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ABBREVIATIONS 

AAIDD American Association on Intellectual and Developmental 

Disabilities 

AD Autosomal dominant 

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolpropionate 

AR Androgen-receptor gene 

AR Autosomal recessive 

BF Blocking factor 

BLAST Basic Local Alignment Search Tool 

BLAT The Blast-Like Alignment Tool  

CGH Comparative genomic hybridization 

CNP Copy Number Polymorphism 

CNS Central nervous system 

CNV Copy Number Variation 

DLG3 Discs, large homolog 3 (Drosophila) 

DMD Dystrophin 

ERCC6L Excision repair cross-complementing rodent repair deficiency, 

complementation group 6-like 

ESX1 ESX homeobox 1 

F8 Coagulation factor VIII, procoagulant component 

FDH Focal Dermal Hypoplasia = Goltz syndrome 

FIMM Finnish Institute of Molecular Medicine 

GAII Genome Analyzer II 

GluRs Glutamate receptors: iGluRs=ionotropic GluRs, 

mGluRs=metabotropic GluRs 

GPR112 G protein-coupled receptor 112 

GRIA3 Glutamate receptor, ionotropic, AMPA 3 

HADH2 Hydroxysteroid (17-beta) dehydrogenase 10 (HSD17B10) 

HUWE1 HECT, UBA and WWE domain containing 1, E3 ubiquitin 

protein ligase 
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ICD-10 International Classification of Diseases, 10th Revision 

ID Intellectual disability 

IQ Intelligent quotient 

LINE Long interspersed nuclear elements 

LRCH2 Leucine-rich repeats and calponin homology (CH) domain 

containing 2 

MAGUK Membrane-associated guanylate kinases 

MECP2 Methyl CpG binding protein 2 (Rett syndrome) 

MR Mental retardation 

MSY Male specific Y 

NGS Next Generation Sequencing 

NMDA N-methyl-D-aspartate 

NS-ARID Non-syndromic autosomal recessive intellectual disability 

NS-XLID Non-syndromic X-linked intellectual disability 

NTD Neural tube defects 

OR13H1 Olfactory receptor, family 13, subfamily H, member 1 

PAH Phenylalanine hydroxylase  

PAK3 P21 protein (Cdc42/Rac)-activated kinase 3 

PHF8 PHD finger protein 8 

PKU Phenylketonuria 

PLXNA3 Plexin A3 

PORCN Porcupine homolog (Drosophila) 

PSD Postsynaptic density  

SAP Synapse-associated protein  

SOX3 (Sex determining region Y)-box 3 

SRY Sex determining region Y 

S-XLID Syndromic X-linked intellectual disability 

Syn Synonymous 

TAF1  TAF1 RNA polymerase II, TATA box binding protein (TBP)-

associated factor 

VINELAND Vineland adaptive behavioural scales 
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WAIS Wechsler Adult Intelligence Scales  

WHO World Healthcare Organization 

WISC Wechsler Intelligence Scales for Children  

XCI X chromosome inactivation 

Xic X-inactivation center 

XIST X (inactive)-specific transcript (non-protein coding) 

XLID X-linked intellectual disability 

XLMR X-linked mental retardation 

ZBTB33 Zinc finger and BTB domain containing 33 
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1 INTRODUCTION 

Intellectual disability (ID) also referred to as mental retardation (MR), is one of 

the largest unsolved problems of health care with a prevalence of 2-3% in the 

population. ID is a clinically diverse and genetically heterogeneous disorder 

characterized by central nervous system defects of varying severity resulting in 

substantial impairment of intellectual and adaptive functioning. It is defined by 

intelligent quotient (IQ) below 70 scores and limitations in social and adaptive 

skills diagnosed before the age of 18 years. ID is usually inherited in Mendelian 

fashion and most of the cases are caused by unique single nucleotide variations 

in each family [van Bokhoven 2011]. Clinically, the condition is referred to as non-

syndromic when ID is the only clinical feature and syndromic when ID is 

accompanied by dysmorphic, neurological and/or metabolic abnormalities. 

The 30-40% excess in male versus female patients has led to the hypothesis of 

over-representation of X chromosomal defects causing ID. Thus, to date over 90 

genes have been identified to underlie X-linked intellectual disability (XLID) 

which is responsible for 10-12% of males with ID. Approximately 40 of these 

genes have been found in non-syndromic XLID. 

In the past, studying these disorders was very challenging and time consuming. 

However, due to enormous and rapid development of methods in molecular 

genetics, such as sequencing and gene-based diagnostics, identifying genes 

underlying ID and Mendelian diseases in general has become quite 

straightforward. For instance, while in 1973 sequencing of small DNA fragments, 

only 24 base pairs could be achieved, nowadays entire genomes are being 

sequenced with high (mutation detecting) resolution and rapidly decreasing costs. 

Thus next generation sequencing has become practically available for every 

laboratory and research group. At the same time the ‘personalized medicine’ 

approach is starting to establish its role in solving health problems. 

The aim of this thesis was to identify genetic causes behind non-syndromic 

intellectual disability present in two large Finnish families with three affected 

male patients in each family, suggesting an X-linked mode of inheritance. In 
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order to achieve this goal, one of the newest methods in genetics, exome 

sequencing of the X chromosome, was conducted. 

Initially this project was started in 2005. At that time 88 evenly spaced X 

chromosomal microsatellite markers were genotyped in the Finnish families to 

construct common haplotypes of the patients [Peippo et al. 2007]. Genotypes 

were generated using standard fluorescent detection based semi-automatic 

technology [Kong et al. 2002]. Haplotypes are shown in Table 1-1. The haplotype 

shared in family D172 was 120 Mb long containing 39 known XLID genes and 

hundreds of other genes. The area shared in family D174 was 98 Mb including 27 

known XLID genes and dozens of other genes. Consequently, the next step would 

have been sequencing of all genes in the area individually in family members. 

However, the task would have been analogous to looking for a needle in a 

haystack, considering the time and resources needed. For this reason, the study 

was postponed until the year 2010 when improved and faster methods such as 

exome sequencing became available.  
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Table 1-1: Common haplotypes of the affected male patients on the X chromosome 
in two studied Finnish families, D172 and D174. The black area shows the size of 
haplotypes and the amount of genes associated to XLID located on this area. 

Markers cM   

DXS9903 9,7   

DXS7103 18,4   

DXS7108 19,6   

DXS999 32,8   

DXS1229 35,8   

DXS8027 43,4   

DXS9896 46,1   

DXS1214 47,4   

DXS1067 49   

DXS8030 87,3   

DXS1221 88,9   

DXS1209 89,9   

DXS1196 91   

DXS8077 99,6   

DXS6799 101,8   

DXS8110 110,3   

DXS1072 112,6   

DXS8064 119,7   

DXS1001 123,8   

DXS8093 132,9   

DXS8044 134,3   

DXS8013 148,6   

DXS984 149,8   

DXS8106 158,7   

DXS8061 190,3   

DXS1073 193,7   

Family  D172 174 

Area size (Mb)  120 98 

Number of XLMR genes  39 27 
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2 REVIEW OF THE LITERATURE 

2.1 Definition and classification of intellectual disability 

Intellectual disability (ID), also referred to as mental retardation (MR) or as 

cognitive impairment [Schalock et al. 2007] is a manifestation of genetically and 

clinically heterogeneous disorders characterized by significant limitations both in 

intellectual functioning and in adaptive behaviour, which covers social and 

practical skills in daily life. They are conditions of medical, educational and social 

importance. The severity of ID is classified as mild, moderate, severe and 

profound ID.  There exist three different aspects in approaching ID. Healthcare 

personnel seek the aetiology of ID and the possibility of medical intervention or 

surgery to minimize the effects of the disorder. Educators are more concerned 

with school success and academic achievement. Finally, the public uses the label 

“poor adaptive skills” to describe a person with ID, since the majority of adults 

with mild ID can live independently [McDermott et. al Handbook 2007]. 

Intellectual disability is defined in numerous ways. Here I briefly present two 

widely used definitions: the International Statistical Classification of Diseases 

and Related Health Problems 10th Revision (ICD-10) definition, coordinated by 

World Health Organization (WHO) and the American Association on Intellectual 

and Developmental Disabilities (AAIDD) classifications. The previous definition, 

also applied in Finland, concentrates on the level and medical aspect of ID, while 

the latter is a practical tool to determine whether the person is eligible to receive 

extra healthcare service. ICD-10 classification of ID states intellectual disability 

as “a condition of incomplete development of the mind, which is especially 

characterized by impairment of skills manifested during the developmental 

period, skills which contribute to the overall level of intelligence, i.e. cognitive, 

language, motor, and social abilities. Disability can occur with or without any 

other mental or physical condition” [WHO 2010]. AAIDD [Schalock et al. 2010] 

alternatively defines ID as “a disability characterized by significant limitations 

both in intellectual functioning and adaptive behaviour as expressed in 

conceptual, social and practical adaptive skills”. However, both of these 

classifications, along with all other categorizations, state the onset for intellectual 
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disability before the age of 18 years. They also divide intellectual disability into 

four categories based on IQ (Table 2-1): mild, moderate, severe and profound ID. 

ICD-10 is stricter than AAIDD. 

Table 2-1: Classification of ID based on ICD-10 classification. 

ID Severity level IQ-range Description 

F70 Mild ID 50-69 

- acquire language with some delay 

- some learning difficulties in school 

- adults able to work and maintain social 
relationships 

F71 Moderate ID 35-49 

- developing comprehension and language 
use is slow 

- most learn to develop some degree of 
independence in self-care 

- mental age of adults 6-9 years 

F72 Severe ID 20-34 

- limitations in self-care and motor skills 

- continuous need of support 

- mental age of adults 3-6 years 

F73 Profound ID <20 

- severe limitations in self-care, continence, 
communication and mobility 

- mental age of adults below 3 years 
 

Both of the mentioned classifications apply the following standardized IQ tests in 

diagnosing ID: the Wechsler Adult Intelligence Scales (WAIS) and the Wechsler 

Intelligence Scales for Children (WISC) [Ropers 2010].  In addition, clinicians 

and health care personnel conduct other psychological tests for diagnosing ID. 

For example in Finland, Vineland adaptive behavioural scales, second edition 

(VINELAND II)[Sparrow et al. 2005] is applied to measure the personal and 

social skills needed for everyday living and the Bender Gestalt Test [Koppitz 1975] 

is applied to evaluate visual-motor functioning and visual perception skills.  

In clinical genetics, intellectual disability is defined as either syndromic or non-

syndromic based on the presence or absence of additional features such as 
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dysmorphic, neurological, and/or metabolic abnormality. In syndromic 

intellectual disability the phenotype is accompanied by dysmorphic, neurological, 

radiological, biological and/or metabolic features. In non-syndromic ID, 

cognitive impairment is the only manifestation of the disease [Chelly & Mandel 

2001; Tarpey et al. 2004]. Based on recent molecular studies, the phenotype-

genotype boundaries between the two aforementioned forms of ID are fading. 

In this thesis, I will mainly focus on non-syndromic mode of ID (NSID). 

2.2 Prevalence of intellectual disability 

Prevalence of intellectual disability deviates substantially based on aetiology, 

behavioural characteristics and degree of ability. However, it is widely considered 

that the prevalence of mild to moderate ID (IQ<70) is 2-3% and moderate to 

severe ID (IQ<50) 0.3-0.5% of the population in developed countries [Raymond 

2006; McDermott et al. 2007; Ropers 2010]. Therefore, there are 75 000-

100 000 people with mild ID and 15 000-25 000 people with severe ID living in 

Finland. In developing countries prevalence of ID tends to be even higher, 

resulting from aetiological factors such as malnutrition, parental consanguinity, 

cultural deprivation and poor healthcare [McDermott et al. 2007; Ropers 2010]. 

Epidemiological studies have repeatedly shown a 30-50% excess of ID in males 

over females. This has led to the hypothesis that over-representation of male ID 

may be due to X-linked genes. Nevertheless Chelly and Mandel (2001) reached 

the conclusion that less than 10% of male ID can be explained by XLID. 

2.3 The X chromosome 

The X chromosome is biologically and genetically unique due to the evolution of 

sex chromosomes. It differs widely from autosomes in the rates of gene 

divergence, recombination, gene movement between chromosomes and the 

pattern of gene expression. This chromosome also holds a special place in the 

history of medical genetics for two reasons. Firstly a large number of disorders 

have been associated with the X chromosome since a recessive mutation for a 

gene lacking a homologue on the Y chromosome directly revealed a phenotypic 

consequence in males. In fact, although X chromosome contains only 4% of all 

human genes, almost 10% 0f diseases having a mendelian pattern of inheritance 
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is assigned to the X chromosome. At the same time recognizing an X-linked mode 

of inheritance seems relatively easy when verifying a disease in a pedigree [OMIM; 

Ross et al. 2005; Vicoso & Charlesworth 2006]. 

2.3.1 Evolution of the human X chromosome 

At present, it is widely believed that the sex chromosomes, in humans the X and 

Y chromosomes, have evolved from an ancient, homologous pair of freely 

recombining autosomes within the last 300 million years, arising independently 

several times over the course of evolution. One hypothesis suggests that the first 

step in differentiation of these chromosomes from autosomes took place by 

occurrence of a male sex determination mutation, changing the X-linked sex 

determining region Y-box 3 (SOX3) into its homologue, sex determining region 

on the Y chromosome (SRY). Additionally, the X-Y recombination has been 

restricted for an elusive reason, by at least four different events leading to the 

accumulation of mutations and further resulting in the degeneration of the Y 

chromosome [Lahn et al. 2001; Singh & Petrov 2007]. 

Eventually the evolutionary events have brought about the sex chromosomes to 

differentiate morphologically and genetically. The X chromosome has 

maintained the original, functional elements and remains conserved between 

species in large regions, including its long arm. Meanwhile, the Y chromosome 

has lost almost all traces of the original ancestral feature, including the genes it 

once shared with the X chromosome. In fact, the Y chromosome contains a 

functional homologue for only 54 genes annotated on the X chromosome. On the 

other hand, approximately 15 protein-coding genes located on the Y chromosome 

lack homologues on the X chromosome. In addition, the euchromatic part of the 

X chromosome is six times longer than that of the Y chromosome, which makes 

Y considerably smaller than the X chromosome. The X and Y chromosomes 

provide the only mechanism of sex determination in humans [Charlesworth 1991; 

Ross et al. 2005; Singh & Petrov 2007].  
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2.3.2 The X chromosome sequence 

The mammalian (especially human) X chromosome differs biologically from 

other chromosomes in the rate of gene divergence and traffic, recombination, 

gene movement between chromosomes and the pattern of gene expression. The 

human X chromosome is over 155 Mb long, representing approximately 5% of the 

haploid genome and containing nearly 1900 genes [VEGA]. While the male 

specific Y (MSY) chromosome is 65 Mb, representing approximately 2% of the 

haploid genome [Waters & Robinson 2008] and contains barely 460 genes 

[VEGA]. The X chromosome contains short pseudo-autosomal regions at both 

telomeric ends. These recombine with cognate regions on the Y chromosome. On 

the other hand it has some features which are unique in the human genome. For 

instance females inherit paternal and maternal X chromosomes while males 

inherit only the maternal one. Further, gene expression is randomly silenced on 

one of the female X chromosomes in early development. The inactivated 

chromosome remains inactive in somatic tissues thereafter but it is reactivated in 

the female germ line [Ross et al. 2005; Tarpey et al. 2009]. 

Genes of the X chromosome contain over 820 protein-coding genes, nearly 770 

pseudo genes and 265 processed transcripts [VEGA]. The density and length of 

the genes on this chromosome (when excluding pseudo genes) is among the 

lowest compared to other chromosomes, the mean gene length being 49 kilo-

bases. However, dystrophin (DMD), the largest gene known in the human 

genome, is located on Xp21.1 [Ross et al. 2005]. Nearly 153 000 single-nucleotide 

polymorphisms (SNPs) have been identified to date. The X chromosome 

differentiates from other chromosomes in the amount of repetitive sequences. 

While the genome contains 45% of interspersed repeats in average, the 

euchromatic sequence contains 56%. It has remarkable enrichment (29% of the 

sequence) for long interspersed nuclear elements (LINEs) of the L1 family while 

the average on the genome being only 17%. 

The human X chromosome is enriched for genes responsible for brain 

functioning, and intelligence and also contains a high number of genes expressed 

in the brain, explaining the large number of X-linked intellectual disability (XLID) 

syndromes. Other gene groups over-represented on this chromosome are 

involved in early spermatogenesis, sex and reproduction while it lacks genes 
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involved in late spermatogenesis [Vicoso & Charlesworth 2006; Delbridge et al. 

2008]. 

2.3.3 X chromosome inactivation 

In mammalian females’ somatic cells, the major part of one X chromosome is 

inactivated randomly; implicating the paternally-derived X is silenced in some 

cells and the maternally-derived X in the others. Thus, females are considered to 

be mosaic for the genes on the X chromosome. The purpose of X chromosome 

inactivation (XCI) is to ensure that males and females have equal expression of 

X-linked genes, since males usually inherit one X chromosome and females two. 

However, approximately 15% of the genes escape X-inactivation, resulting in 

them being expressed from both, the active and inactive X chromosomes. Many 

of the escaping genes lack the homologue on the Y chromosome. The silencing 

process is an epigenetic change occurring in the early stage of embryonic 

development and is passed on to all daughter cells, making it tissue specific. 

However, this inactivation is not transmitted to offspring [Racchi et al. 1998; 

Carrel & Willard 2005]. 

The multifunctional domain called the X-inactivation center (Xic) is the key 

element to the silencing process. The Xic, located on the long arm of the X 

chromosome, has evolved from an ancestral vertebrate gene cluster in placental 

mammals undergoing several rearrangements during the course of evolution. It 

contains the X (inactive)-specific transcript (non-protein coding) (XIST) gene 

which is very crucial inactivation-wise. XIST is different from other genes since it 

does not code a protein, but a more than 17 kb un-translated RNA and it is 

expressed only from the inactive X chromosome after the inactivation process. In 

each embryonic cell, the silencing event is initiated by XIST starting to produce 

RNA which eventually resides on the X chromosome, spreading the inactivation 

signal up and down the chromosome. At the same time many chromatin 

modifications such as DNA methylation and histone modifications are required 

to maintain the stability of the inactive state of the chromosome [Chow et al. 2005; 

Chang et al. 2006; Wutz & Gribnau 2007].  

In addition to activating the silencing process, Xic ensures that just one X 

chromosome remains active per diploid genome. The hypothesis is that an 
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autosomal blocking factor (BF) assists it in this task, by protecting one X 

chromosome per diploid genome from silencing. The mechanism and the nature 

of the BF are still unknown. On the other hand, the question of how the random 

X-inactivation is actually established or if it is entirely random remains also un-

answered. However, recent progress in the field suggests the involvement of 

multiple regulatory systems including epigenetic modifications [Wutz & Gribnau 

2007; Waters & Robinson 2008]. 

2.4 Aetiology of intellectual disability 

Aetiologically ID is a very heterogeneous disorder involving environmental, 

socio-demographic and genetic factors. These factors, which will be discussed 

next, can result alone or together in mild to severe intellectual disability. 

Environmental factors cause mostly mild ID while genetic factors play a larger 

role in causing severe ID. In fact genetic causes account for 20% of mild ID and 

65% of moderate to severe ID [Chiurazzi et al. 2008; van Bokhoven 2011].  

2.4.1 Environmental factors 

McDermott et al. (2007) describe three main nutritional factors causing ID to 

some extent in their handbook of intellectual and developmental disabilities. 

Nutritional deficit of folic acid causes folate-sensitive neural tube defects (NTD), 

which contribute to a small proportion of ID [OMIM 601634]. Phenylketonuria 

(PKU) [OMIM 261600], occurring in Caucasian populations, is a rare defect of 

amino acid metabolism caused by mutations in the phenylalanine hydroxylase 

(PAH) gene. Although PKU is a genetic defect it can be treated by proper diet and 

thus ID resulting it can be prevented. PKU does not appear in Finland. A third 

nutritional cause of intellectual disability is iodine deficiency during pregnancy 

causing maternal and fetal hypothyroidism, referred to as cretinism [Delong 

1993]. The author’s stress that ID cases caused by the nutritional factors 

mentioned can be prevented by strict diet during pregnancy, infancy and early 

childhood [McDermott et al. Handbook 2007]. 

Environmental causes behind intellectual disability also include infection during 

pregnancy, prematurity and low birth weight, birth trauma and asphyxia, fetal 

stroke, a number of environmental chemicals and compounds such as alcohol 

exposure, smoking and lead exposure during pregnancy and infancy, postnatal 
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infections, traumatic brain injury during childhood and deprivation in childhood 

and parental consanguinity [Drews et al. 1995; Najmabadi et al. 2011; van 

Bokhoven 2011]. Parental consanguinity increases the genetic risk of ID. However, 

it may also recon among environmental factor to some extent since parental 

consanguinity occurs just in some cultures. 

2.4.2 Genetic causes of intellectual disability 

Genetically, intellectual disability is a very complex disorder. Causative factors 

include genomic disorders, chromosome aneuploidies, structural chromosomal 

abnormalities, gene defects and single nucleotide changes [Chiurazzi et al. 2008; 

van Bokhoven 2011]. The vast variety of causative factors is the reason why, even 

today, so little is known about ID and why over 40% of cases remain without 

etiological diagnoses [Knight et al. 1999; Ropers 2010]. However, recently rapid 

progress has taken place in the field, since large scale gene finding is becoming 

more of a reality. 

Up to now, defects in 450 genes have been associated to ID and related cognitive 

disorders (CDs), such as autism. Of the identified genes 50 express non 

syndromic ID, while the rest manifest ID combined with other clinical features. 

Described genes are involved in synaptic plasticity, Ras and Rho GTPase 

signalling and some of them modify chromatin structure epigenetically. And 

more are coming. After all, it is estimated that the true number of ID genes might 

rise to 1500-2000 [van Bokhoven 2011]. 

Of all of the single genes underlying intellectual disability, mutation of the gene 

underlying fragile X syndrome is considered to be the most frequent cause of ID 

and autism. It is also the first gene proven to cause the classical ID phenotype. 

Fragile X syndrome, the prevalence being 1 in 5000-6000 males, occurs by 

silencing of the FMR1 gene, resulting from expansion of the CGG repeat at the 5’ 

end of the gene on the X chromosome [Verkerk et al. 1991].  



16 
 

2.4.2.1  Chromosomal aberrations behind ID 

Aberrations in chromosomal number and structure (Table 2-2) are the most 

frequent cause of intellectual disability accounting for up to 40% of severe and 

10-20% of mild ID cases [Göstason et al. 1991]. For instance, Down’s syndrome, 

caused by trisomy 21, is the ultimate reason for ID. Trisomies 18 and 13 are less 

frequent but result in a more severe phenotype. Other chromosomal 

abnormalities consist of X chromosomal aneuploidies and a range of 

cytogenetically balanced and unbalanced translocations. On the other hand, large 

chromosomal microdeletions, which are detectable by conventional karyotyping 

or fluorescence in situ hybridization (FISH), are an important cause of ID. They 

include a number of conditions with recognizable clinical features such as Prader-

Willi and Angelman, Williams-Beuren, Smith-Magenis, Miller-Dieker and 

DiGeorge syndromes [Chelly et al. 2006; Ropers 2010; van Bokhoven 2011]. 

2.4.2.2  Subtelomeric rearrangements 

The human genome contains gene-rich subtelomeric regions with high-level 

sequence polymorphism. Previously, it was suggested that imbalances in these 

areas would explain a substantial number of unexplained cases of intellectual 

disability. In 1995, after studying 99 persons with ID using FISH, Flint et al. 

estimated that 6% of idiopathic intellectual disability is caused by cryptic 

subtelomeric rearrangements. However, in 2006 three clinical cytogenetic 

laboratories conducted subtelomere FISH analysis for 11,688 individuals with 

developmental disabilities. As the result, they concluded that only 2.5% of ID is 

due to subtelomeric rearrangements [Ravnan et al. 2006]. A year later Ballif et al. 

reported a remarkably similar result using targeted comparative genomic 

hybridization (CGH) array. In the study of almost 7,000 cases with ID, authors 

observed a rate of 2.4% of subjects with clinically significant imbalances in 

subtelomeric regions. These two recent studies have established the yield of ID, 

caused by subtelomeric rearrangements, to be 2.5% of patients with ID after 

routine karyotype analysis.  
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Table 2-2: List of some of the most frequent chromosomal aberrations 
causing intellectual disability. * Average IQ is 10-15 points lower than boys 
with normal karyotype. Prevalence data obtained from Genetics Home 
Reference and OMIM. Entries made on 20.08.2012. 

 

Chromosomal 
abnormality 

Syndrome 
Intellectual 
disability 

Prevalence 
in  
newborns 

Reference 

Trisomy 21 Down’s syndrome mild 
1/750-
1/1000 

Lejeune et 
al. 1959 

Trisomy 18 
Edwards 
syndrome 

severe 1/5000 
Crider et al. 
2008 

Trisomy 13 Patau syndrome severe 1/16000 
Crider et al. 
2008 

45X Turner’s syndrome 
increased risk 
of mild ID 

1/2500 
females 

Bondy CA 
2007 

47XXX Triple X syndrome 
increased risk 
of mild ID 

1/1000 
females 

Tartaglia et 
al. 2010 

47XXY 
Klinefelter 
syndrome 

mild * 
1/500-1000 
males 

Abramsky & 
Chapple 
1997 

47XYY XYY-syndrome mild * 
1/1000 
males 

Abramsky & 
Chapple 
1997 

5p deletion Cri du chat severe 
1/20000-
50000 

Gersh et al. 
1995 

Paternal 
15q11.2 
deletion 

Prader-Willi 
syndrome 

mild to 
moderate 

1/(10000-
30000) 

Robinson et 
al. 1991 

Maternal 
15q11-q13 
deletion 

Angelman’s 
syndrome 

severe 
1/(12000-
20000) 

Van 
Buggenhout 
& Fryns. 
2009 

15q13.3 
microdeletion 

15q13.3 
microdeletion 
syndrome 

mild to 
moderate 

1/40000 
Sharp et al. 
2008 

17p11.2 
deletion 

Smith-Magenis 
mild to 
moderate 

1/25000 
Gropman et 
al. 2006 

7q11.23 
deletion 

Williams-Beuren 
syndrome 

mild to 
moderate 

1/(7500-
20000) 

Carrasco et 
al. 2005 

17q21.31 
microdeletion 

17q21.31 
microdeletion 
syndrome 

moderate to 
severe 

1/16000 
Koolen et al. 
2006 
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2.4.2.3  Copy number variation (CNV) 

In recent years, copy number variations (CNVs) or copy number polymorphisms 

(CNPs) have taken their place in the large range of diversity forms described in 

the human genome which includes: chromosome anomalies, insertion-deletion 

polymorphisms, variable number of repetitive sequence and single nucleotide 

changes. CNVs are 1 kb-3 Mb deletions or duplications of DNA fragments which 

are widely distributed throughout the genome. Currently, it is estimated that up 

to 12% of a phenotypically healthy individuals genome is covered by copy number 

variants. CNVs can occur both somatically and meiotically, thus having 

appreciable impact on phenotype, gene expression and natural selection. It is 

widely hypothesized that CNVs have an important role in the evolution of the 

human genome and the diversity within the human population [Iafrate et al. 

2004; Sebat et al. 2004; Redon et al. 2006]. 

Despite the fact that most CNVs are benign, new studies have increasingly 

associated CNVs with diseases like cancer, mental illness, developmental 

disorders, childhood obesity [Frank et al. 2007; Glessner et al. 2010; Ikeda et al. 

2010; Moreno-De-Luca et al. 2010]. This has led to a dilemma in clinical 

cytogenetics, since science is still unable to entirely distinguish pathogenic CNVs 

from benign ones [Lee et al. 2007]. However progress has been made and some 

strategies have been found for interpreting the pathogenic status of CNVs. For 

instance, a CNV is probably pathogenic, if it is a deletion, expansion or alteration 

of a CNV inherited from a parent, or it is identical with the CNV of an affected 

parent. Additionally, de novo CN-deletions over 400 kb in size are always 

genetically important [Rodriguez-Revenga et al. 2007; Miller et al. 2010]. 

Change in chromosomal structure can generate a copy number change, leading 

to a junction between two formerly separated DNA sequences [Hastings et al. 

2009]. Occurrence of the junction shows the way structural change has taken 

place. This usually happens by one of two mechanisms. The recurrent end-points 

such as non-allelic homologous recombination (NAHR), means that CNVs arise 

by homologous recombination between repeated sequences. On the other hand, 

the non-recurrent end-points such as microhomology-mediated events mean that 

the CNVs occur at sites of limited homology of 2-15 base pairs [Hastings et al. 

2009]. 
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Traditional cytogenetic methods such as fluorescence in situ hybridization (FISH) 

and G-banded karyotyping have been used in clinical genetic testing for decades. 

However, they detect CNVs very poorly. In recent years advances have been made 

by conducting high-resolution microarrays on platforms targeting the entire 

human genome. For instance, chromosomal microarray (CMA) performs a 

similar function to G-banded karyotyping but at a more sensitive and higher 

resolution as well as having the ability to detect significant CNVs. However, 

currently no technology can capture all the variation present in the genome by 

itself [Miller et al. 2010; Vissers et al. 2010]. 

On the whole, to date at least 19 recurrent CNVs have been identified to cause ID 

although, some overlap with other cognitive disorders such as autism, epilepsy 

and schizophrenia.  Most of these genomic intervals are due to NAHR [Bauters et 

al. 2009; Ropers 2010]. 

The disease-causing CNVs are continuously collected in databases such as 

ECARUCA (http://www.ecaruca.net) and DECIPHER 

(http://decipher.sanger.ac.uk/) in order to help clinicians, healthcare personnel 

and scientists. 

2.4.2.4  Mendelian disorders 

Intellectual disability is usually caused by single gene defects inherited in 

Mendelian fashion. Most commonly, mutations disrupt the protein-coding 

sequence. It is estimated that major cases of ID are transmitted as an autosomal 

recessive (AR) trait. Alternatively, mutations passed down by an autosomal 

dominant (AD) manner always result in severe ID and are so called de novo 

mutations. Additionally, X chromosome linked (XL) genes and CNVs are 

responsible in 10% of ID cases. 

2.4.2.4.1  Autosomal dominant intellectual disability 

Autosomal dominant intellectual disability (ADID) is a genetically difficult 

research topic because persons with the aforementioned disorder are usually 

severely disabled and do not reproduce. However recent studies have indicated a 

“de novo paradigm” for neurodevelopment and psychiatric diseases including 

intellectual disability. It is calculated that on average, new-borns have 50-100 
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new mutations in genome [Lynch 2009]. These spontaneous germ line mutations 

can have serious consequences when occurring at the transcription level. de novo 

copy number variation (CNV) and point mutations occur in the germline and 

patients who carry these CNVs have negative family history for the traits they 

express. 

Vissers et al. (2010) found unique non-synonymous de novo point mutations in 

nine genes while sequencing the exomes of ten patients with non-syndromic 

intellectual disability and their healthy parents. Authors further investigated 

these mutations and concluded six of them to be pathogenic based on gene 

function, mutation impact and evolutionary conservation. They concluded that 

up to 25% of ID cases may be explained by CNVs in the future. 

Meanwhile, there exist wide ranges of autosomal dominant disorders associated 

to ID like neurofibromatosis, tuberous sclerosis and myotonic dystrophy (DM1) 

occurring in infancy [Ropers 2010]. 

2.4.2.4.2  Autosomal recessive intellectual disability  

Autosomal recessive gene defects are the most important cause behind severe, 

non-syndromic cognitive disorder [Najmabadi et al. 2011]. However, so far 

revealing the role of heterogeneous autosomal recessive intellectual disability 

(ARID) has been difficult due to two facts. Firstly, genetic research has centred in 

developed countries where parental consanguinity is rare. Secondly, big family 

sizes are infrequent in Western societies. Nevertheless, in consequence of 

international research collaboration and fall in costs of next generation 

sequencing (NGS), large genetic studies have taken place in developed countries. 

Parental consanguinity and large families are very common in North Africa, 

Middle East and South Asia. For instance, in Iran, 40% of the families are 

consanguineous and almost 70% of the population is aged 30 or younger [Ropers 

2010; Najmabadi et al. 2011]. 

Estimates about the eventual number of genes underlying ARID vary from the 

hundreds to the thousands. Nonetheless due to slow progress in finding these 

genes in the past, until 2010 just nine genes had been published as being 

causative to non-syndromic autosomal recessive intellectual disability (NS-
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ARID). These genes encode for ionotropic glutamate receptors, signal 

transductions and transcriptional regulation [Basel-Vanagaite 2007; Ropers 

2010].  Thus far, the most remarkable step in this area of human genetics has 

been taken by a large international collaboration between German and Iranian 

research groups in 2011. The large-scale study of Najmabadi et al. (2011) resulted 

in revealing disease-causing variants in 50 novel candidate genes by deep 

sequencing 136 consanguineous families with ARID. In addition, the authors 

found mutations in 23 known ID genes. The genes described are involved with 

neuron- or brain-specific functions, epigenetic, histone structure and 

modification, housekeeping, cell growth and regulation of translation and 

transcription. 

2.4.2.4.3  X-linked intellectual disability 

In X-linked intellectual disability (XLID), which is very heterogeneous, the 

affected gene is maternally inherited. As males inherit only the maternal X 

chromosome, they are at higher risk to inherit the defect from the carrier mother 

and usually express a more severe phenotype. This is one reason for the excess of 

ID in males compare to females. Alas, females can express the defect in a recessive 

manner due to skewed X-inactivation [Skuse 2005]. Currently, it is widely 

evaluated that 12-15% of ID will be explained by gene defects and CNV occurring 

in the X chromosome [Najmabadi et al. 2011; Ropers 2010]. At the same time, 

these defects are considered to be the most frequent cause of moderate to severe 

ID in males. So far nearly 100 genes have been published as being a cause of ID 

when mutated (Figure 2-1). From these genes, 41 underlie non-syndromic XLID 

(NS-XLID) [Tarpey et al. 2009; van Bokhoven 2011; Vera Kalscheuer personal 

communication 2012]. However, the line between syndromic XLID (S-XLID) and 

NS-XLID is sometimes inconstant. For instance, changes in MECP2 (OMIM 

300005) and ATRX (OMIM 300032) cause both S-XLID and NS-XLID 

depending on the mutation [Kaufman et al. 2010; Tarpey et al. 2009]. 

Meanwhile, regardless of the substantial amount of XLID genes published 

internationally, thus far only 5 genes have been published as associating with ID 

in the Finnish population, in addition to fragile X (Table 2-3). 
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Universally, the identified XLID genes affect general intelligence, social-

cognition and emotional regulation, fitting with the proposal that a high density 

of genes for cognitive ability reside on the X chromosome [Turner 1996]. 

Biologically these genes influence regulation at all levels of the cell and they are 

involved in common pathways including RhoGTPase pathways, Reelin-Dab1 

pathway, Ras-MAPK pathway and Notch signalling pathway. In general ID genes 

encode proteins important for early and adult neuronal development and 

differentiation like synaptic plasticity and synaptic vesicle cycling, transcription 

regulation, signal transduction, metabolism, cell adhesion, regulation of actin 

cytoskeleton, chromatin remodelling, membrane modification (Figure 2-1) 

[Basel-Vangaiate et al. 2007; Chiurazzi et al. 2008; Vaillend et al. 2008]. At the 

same time, appearing of epilepsy, autistic spectrum disorders and schizophrenia 

in combination with ID is relatively common. Which explaines many common 

pathways shared by mentioned defects [Guilmatre et al. 2009; von Bokhoven 

2011]. 

Table 2-3: X-linked genes associated with ID in Finnish families. 

Gene/Region Mutation Disorder Reference 

HUWE1 and 
HADH2 region 

Microscopic duplication Moderate ID Froyen et al. 2008 

MECP2 
 P127L, R306C, T158M, 

in total 14 mutations 
Rett syndrome 

 Auranen et al. 
2001 

PAK3  c.1337G>C ID Peippo et al. 2007 

PHF8  F279S 
XLMR and 
cleft palate 

 Koivisto et al. 2007 

PORCN 
 R365Q 

150 kb deletion 

FDH/Goltz 
syndrome 

Froyen et al. 2009 
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Figure 2-1:  X chromosome showing the genes associated to ID thus far. On the right 
are the genes underlying NS-XLID. Colour signifies functional category of the gene.  
Picture is adapted from Ropers (2010). 
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At least two international consortiums exist to unite clinical and molecular 

expertise of X-linked intellectual disability worldwide. The European XLMR 

Consortium (Euro-MRX, http://www.euromrx.com/index.htm), created in 1996, 

is a collaboration between five European institutes. The main agendas of this 

consortium are; to identify genes involving XLID, to improve genetic counselling, 

and to improve DNA diagnostics. Additionally, the consortium aims to simplify 

the exchange of knowledge and materials between participants and third party 

researchers. To date, Euro-MRX has collected clinical and molecular data from 

more than 600 families leading to the identification of 17 novel genes underlying 

XLID. The Genetics of Learning Disability (GOLD) established in 2001, on the 

other hand, is a collaboration of 8 large research groups worldwide. The aim of 

GOLD is to identify new genes and mutations associated with ID and to better 

understand the mechanism behind them. GOLD has already recruited 800 

families throughout Europe, USA and Australia. 

 

2.5 Identification of XLID genes: walking briefly through 

history 

During the past century major developments have taken place in the field of 

genetics, despite the bumpy and long road. Initially, this resulted in revolutionary 

inventions which shaped the development of genetics in two different directions, 

clinically and academically; new approaches have been introduced for identifying 

causes behind genetic disorders like karyotyping in cytogenetics, the study of the 

structure, function and evolution of chromosomes. On the other hand, the era of 

genomes, genotyping, sequencing and developing next generation sequencing 

(NGS) tools has emerged. 

Thomas Hunt Morgan associated chromosomes and the genes residing on them 

to inheritance back in 1911 [Morgan 1911], yet it took nearly a half century before 

Watson and Cricks discovery of the molecular structure of DNA and the proving 

of it to be a double helix, which landed them a Nobel price [Watson & Crick 1953]. 

Three years later two scientific groups independently established the normal 

diploid human cell as containing 46 chromosomes [Tjio & Levan 1956; Ford & 

Hamerton 1956]. A breakthrough which afterwards resulted in the development 
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of new methods for visualising chromosome structure and organization, leading 

quickly to the realization that chromosomes differed from each other  in length 

and the position of their centromere. Eventually, starting from 1959, gain or loss 

in chromosome number was associated with diseases: trisomy 21 was shown to 

cause Down syndrome [Lejeune et al. 1959], loss of sex chromosome was shown 

to cause Turner syndrome (45, X) [Ford et al. 1959] and an extra sex chromosome 

was shown to be the cause behind Klinefelter syndrome (47, XXY) [Jacobs & 

Strong 1959]. Later, in 1963, Lejeune et al. discovered the first inherited deletion 

syndrome, Cri du Chat. 

On the other hand, Crick et al. (1961) demonstrated that the genetic code for 

proteins consisted of triplets of nucleotides. Subsequently, this enabled Gilbert 

and Maxam to sequence a 24 base pair long fragment of DNA as pioneers in 1973.  

In 1983, Kary Mullis and his colleagues invented polymerase chain reaction 

(PCR), one of the most revolutionary discoveries in the history of molecular 

biology and genetics [Saiki et al. 1985]. The list of inventions and methods such 

as first- and next-generation sequencing tools, linkage analysis and array 

technology is on-going [Pettersson et al. 2009; Trachtenberg et al. 2012]. Only 

two decades after the tiny sequencing fragment of 24 bp, Fleischmann et al. (1995) 

had the ability to sequence the entire genome of an organism; the almost two 

million bp long Haemophilus influenzae genome consisting of a single, circular 

chromosome. Further on, in the beginning of the new millennium, the first draft 

of the human genome was published by two independent research groups 

[Lander et al. 2001; Venter et al. 2001]. To date, the genomes of thousands of 

organisms have been sequenced and made publicly available for research. 

Additionally, thousands of genes have been associated to diseases. 

The ground-breaking advances described above, and many others not mentioned 

for lack of time, have enabled new scientific approaches for identifying 

pathogenic genes, CNV and mutations to evolve almost daily, in addition to the 

widely varying list of techniques and the costs required. The most frequently used 

mechanisms in finding causative genes and mutations behind ID include 

cytogenetic methods such as chromosome banding [Seabright 1971], fluorescence 

in situ hybridization (FISH) [Langer-safer et al. 1982] and comparative genomic 

hybridization (CGH) [Kallioniemi et al. 1992; de Vries et al. 2005], genetic 
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mapping like linkage analysis [Lathrop et al. 1985], genomic arrays [Lugtenberg 

et al. 2007; McMullan et al. 2009], next generation sequencing [Mardis 2008]. I 

will now briefly introduce exome sequencing, as it was the capture method used 

in this study. 

2.5.1.1 Exome sequencing 

Exome sequencing is a method for targeted sequencing, capturing and analysing 

the protein-coding region of the genome, the exome. It is based on the 

construction of a shotgun library from genomic DNA, exon enrichment by 

hybridization, parallel sequencing and data analysis (Figures 2-2 & 2-3). Ng et al. 

(2009) developed the aforementioned protocol by sequencing the exomes of 12 

unrelated individuals, since seeking rare and novel variants at the genome-wide 

scale in large cohorts was resource demanding, time consuming and not cost-

effective. Thereafter, hundreds of disease causing genes and mutations has been 

identified by exome sequencing [Hedges et al. 2009; Sun et al. 2010; Pugh et al. 

2012]. One might even say that exome sequencing has been an answer to prayers 

for research of Mendelian disorders including ID [Tarpey et al. 2009; Bamshad 

et al. 2011; Gilissen et al. 2011; Topper et al. 2011]. Since most causative 

mutations in monogenic disorders likely disrupt protein-coding sequences, it is 

also a good method for detecting germline variants resulting in rare or common 

diseases. Additionally, this method is increasingly establishing its position as a 

diagnostic tool [Choi 2009]. But again, still some limitations and technical 

challenges have to be overcome in order to use this method in everyday 

diagnostics.  All of the protein-coding exons in the genome are not known thus, 

the capture probes available target only known exons. Exome sequencing 

generates large amounts of sequencing data which have to be managed properly 

and captured variants interpreted correctly. Furthermore, the sensitivity and 

specificity of the detection of deletions, duplications and tandem repeats has to 

be improved [Ku et al. 2012]. 

Many commercial exome enrichment platforms are available. However three 

major ones include Agilent’s SureSelect Human All Exon 50Mb, 

Roche/Nimblegen’s SeqCap EZ Exome Library v2.0 and Illumina’s TruSeq 

Exome Enrichment. Each platform is scalable to 96-plex robotic automation 

using biotinylated oligonucleotide baits. Although differing in their target choice, 
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bait lengths and density, each platform demonstrates a high level of efficiency 

covering 93-98 % of the exome. Additionally, the aforementioned platforms apply 

a different molecule for capture; Nimblegen and Illumina apply DNA while 

Agilent uses RNA [Clark 2011]. 

 

 
Figure 2-2: Simplified illustration of a genetic study using exome sequencing and 
filtering strategies when searching for candidate genes for a disorder. Figure 
adapted from Biesecker 2010. 
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A schematic in-house pipeline describing the bioinformatics needed for analysing 

the raw sequencing data resulting from whole genome/exome sequencing is 

illustrated in Figure 4-1. 

 

 

Figure000: Schematic illustration showing the basic steps required for exome 
sequencing. In vitro shotgun library is constructed of genomic DNA flanking the 
fragments by adaptors. Then the sequences corresponding to exons (dark blue 
fragments) are enriched by hybridization capture, followed by washing, elution, 
additional amplification and pulling down the captured DNA. Thereafter, DNA 
sequencing is performed using one of the available sequencing platforms such as 
Illumina and the resulting raw data is analysed using bioinformatics (Figure 4-1). 
Figure is adapted from Bamshad et al. 2011. 
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2.6 Pre-mRNA splicing 

Genetic diseases result in wide-ranging syndromes and phenotypic variability. 

One of the significant causes underlying this variability is mutations (i.e. 

missense, nonsense or frameshift mutations) affecting pre-mRNA splicing, 

causing various defects in humans [Faustino & Cooper 2003; Krawczak et al. 

2009]. The diseases caused by a mutation affecting the canonical splice site 

include familial dysautonomia [Slaugenhaupt et al. 2001], Menkes disease 

[Møller et al. 2000], Hutchinson-Gliford progeria syndrome [Eriksson et al. 

2003]. 

Briefly, human genes, like other mammalian genes, consist of short protein 

coding regions, the exons, being interrupted by much larger non-coding regions, 

the introns. To form mature RNA, the first step of protein synthesis, the introns 

have to be removed from functionally differing exons. This process is called pre-

mRNA splicing and is regulated by complex macromolecular machinery, the 

spliceosome, which includes 5 small RNAs and dozens of polypeptides [Cartegni 

et al. 2002]. 

Introns include several conserved sequences which are crucial in the splicing 

process: the GT and AG dinucleotides at the 5’ (donor) and 3’ (acceptor) exon-

intron junctions, the A-branch site and the pyrimidine rich site [Keller & Noon 

1984]. The splicing process begins by the spliceosome precisely recognizing the 

donor splicing site and binding nearby to it, followed by cleavage of the intron at 

the 5’-site and formation of a lariat at the A-branch site (Figure 2-4). This is 

followed by the intron being cleaved at the 3’-site, resulting in the two exons being 

ligated together. The splicing process ends with the removal of the spliced mRNA 

from the spliceosome and degradation of the intron. During the splicing process, 

the spliceosome undergoes several conformational changes which are regulated 

at different levels [Nilsen 2003]. 
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Figure 2-2: Pre-mRNA splicing simplified. First, donor and acceptor sites are 
recognized, the lariat structure is created and joined at the branch point. Second, 
the lariat intron is released and the exons are ligated together. Figure is a rewrite 
from Douglas and Wood (2003). 

For a long time it was believed that the number of genes correlates with the 

number of proteins. However, after human genome sequencing was completed 

and the number of genes was proven to be around thirty thousand [Lander et al. 

2001; Venter et al. 2001], the questions regarding genomic complexity became 

more inevitable than ever. Amongst other mechanisms investigated as potential 

sources of this genomic complexity, alternative splicing received major attention 

and nowadays has established its position as the underlying cause. Since the 

number of genes was much lower than the number of proteins and thus indicated 

that the number of expressed sequences, the mRNA forms to be much higher than 

the actual gene number. Nowadays, it is estimated over 90% of human protein-

coding genes express more than one mRNA variant, derived through alternative 

splicing and 80% of these splicing variants cause changes in the encoded protein 

product [Pan et al. 2009].  Additionally, Lopez-Bigas et al. (2005) hypothesized 

that up to 50% of pathogenic mutations affect splicing at some level. These 
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mutations (Figure 2-5) can result in complete or partial skipping of an exon or 

intron, introducing a new splice site or truncating the protein product entirely, 

changing the protein isoform by disrupting splicing elements or splicing 

machinery, mis regulation of mRNA by affecting splicing regulators [Faustino & 

Cooper 2003]. 

Understanding mechanisms and effects of splicing mutations may lead to 

answers to many human diseases while also leading to development of new 

therapeutic clinical applications [Douglas & Wood 2011]. Although, some 

therapeutic approaches utilizing splicing already exist, such as antisense 

oligonucleotides, trans-splicing and small molecule drug therapy [Wang & 

Cooper 2007]. 

 

Figure 2-3: Classes of known disease causing pre-mRNA splicing defects. (A) 
Mutations that disrupt classical splicing signals caused by a primary defect in pre-
mRNA splicing.  The result is expression of unnatural mRNAs, truncated or 
unstable proteins and a shift in the reading frame. (B) Mutations disrupting 
alternative splicing. (C) Mutations disrupting the basal splicing machinery. (D) 
Mutations affecting splicing regulation: myotonic dystrophy and several forms of 
cancer arise this way. Picture is adapted from Faustino and Cooper (2003). 
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3 AIM OF THE STUDY 

To identify mutations in Finnish families with multiple affected male patients 

applying exome (coding region) sequencing for the X chromosome.  
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4 MATERIALS AND METHODS  

4.1 Family material 

Two large Finnish pedigrees (Figures 5-1 & 5-3) in which at least three males have 

a non-syndromic intellectual disability (NS-ID) participated in this study. The 

families have been diagnosed at the Department of Medical Genetics, Family 

Welfare Federation, Helsinki. Despite extensive clinical studies, chromosomal 

analysis, Fragile-X and metabolic profiling, the underlying cause has remained 

unknown. The clinicians responsible for assembling the patients and postulating 

the NS-ID diagnosis were docent Mirja Somer, MD Kristiina Avela and MD 

Maarit Peippo. 

The study has approval from the Ethical Committee of the Helsinki University 

Central Hospital (HUS) and its laboratories (HUSLAB). Written informed 

consent was obtained from all participating individuals and/or their parents. 

DNA from anonymous Finnish blood donors was used as control samples. 

4.1.1 Clinical findings 

In the first family (D172), there are three affected male patients who all have mild 

to moderate ID. In the second family (D174), the patients have severe ID with 

autistic features and other dysmorphic features such as brachycephaly, deep set 

eyes and prominent supraorbital ridges. They appear to have epilepsy, short 

stature, malposition of the feet and behavioural problems such as self-injury and 

aggressive outbursts. 

4.2 Laboratory methods 

4.2.1 DNA and RNA isolation 

10 ml of peripheral blood from the participants was collected in ethylene diamine 

tetra-acetic acid (EDTA) vials and stored at -20ºC. DNA was extracted from the 

blood samples using a non-enzymatic DNA extraction method. The HUSLAB 

protocol MP025 with a slight modification; Igepal was used to disrupt cell 

membranes instead of nonident. The purified DNA samples were stored at -20ºC. 
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The QIAGEN PAXgene blood miRNA system was applied for RNA extraction. 

This procedure provides a complete solution for stabilization and purification of 

high-quality total RNA >18 nucleotides. 

Whole blood from the affected members in family D172 was collected in PAX-

gene Blood RNA tubes. After 72 hours of incubating at room temperature (RT), 

they were stored at -20ºC. The PAXgene blood miRNA Kit was used for purifying 

RNA. 

NanoDrop spectrophotometer ND-1000 was utilised to measure the 

concentration of the extracted DNA and RNA samples. The Agilent 2100 

Bioanalyzer, conjunction with the Agilent RNA 6000 Nano Kit [Schroeder et al. 

2006], was used for integrity and quality control of the extracted RNA samples. 

RNA samples were stored at -80ºC. 

4.2.2 Exome sequencing 

A DNA sample of the index patient in each family was sent to Max Planck Institute 

for Molecular Genetics in Berlin, Germany where exome sequencing of the X 

chromosome was performed using Agilent SureSelect Human X chromosome kit 

and single-read 76 nt NGS on the Illumina Genome Analyzer II (GAII) sequencer 

to identify genetic variants. 

In this method [Najmabadi et al. 2011] exons from homozygous intervals were 

enriched with custom-made Agilent SureSelect DNA capture arrays. Afterwards, 

they were sequenced on the Illumina GAII which yields 76-bp single reads and 

covers >98% of the targeted exons. After applying many bioinformatics tools to 

process the raw data (Figure 4-1), the resulting sequence was aligned to the 

human reference genome (hg18) to predict the variants. At this stage, low-quality 

sequence reads were removed and different algorithms were used for detecting 

reads that could not be aligned to the reference genome, such as smaller 

insertions and deletions. In addition, all sequence variants were filtered against 

dbSNP, the 1000 Genomes Project, exomes of 200 Danish control individuals and 

the in-house database in Max Planck Institute to remove presumably non-

pathogenic changes that have been reported previously. For detecting all 

pathogenic changes, that have been described before, the sequence data was 
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filtered against the OMIM catalogue and the Human Gene Mutation Database 

[HGMD]. 

 

Figure 4-1: Schematic illustration of processing the data received from the Illumina 
Genome analyser. The workflow describes the in-house pipeline developed in Max 
Planck institute for analysing the raw sequence reads resulting from whole genome/ 
-exome sequencing. The pipeline includes the bioinformatics steps such as variant 
calling, filtering and prioritization. The scheme is adapted from Najmabadi et al. 
(2011). 

 

4.2.3 Segregation analysis 

In order to identify the disease-causing mutation, the segregation of the identified 

variants was analysed in the families. To verify the frequency of the variants, DNA 

from about 130 anonymous blood donors were analysed. Conventional Sanger 

sequencing was performed to analyse whether the mutation segregated with ID 

in the studied families. 
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4.2.4 Genotyping and Sequencing 

Genotyping was performed by conducting polymerase chain reaction (PCR) in 15 

µl volume using different sets of primers (Table 4-1). The PCR reaction mixture 

for patient samples consisted of 24ng of genomic DNA, 6 pmol of each primer, 3 

nmol of each nucleotide, 0.3 U of Dynazyme II polymerase and 1.5 µl of 10x 

optimized Dynazyme buffer. For control samples with unknown concentration, 1 

µl of DNA was analysed using the above protocol. Conditions for some of the 

genes are shown in appendix. Polymerase enzyme, nucleotides and reaction 

buffer were ordered from Thermo SCIENTIFIC (Helsinki, Finland) and the 

primers from Oligomer (Espoo, Finland). 

PCR and sequencing reactions were conducted with a 2720 Thermal Cycler, 

Applied Biosystems or C1000 Thermal cycler, Bio-Rad. When using the former 

thermal cycler, amplification conditions for PCR reactions were as follows: first 5 

min of denaturation at 95ºC (enzyme was added during this incubation to 

increase specificity of the PCR product), then 35 cycles of DNA amplification 

containing (30 sec denaturation at 95ºC, 30 sec of annealing at primer specific 

temperature and 30 sec of extension at 72ºC), then 10 min of elongation at 72ºC 

and finally cooling down to 10ºC. When applying Bio-Rad’s machine, the same 

temperatures and steps were used for amplification except, much less time was 

needed for each step and the enzyme was added to the master mix. 

Amplified samples were separated by conducting electrophoresis on a 1.5% 

agarose gel with ethidium bromide to verify the success of the reactions. Size 

marker O’RangeRuler 100 bp DNA Ladder (Fermentas Life Sciences, USA) was 

used to verify the size of amplified products. 

The PCR products were purified using USB® ExoSAP-IT® PCR Product Cleanup 

(Affymetrix, USA) according to manufactorer’s protocol. Since ExoSAP-IT® 

contains both exonuclease I and shrimp alkaline phosphatase, no buffer exchange 

is needed. The protocol proceeds as follows: solution containing 2 µl of ExoSAP-

IT®  and 5 µl of PCR product is, first incubated at 37ºC for 15 min to degrade 

remaining primers and nucleotides, then at 80ºC for 15 min to inactivate 

ExoSAP-IT®. 
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Following clean-up, PCR products were sequenced using the BigDye® 

Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, USA) according to 

manufacturer’s protocol. Reaction volume of 10 µl included (1.8 µl of 5x 

sequencing buffer, 0.65 µl of selected primer, 0.35 µl of BigDye® enzyme, 2 µl of 

purified DNA and 5.2 µl of MQ). The sequencing reaction was performed as 

follows: 25 cycles of (10 sec denaturation at 96ºC, 5 sec primer annealing at 

primer specific temperature and 4 min of extension at 60ºC). All of the patients 

were sequenced in forward (5’-3’) and reverse (3’-5’) directions and the control 

samples in just one direction. Following this, the products were taken to the 

sequencing laboratory at FIMM (Finnish Institute of Molecular Medicine) to 

conduct capillary sequencing as an outsourcing service. There, the products were 

further purified from excess dye terminators with DTR v3 filter plates (Edge 

Biosystems, Gaithersburg, MD) and resolved on an ABI 3730 capillary sequencer. 

The sequencing data was retrieved from the user account portal from FIMM and 

was analysed using Sequencher 4.10.1 software (Gene Codes Corporation, USA) 

and compared to control sequences obtained from healthy individuals or from 

the following databases: NCBI, EMBL-EBI and UCSC. 

4.2.5 Detection of inactivated X chromosome 

The human androgen-receptor gene (AR) [OMIM 313700], which is located on 

the X chromosome contains a highly polymorphic trinucleotide, CAG repeat on 

its first exon. Allen et al. (1992) showed that the methylation of the HpaII site 

near this repeat correlates with X-inactivation. Thus, the methylation status of 

this site was characterized in the females of both families, when DNA was 

available, using FastDigest® HpaII restriction enzyme (Fermentas Life Sciences, 

USA). 

10 µl (5 µg) of genomic DNA was digested with 5 µl of FastDigest® enzyme. The 

reaction, total volume 50 µl, additionally contained 30 µl of nuclease-free water 

and 5 µl of 10x FastDigest® buffer. After gentle mixing, the reaction was 

incubated at 37ºC for 5 min to activate the enzyme and then heated for 5 min at 

65ºC to inactivate the enzyme. After this, two PCR reactions were conducted, one 

for digested and one for undigested DNA using the primer set for the AR gene 

(Table 4-1) and the protocol described above. On the inactive X chromosome, the 
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methylated DNA is resistant to HpaII digestion, allowing it to be PCR amplified, 

meaning that product is obtained only from the inactive X chromosome. Thus, 

the results can be analysed by comparing the digested and undigested products 

on the agarose gel. 

4.2.6 Bioinformatics 

Primer designing tool, Primer3 [http://frodo.wi.mit.edu/primer3/] was used for 

designing the primers. Sequence comparisons and searches were performed with 

NCBI-BLAST [http://blast.ncbi.nlm.nih.gov/Blast.cgi], Ensembl-BLAST/BLAT 

[http://www.ensembl.org/Multi/blastview] and EMBL-EBI’s T-Coffee Sequence 

Alignment tool [http://www.ebi.ac.uk/Tools/msa/tcoffee/]. 

Evolutionary conservation of the 5 amino acid residues (4 described in Wu et al. 

2007 and one from this study) in 9 organisms were studied by obtaining correct 

protein sequences from the open source software BIOMART. Afterwards, the 

sequences were blasted by protein-protein blast (blastp) and aligned using 

NCBI’s Constraint-based Multiple Protein Alignment Tool (COBALT). 
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Table 4-1: Primers used in the study. The same primers were used for both PCR 
and Sanger sequencing. 

GENE FORWARD (5’3’) REVERSE (5’3’) 
T(ºC

) 

AR 
GCTGTGAAGGTTGCTGTTCCTCA

T 

TCCAGAATCTGTTCCAGAGCGTG

C 
58 

DLG3 CCAGAGTGCACCTGTACCAA CTAATGGAGACCCCCAAACA 55 

ERCC6L AGAAGAAGGGGTGGAGGAAA CCAACCAACTGTTCACCAGA 58 

ESX1 CACCCATGGTCCCTATGC GGCCAGTGTGAGGCACAT 58 

F8 GGGCATATGCTCCAGTACTTC GCTTGGTTTGATTTCCCAAG 58 

GPR112 GCACAAAGACAACAAAAATGG TCGTAACAGCCGACTGAGATT 58 

GRIA3 CTTAGATCTGGCCCCTCTGG TCTCCACAGTCAGGAAAGCA 55 

LRCH2 GGAGACCTTCCTTAGTCAAGC ACAAACCTGTGCTGGTGGTA 63 

OR13H1 CCTGTTCTGATACCAGCCTCA TGGAGTGAGCGAATCCTTATG 63 

PLXNA

3 
CAGTGCAGCCTCCTCTGTTA TCCTGGAAGGAGCACTCG 63 

TAF1 TCTTGATGACCCAGAATCTGTC CACAGCCCTGTAGCATGTTG 60 
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5 RESULTS 

5.1 Identified variants 

Exome sequencing of the X chromosome of the index patients resulted in two 

potential variants for family D172 and a total of 9 variants for family D174 (Table 

5-1). All candidate genes were analysed for segregation in the respective families. 

To study the rarity of the variants, the frequency in anonymous blood donors was 

analysed using Sanger sequencing. The UCSC Genome Browser was used to 

convert the positions of given variants to hg19 annotation, since they were given 

using annotation hg18. Additionally, genetic databases such as Ensembl, NCBI, 

VEGA and dbSNP were screened to locate the found variants, discover 

information concerning the genes involved and deciding the genes of interest. 

The X chromosome inactivation pattern evaluation in the females of both families 

showed no correlation with the phenotype since product was obtained from one 

X chromosome in all cases. 

5.1.1 Family D172 

Two potentially causative variants were found in family D172 (Table 5-1, Figure 

5-1). One is in the zinc finger and BTB domain containing 33 (ZBTB33) gene 

located on Xq23, and the other in the disc-large homolog 3 (DLG3) gene 

positioned on Xq13.1. The first variant was ruled out since it was a common SNP 

(dbSNP: rs192480559) although validation data is not available in the database. 

On the other hand, this gene has not been associated to ID before. 

A novel splice mutation in the disc-large homolog 3 (DLG3) gene was found to be 

the best candidate gene in family D172. Based on the position, the potential splice 

site mutation located on the first exon-intron break point (500+1 G>C) of DLG3 

(Figure 6-2) co-segregated in the family and was absent in 124 control samples. 

Graphic illustration of the capillary sequencing result is shown in Figure 5-2. The 

effect of the splice site on the function of the gene has yet to be determined by 

cDNA sequencing.  
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Table 5-1: Results from exome sequencing, showing 11 variants in total. 
Synonymous means that the base change does not affect the amino acid. XLID 
means the gene is known ID gene. 

Family 
Gene Position UCSC hg19 

Position on 
X Mutation Variation 

D172 

DLG3 X:69665409-69665409 q13.1 synonymous XLID 

ZBTB33 X:119389090-119389090 q24 I607S rs192480559 

D174 

TAF1 X:70680560-70680560 q13.1 N1789S - 

ERCC6L X:71425175-71425175 q13.1 G1148R rs78660817 

ESX1 X:103495171-103495171 q22.2 P320R rs191202058 

LRCH2 X:114414073-114414073 q23 E261K rs111460344 

GRIA3 X:122561802-122561802 q25 G630R XLID 

OR13H1 X:130678678-130678678 q26.2 G211W - 

GPR112 X:135426958-135426958 q26.3 F365I - 

PLXNA3 X:153693126-153693126 q28 P653L rs139336954 

F8 X:154158200-154158200 q28 K1289E - 
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Figure 5-1: Pedigree for family D172 showing segregation of the mutation. Undefined means 
males have some delay in development, but they have different phenotype than the males affected 
with ID. 

 

Figure 5-2: Sequence chromatogram showing the splice mutation in exon-intron 
breakpoint (the splice donor site) 500+1 G>C in DLG3 for family D172. The 
chromatogram of the index patient is shown above, carrier in the middle and wild 
type below. The mutation is indicated by the rectangle.  
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5.1.2 Family D174 

A total of 9 variants were reported in the family D174 (Table 5-1). One variant in 

each of the following genes: TAF1 RNA polymerase II, TATA box binding protein 

(TBP)-associated factor (TAF1), excision repair cross-complementing rodent 

repair deficiency, complementation group 6-like (ERCC6L), ESX homeobox 1 

(ESX1), leucine-rich repeats and calponin homology (CH) domain containing 2 

(LRCH2), olfactory receptor, family 13, subfamily H, member 1 (OR13H1), G 

protein-coupled receptor 112 (GPR112), plexin A3 (PLXNA3), coagulation factor 

VIII, procoagulant component (F8) and glutamate receptor, ionotropic, AMPA 3 

(GRIA3). Despite finding a dbSNP-entry for some of the aforementioned variants 

(Table 5-1), all of them were sequenced. The mutations in genes ERCC6L, F8, 

GPR112, LRCH2, OR13H1 and PLXNA3 did not segregate with ID in the family. 

By contrast, the variants in four genes; LRCH2, TAF1, ESX1 and GRIA3 co-

segregated in the studied family (Figure 5-3). The variants were found in the 

affected persons but absent in healthy males while the mothers of the affected 

male patients were carriers. However, putative mutations in two of the genes 

turned out to be common SNPs, since TAF1 was found in 3.5% of control samples 

and LRCH2 in 3.2% of patients manifesting autism (in-house samples used). 

Additionally, three carriers of the variant in LRCH2 were found after sequencing 

90 blood donor samples. The mutation in ESX1 gene is located at 27bp sequence 

which normally repeats 12 times in the gene [Guan 2005]. It is very unlikely that 

the variant would be pathogenic. On the other hand, ESX1 has not been 

associated to any disease to date. Thus, it was ruled out as being a common SNP 

without further sequencing. The variant in last gene was absent in 135 control 

samples. Thus, the novel missense mutation G>C at the 5’ site of exon 12 (Figure 

6-3) changing glycine at codon 630 to arginine (G630R) in GRIA3 is the best 

candidate gene to cause ID in family D174. Results of capillary sequencing are 

illustrated graphically in Figure 5-4. 
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Figure 5-3: Pedigree for the family D174 showing segregation of the mutation. 

 

Figure 5-4 Sequence chromatogram showing the novel mutation 2180 G>C in 
GRIA3 for family D174. The chromatogram of the index patients is shown above, 
carrier in the middle and wild type below. The mutation is indicated by the 
rectangle. 
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6 DISCUSSION 

During this study, novel mutations in DLG3 and GRIA3 were identified in two 

Finnish families with X-linked intellectual disability by applying exome 

sequencing. Both of these genes have previously been shown to cause XLID. 

However, this is the first time that mutations in the aforementioned genes are 

associated to ID in the Finnish population. Finding causes underlying ID is not 

just important for healthcare but also for the families involved and the society 

overall. Despite the fact that rapid advances have taken place in identifying ID 

genes in recent years, majority of patients is far from having a molecular 

diagnosis. 

6.1 A novel mutation in discs, large homolog 3, Drosophila 

(DLG3)  

During this study we have found a novel splice mutation in the DLG3 gene (590+1 

G>C) and infer it to be the causative mutation in family D172 with mild 

intellectual disability (Figure 6-2). Previously, a total of five mutations have been 

reported in DLG3. Tarpey et al. (2004) found two truncating mutations, two 

splicing mutations and one single nucleotide insertion in DLG3 in four families 

while screening 329 families with moderate to severe XLID in which at least two 

males were affected. Zanni et al. (2010), on the other hand, identified a splice site 

mutation in one family while studying 300 families with moderate to severe ID 

in which at least two males were affected. More detailed descriptions of 

previously identified mutations in DLG3 are illustrated in Table 6-1 and the 

position of mutations on the gene including the novel mutation found during this 

study is illustrated in Figure 6-2. Functional studies and mRNA analysis have to 

be carried out to discover the impacts of identified mutation on the protein 

product.  
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Table 6-1: Mutations described in DLG3 to date. 

Mutation Change Disorder Reference 

IVS6-1 G  A 
Splice site mutation, 
frameshift, stop codon at 
position 357 

Moderate-
Severe ID 

Zanni et al. 
2010 

Frameshift mutation 
causing stop codon at 
position 377 

Removes 54% of the 
normally translated protein 

Moderate-
Severe ID 

Tarpey et al. 
2004 

1218+5G  A causing 
frameshift 

Splice site mutation, causes 
frameshift by dropping 26 bp 
from exon six 

Moderate-
Severe ID 

Tarpey et al. 
2004 

Single-nucleotide 
insertion 
1325insC-X 

Single nucleotide insertion 
on exon 7 

Moderate ID 
Tarpey et al. 
2004 

1535+1G  A causing 
stop codon 

Splice site mutation, Causes 
stop codon and drops exon 8 
out of transcript 

Moderate ID 
Tarpey et al. 
2004 

1606 C  G 
Nonsense mutation, 
Causes a stop codon 

Severe ID 
Tarpey et al. 
2004 

 

DLG3 is the drosophila large homolog 3 gene, positioned on the positive strand 

of the X chromosome at location q13.1. The genomic size of the gene is over 60 

kbp, consisting of 19 protein coding exons [UCSC]. DLG3 encodes synapse-

associated protein (SAP) 102 isoform a, which is a member of the membrane-

associated guanylate kinase (MAGUK) protein family [Tarpey et al. 2004]. Other 

members of SAPs include SAP90; also called postsynaptic density (PSD) 95, 

SAP97 and PSD93. SAP102 shares a similar structure with the aforementioned 

proteins. All contain three PDZ domains consisting of 90 amino acid repeats in 

the amino-terminal part, followed by an src homology domain; the SH3 domain 

and a carboxyl-terminal guanylate kinase-like domain (Figure 6-1) [Müller et al. 

1996]. 

Like all SAP proteins, SAP102 is expressed comprehensively in the brain, playing 

a crucial role in early development. It is found in axons and dendrites being 

additionally abundant in the cytoplasm and synapses. SAP102 is crucial for early 

postnatal brain development since it is expressed in almost all synapses at a high 

level during the first six months of development and decreases expression after 

this period. The expression of other SAP proteins such as PSD95 and SAP97 on 

the other hand is low after birth and increases after six months of age. 
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Furthermore, SAP102 is involved in signal transduction, especially during 

synapse maturation by PDZ domains interacting directly with NR2 subunits of 

postsynaptic glutamate receptors, in particular the N-methyl-D-aspartate 

(NMDA) receptor and forming protein complexes. In addition, PDZ domains of 

SAP102 also interact with SynGAP, a GTPase activating protein [Sans et al. 2000; 

Zanni et al. 2010]. 

The NMDA receptor is one of the essential neurotransmitter receptors in the 

brain. It plays a key role in functions such as brain plasticity by regulating 

excitatory synaptic transmission, learning, memory and cognitive development, 

signalling pathways and synaptic maturation and development. NMDA receptors 

have been associated to long-term potentiation and long-term depression [Zito & 

Scheuss 2009]. McCullumsmith et al. (2007) showed significant reduction of 

RNA of NMDA and SAP 102 in the hippocampus of individuals suffering from 

bipolar disorder.  

To date, all of the mutations found in DLG3 (Figure 6-1 & 6-2) introduce a 

premature stop codon between the second and third PDZ domain [Zanni et al. 

2010] and within or before the third PDZ domain [Tarpey et al. 2004]. 

Identification of the aforementioned mutations linked DLG3 as the first ID gene 

directly to the NMDA receptor and the involved trafficking. However, despite the 

fact that this connection explains the underlying cause of ID occurring in studied 

males, yet little is known about the pathways and pathophysiology involved.  

 

Figure 6-1: Protein domains of SAP102 with positions of mutations 
identified to date. Adapted from Zanni et al. (2010) 
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Figure 6-2: The position of the DLG3 gene on the X chromosome and the mutations 
and amino acid changes on this gene associated to ID so far. The numbers are based 
on the transcript DLG3-001 from Ensembl genome browser, GRCh37 (hg 
annotation 19). X=stop codon. (*)=present study, (**) = Tarpey et al. 2004, (***) = 
Zanni et al. 2010. For example, 590+1 G>C means: 1 base from the donor site of exon 
1 on intron, guanine changes to cytosine. Mutation nomenclature discussed in den 
Dunnen & Antonarakis (2000). Picture is not in scale. 

6.2 A novel mutation in glutamate receptor, ionotrophic, 

AMPA (GRIA3)  

In the second family, D174, a novel missense mutation (G>C) leading to glycine 

at codon 630 changing to arginine (G630R) in glutamate receptor, ionotrophic 

AMPA 3 (GRIA3) was shown to completely segregate with XLID in the pedigree 

(Figure 5-3). Almost 307 kbp long GRIA3 is located on the long arm of X 

chromosome at position q25. The most abundant transcript of the gene contains 

16 exons [Gécz et al., 1999; Wu et al., 2007]. It encodes ionotropic glutamate 

receptor AMPA subunit 3 (iGluR3) and has been previously linked to X-linked 

intellectual disability. However this is the first time GRIA3 mutation is found in 

the Finnish population. To date a few genetic and functional studies have shown 

mutations in GRIA3 to be associated with mild to moderate cognitive impairment 

in humans. In 1999 Gécz et al. characterized the gene and linked it to both XLID 

and bipolar affective disorder. Wu et al. (2007) described one whole gene deletion 

and four missense mutations in GRIA3 when sequencing 400 males with XLID. 

Additionally, to date three duplications (Chiyonobu et al., 2007; Bonnet et al., 

2009, 2011) have been reported in GRIA3 to underlie the intellectual disability in 

affected individuals. There exists a wide variation in the severity of the learning 
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disability among the GRIA3 patients reported previously although seven of the 

eight are moderately intellectually disabled. However, affected males carrying 

missense mutation G630R in the Finnish family, exhibit a severe intellectual 

disability with behavioural disturbances (Figure 6-3). 

The genomic organization of GRIA3 gene was determined as the first human 

glutamate receptor subunit gene. Comparing gene structure of human GRIA3 to 

other genomes indicates it to be highly conserved during evolution. For instance, 

humans share almost 100% identity of exon-intron boundaries with mouse 

GluR2 and a high degree of conservation with GRIA3 [Köhler et al. 1994]. All of 

the amino acid residues associated to XLID in GRIA3 to date including the one 

recognized during present study show evolutionary conservation (Table 6-2). 

Glutamate receptors (GluRs) are divided in ionotropic (iGluRs) containing 

cation-specific ion channels and metabotropic (mGluRs) receptors. The iGluRs 

are subdivided into N-methyl-D-aspartate (NMDA) receptor channels, kainate 

and α-amino-3-hydroxy-5-methyl-4-isoxazolpropionate (AMPA). All have in 

common a large extracellular N-terminus and four hydrophobic membrane 

segments (Figure 6-4). Additionally they contain several evolutionary distinct 

modules. 

 

Figure 6-3: Location of the point mutations and the amino acid changes in the 
GRIA3 gene found to date. The numbers are based on the transcript GRIA3-201 
from Ensembl genome browser, GRCh37 (hg annotation 19). (*) = present study, (**) 
= Wu et al. 2007. Mutation nomenclature discussed in den Dunnen & Antonarakis 
(2000). Picture is not in scale. 
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Table 6-2: Evolutionary conservation of the amino acid residues associated 
to ID to date using COBALT. Modified from Wu et al. (2007). 

Species Amino Acid Residues 

H.sapiens R450 G630 R631 M706 G833 

E.caballus R G R M G 

P.troglodytes R G R M G 

C.porcellus R G R M G 

C.familiaris R G R M G 

R.norvegicus R G R M G 

M.musculus R G R M G 

D.rerio K G R M G 

G.gallus K G R M G 

 

 

 

Figure 6-4: Location of iGluR3 missense variants in males with XLID. Schematic 
diagram shows the location of the variant in iGluR3 found in the current study (*) 
and four missense mutations described in Wu et al. (2007). 
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The AMPA receptor has four subunits, GluR1 - GluR4 which are about 900 amino 

acids long sharing 68-73 % sequence identity. Glutamate excites most neurons of 

the central nervous system (CNS) of mammals and their receptors are closely 

involved in the mammalian brain function. They mediate most of excitatory 

neurotransmission in brain and are involved in plastic changes in synaptic 

transmission. However in some cases glutamate can be very toxic. For instance, 

ischemia, head trauma or epileptic seizure results in excessive activation of GluRs 

and thus leads to the death of central neurons in the brain [Ozawa et al. 1998; 

Gécz et al. 1999]. 

In the long term, results achieved during this study will facilitate carrier testing 

and prenatal diagnosis in the families. They can be used in genetic counselling 

leading to new forms of family support by society. Furthermore, these results can 

lead to functional studies and eventually to drug discovery. 

Actually, the impacts of this study have already been shown. For instance a young 

woman in family D174 was proven to be carrier of the mutation and thus she has 

already attended genetic counselling. In family D172, on the other hand, a young 

woman planning pregnancy was confirmed not to carry the pathogenic mutation. 

In addition these families have reached an answer for questions asked more than 

two decades ago about the causes underlying ID occurring in the pedigrees. Some 

research laboratories want that the mutations identified in a research laboratory 

have to be confirmed in an accredited service laboratory. In our laboratory this 

has not been possible. Thus we have given the result to genetic counsellors 

provided by a sentence that the study has been performed in a scientific 

laboratory. 

In conclusion, new mutations found in DLG3 and GRIA3 further confirm and 

extend the importance of these genes in cognitive development such as 

intellectual disability. The results achieved show that mutations in 

aforementioned genes are pathogenic resulting in moderate to severe ID and thus 

underlying the XLID in affected males in the studied families. In addition, present 

study proves exome sequencing to be an excellent method for studying genetic 

causes underlying XLID. 
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7 FUTURE PROSPECTS 

Development of whole exome and genome sequencing methods has substantially 

improved the identification of new gene mutations in patients. In severe 

intellectual disability it is likely that the causative mutation is located on the 

protein coding site of the genome, which represents just 1.5% of the whole 

genome. Based on the preliminary results by Vissers et al. (2010) the number of 

de novo events in ID seems to be larger than previously thought. If so, these 

mutations do not have a recurrence risk to the other siblings in the families. 

However if the mutation has occurred in one of the parent’s germ-line, all siblings 

are at risk. 

The high frequency of de novo mutations can be explained by recent evolutionary 

studies. Lynch (2009) discovered that in the human genome de novo mutations 

take place more frequently than previously estimated. According to his statement, 

an average new-born is born with 50-100 new mutations of which 0.86% are 

novel amino acid altering mutations. A mutation can cause a disease when located 

on a functionally important site of a gene. Recent studies indicate that de novo 

mutations are important causes of ID. Although showing the variability of the 

human genome, it has made the development of genetic tests very challenging. In 

practice, genetic tests are available only for the most common genetic syndromes, 

such as fragile X and RETT syndrome. Whole exome sequencing enables us to 

identify individual mutations very accurately. Thus, exome sequencing is the 

most accurate diagnostic method in genetically heterogeneous ID. 

One of the future aspects in this field is to go beyond the mutations, to investigate 

the effect of mutations on the function of the protein, or the changes in regulatory 

elements. After finding these changes, the next step could be developing a cure to 

prevent or minimize the consequences of mutations, such as drug or dietary 

changes, as has been done with PKU. Before, PKU resulted in severe ID, but 

nowadays the phenotypic consequences are prevented by specific dietary 

restrictions. 

One of the major issues in the field of genetics in the future, specifically 

concerning whole genome and exome sequencing will be the ethics. Every 
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genome has hundreds of silent mutations that may be benign and remain without 

any effect throughout a lifetime. How do we interpret these mutations? Or, what 

do we do when a study results in a finding we were not searching for? For instance, 

imagine a situation when a young man comes to a genetic counsellor for testing 

of a genetic disease running in his family. Since whole genome testing is cost 

effective, the clinician decides to apply it. As a result, it turns out that the person 

has a mutation associated to Parkinson’s disease. In this situation the clinician 

has an ethical dilemma for doing the right thing concerning the patient: inform 

the patient about the mutation and a disease he might get in the future, or just 

ignore the result, since he sought treatment for something else. The 

aforementioned situation is in the case when the test is done properly and under 

the supervision of an expert. What then, when a person orders a genetic test via 

the internet commercially and as a result, the person seems to have a mutation 

associated to breast cancer. Without proper knowledge and expertise, 

misunderstanding the results cannot be avoided. On the other hand, at what point 

does a person have the right to be informed when a relative is diagnosed as a 

carrier of a genetic disease? Or, when information concerning a genetic defect 

should be available to employers and insurers [Reinders 2003]? In addition, 

when should the results from a genetic study be returned? If not, how should they 

be managed? These and many more questions have to be answered by researchers 

and policy makers to develop a framework and guidelines for managing data after 

conducting a genetic study [Bamshad et al. 2011]. 

A fall in the costs of high-throughput sequencing technology has made whole 

genome and whole exome sequencing available for researchers, healthcare 

professionals, and through commercial applications, also for citizens. This has 

raised questions concerning managing, storing and interpreting the sequencing 

data produced since one genome creates an enormous amount of data, let alone 

hundreds or thousands genomes. In any case, clinicians and researchers in the 

field of genetics have a great task in avoiding misinterpreting the enormous 

information brought to them by whole genome and exome sequencing. However, 

there exists light at the end of the tunnel. New tools and data management 

pipelines are being invented constantly, in addition to the swiftly developing field 

of bioinformatics.  
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10 APPENDIX 

Tables show the conditions in which the remaining genes for family D174 were 
analysed. 

  x 1 

Precision melt supermix (Bio-Rad) 5 

Primer For (XuM) 1 

Primer Rev (XuM) 1 

H2O 1 

TOTAL 8 

 

Primers Concentration Annealing 
Temp. 

Product 
Melt 
Temp. 

For. Anneal 
Temp. 
Sequencing 

Rev. Anneal 
Temp. 
Sequencing 

ERCC6L 2uM 57,8 82,6 57,8 57,8 

LRCH2 20uM 62,6 77,6 60,0 60,0 

OR13H1 2uM 62,6 79,0 60,0 60,0 

GPR112 2uM 57,8 77,6 57,8 57,8 

PLXNA3 10uM 62,6 85,6 60,0 60,0 

F8 5uM 57,8 77,0 57,8 57,8 

 

Primers Lower Normalisation 
Bar 

Upper Normalisation 
Bar 

Reference 
Cluster 

LRCH2 74,7–76,2 79,0–80,5 A/G 
 
 
 

 

 

 

 

 

 

  

PCR Cycling Protocol - ERCC6L,GPR112,F8 
Pre-PCR 95°C 2:00  
Denature 95°C 0:10 

40 Cycles Anneal 57,8°C 0:30 
Extension 72°C 0:30 

Melt Curve 

95°C 0:30  
60°C 1:00  

72°C to 87,6°C 
0:10/step 

 
0,2°C increments  

Hold 4°C ∞  
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 PCR Cycling Protocol - LRCH2,OR13H1,PLXNA3 

Pre-PCR 95°C 2:00  

Denature 95°C 0:10 
40 

Cycles 
Anneal 62,6°C 0:30 

Extension 72°C 0:30 

Melt Curve 

95°C 0:30  

60°C 1:00  

72,6°C to 90,6°C 
0:10/step 

 

0,2°C increments  

Hold 4°C ∞  


