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Abstract 

 

Primary testicular lymphoma is a rare and aggressive lymphoid malignancy, most often 

representing diffuse large B-cell lymphoma histologically. Tumor-associated macrophages and 

tumor-infiltrating lymphocytes have been associated with survival in diffuse large B-cell 

lymphoma, but their prognostic impact in primary testicular lymphoma is unknown. Here, we 

aimed to identify macrophages, their immunophenotypes and association with lymphocytes, and 

translate the findings into survival of patients with primary testicular lymphoma. We collected 

clinical data and tumor tissue from 74 primary testicular lymphoma patients, and used multiplex 

immunohistochemistry and digital image analysis to examine macrophage markers (CD68, CD163, 

and c-Maf), T-cell markers (CD3, CD4, and CD8), B-cell marker (CD20), and three checkpoint 

molecules (PD-L1, PD-L2, and PD-1). We demonstrate that a large proportion of macrophages 

(median 41%, range 0.08-99%) and lymphoma cells (median 34%, range 0.1-100%) express PD-L1. 

The quantity of PD-L1
+
CD68

+
 macrophages correlates positively with the amount of PD-1

+
 

lymphocytes, and a high proportion of either PD-L1
+
CD68

+
 macrophages or PD-1

+
CD4

+ 
and PD-

1
+
CD8

+
 T-cells translates into favorable survival. In contrast, the number of PD-L1

+ 
lymphoma cells 

or PD-L1
-
 macrophages do not associate with outcome. In multivariate analyses with IPI, PD-

L1
+
CD68

+
 macrophage and PD-1

+
 lymphocyte contents remain as independent prognostic factors 

for survival. In conclusion, high PD-L1
+
CD68

+
 macrophage and PD-1

+
 lymphocyte contents predict 

favorable survival in patients with primary testicular lymphoma. The findings implicate that the 

tumor microenvironment and PD-1 – PD-L1 pathway have a significant role in regulating treatment 

outcome.  They also bring new insights to the targeted therapy of primary testicular lymphoma. 
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Introduction 

Primary testicular lymphoma (PTL) is a rare and aggressive lymphoid malignancy affecting mainly 

elderly men.  The biology of PTL is beginning to emerge,
1-7

 and the outcome has improved with the 

addition of anthracycline-based chemotherapy, central nervous system (CNS) targeted therapy 

and irradiation of the contralateral testis.
8-10

 Majority of PTLs represent diffuse large B-cell 

lymphoma (DLBCL) displaying more often non-germinal center B-cell (GCB) than GCB-like 

signatures.
11

 Somatic mutations in NF-kappa-B pathway genes, such as MYD88 and CD79B, as well 

as rearrangements of programmed cell death ligand (PD-L) -1 and -2 genes, have been shown to 

be enriched in PTL.
2, 4

 In addition, two stromal signatures associated with outcome have been 

described in primary, mainly nodal DLBCL patients treated with immunochemotherapy, forming a 

backbone for our study.
12

 

 

We have recently demonstrated that tumor-associated macrophages (TAMs) have a favorable 

prognostic impact on survival in DLBCL patients after immunochemotherapy,
13

 whereas other 

groups have investigated the role of programmed cell death-1 (PD-1) pathway in DLBCL.
14-18

 While 

PD-1 protein is expressed predominantly by activated tumor-infiltrating lymphocytes (TILs), its 

ligands (PD-L1 and PD-L2) have been shown to be expressed both by the tumor cells and the 

tumor microenvironment.
15, 19-21

  An unexpected feature has been that PD-L1 expression by the 

tumor-infiltrating myeloid and other immune cells can be more prevalent than PD-L1 expression 

by the tumor cells.
15, 19, 20

 Recently, it was also shown that the expression of PD-L1 not only by the 

tumor cells but also by the host cells plays a critical role in mediating the immunosuppressive 

function of the PD-1 pathway.
21

 

 



4 
 

In DLBCL, expression of PD-L1 by lymphoma cells has been associated with poor outcome.
14

 

Interestingly, 9p24.1/PD-L1/PD-L2 copy number alterations and additional translocations of these 

loci are frequent in PTLs (>50%), leading to increased expression of the PD-Ls,
4
 and possibly also to 

immune escape. Whether the expression of PD-1 and PD-Ls predict survival in PTL, and in which 

compartments, is unknown. 

 

With the aim of resolving the relative expression of checkpoint molecules by the tumor and host 

immune cells in patients with PTL, we examined B-cells, TAMs, TILs, and checkpoint molecules by 

using multiplex immunohistochemistry (mIHC),
22

 allowing simultaneous detection of CD68
+
 TAMs, 

CD163
+
 or c-Maf

+
 M2-polarized TAMs, CD4

+
 and CD8

+
 T-cells, CD20

+
 B-cells, and the checkpoint 

molecules PD-L1, PD-L2 and PD-1. The findings were correlated with clinical parameters and 

survival. 

 

Methods 

Patients 

We identified 74 PTL patients with DLBCL histology diagnosed between the years 1987 and 2013 

from the pathology databases of the University Hospitals in Southern Finland. Histological 

diagnosis was established from surgical pretreatment tumor tissue according to current criteria of 

the World Health Organization (WHO) classification.
23

 Majority of the patients were treated with 

anthracycline based chemotherapy. About half of the patients received rituximab as a part of their 

treatment.  Contralateral testis was treated with surgical excision or irradiation for a minority of 

the patients. Patients were divided into three equal tertiles, based on the content of different 

immune cell subtypes (high, intermediate, low). The patient characteristics are described in more 
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detail in Table 1. The protocol and sampling were approved by the Institutional Review Boards, 

Ethics Committees and Finnish National Supervisory Authority for Welfare and Health. 

 

Multiplex immunohistochemistry (mIHC) 

Formalin-fixed, paraffin-embedded (FFPE) primary tumor tissues were collected from the local 

biobanks and reviewed to match the latest WHO classification.
23

 Selection of the cores on the 

tissue microarray (TMA) was based on the evaluation of a hematopathologist. TMA was 

constructed and the sections (3.5 µm) stained with 4-plex primary antibody panels (PD-L1, PD-L2, 

CD68, c-MAF; CD3, CD4, CD8, PD-1; CD20, CD163, PD1, PD-L1; Supplementary Table 1), followed 

by fluorescently labelled secondary antibodies and DAPI counterstain (nuclear stain). A more 

detailed description of the stainings is provided in the Supplementary Methods. Fluorescent 

images were acquired with AxioImager.Z2 (Zeiss, Germany). Machine-learning platform 

CellProfiler
24

 2.1.2 was used for cell segmentation, intensity measurements (upper quartile 

intensity) and immune cell classification. Different cell types were quantified as proportion to all 

cells (e.g. PD-L1⁺CD68⁺ implying the number of PD-L1⁺CD68⁺ TAMs from all cells in a TMA spot) or 

as a proportion to a specific cell subtype (e.g. PD-L1⁺CD68⁺/CD68⁺ implying the number of PD-

L1⁺CD68⁺ cells from all CD68⁺ TAMs). Spots with less than 5000 cells were excluded from the 

analysis, and data from duplicate spots from the same patient were merged.  

 

Gene expression analysis 

CD68, CD163, MAF, MS4A1 (CD20), CD274 (PD-L1), PDCD1LG2 (PD-L2), and PDCD1 (PD-1) mRNA 

levels were measured from 60 PTL samples using digital gene expression analysis with NanoString 

nCounter (Nanostring Technologies, Seattle, WA).
25
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Survival definitions and statistical analyses 

Overall survival (OS) was defined as time between diagnosis and death from any cause, disease 

specific survival (DSS) as time between diagnosis and lymphoma related death, and progression 

free survival (PFS) as time between diagnosis and lymphoma progression or death from any cause. 

Statistical analyses were performed with IBM SPSS v.24.0 (IBM, Armonk, NY, USA). Differences in 

the frequency of prognostic factors between three patient groups were analyzed by Kruskal-Wallis 

test. Correlations between gene expression values and cell counts as well as between different 

immune cell subpopulations were tested with Spearman's rank correlation.  

 

Survival rates were estimated using the Kaplan–Meier method. Univariate and multivariate 

analyses were performed according to the Cox proportional hazards regression model. The 

potential bias due to duration of follow-up was assessed by Schoenfeld residual.  Probability 

values below 0.05 were considered statistically significant. All comparisons and all comparative 

tests were two-tailed. 

 

Results 

Patient characteristics 

Patient and treatment characteristics of the study cohort are shown in Table 1. Majority of the 

patients represented non-GCB phenotype, low stage, and had low/intermediate International 

Prognostic Index (IPI). Altogether 34 deaths, 24 relapses and 24 lymphoma-associated deaths 

occurred during the median follow-up of 67 months (range from 6.7 to 120 months). Five-year OS, 

DSS and PFS rates were 56%, 68%, and 53%, respectively.  

 



7 
 

Association of CD68, PD-L1 and PD-L2 encoding gene expression with survival 

First, we determined the gene expression of the macrophage markers (CD68, CD163 and MAF), 

checkpoint molecules CD274 (PD-L1), PDCD1LG2 (PD-L2) and PDCD1 (PD-1), and the B-cell marker 

MS4A1 (CD20). CD68 expression correlated positively with CD274 (rs=0.654, p<0.001), PDCD1LG2 

(rs=0.636, p<0.001), CD163 (rs=0.602, p<0.001), and MAF (rs=0.425, p=0.001) levels, and to a lesser 

extent with PDCD1 (rs=0.300, p=0.020), whereas no correlation between CD68 and MS4A1 

expression was found. Furthermore, the expression of CD68, CD274 and PDCD1LG2 genes 

analyzed as continuous variables, but not PDCD1, CD163 or MAF, translated into favorable survival 

(Table 2).  

 

High PD-L1
+
 TAM content predicts favorable survival 

To explore the expression of the checkpoint molecules in the tumor cells and in the 

microenvironment in more detail, we analyzed the cell immunophenotypes with mIHC from a PTL 

TMA using four primary antibodies and DAPI (nuclear stain) simultaneously (Figure 1A-C; see also 

Table 1 for the TMA cohort used and Supplementary Table 1 for the antibody panels). The marker 

CD68 was used to identify all TAMs. Subpopulations of TAMs were defined by the presence and 

absence of CD163, c-MAF, PD-L1 and PD-L2 (Figure 1A-B, D). In addition, CD20 marker was used to 

identify lymphoma cells (Figure 1B). For detecting TILs, a panel with CD3, CD4, CD8, and PD1 

antibodies was used (Figure 1C).  

 

As a proof of concept, we found high agreement with the gene expression and the mIHC data 

when analyzing the quantities of CD68
+
 macrophages (rs=0.637, p<0.001), lymphoma cells 

(rs=0.704, p<0.001) and PD-L1
+
 cells (rs=0.710, p<0.001) (Supplementary Figure 1). The proportions 

of the different cell types in the tumor tissue are shown in Figure 1D. The most prominent non-
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malignant cell type was CD3
+
 T-lymphocyte (median 45%, range 5-97%).  TAM and PD-L1

+ 
cell 

contents showed a great variation between the samples (CD68
+
 TAMs, median 23%, range 3-81%; 

PD-L1
+
 cells, median 15%, range 0.01-100%), and a large proportion of lymphoma cells (median 

34%, range 0.1-100%) and TAMs (median 41%, range 0.1-99%) expressed PD-L1 . Due to a low 

proportion of PD-L2⁺ cells (0.06%) (data not shown), PD-L2 was excluded from further analyses.  

 

We further observed that high number of PD-L1
+
 cells, high proportion of PD-L1⁺CD68⁺ 

macrophages from all cells, as well as high proportion of PD-L1
+
CD68

+
 macrophages from all CD68⁺ 

macrophages (PD-L1
+
CD68

+
/CD68

+
), associated with favorable OS when analyzed as continuous 

variables (Table 3). In order to use an objective cutoff we stratified the patients into three equal 

subgroups based on tertiles of the PD-L1⁺CD68⁺ macrophage counts (high, intermediate, low). The 

5-year OS and DSS rates were clearly worse for the patients with low number of PD-L1⁺CD68⁺ 

macrophages (≤4.75% corresponding to the lowest tertile of the patients) in comparison to the 

patients with intermediate or high numbers (>4.75%, 5-y OS, 39% vs 66%, p=0.014; 5-y DSS, 53% 

vs 76%, p=0.056; Figure 2A).  When PD-L1⁺CD68⁺ macrophage count was included in a multivariate 

analysis with IPI, both factors had independent prognostic value for OS (Table 4). In contrast, 

neither PD-L1
+
 lymphoma cells, PD-L1

+
CD68⁻ cells nor any other TAM phenotypes were 

significantly associated with survival (Table 3). When comparing the three PD-L1⁺CD68⁺ TAM 

subgroups (high, intermediate and low), no significant differences in age, molecular subtype, IPI 

score or treatments were observed (Table 1). However, high PD-L1⁺CD68⁺ macrophage count was 

associated with limited disease stage. When the patients treated in the pre-rituximab era were 

removed from the analyses, a trend towards worse survival was maintained for the patients with 

low number of PD-L1⁺CD68⁺ macrophages (≤5.97%, the lowest tertile; OS, p=0.093, 
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Supplementary Figure 2A). These results highlight the clinical relevance and possible functional 

connection of PD-L1+ TAMs for PTL progression.   

 

Association of PD1
+
 TILs with survival 

Given the prognostic value of PD-L1
+
 TAMs, we then determined their association with T-cells by 

mIHC. The marker CD3 was used to identify all T cells. Subpopulations of T cells were then defined 

by the presence and absence of CD4, CD8 and PD1 (Figure 1C-D).  As with CD4
+
 T-helper and CD8

+
 

cytotoxic cells in general, PD-1
+
CD3

+
CD4

+
 and PD-1

+
CD3

+
CD8

+
 T-cell counts correlated with the PD-

L1
+
 TAM counts (Supplementary Table 2). Furthermore, as overall with T-cells

25
 high and 

intermediate number of PD-1
+
 CD4

+
 and CD8

+
 T-cells associated with superior survival  

(PD-1
+
CD3

+
CD4

+
 cells ≤5.7% corresponding to the lowest tertile vs other patients; 5-y OS, 34% vs 

68%, p=0.002; 5-y DSS, 43% vs 81%, p<0.001; PD-1
+
CD3

+
CD8

+
 cells, ≤7.2% corresponding to the 

lowest tertile vs other patients; 5-y OS, 39% vs 65%, p=0.008; 5-y DSS, 43% vs 81%, p<0.001; 

Figures 2B-C). In multivariate analyses with IPI, both PD-1
+
CD3

+
CD4

+
 and PD-1

+
CD3

+
CD8

+
 T-cell 

counts maintained an independent association with OS (Table 4). When the patients treated in the 

pre-rituximab era were removed from the analyses, low number of PD-1
+
 T-cells maintained their 

adverse impact on survival (PD1
+
CD3

+
CD4

+
 cells, ≤8.50%, the lowest tertile; OS, p=0.001 and 

PD1
+
CD3

+
CD8

+
 cells, ≤11.02%, the lowest tertile; OS, p=0.034; Supplementary Figure 2B-C).  

 

Discussion 

In this study, we applied mIHC and digital image analysis to a TMA comprised of PTL tissue from 74 

patients. We show that PTL microenvironment contains a heterogeneous TAM population. Among 

these, PD-L1
+
 TAMs were the predominant subpopulation, and high infiltration of PD-L1

+
CD68

+ 

TAMs associated with favorable survival.  Additionally, PD-1
+ 

CD4
+
 and CD8

+
 TIL contents 
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correlated with PD-L1
+
 TAM infiltration and survival, and both PD-L1

+
 TAMs and PD-1

+
 TILs 

emerged as independent indicators of survival for the patients with PTL. In contrast, neither PD-

L1
+
 lymphoma cells, other PD-L1

+
 cells than TAMs nor other TAM phenotypes correlated with 

survival. The findings highlight the specific roles of TAMs, TILs and PD1-PD-L1 axis in regulating 

survival and therapy resistance in PTL.  

 

mIHC is a novel technology enabling multi-parametric readout from a single tissue section. In 

our study, the simultaneous use of multiple markers is important in many ways. First, while PD-

L1 was found to be expressed both in TAMs and B-cells including lymphoma cells, the 

prognostic impact of PD-L1 positivity was restricted to TAMs. Thus, the use of just one marker 

would not be able to detect the survival association. Second, the spatial relationships between 

TILs, TAMs and lymphoma cells are retained in our experimental strategy, allowing for a more 

precise appreciation of their biological interactions. Third, since mIHC was performed on all 

evaluable PTL tissue areas on the TMA, thereby providing an overall snapshot of the PTL 

microenvironment, we can avoid a bias of earlier observations focusing only on hot spot areas 

of immune cell counts using single marker immunohistochemistry. However, it should be noted 

that while the overall infiltration of PD-L1
+
 TAMs and PD-1

+
 TILs had a significant impact on 

survival, their functional statuses remain to be explored. Combining our panel with other 

multiplex panels for immunoregulatory molecules, such as FoxP3, LAG-3 or IDO-1 and IDO-2, may 

be useful in the evaluation of response to immunotherapy. 

 

As described in a recent review article by Xu-Monette et al. the PD-L1 expression in the tumor 

microenvironment has not been previously well defined in B-cell lymphomas, and association with 

survival has not been demonstrated.
18

 PD-1 is a protein, which is classically upregulated upon 
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activation of T-lymphocytes. Interaction between PD-1 and PD-L1 was previously thought to 

induce immune tolerance by leading T-lymphocytes to apoptosis.
26

 Further studies have, however, 

revealed that the expression of PD-L1 on tumor cells can lead to immune escape, to T-cell 

exhaustion and a state of non-responsiveness, further enabling immune escape of the tumor 

cells.
27-29

 Moreover, in addition to binding to PD-1, PD-L1 and PD-L2 can also bind to CD80/B7-1 

(PD-L1)
30, 31

 and RGMb (PD-L2),
32

 indicating that the PD-1 – PD-L1 pathway is much more complex 

than previously anticipated.
18

 

 

In addition to PD-L1, macrophages express PD-1.
33, 34

 Recently, Gordon and coworkers showed 

that PD-1 expression by TAMs inhibits phagocytosis and tumor immunity.
35

 In addition, they 

demonstrated that blockade of PD-1 – PD-L1 interaction increases macrophage phagocytosis, 

reduces tumor growth and lengthens survival in mouse models of colon cancer, suggesting PD-1 – 

PD-L1 pathway having a significant role in TAM function and tumor survival. 

 

Based on our findings, we suggest that the PD-1 - PD-L1 signaling between TAMs and TILs has 

clinical relevance in PTL. As PD-1 engagement on T-cells to its ligands has been linked to decreased 

anti-tumor immunity, and early experience on PD-1 blockade in PTL has shown promising results,
36

 

the association of high PD-L1
+
 TAM and PD-1

+
 T-cell count with favorable outcome in response to 

immunochemotherapy seems paradoxical. Yet, the interaction of PD-L1
+
 TAMs and PD-1

+
 T-cells 

might modify the tumor microenvironment in PTL, or otherwise promote an anti-tumor immune 

response following immunochemotherapy. 

 

In conclusion, we argue that high PD-L1⁺ TAM and PD-1
+
 T-cell counts correlate with each other 

and with favorable outcome in patients with PTL. Higher PD-L1
+
CD68

+
 TAM scores seem to protect 
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the patients from progression and death, and identify a group of patients with favorable 

prognosis. Interestingly, apart from PD-L1⁺CD68
+
 TAMs, no association was found between other 

PD-L1⁺ cells or PD-L1⁻ TAMs and survival. Together, the data demonstrate that the PD-1 - PD-L1 

axis in PTL affects the survival of patients with PTL.   
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Table 1. Patient and treatment characteristics. 

 

All n (%) PDL1+ PD-L1+ PD-L1+ 

CD68+ CD68+  CD68+ p 
low intermed. high 

Number of patients 74 25 (34) 24 (32) 25 (34) 

Median age (range) 70 (36-92) 68 (38-86) 73 (37-92) 66 (46-90) 

Age 

 ≤60, years 17 (23) 6 (24) 4 (17) 7 (28) 0.638 

 >60, years 57 (77) 19 (76) 20 (83) 18 (72) 

Molecular subgroup 

 GCBa 17 (23) 8 (32) 4 (17) 5 (20) 0.426 

 Non-GCB 56 (76) 17 (68) 20 (83) 19 (76) 

 NA 1 (1) 1 (4) 

Stage 

 I-II 47 (64) 10 (40) 16 (67) 21 (84) 0.002 

 III-IV 24 (32) 15 (60) 6 (25) 3 (12) 

 NA 3 (4) 2 (8) 1 (4) 

IPI score 

 0-2 50 (68) 13 (52) 17 (71) 20 (80) 0.065 

 3-5 20 (27) 11 (44) 5 (21) 4 (16) 

 NA 4 (5) 1 (4) 2 (8) 1 (4) 

CNS prophylaxis 36 (49) 9 (36) 11 (46) 16 (64) 0.137 

 IV prophylaxis 34 (46) 8 (32) 10 (42) 16 (64) 0.057 

 IT prophylaxis 7 (9) 2 (8) 3 (13) 2 (8) 0.856 

Contralateral testis treated 23 (31) 6 (24) 7 (29) 10 (40) 0.464 

 Irradiation 12 (16) 2 (8) 3 (13) 7 (28) 0.136 

 Surgical excision 11 (15) 4 (16) 4 (17) 3 (12) 0.884 

Anthracycline-based 

chemotherapy 60 (81) 18 (72) 21 (88) 21 (84) 0.305 

Treated with rituximab 35 (47) 9 (36) 11 (46) 15 (60) 0.237 

Relapse of contralateral testis 1 (1) 0 (0) 1 (4) 0 (0) 0.377 

CNS progression 9 (12) 4 (16) 4 (17) 1 (4) 0.312 
a

GCB, germinal center B-cell like; NA, not applicable; IPI, International prognostic Index; CNS, central nervous system; 

IV, intravenous; IT, intrathecal; p, p-value determined by Kruskal-Wallis test. 
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Table 2. Cox regression analysis at the univariate level showing association of gene expression 

levels with overall survival.  

 

Gene symbol HR
a
 95% CI p 

CD68 0.505 0.290-0.881 0.016 

CD274 0.737 0.592-0.919 0.007 

PDCD1LG2 0.688 0.505-0.936 0.017 

PDCD1 0.846 0.659-1.088 0.192 

CD163 0.914 0.636-1.313 0.627 

MAF 0.899 0.551-1.466 0.668 
a

HR, hazard ratio; CI, confidence interval. Boldface font 

indicates statistical significance (p<0.05). 
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Table 3. Cox regression analysis at the univariate level showing association of cell 

immunophenotypes with overall survival. 

 

Cell immunophenotype HR
a
 95% CI p 

PD-L1
+
 0.983 0.967-0.999 0.038 

CD20
+
 1.009 0.995-1.023 0.209 

PD-L1
+
CD20

+
 0.993 0.978-1.008 0.376 

PD-L1
+
CD68

-
 0.981 0.955-1.007 0.146 

CD68
+
 0.986 0.964-1.008 0.196 

PD-L1
+
CD68

+
 0.965 0.933-0.999 0.042 

PD-L1
+
CD68

+
/CD68

+
 0.987 0.975-0.998 0.027 

PD-L1
-
CD68

+
 1.012 0.982-1.043 0.437 

CD68
+
c-Maf

+
 0.835 0.668-1.044 0.113 

PD-L1
+
CD68

+
c-Maf

+
 0.734 0.518-1.041 0.083 

CD163
+
 0.996 0.978-1.014 0.666 

PD-L1
+
CD163

+
 0.989 0.969-1.010 0.298 

CD3
+
 0.194 0.053-0.712 0.013 

PD-1
+
CD3

+
CD4

+
 0.089 0.008-0.999 0.050 

PD-1
+
CD3

+
CD8

+
 0.042 0.003-0.537 0.015 

a

HR, hazard ratio; CI, confidence interval; PD-L1⁺CD68⁺ implies the number 

of PD-L1⁺CD68⁺ TAMs from all cells; PD-L1⁺CD68
+

/CD68⁺ implies the 

number of PD-L1⁺CD68⁺ TAMs from all CD68⁺ TAMs. Boldface font 

indicates statistical significance (p<0.05). 
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Table 4. Cox regression analysis at the multivariate level showing independent association of 

low cell immunophenotypes and IPI high (IPI 3-5) with overall survival. 
 

Cell immunophenotype HR
a
 95% CI p 

PD-L1
+
CD68

+
 2.214 1.054-4.650 0.036 

IPI 4.325 2.008-9.312 <0.001 

PD-L1
+
CD68

+
/CD68

+
 2.275 1.054-4.909 0.036 

IPI 3.608 1.643-7.923 0.001 

PD-1
+
CD3

+
CD4

+
 2.654 1.261-5.586 0.010 

IPI 4.907 2.275-10.585 <0.001 

PD-1
+
CD3

+
CD8

+
 2.259 1.075-4.748 0.031 

IPI 4.971 2.314-10.678 <0.001 
a

HR, hazard ratio; CI, confidence interval; IPI, International Prognostic Index 
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Figure legends 

 

Figure 1. Characterization of cell immunophenotypes with mIHC. A-C) Representative images 

from 4-plex mIHC stainings. Panels (low, intermediate, and high) show representative images from 

the corresponding tertiles, based on the content of different immune cell subtypes. The insets 

highlight cells with higher magnification. PD-L1=blue, PD-L2=red, CD68=white, c-Maf=green (A); 

PD-L1=blue, CD163=red, CD20=white, PD1=green (B); CD3=blue, CD8=red, CD4=white, PD1=green 

(C). Scale bar 40 µm. D) Proportions of distinct immune cell subpopulations from all cells. PD-

L1⁺CD68⁺ indicating the content of PD-L1⁺ TAMs, PD-L1⁺CD163⁺ and PD-L1⁺CD68⁺c-Maf⁺ the 

content of PD-L1⁺ M2-polarized TAMs, PD-1⁺CD3⁺CD4⁺ and PD-1⁺CD3⁺CD8⁺ the content of PD-1⁺ 

TILs, and PD-L1⁺CD20⁺ the content of PD-L1⁺ lymphoma cells. 

 

Figure 2. Association of the immune cell subtypes with survival. A-C) Cell immunophenotypes 

were determined by mIHC from 74 PTL patients. Patients were stratified into three equal 

subgroups (high, intermediate and low) based on tertiles of PD-L1⁺CD68⁺ TAM, PD-1⁺CD3⁺CD4⁺ T-

cell, and PD-1⁺CD3⁺CD8⁺ T-cell counts. Kaplan-Meier plots depict survival differences between the 

PD-L1⁺CD68⁺ (A), PD-1⁺CD3⁺CD4⁺ (B), and PD-1⁺CD3⁺CD8⁺ (C) groups. P-values were determined 

by univariate Cox regression analysis (HR, hazard ratio with 95% confidence interval). 
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Supplementary methods 

 

Multiplex Immunohistochemistry (mIHC) 

General. TMA blocks were cut in 3.5 µm sections on objective slides, which were dried overnight at 

+37°C and stored for short-term use at +4°C. All consecutive phases were performed in room 

temperature unless otherwise specified. Protein blocking and antibody incubations were performed 

in a humid chamber. Slides were washed three times with 0.1% Tween-20 (Thermo Fisher Scientific) 

diluted in 10 mM Tris-HCL buffered saline pH 7.4 (TBS) after peroxide block, antibody incubations, 

and fluorochrome reaction. The primary antibodies are listed in Supplementary Table 1. 

 

Tissue preparation. Slides were deparaffinized in xylene and rehydrated in graded ethanol series 

and H2O. Heat-induced epitope retrieval (HIER) was carried out in 10 mM Tris-HCl - 1 mM EDTA 

buffer (pH 9) in +99°C for 20 min (PT Module, Thermo Fisher Scientific, Waltham, MA). Peroxide 

activity was blocked in 0.9% H2O2 solution for 15 min, and protein block performed with 10% normal 

goat serum (TBS-NGS) for 15 min. 
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Fluorescence staining. Primary antibodies were diluted in protein blocking solution and incubated 

for 1 h 45 min. Thereafter, secondary anti-mouse or anti-rabbit horseradish peroxidase-conjugated 

(HRP) antibodies (Immunologic, Netherlands) diluted 1:1 with washing buffer were applied for 45 

min. Tyramide signal amplification (TSA) Alexa Fluor 488 (PerkinElmer, Waltham, MA) diluted in TBS 

was applied on the slides for 10 min. Primary antibodies were denaturated and enzymatic activity 

of secondary antibody HRP was quenched by repeating HIER. Thereafter, peroxide and protein block 

were repeated, followed by application of a different primary antibody, matching HRP-conjugated 

secondary antibody diluted 1:3 with washing buffer and TSA Alexa Fluor 555 (PerkinElmer). Again, 

HIER, peroxide block and protein block were repeated. Then, the slides were incubated with two 

additional primary antibodies immunized in different species overnight in +4°C. Next, AlexaFluor647 

and AlexaFluor750 fluorochrome-conjugated secondary antibodies (Thermo Fisher Scientific) 

diluted in 1:150 and DAPI (Roche) counterstain diluted 1:250 in washing buffer were applied for 45 

min. Last, we applied ProLong Gold mountant (Thermo Fisher Scientific) and a coverslip on the 

slides. 

 

Denaturation test. In order to minimize false positive signal from antibody cross-reactions during 

the mIHC procedure, we required that primary antibodies selected for mIHC must be completely 

denatured during the HIER step between staining rounds. Therefore, the denaturation properties 

of all primary antibodies were examined by performing an additional HIER step between primary 

and secondary antibody incubation. Antibodies not denaturing completely were detected with Cy5 

and Cy7 fluorescence probes, which do not require denaturation. 

Imaging. Fluorescent images were acquired with the AxioImager.Z2 (Zeiss, Germany) microscope 

equipped with Zeiss Plan-Apochromat 20x objective (NA 0.8), CoolCube1 CCD camera 

(MetaSystems, Germany), PhotoFluor LM-75 (89 North) metal-halide light source and Zeiss EPLAX 

VP232-2 power supply. DAPI, FITC, Cy3, Cy5, and Cy7 filters with compatible LED light sources were 

used and exposure times for all fluorescence channels were optimized visually for fluorescence 

imaging. Scanned images were acquired and were converted to JPEG2000 format (95% quality) for 

image analysis to reduce memory demand. 

 

Image analysis. The quality of gray-scale images of each TMA spot was first assessed and few images 

were discarded due to blurred focusing or unsuccessful image registration caused mainly by air 

bubbles in mounting media or shattered tissue, respectively. In the image analysis, DAPI-
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counterstained nuclei were segmented with adaptive Otsu thresholding, clumped objects separated 

by intensity patterns and cells segmented with nuclei contour expansion. We used the machine-

learning platform CellProfiler 2.1.2 for cell segmentation, intensity measurements (upper quartile 

intensity) and immune cell classification. We computed marker colocalization with the single-cell 

analysis software FlowJo v10 (FlowJo LLC.). The optimal gate coordinates were ensured by 

visualising matching cells with CellProfiler. 

 

Data analysis Spots with less than 5000 cells were excluded from the analysis. Different cell types 

were quantified as proportion to all cells (e.g. number of CD68⁺PD-L1⁺ TAMs to all cells in a TMA 

spot). Duplicate spots from the same patient were merged by the mean value of each cell type and 

their immunophenotype. 
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Supplementary Figures 
 
Supplementary Figure 1. 

 

Correlation between gene expression and immunohistochemistry (IHC). A-C) Correlations 
between MS4A1 (A), CD274 (B), and CD68 (C) mRNA levels with the corresponding cell counts in 
mIHC were determined by Spearman rank analysis. 
 

Supplementary Figure 2. 

 

 

Association of the immune cell subtypes with survival among the rituximab treated patients. Cell 
immunophenotypes were determined by mIHC from 35 PTL patients treated with rituximab. 
Patients were stratified into three equal subgroups (high, intermediate and low), based on tertiles 
of PD-L1⁺CD68⁺ TAM, PD-1⁺CD3⁺CD4⁺ T-cell, and PD-1⁺CD3⁺CD8⁺ T-cell counts, and the intermediate 
and high groups were merged based on the data from the whole cohort of 74 patients. Kaplan-
Meier plots depict survival differences between the PD-L1⁺CD68⁺ (A), PD-1⁺CD3⁺CD4⁺ (B), and PD-
1⁺CD3⁺CD8⁺ (C) groups. 
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Supplementary tables 

Supplementary Table 1. Antibody panels. 
 

Theme GFP Cy3 Cy5 Cy7 

T-cells PD1a CD3 CD8 CD4 

Macrophages c-MAF PD-L1 PD-L2 CD68 

B-cells and macrophages PD-1 PD-L1 CD163 CD20 
aAntibodies: PD-1 (clone PDCD1) LsBio, CD3 (clone EP449E) Abcam, CD8 (clone C8/144B) Abcam, CD4 (clone EPR6855) 
Abcam, cMAF (clone EPR16484) Abcam, PD-L1 (clone E1L3N) Cell Signaling, PD-L2 (polyclonal) Sigma, CD68 (clone KP1) 
Abcam, CD20 (clone L26) BioSB, CD163 (clone EPR14643), Abcam. 

 

 

Supplementary Table 2. Correlations of the PD-1⁺ TIL and PD-L1⁺ TAM counts. 
  

Cell immunophenotype Spearman rho p-val 

CD3+CD4+ vs. PD-L1+CD68+ 0.699 <0.001 

CD3+CD8+ vs. PD-L1+CD68+ 0.640 <0.001 

PD-1+CD3+CD4+ vs. PD-L1+CD68+ 0.496 <0.001 

PD-1+CD3+CD8+ vs. PD-L1+CD68+ 0.461 <0.001 
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