ES•α(τt|Ft−1)− VaR•α(τt|Ft−1). (24)

In analysing VaR exceedances, however, we do not only consider their average but also

address in how far the structural MGARCH models are useful to manage their distribu-

tion. For this purpose, we extract from the simulated return distributions the interquartile

range of VaR exceedances which provides a statistical tool that can be contrasted against

empirical patterns of exceedances. Specifically, one would expect that, on average, about

50% of all VaR exceedances fall within the model implied interquartile range. Formally,

the interquartile range is given by the interval

[
ES•α(τt|Ft−1),ES

•
α(τt|Ft−1)

]
, (25)

10See, e.g., Angelidis and Degiannakis (2007) for an overview of GARCH based VaR modelling.
11See, e.g., McNeil and Frey (2000) or Zhu and Galbraith (2011) for two examples for GARCH based

ES modelling.
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where the bounds are implicitly defined by the two equations

Prob [τt > ES•α(τt|Ft−1)|τt < −VaR•α(τt|Ft−1),Ft−1] = 0.25

and Prob
[
τt < ES

•
α(τt|Ft−1)|τt < −VaR•α(τt|Ft−1),Ft−1

]
= 0.75.

3.2 Fourth order moments of portfolio returns

In the univariate case, the conditional kurtosis of a GARCH process with i.i.d. innovations

is a constant, given by the kurtosis of the innovations. In the multivariate case however,

as we will see in the following, the conditional kurtosis of portfolio returns is no longer

constant and, in particular, is not invariant with respect to orthogonal rotations of the

innovation vector. Using result 11, p.98 of Lütkepohl (1996), the conditional fourth order

moment of portfolio returns is given by

E[τ 4t |Ft−1] = E[tr[W̃ (ete
′
t)W̃ (ete

′
t)]|Ft−1]

= E[vec(W̃ )′(Dtξtξ
′
tD
′
t ⊗Dtξtξ

′
tD
′
t)vec(W̃ )], (26)

where et has been replaced by its structural representation which is known conditional on

Ft−1. Noticing that the Kronecker product in (26) involves identical matrices and using

the results 7, 7.2(6) and 8(a) (Lütkepohl, 1996, p.97), one obtains

E[τ 4t |Ft−1] = E[vec(W̃ )′(Dt ⊗Dt)vec(ξtξ
′
t)vec(ξtξ

′
t)
′(D′t ⊗D′t)vec(W̃ )]

= vec(W̃ )′(Dt ⊗Dt)E[vec(ξtξ
′
t)vec(ξtξ

′
t)
′](D′t ⊗D′t)vec(W̃ )]

= vec(W̃ )′(Dt ⊗Dt)Ψ(D′t ⊗D′t)vec(W̃ )] =: ςt. (27)

In (27) the N2 ×N2 matrix Ψ, defined as

Ψ := E[vec(ξtξ
′
t)vec(ξtξ

′
t)
′], (28)
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collects the fourth order moments of the structural shocks ξt.

Structural estimates ς
(0)
t = ςt(Dt) allow for a comparison with the corresponding stat-

istics retrieved from the symmetric decomposition H
1/2
t , i.e.

ς
(1)
t = ςt(H

1/2
t )

= vec(W̃ )′(H
1/2
t ⊗H1/2

t )Ψ(H
1/2
t ⊗H1/2

t )vec(W̃ ). (29)

Since both statistics ς
(0)
t and ς

(1)
t evaluate fourth order properties, it is convenient to

focus the analysis on estimated time varying ‘kurtosis’ statistics which could be defined

as κ
(0)
t = ς

(0)
t /σ4

t and κ
(1)
t = ς

(1)
t /σ4

t . To illustrate the difference between κ
(0)
t and κ

(1)
t , we

provide a numerical example. Set N = 2, Ht = I2, w = (0.5, 0.5)′, and Ψ is obtained by

assuming independent standardized Student-t distributed ξt with ν = 5, 10 and 15 degrees

of freedom.12 The rotation matrix R is defined as

Rδ =

cos δ − sin δ

sin δ cos δ

 .

Figure 1 shows the kurtosis κ
(0)
t as a function of δ. The kurtosis κ

(1)
t using the symmetric

decomposition is obtained for δ = 0. Obviously, the kurtosis variation is substantial

if the degrees of freedom parameter is not too large. Therefore, identifying structural

innovations using the λδ statistic of the previous section will have a non-negligible impact

on the conditional kurtosis of portfolio returns.

3.3 Kurtosis risk

While measures of volatility, VaR and ES convey important information for risk man-

agement, it is important to notice that such statistics are - even conditionally - subject

to inherent estimation uncertainty. In an MGARCH context, in particular, the vari-

12These distributions will also be considered in the simulation study in Section 4.
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ation of squared returns contributes to estimation uncertainty of conditional variances,

and exposes VaR and ES evaluations to conditional uncertainty. In statistical terms, the

fluctuation of squared portfolio returns around the conditional variances depends on the

conditional kurtosis of portfolio returns. Accordingly, we refer to such patterns of higher

order risk as kurtosis risk. Recalling the results of Section 3.2, note that kurtosis risk is

not invariant with respect to the specification of the structural MGARCH model.

Let us define the difference between squared portfolio returns and conditional variances

as

mt := τ 2t − σ2
t , (30)

which is a zero mean random variable (conditional on Ft−1 and unconditionally) that

describes surprises to portfolio risk. Such surprises can be expected to be small (large) if

Var[mt|Ft−1] is small (large). Using the definition of ςt in (27), the assessment of variations

of risk involves a quantification of conditional fourth order moments of τt,

vt := Var[mt|Ft−1] = E[τ 4t |Ft−1]− σ4
t = ςt − σ4

t . (31)

A standardized measure is given by

ṽt :=
vt
σ4
t

= κt − 1, (32)

which directly links vt to the conditional kurtosis κt. Unlike the portfolio variance σ2
t ,

the risk statistic in (32) depends on the specification of the structural model. Hence,

it is interesting to contrast rival structural specifications with regard to their scope in

quantifying time varying patterns of kurtosis risk. Accordingly, the empirical counterpart

of ṽt is given by

m̃2
t =

m2
t

σ4
t

. (33)

While the empirical process {m̃2
t} is conditionally observable, it is important to notice that
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the simulation of processes ṽ
(0)
t = ṽt(Dt) and ṽ

(1)
t = ṽt(H

1/2
t ) depends on the structural

assumptions.

Apart from modelling mean profiles of m̃2
t , we evaluate model accuracies in capturing

the (tail) event that m̃2
t exceeds a prespecified critical quantile of its (simulated) distribu-

tion. This is analogous to Value-at-risk analysis of first order risk. In the present context,

however, the event describes a positive excess violation of an upper quantile of m̃2
t , as

opposed to a lower quantile of the return distribution. Formally, we define the conditional

‘kurtosis-at-risk’ (KaR) as

KaR•γ(m̃
2
t |Ft−1) = G−1•,γ(m̃

2
t |Ft−1), (34)

where G(·) is the distribution function of m̃2
t , ‘•’ indicates alternative model choices (Dt

vs. H
1/2
t ), and γ is a nominal probability level.

Similar to expected shortfall analysis of first order risk, we also consider the expec-

ted violation of the threshold given that an event of threshold violation has occurred.

Formally, we define the conditional ‘expected kurtosis shortfall’ (EKS) as

EKS•γ(m̃
2
t |Ft−1) = E•

[
m̃2
t |
(
m̃2
t > KaR•γ(m̃

2
t |Ft−1)

)
,Ft−1

]
. (35)

Furthermore, we also consider the distribution of risk exceedances, and in particular

the interquartile range, analogous to our analysis of first order risk. For kurtosis risk, the

interquartile range is defined as the interval

[
EKS•γ(m̃

2
t |Ft−1),EKS

•
γ(m̃

2
t |Ft−1)

]
, (36)
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where the bounds are implicitly determined by the following probability statements

Prob
[
m̃2
t > EKS•α(m̃2

t |Ft−1)|
(
m̃2
t > KaR•γ(m̃

2
t |Ft−1)

)
,Ft−1

]
= 0.25

and Prob
[
m̃2
t < EKS

•
γ(m̃

2
t |Ft−1)|

(
m̃2
t > KaR•γ(m̃

2
t |Ft−1)

)
,Ft−1

]
= 0.75.

4 Simulation study

The purpose of the simulation study is to uncover the scope of distance measures as

defined in (10) for identifying the structural parameters in Dt. Owing to consistency

of QML estimation, one may assume that this potential is only mildly affected by the

distinction of true covariances {Ht} and their estimated counterparts {Ĥt}. Therefore we

disgard QML estimation steps in the simulations, and evaluate model selection outcomes

under the assumption that {Ht}Tt=1 is known to the analyst.

4.1 Simulation design

Simulated covariance dynamics accord with a BEKK(1,1,1) model (see (5)),13

C =


4.00 0.00 0.00

14.5 2.00 0.00

25.0 −8.50 2.50

 /1000, A =


.14 .05 .05

−.05 .14 .05

−.03 .05 .14

 , B =


.96 −.06 .02

.04 .96 .02

.04 .02 .96

 .

While the dynamic formalization uniquely determines {Ht}Tt=1, a core aspect of the Monte

Carlo study is the transmission of latent iid structural innovations (ξt) to observable

reduced form disturbances (et). To generate (returns) et from the structural model, the

13The marginal processes implied by the simulated BEKK model are shortly described in the Ap-
pendix A. As it turns out, marginal processes show typical characteristics of empirical univariate GARCH
processes in terms of covariance stationarity, persistence and news response.
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transmission matrix Dt is determined by means of a rotation of H
1/2
t as

Dt = H
1/2
t Rδ, (37)

where Rδ is in the form of (9) and rotation angles are δ = (δ1, δ2, δ3)
′ = (.10, .25, .40)π.

We generate MGARCH return data from standardized Student-t innovations ξt with 5,

10, 15, 30 and 100 degrees of freedom. Benchmark results for the unidentified Gaussian

model are also provided. Distinguished sample sizes are T + 100 = 1100, 2100, 4100 and

8100, before discarding the first 100 draws to immunize the analysis from initialization

effects. Each experiment is performed 10000 times.

To analyse the discriminatory strength of the moment based criterion in (10), the

simulated data {et, Ht}Tt=1 are subjected to a structural analysis presuming rival specific-

ations of the decomposition in (8). On the one hand, a candidate decomposition matrix

is chosen in accordance with the true model, D
(0)
t = Dt. One expects smallest loss stat-

istics λ if an analyst has access to the true decomposition scheme. In addition, seven

alternative (and false) decomposition schemes are evaluated in terms of the identification

criterion. Owing to consistency of the moment estimators entering the covariance Σ in

(18) all these choices should obtain (at least asymptotically) loss statistics in excess of

their counterparts obtained from the true structural model. The following decomposition

matrices are used

D
(0)
t = H

1/2
t Rδ, true model, clockwise rotation of H

1/2
t ,

D
(1)
t = H

1/2
t , unrotated model, eigenvalue decomposition,

D
(q)
t = H

1/2
t Rqδ, q = 1.010, 1.025, 1.050 ‘excess’ clockwise rotations,

D
(q)

t = H
1/2
t Rqδ, q = (q)−1 ‘insufficient’ clockwise rotations.

To facilitate the discussion of simulation outcomes the loss statistics in (10) are denoted
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λ(D
(q)
t ) in this Section. Loss statistics λ(D

(q)
t ) rely only on vectors ψt.

14

4.2 Simulation results

4.2.1 Documentation

In terms of frequency estimates Table 1 documents how often we obtained

(i) smaller loss statistics for the true model (D
(0)
t ) in comparison with the unrotated

symmetric covariance decomposition (D
(1)
t = H

1/2
t )

(ii) how often loss statistics λ(D
(0)
t ) are smaller than statistics derived from both, over-

and underrotated decompositions (q = 1.010, 1.025, 1.050; (q)−1).

Before taking a more detailed look at simulation outcomes, it is instructive to point

out that we might expect two groups of basic outcomes from the experiments. First,

noticing the uniqueness of non-Gaussian independent shocks, we expect the frequencies

of observing λ(D
(0)
t ) < λ(H

1/2
t ) to increase with the sample size and to shrink with the

number of Student-t degrees of freedom. Asymptotically, we expect a unit frequency of

having λ(D
(0)
t ) smaller than λ(H

1/2
t ) unless samples originate from the Gaussian model.

Second, with the presumption that the true rotation (λ(D
(0)
t )) corresponds to a minimum

of the loss statistic, frequencies of preferring the true rotation within a ‘symmetric’ space

of over- and underrotations (λ(D
(q)

t ), λ(D
(q)
t )) should increase with the rotation bounds,

i.e. with q̄.

14Undocumented results from further simulations show that the identification outcomes are very similar
if model selection is based jointly on third and fourth order comoments, i.e. on (φ′t,ψ

′
t)
′. Moreover, it

is worth to recall that a consistent determination of Cov[ψt] requires finiteness of marginal moments
of ξit up to order 6 + ε. In some simulation experiments (e.g. when drawing data from standardized
Student-t distributions with 5 degrees of freedom) these moment conditions are violated. Removing the
six fourth order moments of the form ξ3itξjt from ψt obtains a dependence diagnostic which only requires
the existence of moments up to order 4 + ε. Relying on a six dimensional vector of comoments (i.e. using
moments from ξ2itξ

2
jt or ξ2itξjtξkt) obtains simulation results which are very close to those documented in

Table 1 of this study. Detailed results on unreported simulation outcomes are available from the authors
upon request.
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4.2.2 Discussion

Both of the expectations outlined before are confirmed by the Monte Carlo results. Con-

trasting loss measures from the true decomposition against counterparts obtained from

the symmetric decomposition is supportive for the true model with frequencies close to

unity under various scenarios with either sizeable deviations from the Gaussian model

(ν = 5, T = 1000) or sufficiently rich sample information. Having a standardized Student-

t distribution with 30 degrees of freedom, samples as large as T = 8000 are informative

to rule out the symmetric model against the true structural model in 92% of all Monte

Carlo replications. In the Gaussian case (i.e. ν → ∞), the outcomes of model selection

are purely random, with selection frequencies of 50% for both alternatives.

Comparing the loss statistic for the true model with those derived from over- and

underrotations shows that minimizing the loss statistic obtains a local minimum in the

neighbourhood of the true structural model (see also the exposition in Figure 1). With

T = 1000 observations and Student-t shocks with 15 degrees of freedom, the true decom-

position obtains a loss measure smaller than those from both bounds of false rotations

with q = 1.050 in almost 20% of all Monte Carlo experiments. Pointing to the consist-

ency of the minimization of the loss statistic, the respective success frequencies increase

to almost 30%, 40% and 60% if the sample size increases to T = 2000, 4000 and T = 8000,

respectively.

5 Empirical illustration

In this Section we illustrate the merits of the independence based structural MGARCH

approach by analysing a four dimensional system of the US and three Latin American

stock market returns. In this context one might regard US stock markets as important

issuers of information. Hence, profiles of volatility transmission that are implied by the

often used symmetric covariance matrix decomposition might be considered critical for
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such a system. Next, we briefly introduce the data and provide QML estimation results

from the BEKK(1,1,1) model. After QML estimation least dependent MGARCH innov-

ations are extracted by means of the moment based estimator described in Section 2.2,

and we discuss implications of the estimated structural model ({Dt}Tt=1) and an ad-hoc

counterpart of symmetric covariance decompositions ({H1/2
t }Tt=1).

5.1 Data

We study data of daily nominal local-currency stock market indices ranging from January

1992 to November 2007 and taken from Diebold and Yilmaz (2009). The considered

system comprises weekly real returns from the US market (r1t), and three Latin American

stock markets namely Argentina (r2t), Brazil (r3t) and Chile (r4t). Following Diebold and

Yilmaz (2009) weekly returns are changes in log prices, Friday-to-Friday (or Thursday

when Friday is not available) subsequently converted from nominal to real terms by means

of consumer price indices from the IMF’s International Financial Statistics.15 The sample

size is T = 829. We consider time invariant conditional return expectations, µt = µ, and

subject centered real returns to QML MGARCH estimation.16 The analysed real return

series are displayed in Figure 2.

15Diebold and Yilmaz (2009) take the data from Datastream and Global Financial Data. We use already
processed data provided along with corresponding RATS code on https://estima.com/procedures/

dieboldyilmaz_ej2009.zip. For a more detailed description of the data transformations see Diebold
and Yilmaz (2009).

16Average log returns are 0.11E-02 (US), -0.21E-03 (Argentina), 0.23E-02 (Brazil) and 0.11E-02 (Chile).
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5.2 QML estimation and rotation

QML estimates θ̂ (with t-ratios in parentheses) for the BEKK(1,1,1) model are docu-

mented in Appendix B.17 As also indicated by suitable Wald type tests,18 the empirical

model differs significantly from the diagonal BEKK model, such that cross equation (i.e.

cross market) effects are important to describe conditional (co)variance dynamics. Fig-

ure 3 shows the MGARCH assessment of conditional standard deviations of the analysed

vector returns. The multivariate variance assessment captures suitably clustering patterns

of return variation and highlights both common and market specific phases of excess stock

market risks.

Minimizing squared deviations of third and fourth order cross moments of structural

shocks from theoretical counterparts obtains estimated structural MGARCH matrices as

Dt = H
1/2
t Rδ̂, (38)

where

Rδ̂ =


0.863 −0.134 −0.324 −0.364

0.348 0.805 0.466 0.113

0.142 −0.508 0.823 −0.210

0.338 −0.274 0.002 0.900

 .

Comparing the moment statistics in (10) obtained from a symmetric decomposition (δ =

0, Rδ = IN) and the model after rotation is supportive for the asymmetric structural

specification. Samples of estimated orthogonal shocks {H−1/2t et}Tt=1 and {Rδ̂H
−1/2
t et}Tt=1

17To estimate the four dimensional BEKK model we use a modified version of the module ’arch mg.src’
that is comprised in JMulTi (Lütkepohl and Krätzig 2005, http://www.jmulti.de/). The modifications
consist mainly in extending the number of alternative initializations of the iterative estimation procedure,
and the selection of initial values from preestimates of bivariate submodels. The estimated parameters
are checked to correspond to a maximum of the log-likelihood function. Given that the multivariate
GARCH innovations ξt are not multivariate Gaussian distributed, the QML covariance matrix is more
reliable for diagnosing parameter significance than corresponding ML quantities.

18Subjecting all off-diagonal parameters of the BEKK matrices A and B to a joint significance test
obtains a QML χ2-statistic of 121.74 which is significant at conventional levels according to an asymptotic
χ2(24)-distribution.
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obtain test statistics of λδ=0 = 126.6 and λδ̂ = 39.73, respectively. While the former is

clearly significant at any conventional level, the latter obtains an associated p-value of 0.76

from a supposed χ2-distribution with 47 degrees of freedom. Moreover, the data based λδ̂

statistic obtains a p-value of 0.802 when subjecting the search for infimum statistics to

resampling with 1000 replications. Hence, estimated structural shocks {Rδ̂H
−1/2
t et}Tt=1 can

be considered independent with conventional significance. To unravel if the statistically

identified MGARCH model is economically reasonable, we next illustrate model implied

patterns of volatility transmission and reception among US and Latin American stock

markets.

5.3 Volatility transmission

Time varying elements of estimated covariance decompositions are displayed in Figure 4.

To underpin the potential merits of the structural model, single panels of Figure 4 jointly

display respective elements of Ĥ
1/2
t and D̂t = Ĥ

1/2
t Rδ̂. For the interpretation of the

estimation results it is important to notice that the US market is ordered first within

the dynamic system. By construction, volatility transmission and reception patterns

retrieved from H
1/2
t are symmetric. Along the diagonal panels of Figure 4 we see how the

MGARCH models quantify the effects of (structural) shocks materialising at their ‘own’

market. Confirming a-priori intuition, the two alternative model specifications almost

agree in their assessment of US market ‘own’ effects.19

A-priori one would expect the Latin American markets to be more affected by volatility

transmission from the US than vice versa. The estimated structural model {D̂t} implies

that all Latin American markets are more affected by innovations in the US markets

than under model symmetry ({Ĥ1/2
t }). Likewise, the US market is less affected by Latin

19Any candidate decomposition of Ht is ‘unique’ up to the sign and ordering of its columns. We have
ordered the columns of decomposition matrices such that in each column the respective diagonal element
is the largest. By implication of this ordering, structural shocks have strongest impacts on the market of
their origin (Lütkepohl and Netšunajev, 2014).
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American markets under the estimated structural model.

As a reflection of relative market capitalization, among the Latin American markets

the Brazilian market is least affected by the US and shows almost a coincidence of ‘own’

effects under symmetric and asymmetric volatility transmission. Specifically, in the more

flexible asymmetric model and in comparison with implications of model symmetry, the

Brazilian market becomes a more active transmitter of volatility towards the Argentinian

market which is the smallest in terms of market capitalization within the considered

system.20

In the time dimension, volatility spillovers operating from the US to the Latin Amer-

ican markets are of particular strength during the period 10/03/1997 to 09/03/1999,

which roughly corresponds to the great economic recession in Argentina (1998-2002), and

to the depreciation of the Brazilian real in 1999 (Samba effect).

6 Modelling and controlling portfolio risks

To further highlight that the merits of the identified model go beyond the minimization of

the statistical criterion in (10), we discuss in this section if the distinction of alternative

MGARCH model structures (i.e. contrasting H
1/2
t vs. Dt) is useful for an active manage-

ment of portfolio risks. Henceforth, we refer to the alternative structural models as the

symmetric model (H
1/2
t ) and the identified or asymmetric model (Dt). For both types of

risk analysis described in Section 3 we choose a variety of five alternative nominal cov-

erage levels, namely α = 0.010, 0.025, 0.050, 0.100, 0.250 (first order risk modelling) and

γ = 0.750, 0.900, 0.950, 0.975, 0.990 (kurtosis risk modelling).21 Next we describe briefly

20Worldbank data indicate for 2000 a market capitalization of US firms of 15108 trillion USD. In relative
terms the market capitalization of Argentina, Brazil and Chile has been, respectively, 0.3%, 1.5% and
0.4%. Hence, relative to the Brazilian market, Argentinian and Chilean market capitalizations have been
20.25% and 26.7%. Source: https://data.worldbank.org/indicator/CM.MKT.LCAP.CD?locations=AR-
BR-CL-US, retrieved on Dec, 20th, 2017.

21For assessing first order risks one typically considers small nominal levels (α = 0.01, 0.025, say).
Since our interest is also in the scope of alternative model specifications to capture the conditional return
distribution more generally, we consider larger nominal levels (α = 0.10, 0.25) which correspond to more
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alternative portfolios and the simulation based determination of portfolio returns and

their distributional properties. Subsequently, we provide empirical outcomes for altern-

ative risk assessments within the four dimensional system of stock markets introduced in

Section 5. For both types of risk modelling the analysis comprises (i) a graphical illus-

tration of risks based on the equal weight portfolio, (ii) a listing of applied loss functions,

and (iii) a comparative discussion of empirical loss statistics.

6.1 Portfolios and the simulation of return distributions

We consider (i) six stylized portfolios, denoted P1 to P6 and (ii) 1000 portfolios with

random structure of positive weights (wi > 0,
∑4

i=1wi = 1).22 Throughout, the simulation

of portfolio returns and their higher order properties is conditional on the processes of

estimated covariances Ht and their alternative decompositions {Dt} and {H1/2
t }. Our

aim is to model the specific distribution of portfolio returns τt|Ft−1 which we can suitably

contrast with empirical outcomes. Accordingly, performance statistics (loss measures) are

obtained from averaging over samples of empirical portfolio returns {τt}Tt=1, whereas the

conditional return features are determined at each time instance t over the number of

generated bootstrap samples.

Noticing that our interest is in the behaviour of (powers of) returns in the tail of

the respective distributions and in modelling conditional probabilities or interquartile

ranges of portfolio returns, all simulations rely on B = 106 bootstrap samples. Bootstrap

frequent risky states.
22The six stylized portfolios are the equal weight portfolio (wi = 1/4, P1), minimum variance portfolios

(P2), and portfolios where one market enters with weight wi = 0.5 and the remaining markets are equally
weighted (w1 = 0.5, P3; w2 = 0.5, P4; w3 = 0.5, P5; w4 = 0.5, P6). Time varying weight vectors of the
minimum variance portfolios are determined as

wt = H−1t 1/c,

where c = 1′H−1t 1 and 1 is a four dimensional vector of ones. Opposite to both the remaining stylized
portfolios and simulated portfolio structures, portfolio weights of minimum variance portfolios can be
smaller than zero. Simulated portfolio weights obtain as wi = w̃i/(

∑4
i=1 w̃i), where w̃i, i = 1, . . . , 4, are

drawn from the uniform distribution.
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samples {ξ∗t }Tt=1 are drawn from estimated innovations {ξ̂t}Tt=1 originating alternatively

from the symmetric (ξ̂t = Ĥ
−1/2
t et) or the asymmetric model (ξ̂t = D̂−1t et). Assuming

cross equation independence, we compose bootstrap vectors ξ∗t by drawing its elements

ξ∗it with replacement from the marginal distributions, i.e. from {ξ̂it}Tt=1.
23 After their

generation, bootstrap vectors {ξ∗t }Tt=1 are used to obtain samples of bootstrap returns

based alternatively on the symmetric (e∗t = H
1/2
t ξ∗t ) or the asymmetric model (e∗t = Dtξ

∗
t ).

Let b, b = 1, 2, . . . , B, be an index to distinguish single bootstrap draws, where B = 106.

Then, bootstrap samples of portfolio returns read explicitly as

{{τ ∗t,b = w′e∗t,b}Tt=1}Bb=1. (39)

In the following we omit the replication index b for notational convenience. It is im-

portant, however, to keep in mind that bootstrap portfolio returns are dependent on the

distinction between the symmetric and asymmetric MGARCH model. In each time in-

stance, the samples in (39) are used to determine risk statistics that have been introduced

in Section 3. In particular, we determine VaR, ES, KaR, the interquartile ranges for con-

ditional exceedance statistics (see (25) and (36) in Section 3), and model the probability

that shortfall returns are less than the negative expected shortfall.

6.2 Model performance in first order risk analysis

6.2.1 Loss functions

Let I{} denote an indicator function. To rank alternative model specifications we consider

the following loss functions that apply to portfolio returns falling short of the conditional

VaR (i.e. τt < −VaR•α,t):

23Noticing that the symmetric model is not developed under an assumption of cross equation independ-
ence one may expect some mismatch of theoretical and simulated moments when sampling conditional

on {H1/2
t }Tt=1.
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1. Empirical coverage of conditional VaR estimates

L1 =
1

T

T∑
t=1

I {τt < −VaR•α(τt|Ft−1)}

2. Mean excess shortfall24

L2 =
1

T

T∑
t=1

(|τt| − VaR•α(τt|Ft−1))I {τt < −VaR•α(τt|Ft−1)}

3. Empirical coverage of the simulated interquartile ranges

L3 =
1

T

T∑
t=1

I
{
τt ∈

[
ES•α(τt|Ft−1),ES

•
α(τt|Ft−1)

]}

4. Assessing the probability that shortfall returns are less than the ES•t

L4 =
1

T

T∑
t=1

∣∣Prob•t [τt < −ES•α(τt|Ft−1)]− I {τt < −ES•α(τt|Ft−1)}
∣∣

While the first loss functions is common for VaR assessments, L2 provides an empirical

counterpart of EES as defined in (24) and is, except for the adjustment by means of

VaR•α(τt|Ft−1, in full analogy to common assessments of ES statistics. Providing concep-

tually distinct loss statistics, the interquartile coverage L3 and the probability assessment

L4 have not yet been considered in the related literature. Both, however, are particularly

informative for a risk model’s scope to describe distributional properties of unfavourable

states of portfolio performance. By construction, empirical outcomes for L3 are the more

favourable the closer these estimates are to a nominal coverage of 50%. The fourth loss

function consists of comparing the absolute distance between model implied probabilities

24The informative content of mean (excess) shortfall statistics might suffer from single outlying return
observations. Unreported results determined for robust median shortfall statistics are qualitatively very
similar to those documented for L2.
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and binary empirical outcomes. Hence, risk monitoring is the more effective the smaller

is L4.

6.2.2 Time varying first order risks for the equal weight portfolio

Figure 5 displays empirical equal weight portfolio returns (first line) joint with VaR estim-

ates at levels α = 0.025 (second line) and α = 0.01 (third line). Corresponding estimates

of expected excess shortfall (EES) are shown in the fourth (α = 0.025) and fifth panel

(α = 0.01) of Figure 5. Eyeball inspection of Figure 5 reveals that all dynamic risk assess-

ments cope suitably with variation clusters which can be seen for the process of portfolio

returns. Concerning the VaR estimates, both the symmetric and the asymmetric MG-

ARCH model issue very similar risk estimates at the nominal level α = 0.025 and slightly

distinct statistics for α = 0.01. For both levels the VaRs obtained from the asymmet-

ric model are somewhat more conservative, i.e. larger in absolute value. As it becomes

apparent from the comparison of model implied EES statistics, the symmetric and the

asymmetric MGARCH specification differ in particular with respect to the assignment

of probabilities to tail events of (very) small portfolio returns. The EES statistics issued

from the asymmetric model are throughout more conservative, i.e., larger in absolute

value.

6.2.3 Empirical loss statistics

Core summary statistics for modelling equal weight portfolio risk are documented in the

two leftmost columns of Table 2. In terms of the loss statistics L1 (coverage) and L2 (mean

excess shortfall) and taking a joint perspective over all considered nominal coverage levels,

the performance of both alternative MGARCH variants is similar. For 4 out of 5 nominal

coverage levels, however, the asymmetric model obtains more favourable outcomes for L3

and L4. For instance, in case of the nominal level of α = 0.01 (α = 0.025) the empirical

coverage of interquartile ranges for shortfall returns (L3) are 0.125 and 0.40 (0.682 and
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0.476) for the symmetric and asymmetric model, respectively.

Summarizing the results for six stylized portfolios (see the left hand side panel of

Table 3), we find that the asymmetric model improves accuracy of risk assessments with

empirical VaR levels coming closer to their nominal counterparts if the nominal level is

large (i.e. α ≥ 0.1) such that the number of critical events increases.

The coverage of interquartile ranges of shortfall returns (L3) or their probabilities of

being less than the expected shortfall (L4) provides strongest support for the asymmetric

model. Nine out of ten respective average loss statistics documented in Table 3 are in

favour of the asymmetric model. For instance, with nominal level of α = 0.01 and over

six portfolios the total counts of shortfall returns are 49 and 34 for the symmetric and

the asymmetric model, respectively. Out of these, 13 and 19 shortfall returns are covered

by the respective interquartile ranges obtaining empirical coverage frequencies of 26.7%

and 55.8%. While the latter cannot be distinguished statistically from the nominal 50%

coverage, the former violates this level with 5% significance. On average and conditional

on the six stylized portfolios, the empirical coverage of interquartile ranges determined by

means of the asymmetric model is closer to the nominal 50% coverage for each choice of

α except for α = 0.05. In this case we see a slight ‘lead’ of using the symmetric model.

As documented in the lower panel of Table 3, summary statistics for 1000 portfolios

with randomized weight structure largely confirm average results documented for the

six stylized portfolios. Modelling probabilities of observing a return below the expected

shortfall (L4) obtains uniformly smaller average approximation errors when the analysis

conditions on the asymmetric model. In particular for small nominal coverage levels

α = 0.01, 0.025 the empirical coverage of interquartile ranges for shortfall returns is more

accurate for diagnostics developed from the asymmetric model.
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6.3 Model performance in kurtosis risk analysis

6.3.1 Loss functions

To rank alternative model specifications in kurtosis risk assessment we consider two loss

functions that apply to time instances when variations of portfolio risks exceed their

simulated thresholds (i.e. m̃2
t > KaR•γ,t):

1. Empirical frequency of excess variations of portfolio risks (M1)

M1 =
1

T

T∑
t=1

I
{
m̃2
t > KaR•γ(m̃

2
t |Ft−1)

}

2. Coverage of such events offered by the simulated interquartile ranges (M2).

M2 =
1

T

T∑
t=1

I
{
m̃2
t ∈

[
EKS•γ(m̃

2
t |Ft−1),EKS

•
γ(m̃

2
t |Ft−1)

]}

6.4 Time varying variations of portfolio risks

For the case of equal weight portfolios Figure 6 shows the empirical processes of portfolio

standard deviations σt, squared deviations from the conditional variance m̃2
t (see (33))

and expected (scaled) variations of portfolio risks (ṽ
(1)
t and ṽ

(0)
t , see (32)).

The empirical profile of m̃2
t exhibits a couple of strong outliers which coincide with

sizeable new information entering the conditional variance process.25 Noticing that the

likelihood of outlying observations in empirical portfolio returns increases with the kurtosis

of the return distribution, it is intuitive to observe that both displayed mean profiles ṽ
(0)
t

and ṽ
(1)
t imply time varying kurtosis levels in excess of 3. Throughout, model implied

kurtosis (minus 1!) statistics are markedly larger for the asymmetric model (ṽ
(0)
t ≈ 3.2

on average (with standard deviation of 0.07)) in comparison with statistics obtained from

25The strong dispersion of the empirical distribution of m̃2
t is also reflected in the fact that, on average,

8.08%, 6.03% and 3.25% of all observations characterizing equal weight portfolios are above thresholds
of 3, 5 and 10, respectively.
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the symmetric model (ṽ
(1)
t ≈ 2.5 (0.06)). Seeing large and frequent outlying observations

for m̃2
t , we may expect from the kurtosis differential that the asymmetric model has some

lead in managing tail events.

6.4.1 Results for stylized portfolios

Complementing the graphical displays in Figure 6, Table 4 summarizes the performance of

alternative approaches to quantify kurtosis risk of equal weight portfolio returns. Except

for the least and most conservative nominal levels, the empirical frequencies of excessive

statistics m̃2
t (M1) are throughout closer to the nominal counterparts when conditioning

the analysis on the asymmetric model. The symmetric model provides risk thresholds

which are more conservative in comparison with the asymmetric model. Using the sim-

ulated interquartile ranges for conditional interval ‘prediction’ (M2), we find that the

quantities determined by means of the asymmetric model are more trustworthy for sev-

eral nominal levels γ. In particular, for the most conservative nominal level (γ = 0.99)

we have that both model variants yield five violations of the respective quantile. None of

these violations is covered by the interquartile range determined under model symmetry,

while the asymmetric specification obtains intervals capturing 3 out of 5 critical events.

Core results discussed for the equal weight portfolio also hold for the remaining stylized

portfolios. Summary loss statistics for all stylized portfolios are displayed in the left

hand side panel of Table 5. With a few exceptions, the realized mean excesses over risk

thresholds are smaller for the asymmetric model. Empirical frequencies of kurtosis risks in

excess of the specified thresholds are closer to the nominal counterparts for the asymmetric

models. Moreover, the coverage of the interquartile range of simulated excessive risks

is generally closer to the nominal 50% coverage for the asymmetric specification. While

extreme events characterized by setting γ = 0.99 are rare for a given portfolio, aggregating

the number of respective threshold violations over all six portfolios obtains that empirical

statistics m̃2
t exceed the thresholds implied by the asymmetric and symmetric model in
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35 and 36 cases, respectively. From these instances of quite strong surprises to risk (in

total) 48.6% and 33.3% are covered by the model specific interquartile ranges. While the

former statistic is in line with the nominal coverage, the latter differs from its nominal

reference with 5% significance.

6.4.2 Results for randomized portfolio compositions

Modelling results for kurtosis risk analysis applied to 1000 portfolios with randomized

weight structures are shown in the right hand side panel of Table 5. In terms of threshold

exceedances (M1) both MGARCH variants perform somehow conservative, however, for

nominal levels γ = 0.75, 0.90, 0.95, 0.975 the empirical frequencies of excess risks are closer

to their nominal counterpart for the asymmetric model. Noticing the huge number of

simulated cases (T = 829 times (1 − γ̂) times 1000 simulated portfolios) performance

differentials between the two model alternatives are in excess of two times the respective

standard error for the nominal levels γ = 0.75, 0.90, 0.95 and γ = 0.975. At levels of

γ = 0.975 and γ = 0.990 interquartile ranges of excessive risks derived from the symmetric

model cover their empirical counterparts with frequencies of 38% and 31%, respectively.

Using the asymmetric model for this purpose obtains interquartile ranges with improved

precision, covering respective events with frequencies of 42.6% and 55.8%, respectively.

7 Conclusions

Being widely used in empirical practice for various aspects of portfolio monitoring and

management, multivariate GARCH (MGARCH) models often lack an interpretation in

a structural sense beyond a-priori considerations. Building upon recent advances in the

data based identification of structural VARs, we exploit the uniqueness of independent

non-Gaussian innovations in MGARCH processes to determine covariance decompositions

in a data based manner.
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We show that the structural model is asymptotically well identified if the structural

analysis follows consistent QML estimation. We provide simulation based evidence point-

ing at consistency of the proposed identification scheme and sensitivity to stronger devi-

ations from the unidentified conditionally Gaussian MGARCH model.

Our empirical analysis provides structural insights into volatility transmission and re-

ception characterizing a four dimensional system of US and Latin American stock markets

(Argentina, Brazil, Chile). The devised structural model obtains volatility transmission

patterns which are better justified in economic terms in comparison with corresponding

profiles retrieved from a symmetric ad-hoc covariance decomposition. Moreover, the iden-

tified structural model turns out preferable when it comes to an active management of

first order (conditional VaR, expected shortfall) and higher order (conditional kurtosis)

risk patterns inherent in portfolio returns.

Throughout, the analysis in this work relies on the supposition of parametric stabil-

ity of the MGARCH model specification. While stability of reduced form parameters

might be tested with conventional QML methods, the detection of changing time profiles

of volatility transmission (conditional on estimated covariances) appears as a promising

direction for future research. In this respect, the moment based diagnostic suggested in

this work might provide an interesting starting point for sensitivity analysis by means of

recursive or adaptive modelling techniques (Foster and Nelson, 1996; Härdle et al., 2003;

Golosnoy et al., 2012; Ibragimov and Müller, 2010).
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Nakatani, T. and T. Teräsvirta (2009): “Testing for volatility interactions in the

Constant Conditional Correlation GARCH model,” Econometrics Journal, 12, 147–163.

Rigobon, R. (2003): “Identification through heteroskedasticity,” The Review of Eco-

nomics and Statistics, 85, pp. 777–792.

Romer, C. D. and D. H. Romer (2010): “The macroeconomic effects of tax changes:

Estimates based on a new measure of fiscal shocks,” The American Economic Review,

100, 763–801.

47



Sims, C. A. (1980): “Macroeconomics and reality,” Econometrica, 48, pp. 1–48.

Stelzer, R. (2008): “On the Relation between the Vec and BEKK Multivariate GARCH

Models,” Econometric Theory, 24, 1131–1136.

Uhlig, H. (2005): “What are the effects of monetary policy on output? Results from an

agnostic identification procedure,” Journal of Monetary Economics, 52, 381–419.

van der Weide, R. (2002): “GO-GARCH: A multivariate generalized orthogonal

GARCH model,” Journal of Applied Econometrics, 17, 549–564.

Weber, E. (2010): “Structural Conditional Correlation,” Journal of Financial Econo-

metrics, 8, 392–407.

White, H. (1984): Asymptotic theory for econometricians, Economic Theory, Econo-

metrics and Mathematical Economics Series, Academic Press.
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