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Sharper Upper Bounds for Unbalanced Uniquely
Decodable Code Pairs

Per Austrin, Petteri Kaski, Mikko Koivisto, and Jesper Nederlof

Abstract—Two sets of 0–1 vectors of fixed length form a
uniquely decodeable code pair if their Cartesian product is of
the same size as their sumset, where the addition is pointwise
over integers. For the size of the sumset of such a pair, van
Tilborg has given an upper bound in the general case. Urbanke
and Li, and later Ordentlich and Shayevitz, have given better
bounds in the unbalanced case, that is, when either of the two
sets is sufficiently large. Improvements to the latter bounds are
presented.

Index Terms—Additive combinatorics, binary adder channel,
isoperimetric inequality, uniquely decodeable code pair, zero-
error capacity.

I. INTRODUCTION

ACANONICAL problem in multi-user communication
theory is how to coordinate unambiguous communication

through a multiple access channel, such that several indepen-
dent senders can simultaneously send as much information as
possible to a single receiver (see, e.g., the book by Cover and
Thomas [1, Chapter 15]); this could for example occur when
several satellites need to send their data to a single terminal.

Unfortunately, despite vast research in the last decades,
even in some of the simplest models the zero-error capacity
of such communication channels remains far from clear. An
extensively investigated and fundamental example is the two-
user binary adder channel (BAC). The zero-error capacity of
the BAC is equal to the maximum size of the product of the
code sizes of a uniquely decodable code pair (UDCP): a pair
A,B ⊆ {0, 1}n such that |A + B| = |A| · |B| where A + B
denotes the sumset {a+ b : a ∈ A, b ∈ B}, and a+ b denotes
addition over Zn.
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Most previous research on UDCPs has focused on con-
structions. A basic observation is that, if A1, B1 ⊆ 2[n] is a
UDCP and A2, B2 ⊆ 2[n] is a UDCP, then A1×A2, B1×B2

is also a UDCP; here and henceforth, we freely interchange
vectors with sets in the natural way. Therefore, for finding
asymptotically good constructions for every n, it is sufficient
to focus on finite n. Letting α and β denote respectively
log2(|A|)/n and log2(|B|)/n, a natural and popular goal is to
find a UDCP maximizing α+β. The most direct construction is
to let A be all strings where the first βn coordinates are fixed to
0, and B be all strings which use only the first βn coordinates.
This yields any pair (α, β) with α+β = 1. The simplest non-
trivial construction, A = {00, 01, 11}, B = {10, 01} giving
α + β = (log2(3) + 1)/2 ≈ 1.29248, was presented by
Kasami and Lin [2]. This was the best until 1985. Then
it was improved to 1.30366 by van den Braak and van
Tilborg [3], and after subsequent improvements by Ahlswede
and Balakirsky [4] (1.30369), van den Braak [5] (1.30565),
Urbanke and Li [6] (1.30999), the current record is 1.31781
by Mattas and Östergård [7]. Several of these results were
obtain by computer searches for finite n. More relevant to our
study is the important work by Kasami et al. [8], which shows
that for sufficiently large n there exist (somewhat surprisingly)
UDCPs with α ≥ 1− o(1) and β ≥ 0.25.

Considering upper bounds, the rather direct α+β ≤ 1.5 has
been independently found by at least Liao [9], Ahlswede [10],
Lindström [11] and van Tilborg [12]. Leaving a gap to the
lower bound, 1.5 is still the best upper bound known on α+β
in general. However, Urbanke and Li [6] managed to break
through the 1.5 bound in the unbalanced case: assuming α ≥
1 − ε for a sufficiently small value of ε, they showed that
β ≤ 0.4921. On a high level, their approach works as follows:
a result of van Tilborg [12] (see Lemma 1 below) shows there
are not many pairs (a, b) ∈ A×B of small Hamming distance,
and if A and B are sufficiently large, then the number of such
pairs is bounded from below by an isoperimetric inequality for
which the authors use Harper’s theorem. Later, this result was
improved to β ≤ 0.4798 by Ordentlich and Shayevitz [13].
Their proof idea is somewhat more involved: the authors give
a procedure that, given a UDCP A,B ⊆ {0, 1}n, constructs
another UDCP C,D ∈ {0, 1}(1−γ)n of comparable size for
some γ > 0. This was achieved by proving the existence of
a subset L ⊆ [n] with |L| = γn such that for some c ∈
{0, 1, 2}|L|, the projection (a + b)L equals c for many pairs
a, b. The existence of such a subset is proved using a variant
of the Sauer–Perles–Shelah lemma. Unfortunately, both the
referred bounds [6], [13] converge fast to (1− ε)+β ≤ 1.5 as
ε increases (see Figure 1 of Ordentlich and Shayevitz [13]).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TIT.2017.2688378

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON INFORMATION THEORY 2

The present authors [14] gave a novel and direct connection
between UDCPs and additive number theory. Motivated by
algorithm design for the Subset Sum problem, they observed
the following: if w ∈ Zn, t ∈ Z and A ⊆ {0, 1}n such that
a · w = a′ · w implies a = a′ for every a, a′ ∈ A, and B =
{b ∈ {0, 1}n : w · b = t}, then A,B is a UDCP. Here ‘·’
denotes the inner product.

The channel capacity application has also inspired studies of
several variants of the basic setting of this paper, for example,
with both sets being the same [15], [16], with noise [17], or
with more than two users [10], [18], [19].

Contributions

Motivated by the lack of progress on the large gap between
the current lower and upper bounds for UDCPs, we propose
to restrict attention to the case |A| ≥ 2(1−ε)n for small values
of ε: before we can understand the exact tradeoff between
α and β, we first need to understand this tradeoff for large
values of α. A natural question is whether α ≥ 1 − o(1)
implies β ≤ 0.25 + o(1); in other words, is the construction
of Kasami et al. [8] optimal, or could it be improved? While
the present work does not settle this question, we narrow the
gap by pushing the upper bound closer to 0.25. Our main
result is the following:

Theorem 1 (Main): Suppose A,B ⊆ {0, 1}n is a UDCP
with |A| ≥ 2(1−ε)n and |B| = 2βn. Then β ≤ 0.4228 +

√
ε.

Our proof combines ideas from both previous upper bounds
[6], [13] with new ideas. We will present our proof by first
providing a “warm-up” bound of β ≤ 0.4777 + O(

√
ε)

(Theorem 2). To establish this bound, we study the joint
probability Pr[a ∈ A, b ∈ B] for two correlated random
vectors a, b ∈ {0, 1}n. We bound this probability from above
and below using, respectively, van Tilborg’s lemma (Lemma 1)
and an isoperimetric inequality due to Mossel et al. [20]. This
approach is similar to that of Urbanke and Li [6], but improves
their bound for small values of ε.

The intuition behind our main bound (and also, in part,
the bounds of Urbanke and Li [6] and Ordentlich and
Shayevitz [13]) is as follows. The above strategy does not
give a good bound if A and B are antipodal Hamming balls:
the studied probability is very small in this case, so the upper
bound is not really stringent. However, intuitively such a pair
cannot form a large UDCP since the pairwise sums will be
concentrated on the sum of the two centers of the Hamming
balls. Our novel approach is that we use the encoding argument
from van Tilborg’s lemma to show that if A is large enough,
then B needs to be sufficiently spread out over the hypercube.
Specifically, we show that there exists a set L ⊆ [n] of size
close to n/2 such that L has an almost maximum number of
projections on B. Subsequently, we use this set L to define
a refined distribution of the vectors x and y. In the refined
distribution, x, y are only correlated in the coordinates from L,
and for applying the isoperimetric inequality the large number
of projections is then essential.

II. NOTATION AND PRELIMINARIES

A. Notation

Given reals a, b with b ≥ 0, we write a± b for the interval
[a − b, a + b]. If n is an integer, we denote by [n] the set
{1, . . . , n}. For a vector x ∈ Rn, we let x−1(z) ⊆ [n] denote
the set of coordinates i such that xi = z. For binary vectors,
we apply the usual set operations in the obvious way, by
interpreting a vector x ∈ {0, 1}n as the set x−1(1) ⊆ [n].
For example, x \ y is a vector whose ith entry is 1 if xi = 1
and yi = 0, and 0 otherwise; x4 y denotes the symmetric
difference (or alternatively, the componentwise XOR) of x and
y; and |x| denotes the Hamming weight of x. Given a vector
x ∈ {0, 1}n and a subset P ⊆ [n], we let xP denote the
projection of x on P : xP ∈ {0, 1}P such that xP agrees with
x on all coordinates in P . For a family X ⊆ {0, 1}n we also
write XP for the family {xP : x ∈ X}.

We write o(1) for all terms that tend to zero when n tends
to infinity. Such terms can be safely ignored for our purposes
as no other variables will depend on n and upper bounds for
UDCPs of large dimension imply upper bounds for UDCPs of
finite dimension due to the construction mention in Section I.

B. Entropy

For a real x ∈ [0, 1] we denote by h(x) the binary entropy
of x, that is, h(x) = −x log2(x) − (1 − x) log2(1 − x). It is
well known that h(x) is monotone increasing for x ∈ [0, 1/2],
monotone decreasing for x ∈ [1/2, 1], and that

(
n
t

)
≤ 2h(t/n)n.

The following inequality can be shown by standard calculus:
Observation 1: For all x ∈ (0, 1/2], h

(
1
2 + x

)
< 1− 2

ln 2x
2.

This observation implies another useful bound:
Observation 2: Let ε > 0 be a constant. Let X ⊆ {0, 1}n

such that |X| ≥ 2(1−ε)n, z ∈ {0, 1}n, and γ ≥
√

ln(2)ε/2.
Then |{x ∈ X : |x4 z| ∈

(
1
2 ± γ

)
n}| ≥ |X|/2 for all

sufficiently large n.
To see this, note that

|{x ∈ X : |x4 z| 6∈
(
1
2 ± γ

)
n}| ≤ 2

⌊(
1
2−γ

)
n
⌋∑

k=0

(
n

k

)
≤ n2h

(
1
2−γ

)
n
.

Since h
(
1
2 − γ

)
< 1 − 2

ln 2γ
2 = 1 − ε, there is some ε′ > 0

(depending only on ε) such that h
(
1
2 − γ

)
= 1− ε− ε′. Thus

n2
h
(
1
2−γ

)
n
= n2−ε

′n2(1−ε)n = n2−ε
′n|X|

which, for all sufficiently large n, is smaller than |X|/2.

C. UDCPs

We will use the following well known property of UDCPs
that directly follows from noting that whenever a−b = a′−b′
we have a+ b′ = a′ + b:

Observation 3: If A,B is a UDCP, then |A−B| = |A| · |B|.
We will also use the following bound. Since the proof is

elegant and highly instructive for understanding our approach,
we provide a (known) proof.
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Lemma 1 (van Tilborg [12]): Let A,B ⊆ {0, 1}n be a
UDCP and let Wd = |{(a, b) ∈ A × B : |a4 b| = d}|.
Then |Wd| ≤

(
n
d

)
2min{d,n−d}.

Proof: Let us bound the number of possibilities for a+ b
and b− a for pairs (a, b) ∈Wd. Note that

a4 b = (a+ b)−1(1) = [n] \ (b− a)−1(0) .

Thus, since |a4 b| = d, fixing a4 b (in one of the
(
n
d

)
possi-

ble ways) leaves either 2n−d possible choices for (a+b)−1(0)
and (a + b)−1(2), or 2d possible choices for (b − a)−1(−1)
and (b− a)−1(1). By the UDCP property, either of these two
completely determines (a, b) ∈Wd, and the bound follows.

D. ρ-Correlation and Isoperimetry

For x ∈ {0, 1}U , we write y ∼ρ x for a ρ-correlated copy
of x, i.e., a vector where, independently for each e ∈ U ,

ye =

{
xe, with probability 1+ρ

2 ,

1− xe, with probability 1−ρ
2 .

If x is not fixed, we use y ∼ρ x to denote the joint distribution
over (x, y) where x is a uniformly random vector and y is a
ρ-correlated copy of x. Our bounds will rely on the reverse
small-set expansion theorem, an isoperimetric inequality of the
noisy Boolean hypercube [20]:

Lemma 2 (Reverse Small-Set Expansion [20, Th. 3.4]1): For
all ρ ∈ [0, 1) the following holds. Let F,G ⊆ {0, 1}U with
|F | ≥ 2f |U |, |G| ≥ 2g|U |. Then

Pr
y∼ρx

[x ∈ F, y ∈ G] ≥ 2
−|U |

(
(1−f)+(1−g)+2ρ

√
(1−f)(1−g)

1−ρ2

)
.

III. SIMPLE UDCP BOUND USING ISOPERIMETRY

In this section we give a warm-up to our main result,
showing how a simple application of Lemma 2 suffices to
obtain improved UDCP bounds.

Theorem 2: Suppose A,B ⊆ {0, 1}n is a UDCP with
|A| ≥ 2(1−ε)n and |B| ≥ 2βn. Then β ≤ 0.4777 + ε +
0.7676

√
ε(1− β).

Proof: Let Wd = {(a, b) ∈ A × B : |a4 b| = d}. By
definition of ρ-correlation it is easy to see that

Pr
a∼ρb

[a ∈ A, b ∈ B] = 2−n
n∑
d=0

(
1 + ρ

2

)n−d(
1− ρ
2

)d
|Wd|

≤ 2−2n
n∑
d=0

(1 + ρ)n−d(1− ρ)d
(
n

d

)
2d

= 2−2n(3− ρ)n ,

where the inequality follows from Lemma 1, and the last
equality follows from the binomial theorem. On the other
hand, using Lemma 2, we have that

Pr
a∼ρb

[a ∈ A, b ∈ B] ≥ 2
−n
(
ε+(1−β)+2ρ

√
ε(1−β)

1−ρ2

)
.

1In the notation of Mossel et al. [20] where |F | ≥ e−s
2/22|U| and |G| ≥

e−t
2/22|U| we have s =

√
2 ln 2(1− f)|U | and t =

√
2 ln 2(1− g)|U |.

Combining the bounds, taking logs, and dividing by n, we see
that for any 0 ≤ ρ < 1,

−

(
ε+ 1− β + 2ρ

√
ε(1− β)

1− ρ2

)
≤ log2(3− ρ)− 2 ,

or equivalently,

β ≤ (log2(3− ρ)− 2)(1− ρ2) + 1 + ε+ 2ρ
√
ε(1− β) .

By setting ρ = 0.3838 we obtain the claimed bound.
We remark that the proof of Theorem 2 does not use the full

strength of Lemma 1. In particular, it only uses that |Wd| ≤(
n
d

)
2d. However, using the sharper bound of

(
n
d

)
2min(d,n−d)

does not yield any improvement in the exponent because for
ρ ≥ 0 the dominating terms in the exponential sum are those
where d ≤ n/2.

IV. PROOF OVERVIEW OF MAIN BOUND

The proof of our main bound follows the same blueprint as
the proof of Theorem 2, but we use a more refined version of
the noise distribution. In particular, we only apply the noise
on a subset of [n] where both A and B are sufficiently dense,
e.g. have sufficiently many projections to that subset.

Definition 1: Fix L ⊆ [n]. Given x ∈ {0, 1}n let y ∼Lρ x
denote that y ∈ {0, 1}n is the random variable distributed as
follows:

yi ∼ρ xi, if i ∈ L,
yi ∼0 xi, if i 6∈ L.

In other words, y is a ρ-correlated copy of x on the coordinates
of L, and uniformly random outside L.

We proceed to give upper and lower bounds on the quantity
Pra∼Lρ b[a ∈ A, b ∈ B]. In order for these bounds to hold, we
need a mild density condition on A with respect to the split
(L, [n] \ L). In particular, we make the following definition.

Definition 2: We say that A ⊆ {0, 1}n is ε-dense with
respect to L ⊆ [n] if |AL| ≥ 2|L|−εn−1, and for every
a ∈ A, the number of a′ ∈ A such that aL = a′L is at least
2n−|L|−εn−1.

As the following simple claim shows, our set A is guaran-
teed to have a dense subset.

Claim 1: Let A ⊆ {0, 1}n such that |A| ≥ 2(1−ε)n. Then for
any L ⊆ [n], there is an A′ ⊆ A that is ε-dense with respect
to L.

Proof: For a, a′ ∈ A note that the condition aL = a′L
is an equivalence relation partitioning A into at most 2|L|

equivalence classes, each of size at most 2n−|L|. It follows that
there must be at least |A|/2n−|L|+1 ≥ 2|L|−εn−1 equivalence
classes of size at least |A|/2|L|+1 = 2n−|L|−εn−1 and we can
take A′ to be the union of these.

With these definitions in place, we are ready to state
the precise upper and lower bounds on the refined noise
probability.
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Lemma 3: Fix L ⊆ [n] and let λ = |L|/n. Then for any
0 ≤ ρ ≤ 1 and UDCP (A,B) such that A is ε-dense with
respect to L, we have

log2 Pra∼Lρ b[a ∈ A, b ∈ B]

n
≤
√

ln(2)ε
2 − 1

2

+ λ
(
log2(3− ρ)− 3

2

)
+ o(1) .

The proof appears in Section VI.
Lemma 4: Fix L ⊆ [n] and let λ = |L|/n. Then for any

0 ≤ ρ < 1 and UDCP (A,B) such that A is ε-dense with
respect to L and |BL| = 2πn for some 0 ≤ π ≤ λ, we have

log2 Pra∼Lρ b[a ∈ A, b ∈ B]

n
≥
π − λ− ε− 2ρ

√
ε(λ− π)

1− ρ2
+ λ− 1− ε− o(1) .

The proof appears in Section VII.
The quality of the lower bound depends on the size of |BL|

and in particular we would like to find a split L such that
|BL| ≈ |B|. At the same time we would like |L| to be as
small as possible. The following lemma shows that we can
take |L| ≈ n/2 and still have |BL| ≈ |B|.

Lemma 5: For sufficiently large n and UDCPs (A,B) such
that |A| ≥ 2(1−ε)n, |B| = 2βn, there exists L ⊆ [n] such that
|L|
n ∈

1
2 ±

√
ln(2)ε/2 and |BL| ≥ 2(β−ε)n−1.

Proof: Let P ⊆ A × B consist of all pairs (a, b) such
that |a4 b| ∈

(
1
2 ±

√
ln(2)ε/2

)
n. We have that

|P | =
∑
b∈B

∣∣{a ∈ A : |a4 b| ∈
(
1
2 ±

√
ln(2)ε/2

)
n
}∣∣

≥
∑
b∈B

|A|/2 = |A| · |B|/2 ,

where the inequality is by Observation 2. Similarly as in the
proof of Lemma 1, consider the encoding

η : (a, b) 7→ (a4 b, b \ a) .

By Observation 3, |A − B| = |A| · |B|, and since a − b can
be computed from η(a, b), it follows that η is injective and
|η(P )| = |P |. We now bound |η(P )| from above. To this end,
note that b\a ⊆ a4 b, and so b\a ∈ Ba4 b. (More precisely,
b \ a projected to a4 b is in Ba4 b; we only need that b \ a
can be described by a single element of Ba4 b.) Therefore,
by summing over the possible values of X = a4 b we have
that

|η(P )| ≤
∑
X⊆[n]

|X|∈
(
1
2±
√

ln(2)ε/2
)
n

|BX | .

Thus there must be an X ⊆ [n] with |X| ∈
(
1
2±
√
ln(2)ε/2

)
n

and |BX |≥|η(P )|/2n= |P |/2n ≥ |A|·|B|/2n+1≥2(β−ε)n−1,
as we claimed.

V. COMBINING THE BOUNDS: PROOF OF THEOREM 1

We prove our main theorem by combining Lemmata 3, 4,
and 5. To this end, let A,B ⊆ {0, 1}n be a UDCP with |A| ≥
2(1−ε)n and |B| = 2βn. We will show that β ≤ 0.4228 +

√
ε.

Without loss of generality, we may assume that n is suffi-
ciently large for all estimates to hold, since a lower bound for

large n also holds for small n: if (A1, B1) and (A2, B2) are
UDCPs, then so is (A1 ×A2, B1 ×B2).

By Lemma 5, there exists a partition L,R of [n] such that
λ = |L|/n ∈ 1

2 ±
√
ln(2)ε/2 and 2πn := |BL| ≥ 2(β−ε)n−1.

By Claim 1, there is an A′ ⊆ A such that A is ε-dense with
respect to L.

Applying Lemmata 3 and 4 to the UDCP (A′, B) we then
obtain that

π − λ− ε− 2ρ
√
ε(λ− π)

1− ρ2
+ λ− 1− ε− o(1)

≤
log2 Pra∼Lρ b[a ∈ A

′, b ∈ B]

n

≤
√

ln(2)ε
2 − 1

2 + λ ·
(
log2(3− ρ)− 3

2

)
+ o(1) .

Simplifying, we get

π ≤
(√

ln(2)ε
2 + 1

2 + ε+ λ ·
(
log2(3− ρ)− 5

2

))
(1− ρ2)

+ 2ρ
√
ε(λ− π) + ε+ λ+ o(1) . (1)

We now set ρ = 0.654. Plugging in this value and simplifying,
(1) becomes

π ≤ 0.2861421 + 0.2733156λ+ 1.573ε

+ 0.33691
√
ε+ 1.308

√
ε(λ− π) + o(1) .

Using λ ≤ 1
2 +

√
ln(2)ε/2 and simplifying further, we get

π < 0.4228 + 1.573ε+ o(1)

+

(
0.4979 + 1.308

√
1
2 +

√
ln(2)ε

2 − π

)
√
ε . (2)

Since β ≤ π + ε + o(1), we would like to show that π <
0.4228 +

√
ε − ε. Assume for the sake of contradiction that

π ≥ 0.4228 +
√
ε− ε. Plugging this into (2) gives

0 < 2.573ε+ o(1) +

(
0.4979− 1

+ 1.308

√
0.0772 +

√
ln(2)ε

2 −
√
ε− ε

)√
ε . (3)

For 0 ≤ ε ≤ 0.01, it can verified using a computer that
the right-hand side of (3) is non-positive, yielding the desired
contradiction (for sufficiently large n), and proving that β <
0.4228+

√
ε. For ε > 0.01, we have β < 0.5+ε < 0.4228+

√
ε

(the first inequality being the classic |B| ≤ 21.5n/|A| upper
bound). This completes the proof.

VI. UPPER BOUND: PROOF OF LEMMA 3

In this section, we prove the upper bound on the refined
noise probability stated in Lemma 3. Fix L ⊆ [n] and let
λ = |L|/n. Furthermore, let 0 ≤ ρ ≤ 1 and let (A,B) be a
UDCP such that |A| is ε-dense with respect to L.

Let R = [n] \L be the coordinates not in L. Let Wd be the
set of pairs aLaR ∈ A, bLbR ∈ B such that |aL4 bL| = d.

Claim 2: For sufficiently large n, we have that

|Wd| ≤
(
|L|
d

)
2d21.5|R|2n

√
ln(2)ε/2+1 .
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Proof: Let ε′ =
√
(ε ln 2)/(2(1− λ)), and let W ′d ⊆Wd

be all pairs from Wd such that |aR4 bR||R| ∈ 1
2 ± ε

′. Similarly
as in the proof of Lemma 5, we see that

|W ′d| =
∑

bLbR∈B
aL∈AL

|aL4 bL|=d

∣∣∣∣{aR ∈ {0, 1}R :
aLaR∈A ,

|aR4 bR|∈
(
1
2±ε

′
)
|R|

}∣∣∣∣
≥

∑
bLbR∈B
aL∈AL

|aL4 bL|=d

1
2 |{aR ∈ {0, 1}

R : aLaR ∈ A}| = 1
2 |Wd| .

The inequality follows from Observation 2 combined with the
ε-dense property:

|{aR ∈ {0, 1}R : aLaR ∈ A}| ≥ 2|R|−εn−1 = 2(1−
ε

1−λ )|R|−1 .

We proceed to bound |W ′d| from above. Similarly as in the
proof of Lemma 1, define an encoding η on elements (a, b)
of W ′d:

η : (aLaR, bLbR) 7→ (aL4 bL, aL \ bL, aR4 bR, aR \ bR) .

Since the image η(a, b) directly gives a − b and |A − B| =
|A||B| by Observation 3, we have that η is injective and thus

|W ′d| = |η(W ′d)| ≤
(
|L|
d

)
2d

∑
i∈(0.5±ε′)|R|

(
|R|
i

)
2i ,

where the inequality follows by bounding the number of
possibilities in every coordinate of η(·). The claim is then
implied for sufficiently large n from the easy observation that∑
i∈(0.5±ε′)|R|

(
|R|
i

)
2i ≤ 2(1.5+ε

′)|R| ≤ 21.5|R|+n
√

ln(2)ε/2 .

By the refined definition of ∼Lρ we have that

Pr
a∼Lρ b

[a ∈ A, b ∈ B]

= 2−n
|L|∑
d=0

(1 + ρ

2

)|L|−d(1− ρ
2

)d
2−|R||Wd| . (4)

To see this, note that |Wd| counts exactly the pairs a ∈ A, b ∈
B satisfying |aL4 bL| = d, and that the probability that such
a pair is picked can be computed as the probability that a is
picked (which is 2−n) times the probability that b is picked
given that a is picked. The probability that bR is picked is
simply 2−|R| since it is picked uniformly at random, and the
probability that bL is picked is

(
1+ρ
2

)|L|−d( 1−ρ
2

)d
, similarly

as in the proof of Theorem 2.
Using Claim 2, we bound (4) from above by

Pr
a∼Lρ b

[a ∈ A, b ∈ B]

≤ 2−2n

|L|∑
d=0

(1+ρ)|L|−d(1−ρ)d
(
|L|
d

)
2d21.5|R|+n

√
ln(2)ε/2+1

= 2−2n+1.5|R|+n
√

ln(2)ε/2+1

|L|∑
d=0

(1+ρ)|L|−d(2−2ρ)d
(
|L|
d

)

= 2

(√
ln(2)ε/2−2

)
n+1.5|R|+1

(3− ρ)|L| ,

where the last equality follows from the binomial theorem.
Using |R| = n− |L|, taking logs, and dividing by n, we get
log2 Pra∼Lρ b[a ∈ A, b ∈ B]

n
≤
√

ln(2)ε
2 − 1

2

+ λ
(
log2(3− ρ)− 3

2

)
+ 1/n.

VII. LOWER BOUND: PROOF OF LEMMA 4
In this section, we prove the lower bound on the refined

noise probability stated in Lemma 4. Fix L ⊆ [n] and let λ =
|L|/n. Furthermore, let 0 ≤ ρ < 1, and let (A,B) be a UDCP
such that A is ε-dense with respect to L and |BL| = 2πn for
some 0 ≤ π ≤ λ.

Due to the chain rule

Pr
a∼Lρ b

[a ∈ A, b ∈ B] = Pr
a∼Lρ b

[a ∈ A, b ∈ B | aL ∈ AL, bL ∈ BL]

× Pr
aL∼ρbL

[aL ∈ AL, bL ∈ BL] . (5)

We proceed by giving lower bounds for the two factors in the
product (5). Let R = [n] \ L. For the first factor, note that
if bL ∈ BL, there is at least one bR such that bLbR ∈ B by
the definition of BL, and such a bR is picked with probability
2−|R| since it is uniformly distributed over 2R. Similarly, if
aL ∈ AL, there are at least 2|R|−εn/2 sets aR ⊆ R such that
aLaR ∈ A′ by the definition of A′, and so such an aR is
picked with probability at least 2−εn/2. In summary,

Pr
a∼Lρ b

[a ∈ A, b ∈ B | aL ∈ AL, bL ∈ BL] ≥ 2−|R|−εn/2

= 2(λ−1−ε−o(1))n .

For the second term, apply Theorem 2 with U = L and

F = AL , f =
|L| − εn− 1

|L|
= 1− ε

λ
− o(1) ,

G = BL , g =
π

λ
,

which gives that

log2 Pr
aL∼ρbL

[aL ∈ AL, bL ∈ BL]

≥ −|L|
(
(1− π

λ
) + ε

λ
+ o(1) + 2ρ

√
(1− π

λ
)( ε
λ
+ o(1))

1− ρ2

)

= n

(
π − λ− ε− 2ρ

√
ελ− επ

1− ρ2
− o(1)

)
.

The statement now follows by multiplying the two lower
bounds into a lower bound for the product (5).

VIII. CONCLUSION

We presented a new upper bound for UDCPs, considerably
strengthening previous bounds. We obtained the bound by
combining an isoperimetric inequality, which was not used be-
fore in the UDCP literature, with an extension of van Tilborg’s
bound that works well if the set families are clustered.

Two outstanding open questions that are of main interest
remain. In our setting (α ≥ 1 − ε), there is still a big gap
between the best construction (achieving β ≥ 1/4) and our
new upper bound of 0.4228 +

√
ε. Narrowing this gap from

either direction would be very interesting. In the general case,
a major unresolved problem is whether the classic upper bound
of |A| · |B| ≤ 21.5n is tight.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TIT.2017.2688378

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON INFORMATION THEORY 6

REFERENCES

[1] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed.
Hoboken, NJ, USA: Wiley-Interscience, 2006.

[2] T. Kasami and S. Lin, “Coding for a multiple-access channel,” IEEE
Trans. Inf. Theory, vol. 22, no. 2, pp. 129–137, 1976.

[3] P. van den Braak and H. van Tilborg, “A family of good uniquely
decodable code pairs for the two-access binary adder channel,” IEEE
Trans. Inf. Theory, vol. 31, no. 1, pp. 3–9, 1985.

[4] R. Ahlswede and V. Balakirsky, “Construction of uniquely decodable
codes for the two-user binary adder channel,” IEEE Trans. Inf. Theory,
vol. 45, no. 1, pp. 326–330, 1999.

[5] P. van den Braak, “Constructions and an existence result of uniquely de-
codable codepairs for the two-access binary adder channel,” Department
of Mathematica and Computing Science, Michigan State University,
Eindhoven University of Technology, Tech. Rep. 83-WSK-01, 1984.

[6] R. Urbanke and Q. Li, “The zero-error capacity region of the 2-user
synchronous BAC is strictly smaller than its Shannon capacity region,”
in Proc. IEEE Inf. Theory Workshop (ITW), Jun. 1998, p. 61.
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