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Chemically defended animals often display conspicuous color patterns that predators

learn to associate with their unprofitability and subsequently avoid. Such animals (i.e.,

aposematic), deter predators by stimulating their visual and chemical sensory channels.

Hence, aposematism is considered to be “multimodal.” The evolution of warning signals

(and to a lesser degree their accompanying chemical defenses) is fundamentally linked

to natural selection by predators. Lately, however, increasing evidence also points to a

role of sexual selection shaping warning signal evolution. One of the species in which this

has been shown is the wood tiger moth, Arctia plantaginis, which we here put forward

as a promising model to investigate multimodality in aposematic and sexual signaling.

A. plantaginis is an aposematic diurnal moth which exhibits sexually dimorphic coloration

as well as sex-limited polymorphism in part of its range. The anti-predator function

of its coloration and, more recently, its chemical defenses (even when experimentally

decoupled from the visual signals), has been well-demonstrated. Interestingly, recent

studies have revealed differences between the two male morphs in mating success,

suggesting a role of coloration in mate choice or attraction, and providing a possible

explanation for its sexual dimorphism in coloration. Here, we: (1) review the lines of

evidence showing the role of predation pressure and sexual selection in the evolution

of multimodal aposematic signals in general, and in the wood tiger moth in particular;

(2) establish gaps in current research linking sexual selection and predation as selective

pressures on aposematic signals by reviewing a sample of the literature published in

the last 30 years; (3) highlight the need of identifying suitable systems to address

simultaneously the effect of natural and sexual selection on multimodal aposematic

signals; and (4) propose directions for future research to test how aposematic signals

can evolve under natural and sexual selection.

Keywords: warning coloration, multimodal signals, predator-prey interactions, sexual selection, chemical signals,

signal variation
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INTRODUCTION

Animals can communicate their quality to potential mates or
predators with different types of signals (Maynard Smith and
Harper, 2003). Because signals may be targeted to different
receivers, the multiple functions can sometimes lead to a conflict
between natural and sexual selection, which imposes limitations
on signal evolution. For instance, in Darwin and Fisher’s sexual
selection theories (Darwin, 1869; Fisher, 1930), some traits can
be favored by sexual selection, such as the vivid body colors
on a male guppy, Poecilia reticulata (Endler, 1988b; Figure 1A),
but the evolution of these conspicuous ornaments may be
constrained by the individual’s survival, as they are also easier
to detect by predators or parasites (Endler, 1988b; Kotiaho et al.,
1998; Zuk and Kolluru, 1998; Lindström et al., 2005). Likewise,
females of the Túngara frog, Engystomops pustulosus, prefer male
mating calls of increased complexity which, in turn, are easier
to detect and locate by bats (Ryan et al., 1982; Figure 1C); and
females of the wolf spider Hygrolycosa rubrofasciata (Figure 1D)
prefer males that drum their abdomen against the dry leaves
at higher rates (Parri et al., 1997), which can lead to increased
predation risk (Kotiaho et al., 1998). However, if different
elements of the signal are targeted to a different receiver or evoke
different responses, then they can evolve despite being the subject
of both selective factors (Endler, 1992; Figure 1). That is the case
in the dorsal and ventral markings in the wings of butterflies
of the genus Bicyclus (Oliver et al., 2009), such as B. Anynana
(Figure 1B). While the eyespots on the ventral side of their wings
deter predators (Lyytinen et al., 2004), the UV reflection of the

FIGURE 1 | Examples of organisms whose signals are under the influence of both sexual and natural selection. (A) Trinidadian guppy, Poecilia reticulata. Females

prefer signals that are also an easier target for predators; (B) Squinting Bush-brown, Bicyclus anynana. The eyespot markings on the ventral side of their wings deter

predators, while dorsal markings signal to potential mates; (C) Túngara frog, Engystomops pustulosus. Females prefer signals of higher complexity, which are also

easier to detect by predators such as bats; and (D) Wolf spider Hygrolycosa rubrofasciata. Males vibrate their abdomen against the dry leaf substrate producing a

drumming that is even audible for humans. Females prefer males with a high drumming rate, yet a high drumming rate can lead to increased predation risk. Photos:

(A) PH Olsen CC BY 3.0, Wikimedia Commons; (B) Oskar Brattström; (C) R. Taylor; (D) Sanja565658 CC BY-SA 3.0, Wikimedia Commons.

dorsal markings signal potential mates (Robertson andMonteiro,
2005).

One way to increase the efficacy of a particular signal
is to stimulate multiple sensory modalities of the receiver
simultaneously (Partan and Marler, 1999). This type of
multimodal signals are used in the aposematic displays that
defended organisms use to advertise their unprofitability (e.g.,
toxicity, unpalatability, or physical defenses such as spines) to
potential predators (Poulton, 1890; Cott, 1940; Edmunds, 1974;
Ruxton et al., 2004; Rojas et al., 2015b). Multimodal signals
are also common in sexual communication where males can
advertise their quality via multiple cues in multiple sensory
channels (Bradbury and Vehrencamp, 2011). More recently, it
has become evident that certain visual components, such as
bright color patterns, in multimodal displays may have a dual
function both as aposematic and sexual signals (Cummings
and Crothers, 2013). In contrast, much less information exists
on whether or not secondary defenses could also have a dual
function in both chemical communication to potential predators
and potential mates (Conner et al., 1981).

Here, we: (1) review the multiple lines of evidence showing
both how predation pressure has shaped the evolution of
multimodal aposematic signals, as well as the less studied role
of sexual selection in warning color evolution; (2) establish the
gaps in current studies linking sexual selection and predation
as selective pressures on the warning displays of aposematic
species, by reviewing a sample of the literature published over
the last 30 years; (3) point out the need to identify representative
model systems from different taxonomic groups where both
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the function and ecological significance of coloration and
compounds used in chemical communication are well-known, to
understand the interplay between sexual selection and selection
by predators on the different components of multimodal signals.
To this end, we use the wood tiger moth A. plantaginis as a
case study; and (4) suggest specific paths for future research
to test how aposematic signals can be used in mating contexts,
and evolve under (the interacting effects of) natural and sexual
selection.

APOSEMATISM IS INHERENTLY
MULTIMODAL

Animal displays often consist of several components (Bradbury
and Vehrencamp, 2011). When multiple components stimulate
different sensory systems in the receiver, for example the visual
and the auditory (Figure 2A), these displays are considered
multimodal (Partan and Marler, 1999; Higham and Hebets,
2013). If these multiple components, however, elicit receiver
responses in the same sensory modality, these displays are
not considered multimodal and are referred to simply as
multicomponent (Partan and Marler, 2005; Bradbury and
Vehrencamp, 2011; Higham and Hebets, 2013). For example,
a visual signal may contain several components such as color,
pattern, and size (Figure 2B), which may even provide different
information to the receiver, but in the end only stimulates one
sensory (visual) modality (Rowe, 1999).

FIGURE 2 | Illustration of the difference between (A) multimodal and (B)

multicomponent signals. (A) The strawberry poison frog, Oophaga pumilio,

has both visual (color) and acoustic (call) signals. While both are involved in

sexual selection (Maan and Cummings, 2012; Dreher and Pröhl, 2014), these

stimulate different sensory (visual and auditory) channels or modes in the

receiver. (B) The butterfly Heliconius erato has both color and pattern

components to its visual signal (Finkbeiner et al., 2014). These may (or may

not) encode different information, but stimulate the same sensory channel or

mode (vision) in the receiver. Note that we are here focusing only on the visual

signal of this butterfly for the purpose of illustrating multicomponency. H. erato

is also chemically defended and the combination of its secondary defences

and its visual signal make up their multimodal aposematic display.

Multimodal signals are thought to improve associative
learning because they provide more information per unit of time
than uni-modal displays (Partan and Marler, 2005) and, thus, the
interaction between multiple types of signals is often expected to
be more efficient than each signal on its own. However, there are
various types of multimodal signals, which differ in the type of
response they elicit in the receiver, depending on whether each
component acts independently, exerts dominance or modulation
over the other signal(s), or give rise to an entirely new response
(Partan and Marler, 1999).

With the coupling of a warning signal and a secondary
(e.g., chemical) defense, aposematic organisms are capable of
deterring predators by stimulating, for example, their visual
and olfactory/gustatory (chemical) sensory channels. Therefore,
aposematism is inherently multimodal (Rowe and Guilford,
1999; Rowe and Halpin, 2013). The most common primary
defense in warning displays is warning coloration (visual
component). To ensure its efficacy as a signal, warning
coloration is expected to be conspicuous and distinctive, and
therefore easy to learn and memorize, as all these characteristics
facilitate predator’s associative learning (Cott, 1940). In fact,
predators seem to remember the association between aposematic
signals and unprofitability for longer than when learned for
unprofitable cryptic species (Roper and Redston, 1987; Roper,
1994). Red, orange, and yellow have been suggested to be
efficient warning signals given their color constancy under varied
light environments, and their high contrast against different
backgrounds (Stevens and Ruxton, 2012; Figure 3). Likewise,
color patterns with high internal contrast, such as black and
white or black and yellow, have been proven to be learned faster
(Zylinski and Osorio, 2013).

In addition to visual signals, sounds such as the buzz of
bumblebees (Siddall and Marples, 2011) or the ultrasonic clicks
of some tiger moth species (Dunning and Kruger, 1995; Hristov
and Conner, 2005; Ratcliffe and Nydam, 2008) have shown to
protect defended prey from predators such as birds and bats,
respectively. Likewise, skunks use warning sounds and behaviors
to advertise the possession of chemical defenses, which they only
spray if absolutely necessary (Andersen et al., 1982; Lartviere
and Messier, 1996). Interestingly, although not conducted with
the purpose of studying warning displays, a study by Tuttle and
Ryan (1981) showed that the frog-eating bat, Trachops cirrhosus,
is capable of distinguishing edible from unpalatable frogs on the
basis of their mating calls (Tuttle and Ryan, 1981), hinting at a
prominent role of warning signals of different sensory modalities
in the deterrence of non-visually-oriented predators.

Among secondary defenses, the most prominent are defensive
chemicals. Examples of chemical defenses in vertebrates include
the alkaloids found in poison frogs (Saporito et al., 2012; Santos
et al., 2016), the tetrodotoxins found in some newts, pufferfish
and some harlequin toads (Mosher et al., 1964; Kim et al., 1975),
and the disulfides (among other compounds) sprayed by skunks
(Andersen et al., 1982). Among invertebrates, some common
defensive compounds are the iridoid glycosides (Lindstedt et al.,
2010; Reudler et al., 2015), cardenolides, pyrrolizidine alkaloids,
pyrazines, and cyanide compounds found in numerous insects
(Rothschild et al., 1979, 1984; Bowers, 1992), as well as the
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FIGURE 3 | Aposematism is widespread across the animal kingdom. (A) Harlequin bug, Tectocoris diophthalmus; (B) Eastern newt (eft form), Notophtalmus

viridescens; (C) Burnet moths, Family Zygaenidae; (D) Sea slug, Chomodoris annae; (E) Eastern coral snake, Micrurus fluvius; (F) Appalachian mountains millipede,

Apheloria polychroma; (G) Harlequin poison frog, Oophaga occultator; (H) ladybird, family Coccinelidae. Photos: (A) E. Burdfield-Steel; (B,D) JP Lawrence;

(C,H) B. Rojas; (E) N. Scobel; (F) P. Marek; (G) P. Palacios.

furanosesquiterpenes and diterpenes (among others) found in
nudibranch molluscs (Winters et al., 2018). These defenses may
stimulate the olfactory or gustatory channels, or both.

THE INTERPLAY BETWEEN NATURAL AND
SEXUAL SELECTION IN SHAPING
MULTIMODAL APOSEMATIC SIGNALS

Although there is no consensus about how aposematic coloration
initially evolved, it has been suggested that it may have
appeared as a co-option to some form(s) of intraspecific

communication (Figure 4). That is, for example, markings
allowing individual recognition (Figure 4B), or sexually selected
traits being modified to have a double function (to ward-
off would-be predators and either indicate status, or attract
potential mates) once the species had developed an effective
secondary defense (Mallet and Singer, 1987). Given our focus on
aposematism we will primarily discuss natural selection imposed
by predation pressure for the remainder of this review.

The evolution of warning signals via natural selection may
be coupled with sexual selection in both a stabilizing or
diverging manner, and both forces can work together on
different temporal (e.g., juvenile vs. adult life stages) or spatial
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FIGURE 4 | In some aposematic species warning signals are also used for intraspecific communication. (A) In the postman butterfly, Heliconius erato, wing color

pattern can serve a dual purpose in predator deterrence and mate attraction; (B) Some wasps can use their facial yellow-and-black markings for individual recognition

and status signaling; (C) Males of the dyeing poison frog (Dendrobates tinctorius) tend to have yellower dorsal areas, possibly to enhance protection from predators

during tadpole transport, while females with higher amounts of yellow in their frontal area are more often found in courtship; (D) In some populations of the strawberry

poison frog (Oophaga pumilio), brighter males are preferred by females and also have a higher status in agonistic encounters with other males. Photos: (A) S.

Finkbeiner; (B) E. Florin Niga; (C) B. Rojas; (D) A. Pašukonis.

(e.g., geographic) scales. Depending on the cognitive abilities
of receivers (predators and mates) signals may be perceived
differently, leading to differential selection and reaching different
balances between them (Endler, 1992). An example of both forces
acting at the same time can be observed in the strawberry poison
frog, Oophaga pumilio, where females have been shown to prefer
males with the brightest warning signal (Maan and Cummings,
2008) who, in turn, have the most noxious chemical defense
(Maan and Cummings, 2012). This type of “honest signaling” of
prey defenses may facilitate synergistic selection of both warning
and sexual signal efficiency (Maan and Cummings, 2012; see
details below) as females may benefit from mating with well-
defended males.

When these dual selection pressures work in a divergent
manner, sometimes they can cancel each other’s effect or lead
to fluctuating evolutionary responses of the warning signal
depending on the selection strength of each side over time.
For example, although under stabilizing selection by predators,
female preference has been shown to facilitate phenotypic
divergence through hybridization in harlequin poison frogs,
Oophaga histrionica (Medina et al., 2013). In Neotropical
longwing butterflies, genus Heliconius, two sister species (H.
melpomene and H. cydno) have recently diverged to mimic
different model taxa, which increases the survival benefits of
both, but their mimetic coloration could lead to a cost associated
to mate recognition in both species due to the time and energy

spent while approaching and courting females of the co-mimic
species (Jiggins et al., 2001; Estrada and Jiggins, 2008). Therefore,
the multimodal nature of animal signals is prone to the evolution
of complex biological interactions (Maynard Smith and Harper,
2003), yet these are seldom addressed simultaneously. In the
following sections, we discuss in detail how natural and sexual
selection can influence aposematic displays.

The Interactive Effect of Natural and
Sexual Selection Can Maintain Intra-and
Inter-Population Variation in Warning
Coloration
The interplay between natural and sexual selection in the
evolution of aposematic signals is particularly interesting in
species in which the variability of the signal challenges the
“uniformity” assumption of aposematism. Whilst a non-variable
signal within a population is expected in order to favor predator
avoidance learning (Endler, 1988a; Joron andMallet, 1998;Mallet
and Joron, 1999; Lindström et al., 2001; Endler andMappes, 2004;
Darst et al., 2006; Mallet, 2010; Chouteau et al., 2016), as stated
above, a variable signal–without losing its conspicuous nature-
could be associated with the relative attractiveness of some
individuals over others (Ueno et al., 1998; Maan and Cummings,
2009). For that reason, aposematic species with a high within-
population phenotypic variability are excellent models to test
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how both natural and sexual selection affect the evolution and
design of warning signals.

Among the extensive scientific literature regarding aposematic
species, only a handful of species have been studied in terms
of how warning signal diversity varies intraspecifically both
within and between populations. Whilst many studies have
expanded our knowledge on the shape and function of warning
signals, most have focused only on the emitter end (i.e., the
prey). However, to understand the complexity of warning signal
variation within and between populations, it is necessary to
determine what are the pressures that could be affecting the
survival and reproductive success in populations, and how
these warning displays act in concert to outweigh the cost of
their expression (Hebets and Papaj, 2005; Gohli and Hogstedt,
2009).

One of the species in which multiple selective factors have
been studied in relation to warning signal evolution, within and
between populations, is the strawberry poison frog, Oophaga
pumilio. Several studies have shown that the geographic variation
and polymorphism in its aposematic signals is the result of
the combined action of natural and sexual selection. Predators
avoid warningly colored plasticine models in the field (e.g.,
Saporito et al., 2007; Hegna et al., 2011), and controlled
experiments in the laboratory have shown that not only do
females prefer to mate assortatively with males of their own
morph [Summers et al., 1999; Reynolds and Fitzpatrick, 2007;
Maan and Cummings, 2008; but see Yang et al. (2016) for
a study showing that assortative mating occurs in allopatric
populations but not in sympatric ones], but also prefer overall
males with brighter coloration (Maan and Cummings, 2009).
However, calls (acoustic signals) seem to be more important than
coloration for female choice (Dreher and Pröhl, 2014). Males
hold territories that are defended from other males through
calls, and calling activity and perch height, a proxy for exposure,
are correlated with mating success (Pröhl and Hödl, 1999).
Only the most conspicuous males can afford to use the more
exposed calling sites (Rudh et al., 2011), as they are presumably
better protected from predators. More conspicuous or brighter
males are also bolder (Rudh et al., 2013) and more aggressive
(Crothers et al., 2011; Crothers and Cummings, 2015), suggesting
that aposematic signals in this species have also been co-opted
as an indicator of fighting abilities (Crothers and Cummings,
2015).

In the dyeing poison frog,Dendrobates tinctorius, an interplay
between natural and sexual selection affecting warning signals
has also been proposed, although in lesser detail. Field studies
with frog models at Nouragues Reserve (French Guiana) have
shown that the warning signals of D. tinctorius elicit few
avian predator attacks (Noonan and Comeault, 2009; Rojas
et al., 2014) and are subject, as expected, to positive frequency-
dependent selection (Comeault and Noonan, 2011). Males of
this population have a higher proportion of yellow in their
dorsal area than females, and the authors suggest that a synergy
between sexual selection (in the form of parental care) and
aposematism could select for yellower males (Rojas and Endler,
2013). Females, in contrast, seem to be favored by sexual
selection when they present a higher amount of yellow in

their frontal area, which is highly visible during courtship
interactions (Rojas, 2012). Pairs in this population show no
signs of assortative mating for color patterns, which could
help explain the high phenotypic variation observed (Rojas,
2012).

As with vertebrates, studies aiming to explain warning color
polymorphism within populations of arthropods are mainly
focused on frequency-dependent selection (Benson, 1972; Mallet
and Barton, 1989; Langham, 2004; Borer et al., 2010; Nokelainen
et al., 2014) or mating preferences (Chouteau et al., 2016). Unlike
vertebrates, however, insects have been well-studied at different
life stages in relation to aposematic signals and their interplay
with allelochemical sequestration (Marples et al., 1994; Roque-
Albelo et al., 2002), allowing the opportunity to study carry-over
effects of early life on the adult expression of warning coloration
and chemical defenses.

Multiples studies have focused on the striking warning
signal polymorphism observed in some ladybeetles (family
Coccinnelidae). For instance, Osawa and Nishida (1992) and
Awad et al. (2015) showed that polymorphism in the elytra
coloration of Harmonia axyridis is maintained either by seasonal
mating variation or assortative mating (respectively; Osawa and
Nishida, 1992; Awad et al., 2015). In Adalia bipunctata, in
contrast, the polymorphism is maintained by assortative mating
coupled with inheritance of female preference (Majerus et al.,
1982), showing negative frequency-dependent mating selection
(i.e., females prefer the rare morph; O’Donald and Majerus,
1984).

Another group in which these two selective pressures have
been widely studied is the Neotropical butterflies of the
genus Heliconius. These butterflies, which occur in Central
and Northern South America, are characterized by wings with
conspicuous markings (e.g., yellow, white, red, etc.) on a dark
background, which inform predators about the possession of
cyanide compounds that make them toxic (Nahrstedt and Davis,
1983; Zagrobelny et al., 2004; Cardoso and Gilbert, 2013). In
this genus, the evolution of distinct color patterns between
populations has been extensively explained in the context of
Müllerian mimicry, in which a warningly colored aposematic
species mimics the appearance of another one to share the
costs of predator education (Müller, 1879). Although both the
composition and spatial variation of the predator communities
selecting for this resemblance in their coloration are still
unknown (Merrill et al., 2015), these mimetic species have
become a textbook example of natural selection (Jiggins, 2017).
However, others studies have also explored how sexual selection,
via mate choice and assortative mating (Jiggins et al., 2001;
Estrada and Jiggins, 2008;Merrill Richard et al., 2014), has shaped
wing coloration. For example, in a recent study, Finkbeiner et al.
(2014) tested the relative importance of color and pattern in
predation avoidance and mate choice in Heliconius erato. The
authors found that although the right combination of local color
and pattern provided the highest deterrence and mate attraction,
color seemed to be more important than pattern, suggesting that
sexual and natural selection work in parallel to influence the
evolution of warning coloration in this species (Finkbeiner et al.,
2014).
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Interactive Effects of Natural and Sexual
Selection May Lead to Population
Divergence and Speciation
Inter-population variation in multimodal warning signals
provides an opportunity for unraveling how populations diverge
and, eventually, in some cases, how new species originate. This
can also occur through the joint effect of natural and sexual
selection on aposematic traits (Maan and Seehausen, 2011).
Population divergence through natural selection alone would
require extreme combinations of parameters (e.g., almost null
migration and strong selection for ecological specialization)
to be fulfilled because gene flow would decrease the level of
diversification (Mayr, 1963). Therefore, the effects of sexual
selection are required to promote sexual isolation (through pre-
and post-zygotic mechanisms), together with the effect of linkage
disequilibrium to maintain the traits correlated and inherited
by the following generation (Servedio, 2009). This interplay
is particularly important for ecological speciation in sympatry,
which occurs when reproductive isolation has evolved as an
adaptation to different environments (reviewed in Rice and
Hostert, 2017), or through hybridization, which can generate
novel traits capitalizing on existing variation between related
species (Mallet, 2007; Salazar et al., 2010). Additionally, the
relaxation of predation pressure on aposematic species leaves
room for traits to be selected by sexual selection, especially if
predators associate these mating signals with unprofitability.

As seen in the previous section, poison frogs (family
Dendrobatidae) can use warning coloration as a mating signal.
However, the predominant modality of anuran mating signals
is acoustic (i.e., advertisement calls). A recent study by Santos
et al. (2014) demonstrated that acoustic mating signals in
poison frogs (Dendrobatidae) have diversified in association
with aposematism due to sexual selection, such that aposematic
species have calls with a set of characteristics that differ from
those of non-aposematic species (Santos et al., 2014). The
level of conspicuousness in different populations of O. pumilio
also predicts other aspects of the sexual display behavior, with
males from more conspicuous populations calling from more
exposed sites (Pröhl and Ostrowski, 2011; Rudh et al., 2011),
and being more aggressive and explorative (Rudh et al., 2013).
These behavioral differences coupled with mechanisms such as
assortative mating could generate pre-zygotic isolation leading
to population divergence, in the first place, and potentially to
a speciation process in the long term. Indeed, in O. pumilio,
molecular approaches show that color, but not body size, is
diverging at high rates, indicating selection (Wang and Shaffer,
2008; Brown et al., 2010). Moreover, these studies demonstrate
that sexual and natural selection are causing genetic isolation
between different color morphs in the wild, which could be
a sign of incipient speciation (Wang and Summers, 2010).
This is supported by recent findings showing that, within
Dendrobatidae, the aposematic lineages are speciating at higher
rates than their non-aposematic counterparts (Santos et al.,
2014).

The synergistic effects of sexual selection and natural selection
are also likely to affect speciation processes in Heliconius

butterflies. The color and pattern of their wings (reviewed in
Jiggins, 2017), coupled to a very characteristic flight behavior
(Srygley, 1999), help predators recognize and subsequently avoid
them, but the former are also involved in mate recognition.
This suggests that the ultimate fitness of individuals displaying
different combinations of these traits is determined by both
synergies and compromises between the different functions
(Merrill et al., 2015). Several of these species belong to local
mimicry rings, making their appearance the subject of strong
purifying selection, but also strong assortative mating (Jiggins
et al., 2001). Under these conditions, novel forms are punished by
a higher predation due to frequency-dependent selection (Mallet
and Barton, 1989). Hybrids would be expected to have the same
fate if their appearance deviates from the parental phenotype(s)
(Merrill et al., 2012); however, one of the most fascinating
aspects of this system is that hybridization has offered a route
to speciation (Mavárez et al., 2006; Mallet, 2007; Salazar et al.,
2010). Wing color patterns in Heliconius are thus involved in
predator deterrence, species recognition, andmating preferences.
However, colors can be only one component of a multimodal
mating signal that also involve chemical components, e.g.,
pheromones. Even in a community consisting of mimetic species,
visual attraction can be based at first on wing appearance, yet at a
shorter range scents from the wings and the genitalia can provide
species-specific chemical signatures leading to assortative mating
(Mérot et al., 2015).

Chemical Compounds Can Play a Role in
Mate Attraction and Predator
Deterrence—But Could They Also Have a
Dual Function?
Insects offer a prime example of sexual communication mediated
by chemical signals such as pheromones. As such, the divergence
in pheromone components has shown to play a key role also in
speciation (Groot et al., 2006, 2009). Pheromone composition
and variability have been studied in detail in bella moths,
Utheteisa ornatrix (Conner et al., 1981), moths in the genus
Heliotis (Klun et al., 1980; Teal et al., 1984; Heath et al., 1991) and
bark beetles (genus Ips; Lanier et al., 1980; Seybold et al., 1995).
As well as long-range pheromones, cuticular hydrocarbons (or
CHCs) have also been shown to play an important role in
intraspecific communication and mate choice in insects (Sharma
Manmohan et al., 2011; Ingleby, 2015).

The use of defensive chemicals is also widespread throughout
insects. In addition to their crucial role in predator deterrence,
a linkage between defensive chemicals and intraspecific
communication has been shown in many insect species. For
instance, in Lepidoptera, different families (e.g., Nymphalidae,
Danaidae, and Erebidae) use secondary compounds such as
pyrrolizidine alkaloids in male courtship displays, nuptial gifts,
and egg protection (Boppré et al., 1978; Brown, 1984; Moore
et al., 1990;Weller et al., 1999). For example, males ofU. ornatrix,
have glandular structures in which they store pyrrolizines. Males
unable to produce certain compound derived from these
alkaloids have been found to be less successful at courting
females (Conner et al., 1981). In fact, it has been suggested that
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this compound is used by females to assess the extent to which
the male is chemically protected (Conner et al., 1981). A similar
example can be found in the beetle Neopyrochroa flabellate
(Eisner et al., 1996a,b).

However, we currently have very little information on whether
sexual selection and natural selection shape the secondary
defenses synergistically. In some aposematic species, levels
of secondary defense have shown to differ between females
and males at the reproductive life-stage, which may suggest
differential selection. For example, burying beetles (Nicrophorus
vespilloides) use their anal exudates both for their own defense
and the protection of their offspring, and females appear to
produce more of these exudates than males (Lindstedt et al.,
2017). Allocation for chemical defense has also shown to
trade off with reproductive success indicating that these two
functions could play important role in both mate attraction and
predator deterrence (Nokelainen et al., 2012). This interaction
is further complicated by the fact that many species sequester
their chemical defenses from their diet. In the true bug Lygaeus
equestris, for example, diet, and therefore level of chemical
defense, has no effect on mate choice (Burdfield-Steel et al.,
2013). This is despite evidence that females of this species pass
defensive chemicals on to their eggs, protecting them from
predators (Newcombe et al., 2013). When variation between
individuals is purely environmental, effects on mate choice may
only occur when direct benefits are high (as in several of the
examples given above), although see (Geiselhardt et al., 2012) for
an example of diet and host plant leading to associative mating
based on CHC (cuticular hydrocarbons) profile. When direct
benefits are low, species in which chemical defense level is either
genetically determined, or indicative of overall quality, may be
better candidates in which to look for mate choice based on
defense level. This may well be the case in species that produce
their defenses de novo.

MOVING TOWARD A MORE INTEGRATED
VIEW OF APOSEMATIC SIGNALS

Despite all the examples discussed so far, it is clear that only a
few studies address how both natural and sexual selection act
(either synergistically or antagonistically) on the evolution of
multimodal aposematic signals. Furthermore, it is apparent that
not only color, but also odor, taste, and behavior are part of
warning displays, and their interaction, besides strengthening
the signal, can provide reliable information about the quality
of the emitter. Yet, only a handful of studies have considered
the interplay among these, and their joint significance remains
barely tested. To corroborate these impressions, we conducted a
literature search in Web of Science and analyzed the contents of
a representative sample of the articles available on aposematism.
We used the search terms “aposematism or aposematic” to have
the widest spectrum possible of studies and organisms, and
limited the search to articles published in or after 1990 and until
mid-April 2018. This search rendered a total of 1,051 articles, out
of which we analyzed 105 (10%) selected as explained below.

Because taking the first (or last) articles in the search list
would have constrained the timeframe, we took the first 10%
of the number of articles published each year, which varied
between 10 in 1990 and 87 in 2017 (Figure 5), that fitted the
following criteria. We only included articles studying an actual
natural animal system (i.e., no plants), and assessing directly or
indirectly the effect of natural (predation) and/or sexual selection
in the signals considered. Therefore, studies done with artificial
prey represented as symbols or using artificial chemicals were
excluded. Artificial prey were accepted if they aimed to represent
the actual animal studied, as in dummies or models. We also
excluded taxonomic descriptions, as well as phylogenetic and
phylogeographic studies in which there was no direct relation
with the selection pressures on which we focus this review. For
each paper we recorded the focal species identity, the trait(s)
studied, whether or not they consider the multimodality aspect,
and the type of selection addressed (Table 1).

As revealed by our search, aposematism is a phenomenon
that has raised increasing interest among researchers over
the last three decades (Figure 5), and has been studied in a
variety of organisms (Figure 3), spanning gastropods through
to carnivores. Nevertheless, invertebrates seem to be studied
more, in ∼69% of the cases (Figure 6A); perhaps not surprising
considering they cover 97% of organisms on earth. Both
within invertebrates and vertebrates, there are taxonomic groups
accounting for the majority of the studies (Figure 6A). Among
invertebrates, the best studied are lepidopterans (34.2%), such
as longwings (5.7%), coleopterans (20.5%), and other insects
(34.2%). Among vertebrates, poison frogs are undoubtedly the
group that has stimulated most research (68.9%), followed by
snakes (18.2%; Figure 6A).

Regardless of the taxonomic group, most studies have focused
on unimodal signals, particularly visual (59.4%), and chemical
(16%; Figure 6B). Multimodal signals were studied only in 17.9%
of the cases, and consisted in all cases of visual signals in

FIGURE 5 | The number of studies on aposematism has been increasing over

the last three decades. See text for details on data used.
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TABLE 1 | Studies included in the review of literature published on aposematism over the last three decades.

Year Organism Common name Higher classification Selection pressur

addressed

Trait(s)

studied

References

2018 Pseudophryne spp Australian brood frogs Anura pred col Lawrence et al.

2018 Nudibranchs Sea slug Gastropoda pred chemdef Winters et al.

2018 Andinobates bombetes Poison frog Anura pred col Casas-Cardona

et al.

2017 Vipera seoanai Iberian cross adder Squamata pred col+patt Martínez-Freiria

et al.

2017 Nicrophorus

vespilloides

Burying beetle Coleoptera both col+chemdef Lindstedt et al.

2017 Oophaga pumilio Strawberry poison frog Anura pred col+patt Preissler and Pröhl

2017 Arctia plantaginis Wood tiger moth Lepidoptera pred chemdef Rojas et al.

2017 Danainae Milkweed butterfly Lepidoptera pred col Aluthwattha et al.

2017 Pyrrhocoris apterus Firebug Hemiptera pred col Landova et al.

2017 Nudibranchs Sea slug Gastropoda pred col+chemdef Winters et al.

2017 Pyrrhocoris apterus Firebug Hemiptera pred col Benes and Vesely

2017 Heliconius Longwings, heliconians Lepidoptera both col+patt Chouteau et al.

2016 Heliconius Longwings, heliconians Lepidoptera pred chemdef Arias et al.

2016 Bombus Bumblebee Hymenoptera pred sound Moore and Hassle

2016 Arctia plantaginis Tiger moth Lepidoptera both col Lindstedt et al.

2016 Oophaga pumilio Strawberry poison frog Anura ss col Gade Et al.

2016 Heliconius Longwings, heliconians Lepidoptera pred col Dell’Aglio et al.

2016 Pyrrhocoris apterus Firebug Hemiptera pred col Adamova-Jezova

et al.

2016 Lampyridae Firefly Coleoptera pred chemdef Vencl et al.

2015 Indian butterflies Other butterfly Lepidoptera both col Su Et al.

2015 Arctia plantaginis Wood tiger moth Lepidoptera pred pattern Honma et al.

2015 Arctia plantaginis Wood tiger moth Lepidoptera both col Gordon et al.

2015 Adalia bipunctata Two-spotted ladybird Coleoptera both chemdef Paul et al.

2015 Pyrrhocoris apterus Firebug Hemiptera pred col Exnerova et al.

2015 Dendrobates inctorius Dyeing poison frog Anura pred col+patt Hämäläinen et al.

2014 Euphydryas and

Chlosyne

Other butterfly Lepidoptera pred col+chemdef Long et al.

2014 Heliconius erato Longwings, heliconians Lepidoptera both col+patt Finkbeiner et al.

2014 Paederus fuscipes Rove beetle Coleoptera pred chemdef Tabadkani and

Nozari

2014 Dendrobates tinctorius Dyeing poison frog Anura pred col+patt Rojas et al.

2014 Arctia plantaginis Wood tiger moth Lepidoptera pred pattern Hegna and

Mappes

2014 Oophaga pumilio Strawberry poison frog Anura pred col+patt Qvarnström et al.

2014 Oophaga granulifera Strawberry poison frog Anura pred col Willink et al.

2013 Rana rugosa Japanese wrinkled frog Anura pred chemdef Yoshimura and

Kasuya

2013 Oophaga histrionica Harlequin poison frog Anura ss col Medina et al.

2013 Oophaga granulifera granular poison frog Anura pred col Willink et al.

2013 Heteroptera True bugs Hemiptera pred col Svadova et al.

2013 Oophaga pumilio,

Oophaga granulifera

Strawberry poison frog, granular

poison frog

Anura both col+sound Pröhl et al.

2013 Flabellina iodinea Sea slug Gastropoda pred chemdef Noboa and Gillette

2013 Oophaga pumilio Strawberry poison frog Anura pred col Hegna et al.

2012 Heliconius Longwings, heliconians Lepidoptera pred col+patt Merrill Et al.

2012 Oophaga pumilio Strawberry poison frog Anura pred col Stuart et al.

2012 Polistes dominula European paper wasp Hymenoptera pred col+chemdef Vidal-Cordero

et al.

(Continued)
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TABLE 1 | Continued

Year Organism Common name Higher classification Selection pressur

addressed

Trait(s)

studied

References

2012 Vipera spp. European vipers Squamata pred col+patt Valkonen et al.

2012 True bugs True bugs Hemiptera pred chemdef Noge et al.

2011 Ranitomeya imitator Mimic poison frog Anura pred col Chouteau and

Angers

2011 Lycorma delicatula Spotted lanternfly Hemiptera pred col Kang et al.

2011 Motyxia spp Millipede Myriapoda pred luminescence Marek et al.

2011 Oophaga pumilio Strawberry poison frog Anura both col Ozel and Stynoski

2011 Cynops pyrrhogaster Japanese fire belly newt Caudata pred col Mochida

2010 Oreina gloriosa Leaf beetles Coleoptera pred col Borer et al.

2010 Graphosoma lineatum Shield bugs Hemiptera pred col Johansen et al.

2010 Bombus spp Bumblebee Hymenoptera pred col Stelzer et al.

2010 Pyrrhocoris apterus Firebug Hemiptera pred col+size Prokopova et al.

2010 Opistobranchs Sea slug Gastropoda pred col+chemdef Cortesi and

Cheney

2010 Hypselodoris

fontandraui

Sea slug Gastropoda pred col+chemdef Haber et al.

2009 Oophaga pumilio Strawberry poison frog Anura ss col Maan and

Cummings

2009 Mephitis mephitis Skunk Carnivora pred col+shape Hunter

2009 Photinus Firefly Coleoptera pred luminescence Moosman et al.

2009 Ladybirds Ladybird Coleoptera pred pattern+shape Dolenska et al.

2009 Tiger moths Tiger moth Lepidoptera pred sound Barber et al.

2008 Tiger moths Tiger moth Lepidoptera pred col+sound Ratcliffe and

Nydam

2008 Oophaga pumilio Strawberry poison frog Anura ss col Maan and

Cummings

2008 Carabid beetles Ground beetle Coleoptera pred col+chemdef Bonacci et al.

2008 Lycidae beetles Net-winged beetle Coleoptera pred chemdef Eisner et al.

2007 Oophaga pumilio Strawberry poison frog Anura pred col Saporito et al.

2007 Cirriformia punctata Polychaete Polychaeta pred chemdef Meredith et al.

2007 Oophaga pumilio Strawberry poison frog Anura ss col Reynolds and

Fitzpatrick

2007 Harmonia axyridis Asian ladybeetle Coleoptera pred col+chemdef Bezzerides et al.

2007 Tiger moths Tiger moth Lepidoptera pred sound Barber and

Conner

2006 Micrurus phyrrocryptus Coral snake Squamata pred colpatt Buasso et al.

2006 Carabid beetles Ground beetle Coleoptera pred col+chemdef Bonacci et al.

2006 Graphosoma lineatum Shield bugs Hemiptera pred col+chemdef Veseley et al.

2006 Pyrrhocoris apterus Firebug Hemiptera pred col Exnerova et al.

2005 Cycnia tenera Tiger moth Lepidoptera pred sound Ratcliffe and

Fullard

2005 Vipera berus Common European adder Squamata pred pattern Niskanen and

Mappes

2005 Ensatina eschscholtzii

xanthoptica

Lungless salamander Caudata pred col Kuchta

2004 Vipera berus Common European adder Squamata pred pattern Wüster et al.

2004 Heliconius Longwings, heliconians Lepidoptera pred col+patt Langham

2004 Oophaga pumilio Strawberry poison frog Anura both col Siddiqi et al.

2003 Poison frogs Poison frog Anura pred col+size Hagman and

Forsman

2003 Poison frogs Poison frog Anura pred col+chemdef Santos et al.

(Continued)
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TABLE 1 | Continued

Year Organism Common name Higher classification Selection pressur

addressed

Trait(s)

studied

References

2003 Vespula norwegica Norwegian wasp Hymenoptera pred col+shape Kauppinen and

Mappes

2002 Eumaeus minyas Lycaenid butterfly Lepidoptera pred chemdef Castillo-Guevara

and Rico-Gray

2002 Murgantia histrionica Harlequin bug Hemiptera pred chemdef Aliabadi et al.

2001 Pseudoxycheila tasalis Neotropical tiger beetle Coleoptera pred col Schultz

2001 Pseudoxycheila tasalis Neotropical tiger beetle Coleoptera pred chemdef Schultz and

Puchalski

2000 Cercopidae Froghopper Hemiptera pred col+chemdef Peck

2000 Schistocerca gregaria Desert locust Orthoptera pred col+chemdef Sword et al.

1999 Cosmopepla

bimaculata

Stink bug Hemiptera pred chemdef Krall et al.

1999 Nudibranchs Sea slug Gastropoda pred col Giménez-

Casalduero

et al.

1999 Bombus terrestris Buff-tailed bumblebee Hymenoptera pred sound Kirschner and

Roschard

1998 Romalea guttata Lubber grasshopper Orthoptera pred col+behav Hatle and

Faragher

1998 Flatworms Flatworms Platyhelminthes pred col Ang and Newman

1997 Ithomiine and tiger

moths

Tiger moth Lepidoptera pred chemdef Cardoso

1996 Neotropical butterflies Neotropical butterflies Lepidoptera pred col+behav Pinheiro

1996 Mephitis mephitis Striped skunk Carnivora pred sound+behav Lartviere and

Messier

1995 Tiger moths Tiger moth Lepidoptera pred sound Dunning and

Kruger

1995 Coral snakes Coral snake Squamata pred col+patt Brodie and Janzen

1994 Coccinella

septempunctata

Seven-spot ladybird Coleoptera pred col+chemdef Marples et al.

1994 Opistobranchs Sea slug Gastropoda pred col+chemdef Tullrot

1993 Catocala spp Underwing moths Lepidoptera pred col Ingalls

1993 Monistria concinna Grasshopper Orthoptera pred col+chemdef Groeters and

Strong

1992 Tiger moths Tiger moth Lepidoptera pred sound Dunning et al.

1991 Polycera quadrilineata Sea slug Gastropoda pred col Tullrot and

Sundberg

1991 Leaf beetles Leaf beetle Coleoptera pred chemdef Pasteels and

Rowellrahier

1990 Battus philenor Blue swallowtail Lepidoptera pred col Codella and

Lederhouse

See main text for details on inclusion criteria. pred, predation; ss, sexual selection; col, color; patt, pattern; chemdef, chemical defenses.

References in chronological order (from oldest to newest): (Codella and Lederhouse, 1990; Pasteels and Rowellrahier, 1991; Tullrot and Sundberg, 1991; Dunning et al., 1992; Groeters

and Strong, 1993; Ingalls, 1993; Marples et al., 1994; Tullrot, 1994; Brodie and Janzen, 1995; Dunning and Kruger, 1995, 1996; Lartviere and Messier, 1996; Pinheiro, 1996; Cardoso,

1997; Ang and Newman, 1998; Hatle and Faragher, 1998; Gimenez-Casalduero et al., 1999; Kirchner and Roschard, 1999; Krall et al., 1999; Peck, 2000; Sword et al., 2000; Schultz,

2001; Schultz and Puchalski, 2001; Aliabadi et al., 2002; Castillo-Guevara and Rico-Gray, 2002; Kauppinen and Mappes, 2003; Santos et al., 2003; Langham, 2004; Siddiqi et al.,

2004; Wuster et al., 2004; Kuchta, 2005; Niskanen and Mappes, 2005; Bonacci et al., 2006, 2008; Buasso et al., 2006; Exnerová et al., 2006, 2015; Vesely et al., 2006; Barber and

Conner, 2007; Bezzerides et al., 2007; Meredith et al., 2007; Reynolds and Fitzpatrick, 2007; Saporito et al., 2007; Eisner et al., 2008; Maan and Cummings, 2008, 2009; Ratcliffe and

Nydam, 2008; Barber et al., 2009; Dolenska et al., 2009; Hunter, 2009; Moosman et al., 2009; Borer et al., 2010; Cortesi and Cheney, 2010; Haber et al., 2010; Johansen et al., 2010;

Prokopova et al., 2010; Stelzer et al., 2010; Chouteau and Angers, 2011; Kang et al., 2011; Marek et al., 2011; Mochida, 2011; Ozel and Stynoski, 2011; Pröhl and Ostrowski, 2011;

Merrill et al., 2012; Noge et al., 2012; Stuart et al., 2012; Valkonen et al., 2012; Vidal-Cordero et al., 2012; Hegna et al., 2013; Medina et al., 2013; Noboa and Gillette, 2013; Pröhl et al.,

2013; Svadová et al., 2013; Willink et al., 2013, 2014; Yoshimura and Kasuya, 2013; Finkbeiner et al., 2014; Hegna and Mappes, 2014; Long et al., 2014; Qvarnström et al., 2014;

Rojas et al., 2014, 2017; Tabadkani and Nozari, 2014; Gordon et al., 2015; Hämäläinen et al., 2015; Honma et al., 2015; Su et al., 2015; Adamova-Jezova et al., 2016; Arias et al.,

2016; Dell’aglio et al., 2016; Gade et al., 2016; Lindstedt et al., 2016, 2017; Moore and Hassall, 2016; Vencl et al., 2016; Aluthwattha et al., 2017; Benes and Vesely, 2017; Chouteau

et al., 2017; Landová et al., 2017; Martinez-Freiria et al., 2017; Preissler and Pröhl, 2017; Winters et al., 2017, 2018; Casas-Cardona et al., 2018; Lawrence et al., 2018).
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FIGURE 6 | (A) Representative animal groups studied in relation to

aposematism over the last three decades. The larger the area, the more

studies on that particular group. (B) Signaling modalities studied in relation to

aposematism over the last three decades. The larger the area, the more

studied. (C) Selection pressures taken into account in studies on

aposematism over the last three decades. The larger the area, the more

studies taking that particular selective pressure into account.

combination with either chemical defenses (15.1%) or auditory
signals (2.8%; Figure 6B).

Not surprisingly, most studies on aposematism have
addressed either directly or indirectly the effect of natural
selection (predation) on the studied signals. As pointed out
above, however, there is an increasing interest in systems or
contexts in which the effect of both natural and sexual selection
can be studied simultaneously. Of all the studies reviewed,
only 4.7% addressed exclusively the effect of sexual selection
on warning signals, while 9.4% investigated the effects of both
selective forces jointly (Figure 6C). Most importantly, studies in
which the effects of natural and sexual selection are investigated
at the same time tend to focus only on one sensory modality,
in particular the visual, even if two components of a signal, for
example color and pattern, are taken into account. This tendency
seems to be as true for vertebrates, as it is for invertebrates
(Figure 7).

Studies addressing the influence of predation on multimodal
signals seem to be slightly more common in invertebrates than
in vertebrates (Figure 7). This is most likely because insects,
the invertebrate group most studied in this context, can be
more easily bred and kept in the laboratory due to their short-
generation times and numerous offspring, and studied under
manipulated conditions. Moreover, in many cases it is easier
to disentangle the visual and chemical components of their
multimodal warning displays (Marples et al., 1994; Rönkä et al.,
2018a,b). Most importantly, the overrepresentation of some
groups in these studies may be partially due to the dynamics of
predator-prey coevolution and the speed to respond to selection
(Härlin and Härlin, 2003). These may favor aposematism in
organisms such as insects, amphibians, or reptiles, which lean
toward an r-strategy (numerous offspring, high growth rate and
low per capita probability of survival), while constraining it in
organisms such as mammals and birds, which lean toward a
K-strategy (few offspring, low growth rate and high per capita
probability of survival), and are more often the selective agents.

To investigate this further, not only do we need new
model species with well-studied visual signals and chemical
communication, but also where the traits in question are
heritable, and known to be under identified selective pressures
(i.e., predation and sexual selection). Here, we propose the
wood tiger moth, A. plantaginis, as one of such emerging model
species where multimodal warning displays can be studied while
addressing conflictive or synergistic selective pressures, as stated
below.

THE WOOD TIGER MOTH AS A
PROMISING MODEL TO STUDY
MULTIMODALITY IN APOSEMATIC AND
SEXUAL SIGNALING

One of the species in which multimodal aposematic signals have
been studied in depth is A. plantaginis (formerly Parasemia
plantaginis; Rönkä et al., 2016), the wood tiger moth (Figure 8).
A. plantaginis is an aposematic diurnal moth with a widespread
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FIGURE 7 | Number of studies that address the effects of predation, sexual selection, or both on one (unimodal) or two (multimodal) signals in the

aposematic displays of (A) invertebrates, and (B) vertebrates.

FIGURE 8 | The different morphs of the wood tiger moth in Europe. The upper row shows polymorphic color variation in males, whereas the bottom row showcases

the continuous variation observed in females. Reproduced with permission from Nokelainen (2013). Photos: S. Waldron.

geographic distribution across the holarctic region (Hegna et al.,
2015). Larvae of this species are polyphagous, feeding on a large
number of different genera (Ojala et al., 2005), and overwinter at
their 4th−5th instar. The adult stage lasts for about 2–3 weeks
during which these moths do not feed. This means that both
their coloration and chemical defenses are set at the larval stage
(Ojala et al., 2005). Males spend their adult life flying in search of
females, who are ready to mate soon after eclosion.

While their coloration has been shown to have a strong
hereditary component (Nokelainen et al., 2013; Lindstedt et al.,
2016), diet can also influence adult coloration, particularly in
females (Lindstedt et al., 2010; Furlanetto, 2017; Figure 9).
In addition, their chemical defenses are affected by resource
availability during early life (Brain, 2016; Furlanetto, 2017;
Figure 9). As the moths are most active during daylight hours
(Rojas et al., 2015a) they are vulnerable to predation by birds,
particularly while resting on the vegetation, where they are
clearly conspicuous (Nokelainen et al., 2012; Henze et al., 2018).
Likewise, they can be vulnerable to attacks by invertebrate
predators, especially when the temperature is not high enough
for the moth to initiate flight, or when it is eclosing from the
pupa and its wings are not yet fully extended. Adult moths defend
themselves with two distinct defensive fluids, one produced from
the anal tract and one from glands behind the head (Figure 9).
The first is targeted toward invertebrate predators, while the

second is targeted toward avian predators (Rojas et al., 2017) and
contains pyrazines, which the moths produce de novo (Burdfield-
Steel et al., 2018), likely on the basis of constituents obtained from
their diet. These defenses are advertised to birds with brightly
colored hindwings, where red, yellow, or even white coloration
is contrasted with black patterning (Figure 8).

Predation Is a Strong Selective Pressure
on Wood Tiger Moth Warning Coloration
and Chemical Defenses
Surprisingly, given their role in predator deterrence, the
hindwings of wood tiger moths show considerable color
variation, both within and between populations (Hegna et al.,
2015; Figure 8). In the Finnish population, which has been
the focus of much of the research on this species, males show
discrete color polymorphism, possessing either white or yellow
hindwings, while females vary continuously from yellow to red.
In contrast, in the putative ancestral populations (Caucasus)
males exhibit continuous variation from yellow-orange through
to red in their hindwing coloration, while females display red
hindwings. The forewings, on the other hand, do not vary much
within populations, and consist of high-contrast black and white
patterning.Many studies to date have demonstrated the predator-
deterrent nature of this moth’s coloration (Lindstedt et al., 2011;
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FIGURE 9 | A schematic illustration of the different selective (dark) and environmental (light) factors currently known to be acting on chemical (green) and visual (blue)

signals in the wood tiger moth. Anti-clockwise from top left: (A) Female neck defensive fluids are deterrent to avian predators; (B) Female melanisation is heritable and

influenced by larval diet; (C) Female hindwing coloration is highly heritable, affected by larval diet, and influences avian predation risk; (D) Males follow female

pheromone trails; (E) Male abdominal defensive fluids deter invertebrate predators; (F) Male hindwing colouration is heritable and plays a role in both predator

deterrence and male mating success; (G) Male melanisation is heritable and influences both thermoregulation and predation risk; (H) Male neck defensive fluids are

deterrent to avian predators. See text for details.

FIGURE 10 | Caucasian populations of the wood tiger moth are characterized by the lack of sexual dimorphism in hindwing colouration seen in Europe. In Georgia,

both males (A) and females (B) exhibit hindwing coloration rich in long wavelengths resulting in continuous red-orange coloration. Photos: B. Rojas.

Nokelainen et al., 2012, 2014; Hegna and Mappes, 2014) and,
lately, the same has been shown for its chemical defenses, even
when experimentally decoupled from the visual signals (Brain,
2016; Rojas et al., 2017).

Male multimodal warning display has been shown to have
important consequences for predator defense. A series of
experiments using artificial moths showed that white males
suffer higher predation rates in the field when compared to
yellows (Nokelainen et al., 2014). Furthermore, when live moths
were presented to birds, yellow males elicited longer attack
latencies, suggesting yellow males possess stronger warning
signals (Nokelainen et al., 2012). Yellowmales seem to have more

efficient chemical defenses against ants, and a more repulsive
odor against avian predators when presented in isolation from
the visual signal (Rojas et al., 2017), although the fluids of both
morphs seem to be unpalatable even when presented in the
absence of color cues. When the warning colors are presented to
birds in association with the natural chemical defenses (the moth
as a whole), however, white moths elicit more beak cleaning in
great tits than yellowmoths, and are also eaten less when attacked
for the first time (Rönkä et al., 2018b). Thus, while yellow males
seem to rely mostly on their warning color and repulsive odor to
avoid being attacked, white males seem to rely on taste-rejection
by predators, indicating that the multiple components of these
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moths’ warning displays repel wild-caught predators at different
stages of predation. Furthermore, white and yellow male color
morphs trade-off between efficient warning and sexual signaling
(see below). The white-colored males generally have a higher
mating success (Nokelainen et al., 2012; Gordon et al., 2015)
whereas the yellow-colored males are more avoided by avian
predators (Nokelainen et al., 2012). Moreover, changes in the
composition of the avian predator community can influence the
direction of signal selection (Nokelainen et al., 2014), which,
combined with spatial variation in differential mating success,
may operate as a selection mosaic whereby dispersal facilitates
the maintenance of genetic (Galarza et al., 2014), and hence
phenotypic variation (Gordon et al., 2015).

Females are also well protected from predation. They, too,
produce chemical defenses that deter birds effectively, but are
costly to produce (Brain, 2016; Furlanetto, 2017). Red females
are slightly more conspicuous (Lindstedt et al., 2011; Henze et al.,
2018), and less frequently attacked by avian predators (Lindstedt
et al., 2011) than orange ones, and experiments with wild-caught
birds have demonstrated that the red coloration is learned faster
than white and yellow (Rönkä et al., 2018a).

Why Are the European Forms Sexually
Dimorphic? The Emerging Role of Sexual
Selection
Sexual dimorphism, as well as sex-limited mimicry, are highly
derived characters in many Lepidopteran systems (Kunte, 2008;
Allen et al., 2010), but do occur multiple times in the Arctiinae.
However, in Arctiina, the clade to which A. plantaginis belongs
(Rönkä et al., 2016), sexual dimorphism is rare, suggesting
that the ancestral state of the wood tiger moth is sexually
monomorphic. Although the putative ancestral (Caucasian)
forms of the species, as well as closely related species, exhibit a
rather reddish coloration in both sexes (i.e., this population is
not strictly sexually dichromatic; Rönkä et al., 2016; Figure 10),
in a great portion of its range wood tiger moth morphs exhibit
sexually dimorphic coloration (Hegna et al., 2015). Moreover,
in several European populations white and yellow hind-winged
males coexist locally, while females exhibit coloration that varies
continuously from yellow through to orange and red.

Differences in reproductive allocation between males and
females, and the subsequent differences in mate-searching
behavior, can lead to differential exposure of the two sexes to
predation. Female wood tiger moths, like many Lepidopteran
females, allocate more resources to reproduction than to flight,
eclosing with eggs ready to be fertilized. As is typical for moths,
females use pheromones to attract males, who fly long distances
in search of mates. Not surprisingly, males show their activity
peak at the same time as the peak in female pheromone calling
(Rojas et al., 2015a). Once they detect a female in the distance,
they follow the pheromone source with a characteristic zig-zag
flight. During the last stage of approach, it is also possible that
males can detect the females visually, as these are particularly
conspicuous against the vegetation on which they rest and call
(Henze et al., 2018). Indeed, male eyes are more sensitive (Henze
et al., 2018), which makes sense considering that they do most

of the flying and maneuvering while searching for females. These
ecological and behavioral differences between the sexes make it
likely that the optimal values of signaling and defenses against
predators are not the same for females and males.

Although natural selection can work on sexually dimorphic
signals, and can both restrict or enhance the evolution of
differences between sexes, sexual selection has been put forward
as the main driving force of sexual dimorphism in Lepidoptera
(Shine, 1989; Allen et al., 2010). A recent study examining
the visual capabilities of both male and female wood tiger
moths indicated that these moths are unable to distinguish
among the different shades of orange-red that a female could
have in its hindwings (Henze et al., 2018); this suggests that
female coloration, as well as the coloration of Caucasian males,
is unlikely to be influenced by sexual selection. Females, in
contrast, are capable of distinguishing between the yellow and
white coloration of Finnish male hindwings (Henze et al., 2018),
pointing at a possible role of sexual selection, perhaps via female
choice, on male hindwing polymorphism. Interestingly, some
studies have revealed differences between the two male morphs
in mating success, with white males getting a mating advantage,
particularly when more abundant (Gordon et al., 2015) or when
males are stressed/have costs imposed upon them (Nokelainen
et al., 2012). Altogether, this hints at a role of coloration in mate
choice or attraction, providing a possible explanation to wood
tiger moths’ sexual dimorphism in coloration.

Ongoing and future work including the investigation of the
genetic mechanisms limiting the genetic correlation between
sexes (e.g., sex-limited expression of autosomal genes can
facilitate sexual dimorphism; Traut et al., 2007), quantifying
costs and condition-dependence of sexually dimorphic traits and
measuring natural and sexual selection in natural populations in
the wood tiger moth system will continue to clarify the roles of
both sexual and natural selection in the origins and maintenance
of sexual dimorphism and male polymorphism.

Components of Chemical Defenses Could
Have a Dual Function in Predator
Deterrence and Mate Attraction
Recent developments concerning the chemical defenses of
the wood tiger moth have revealed the presence of two
methopyraxines (2-sec-butyl-3-methoxypyrazine and 2-isobutyl-
3-methoxypyrazine) that have a key role in predator deterrence
(Rojas et al., 2017; Burdfield-Steel et al., 2018). By contrast,
despite luring A. plantaginis males to pheromone traps during
every field season, our knowledge of the compounds present
in the pheromone blend(s) of A. plantaginis is only incipient
(Muraki et al., 2017), with a number of microcompounds
amongst the most prominent components. Pyrazines have been
found in the pheromone blends of some insects, and seem
to be particularly common in tiger moths (Rothschild et al.,
1984; Guilford et al., 1987; Moore et al., 1990). Thus, we
cannot dismiss the possibility that these methopyraxines, or
some other compounds found in the prothoracic defensive
fluids of these moths, have a dual role in protection from
predators and mate attraction. Furthermore, we know that males
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transfer a spermatophore to females during mating (Chargé et al.,
2016), but we currently do not know whether some protective
chemicals, or any other type of nuptial gift, are also transmitted
during this transfer.

Studies on the interaction between warning coloration and
chemical defenses in the context of sexual selection are the next
logical steps in studies on wood tiger moths. They are an excellent
model to test these different components because it is possible
to test the effect of each in isolation to understand its function
and importance. The amount of both methoxypyrazines can be
measured from individual moths, allowing detailed estimates of
chemical defense level. With our increasing knowledge of the
pheromones of this species we can begin to look for links between
pheromone composition and chemical defense, and in particular,
if the resource allocation patterns seen in coloration and defense
(Furlanetto, 2017), extend to pheromone production. In that
respect, it is also important to discover whether males produce
pheromones, as is the case in some butterflies (Darragh et al.,
2017) and other day-flying moths (Sarto I Monteys et al., 2016),
and whether those are relevant for female choice/acceptance. If
males do have pheromones, it would be key to examine whether
there are additive effects of pheromone blend and hindwing
color, or whether one signal is more important than the sum
of both for mate attraction/choice. The same question could be
addressed in the context of population divergence, for instance
to understand if potential variation in the pheromone blends and
chemical defenses link to the differences in coloration between
the European and Caucasian populations.

CURRENT KNOWLEDGE GAPS AND
FUTURE DIRECTIONS

As our review shows, previous studies have been focusing
on understanding how sexual or natural selection (seldom
both; Table 1, Figure 6C) could shape the evolution of warning
coloration due to its multiple function as a signal of mate quality
and possession of chemical defenses. Our review also highlights
the need to study a greater variety of “non-model” species, such
as the wood tiger moth. In particular, species that possess key
components such as chemical or visual, may help fill critical gaps
in our existing knowledge.We describe some of these gaps below,
and propose some future avenues of study.

1. Studies exploring how natural versus sexual selection affect
primary defenses are not abundant, but are on the rise. In
contrast, with a few exceptions (e.g., studies on the dual role of
pyrrolizine alkaloids in bella moths Utetheisa ornatrix; Conner
et al., 1981), less effort has been made to test the possible multiple
functions of chemical compounds in chemical communication
between conspecifics and in predator deterrence. One potential
chemical group with multiple functions could be pyrazines,
a group of compounds that are relatively common in insect
defensive fluids (Rothschild et al., 1984; Guilford et al., 1987;
Moore et al., 1990; Vencl et al., 2016; Rojas et al., 2017). It is
possible that, for example, the intensity of the repulsive odor
produced by pyrazines could also function as an honest signal
of quality. In those terms, a male with higher concentration of

pyrazines could be better protected against predators, which in
turn would inform females that he has the right condition to
afford the costs of production or sequestration and thus make
him more attractive as a mate. To our knowledge, this has been
studied in detail only in, U. ornatrix (González et al., 1999;
Iyengar and Starks, 2008); see section “Chemical Compounds
Can Play a Role in Mate Attraction and Predator Deterrence—
But Could They Also Have a Dual Function?” above). Another
way in which sexual and natural selection could act in synergy
on chemical compounds is through the so-called nuptial gifts. A
male could, for example, donate defensive chemicals to the female
during mating to provide protection for the eggs or herself. In
this type of situation the “odor” of the male could function both
as a warning signal for predators and as a signal of mate quality
for the females. Therefore, future research should consider the
potential synergistic (or opposing) interactions between sexual
selection and predation acting simultaneously on chemical and
visual communication. We can start by investigating if the same
compounds in the chemical defenses are also present in the
pheromone blends, and how are they then potentially transferred
to the spermatophores and eggs. We also need to test the
relationship between the levels/types of defensive toxins a male
possesses, combined with their attractiveness as a mate and
their defensive coloration. Potentially good model organisms
from which we already have information both on the influence
of sexual and natural selection on different components of
multimodal signals are listed in Table 1.

2. Defensive chemicals often evolve under multiple selection,
protecting simultaneously from predators, pathogens, and
parasitoids (Johnson Pieter et al., 2018). Many chemical
compounds used in secondary defense or chemical
communication can be sequestered directly from the diet
or produced with the help of symbionts, which can alter the
chemical profile of their hosts (Engl and Kaltenpoth, 2018).
However, experimental evidence illustrating these interactions
and their effect on host behaviors are still scarce. This is
particularly true for symbionts involved in the production of
insect pheromones (Engl and Kaltenpoth, 2018), thus providing
a promising research avenue.

3. It is ideal to investigate the patterns of inheritance of the
signals of interest. If the trait in question is not heritable, there
are no grounds for natural selection to act on it (even if the
trait is essential for survival). Likewise, we need to continue to
study in depth how phenotypic variation exposed to selection
by receivers is induced and maintained. To do that, we need
to define the life-history costs of production and maintenance
of different multimodal-signal components under various biotic
and abiotic conditions (Hegna et al., 2013; Brain, 2016; Lindstedt
et al., 2016). This will give us key information on how much of
the signal variation is environmentally induced.

4. Before the role of any signal in either predator deterrence
or mate attraction can be established, it is essential to identify
and confirm the selective agent. Failure to properly do so can
lead to misinterpretation or overestimation of the studied trait
function. Chemical defenses, for example, may have very rich
profiles with hundreds of compounds but, if relevant predators
do not respond to them, then that defense is not under selection
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by predators. It is of curse possible that the relevant predator is
no longer present and we are thus witnessing the consequence
of past selection. Furthermore, we should keep in mind that
selective agents fluctuate across time and space (e.g., Endler and
Rojas, 2009; Nokelainen et al., 2014). This means, for example,
that identifying a predator at a particular location does not imply
it is a selective agent elsewhere.

5. An integrative study of multimodal signal evolution should
involve a better understanding of how signals are processed
by the receiver’s sensory systems. Recent advances in the field
of visual ecology (e.g., animal vision models; Vorobyev and
Osorio, 1998; Kelber et al., 2003; Endler and Mielke, 2005; Maia
et al., 2013; Kemp et al., 2015; Troscianko and Stevens, 2015;
Renoult et al., 2017; Maia and White, 2018), as well as well-
known and widely used methods in chemical ecology (Harborne,
1997; Agelopoulos and Pickett, 1998) offer the tools to study
if and how signals are discriminated against the background
noise. However, knowing that a signal can be perceived is
not enough. In addition to that, classic predation and mate
choice experiments, particularly those in which the multiple
components of the warning display can be tested in isolation
and in different combinations, can provide information about the
receiver’s response. Whether or not receivers react to the signals
sent by the emitter is what actually determines how these signals
are shaped.

6. The role of behavior in aposematic displays has been
largely understudied, although it has the potential to be, if
not a signal, a relevant cue for predators in combination
with other components. Evidence from studies on mimicry
has highlighted how mimics fool predators by mimicking the
motion type of their models. Such is the case of ant-mimicking
spiders (genus Myrmarachne) of the family Salticidae, which
are thought to mimic not only the morphology but also the
characteristic movement of their ant models (Nelson and Card,
2016); or of certain species of hover flies (family Syrphidae),
which mimic the behavior of wasps (Penney et al., 2014). While
both the Myrmarachne spiders and the hover flies are Batesian
(undefended) mimics, and thus not aposematic, they raise the
question of whether aposematic species do also use behavior as
a component of their warning displays. To date, we are aware
of only one study in that direction: Neotropical aposematic
butterflies can be told apart by bird predators from their non-
aposematic counterparts on the basis of their flight behavior
(Chai, 1986), and it cannot be discarded that it also plays a role
in interactions between conspecifics, for example in courtship
displays. Therefore, behavior in general, andmotion in particular,

combined with either warning colors or chemical defenses, may
have a key function in predator deterrence and interactions
between conspecifics in aposematic species.

7. Finally, the origin and spread of the first individuals bearing
aposematic signals continues to be a matter of debate (Mappes
et al., 2005; Speed and Ruxton, 2005). The first individuals with a
conspicuous warning coloration would have been an easy target
for predators, making it perplexing that they were able tomultiply
until they were numerous enough to prompt predator avoidance.
One potential solution for this problem is that natural and sexual
selection could both favor the evolution of aposematic displays,
and one way to tackle it is using phylogenetic comparative
methods. These methods have been used to study, for example,
the correlated evolution of warning coloration and toxicity
(Summers, 1987; Summers and Clough, 2001), but they would
also be valuable to better understand how natural selection and
sexual selection have jointly shaped the evolution of multimodal
warning displays.
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