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Työssä esitellään uusi teoreettinen malli lasien rakenteelle, ja sitä hyödynnetään lasien niin sanotun

bosonipiikin tutkinnassa. Malli perustuu yksinkertaiseen kiteistä tuttuun hilaan, joka muutetaan

epäjärjestyneeksi epäkommutoivista �uidimalleista tutuilla menetelmillä.

Aluksi tutkielmassa käydään läpi kiteiden rakenteen kannalta tärkeitä käsitteitä, keskittyen eri-

tyisesti akustisiin ja optisiin aaltoihin, hilavärähtelyjen tilatiheyteen, lämpökapasiteettiin sekä

Debyen värähtelymalliin. Sen jälkeen perehdytään lyhyesti epäkommutoiviin �uidimalleihin sekä

epäkommutoivaan geometriaan, jotta lasimallia esitellessä nähtäisiin sen yhteys �uideihin. Lopuksi

esitellään itse malli lasien rakenteelle, ja siitä lasketaan lasien dispersiorelaatiot, tilatiheys sekä

lämpökapasiteetti.

Tilatiheydessä havaitaan Van Hoven singulariteetti matalilla taajuuksilla, joka vastaa lasien

kokeissa löydettyä bosonipiikkiä. Lasilla on sekä akustisia että optisia aaltoja, joista akustiset

aallot sijaitsevat hyvin lähellä Van Hoven singulariteetin taajuutta. Löydön perusteella lasien

bosonipiikki johtuu akustisista aalloista.

A new theoretical model for the structure of glasses is presented and used to study the bo-

son peak found in glasses. The model is based on a simple lattice model familiar from crystals,

which is disordered using techniques from noncommutative �uid models.

First classical crystal models and concepts of lattice vibrations are reviewed, focusing on acoustic

and optical waves, the density of vibrational states, heat capacity and the Debye model. Then

noncommutative �uid theory and noncommutative geometry are shortly introduced to show

the connection to �uids in our model. After these introductions, the glass model is formulated

and used to calculate the dispersion relations, the density of vibrational states and the heat capacity.

The density of states has a Van Hove singularity at low frequencies, which generates the boson peak

seen in experiments. The glass is found to have both acoustic and optical waves, and the acoustic

waves are located very close to the frequency of the Van Hove singularity, which hints that the

boson peak should be related to acoustic waves.
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1 Glasses and the boson peak

When a liquid is ooled down old enough to make it solid and fast enough to

prevent it from attaining a rystalline struture, it an reah a variety of states

in whih it still looks like a liquid but �ows too slowly for an experiment to even

onsider it to be �owing. These states are alled amorphous, and the lowest-

potential-energy amorphous state is alled a glass. The transition temperature

an be given di�erent de�nitions depending on how visous a material is visous

enough to be alled a glass for the experiment, and also how fast the material

was ooled down [1℄. Several materials an be onsidered glasses, ranging from

the siliate glasses used in windows to foams and proteins. Most liquids [2℄ an

be turned to glass by rapid ooling.

Glasses are familiar from everyday life and widely used in industry, but their

mirosopi study is still laking [2, 3℄. The rigidity of glasses resembles that

of rystals, but the disordered mirosopi struture is loser to liquids, and a

good theoretial model for the struture of glasses has yet to be developed. The

theory of rystals and liquids has already been well studied [4�7℄ [8℄, so all the

tools for researhing glasses should be available.

Several tehniques of statistial physis have been used for researhing glasses.

Field theory, renormalization groups, far-from-equilibrium systems, mode-oupling

theory and kineti glass models [9�12℄ have been tried in the last deades, to

name a few, but a derivation for a omplete and well-aepted theory of glasses

is still missing [13℄.

In this thesis, we will introdue a model for glasses starting from a rystal

model for solids, whih will then be disordered using a tehnique from nonom-

mutative �uid mehanis. The phenomenon we are interested in is the so-alled

boson peak, whih is an inrease in the density of states of amorphous materials

at spei� vibrational frequenies in low temperatures ompared to the density

of states of rystals. Our system is a stati glass, so we shall not try to answer

questions in some major glass topis like fragility and what is the transition time

or temperature between liquids and glasses. We are interested in the density of

states and the heat apaity of glasses. The model was �rst published in [14℄.

The boson peak is a feature found in all glasses in measurements of spei�

heat and heat apaity and light, x-ray, and neutron sattering. The ther-

mal ondutivity of glasses is signi�antly smaller than that of rystals, and it

inreases monotonially as temperature rises, opposed to the thermal ondutiv-

ity of rystals whih starts to derease after a ertain point. Another di�erene

ompared to rystals is that the thermal ondutivity of glasses does not depend

on the hemial omposition. Many glasses onsisting of ompletely di�erent

moleules have very similar thermal ondutivities. [15℄

The standard model for the heat apaity of rystals is the Debye model,

whih predits a T 3
dependene for the heat apaity at low temperatures. In

very low temperatures the spei� heat of glasses, on the other hand, rises lin-

early with temperature, and C/T 3
as a funtion of T has a peak at low frequen-

ies, as shown in �gure (1.1), taken from [16℄. All these anomalous behaviours

hint that there is an exess of vibrational states in glasses in low temperatures.
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Figure 1.1: The heat apaity C saled as C/T 3
, taken from [16℄. The ontinu-

ous lines are experimental values for vitreous SiO2 and rystal quartz, whereas

the long dashed line is what the Debye model predits for quartz. Graph A is

I. R. Vitreosil, B is vitreous silia and C is α-quartz.

Indeed plotting gglass (ω) /gDebye (ω) as a funtion of the frequeny ω, where
gglass (ω) is the density of states of a glass and gDebye (ω) is the frequeny de-

pendene given by the Debye model, gives a peak at low frequenies. This is

the boson peak. [17℄

There are several di�erent explanations for the boson peak, but none of

them have been generally aepted and most of the experimental results �t

many models. For example loalization of vibrations [18℄ mode-oupling [19℄

and loally favoured strutures [20℄ have been tried. One thing that is generally

agreed on is that the peak is related to the disordered struture of glasses. [17,

21℄

A general model used often to explain low temperature glass behaviour is the

tunneling two-level system published separately by Phillips [22℄ and Anderson,

Halperin and Varma [23℄. The model suggests that there are atoms or groups

of atoms in glasses that have two nearly degenerate states that they an tunnel
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in between, and this tunneling is responsible for the anomalous behaviour of

glasses in low temperatures. Mathematially this means de�ning a Hamiltonian

with some distributions for the tunneling oe�ients and the di�erenes between

the energy levels of the two states. The idea is not very restriting, so many

variations of the model an be formulated and the model has evolved sine it

was published in 1972.

The tunneling two-level system has been thought to be a unique explanation

for the low temperature behaviour of glasses, but reently this uniqueness has

been questioned by Leggett and Vural [24℄. Also the mirosopi origin for the

tunneling has yet to be properly explained. Our nonommutative model aims

to explain glass behaviour at intermediate temperatures (1-40 K), where the

boson peak ours, but it might potentially shed light on low temperatures too.

Another approah to glasses and ondensed matter is the interstitialy the-

ory. The theory is based on interstitialies, whih are atoms that oupy nor-

mally unoupied sites in a rystal lattie. Aording to the theory liquids are

rystals with enough interstitialies, while glasses are frozen liquids, but there

is still theoretial work to be done in developing the theory [25, 26℄. Unlike

interstitialy theory, our model does not depend on how atoms are disloated

from their usual lattie sites, but instead only on how muh on average they are

disloated.
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2 Some main features of rystals

In 1912 a paper by Laue, Friedrih and Knipping was presented. In �Interferene

e�ets with Röntgen rays� it was �rst shown that x-rays should di�rat when

entering matter with a periodi struture, and then reported that rystalline

solids ause a di�ration just like this. Thus it was shown that rystals onsist

of a periodi lattie struture and solid state physis was born. [27℄

Crystals vary from metals onsisting of a single hemial element to om-

pound metals or even snow�akes and an thus be of mirosopi or marosopi

size. The lattie struture of marosopi rystals an often be marosopially

visible, resulting in beautiful objets. The study of rystals is alled rystallog-

raphy, but it is not the fous of this thesis. [6℄

Later the study of solids started overing also solids without a rystal stru-

ture and afterwards even liquids. Solid state physis beame ondensed matter

physis, the biggest �eld of physis today. [6℄ In this thesis we will �rst develop

mathematial tehniques used in rystal alulations, and then use these teh-

niques to study amorphous materials, or glasses as they are often alled, whih

lie somewhere between solids and liquids.

2.1 Lattie struture

[6, hapter 1℄ Sine the de�ning property of a rystal is the lattie struture,

the mathematial study of rystals is basially the study of latties. Therefore

we shall �rst review the onept of a lattie.

The simplest model of a rystal is a lattie struture that repeats a �nite

formation of atoms or moleules. In for example opper, gold, iron and alkali

metals, the struture is formed by similar single atoms at every point of a

lattie, and in table salt NaCl the lattie sites onsist of 2x2 bloks of sodium

and hloride. The repeating formation of lattie points that forms the whole

rystal is alled the primitive ell of the lattie. The primitive ell an also be

very large, onsisting of thousands of atoms in for example protein rystals [6℄.

However for marosopi rystals, the primitive ell is still very small ompared

to the whole rystal, so the rystal lattie is usually assumed to be in�nite.

Mathematially latties are desribed through vetors. For parallelepiped

latties, the distane between eah neighbouring lattie point is desribed with

three orthogonal primitive translation vetors a1, a2 and a3, whih eah tell

the length of the primitive ells in one diretion. Sine the lattie is periodi,

the primitive translation vetors have the same value for eah lattie point.

Using the primitive translation vetors, the separation between every lattie

point an be written as L = la1 + ma2 + na3, where l, m and n are integers

telling how many lattie sites separate the two points. Sine the in�nite rystal

looks the same at point r and at point r + L, translation by L is a symmetry

operation. Other symmetry operations for rystals are re�etions and rotations

around ertain points or axes in the lattie. Compound operations onsisting

of translations, rotations and re�etions that are symmetry operations are also
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of ourse symmetries. Translations like L that onsist of primitive translation

vetors are alled just translation vetors.

Using symmetries it an be seen that only ertain types of lattie shapes

are possible. For example shapes symmetri under rotations of

2π

5
radians, like

pentagons in two-dimensional ases, annot form in�nite latties. There are

only 14 di�erent possible shapes of three-dimensional latties. The shapes are

however not important here, sine the aim of this thesis is to study solids with

irregular struture.

2.2 Reiproal spae

[6, hapter 2℄ Crystals an be given di�erent kinds of latties. The latties on-

struted by the primitive translation vetors are alled Bravais latties or diret

latties, but for eah diret lattie there is also a lattie alled the reiproal

lattie, whih is the Fourier transformation of the diret lattie.

Let U (r) desribe a physial property of a lattie. Sine the lattie is sym-

metri under translations of the form r → r + la1 + ma2 + na3, U (r) has to
remain unhanged under these transformations, so

U (r) = U (r+ la1 +ma2 + na3) . (2.1)

Thus the Fourier series of U (r)
∑

b

Ube
ir·b, (2.2)

where b is a vetor, is also left unhanged under the transformation, so

∑

b

Ube
ir·b =

∑

b

Ube
i(r+la1+ma2+na3)·b. (2.3)

l, m and n are arbitrary integers, so this means that for all the omponents of

b

bi · aj = 2πδij . (2.4)

The solutions to the these equation are

bi = 2π
aj × ak

ai · aj × ak
. (2.5)

The vetors bi are alled reiproal primitive translations, and they form the

reiproal lattie. Sums of reiproal primitive translations are alled reiproal

translations or reiproal vetors. The reiproal spae might seem like a very

abstrat onstrution, but di�ration patterns of rystals map the reiproal

spae of the rystal.

As is seen from the form of bi, the reiproal vetors are orthogonal if and

only if the translation vetors ai are. The de�nition also shows that the primitive

translations are inverse to the reiproal primitive translations, and thus the

diret lattie an be alled reiproal to the reiproal lattie. Other things

worth noting are that the lengths of the reiproal primitive translations are

bi = 2π/ai and their dimension is [length]
−1
.
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2.2.1 Brillouin zones

[6, hapter 2℄ There are several di�erent geometries to hoose from when forming

a ell or a primitive ell for a lattie. For a primitive ell, the simplest hoie

is to hoose a lattie point and then draw the translation vetors from it. The

parallelepiped formed by the vetors is the primitive ell. If other lattie points

are on the boundaries of the ell, they are exluded from the ell and inluded

in the neighbouring ells.

Another hoie is the Wigner-Seitz ell. It onsists of a hosen lattie point

and all the points between lattie points that are loser to the hosen point than

to other lattie points. The easiest way to visualize it is to draw the lattie,

then draw straight lines from a site to the nearest neighbouring sites and to the

middle points of these lines draw straight lines normal to the �rst lines. The

area inside the normal lines is the Wigner-Seitz ell. Drawing a ell like this to

eah lattie point �lls the whole lattie with no gaps nor overlapping, just like

with the simpler ell hoie. What makes the ell di�erent from just drawing

the translation vetors is that this ell is preserved under rotation and re�etion

symmetries of the lattie.

Drawing di�erently shaped ells is not partiularly important for applia-

tions. The importane of the Wigner-Seitz ell is unveiled by drawing it in

the reiproal spae, forming what is alled the Brillouin zones. Drawing the

Wigner-Seitz ell in the reiproal spae using nearest neighbours of a lattie

site gives the �rst Brillouin zone of the site, using the seond nearest neighbour-

ing sites gives the seond Brillouin zone and so on. Di�erent Brillouin zones are

important in di�ration, but as shall be shown, only the �rst Brillouin zone is

needed when studying vibrations of the lattie, whih is what we are interested

in here.
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3 Vibrating latties

The movement of atoms in matter is a major part of ondensed matter physis.

Considering the atomi movement of rystals, i.e. the e�ets of external fores

and the thermal movement of the atoms, leads to di�erent kinds of e�ets in

the rystal. Thermal properties and the transport of heat and sound inside a

rystal are based on the atomi vibrations of the rystal, and vibrations a�et

also eletri and magneti properties of materials. Large movement inside a

solid objet leads to the breaking of the objet. [6℄

We will onsider low-temperature vibrations, whih means vibrations that

do not break the solid and where the atoms an always be assumed to be near

their equilibrium lattie sites. Vibrations are usually studied using generalized

oordinates, beause there are many atoms to onsider. Here it means using

Hamiltonian mehanis.

3.1 One dimensional lattie

[5, hapter 4.2℄ A good way to start is to onsider a one-dimensional hain

of idential atoms. After this, we will onsider a three-dimensional system.

We will assume that the hain is in�nitely long to simplify the system. The

assumption will not have muh of an e�et on the result, sine real rystals

have an astronomial amount of atoms.

Sine we are onsidering small vibrations around the equilibrium points of

the atoms, eah atom in the hain is a Harmoni osillator. Let the distane

between the atoms in the hain be a, so that the position of the nth atom is xn =
na+ un, where un is the displaement of the atom from its equilibrium point.

Now the potential energy of eah atom is

ζ

2
(un − un+1)

2
+

ζ

2
(un − un−1)

2
,

where ζ is alled the elasti onstant and desribes �spring tension� between

eah atom. We get the whole Hamiltonian Hn for one atom by adding kineti

energy to this, so

Hn =
p2n
2m

+
ζ

2
(un − un+1)

2
+

ζ

2
(un − un−1)

2
, (3.1)

where pn is the momentum of the n:th atom and m is its mass.

The equations of motion are derived simply by using Hamilton's equations

q̇ =
∂Hn

∂p
(3.2)

and ṗ = −∂Hn

∂q
(3.3)

where p desribes the generalized momenta and q desribes the generalized o-

ordinates. Now p = pn and q = un. Using the �rst equation we get

u̇n =
∂

∂pn

(

p2n
2m

+
ζ

2
(un − un+1)

2
+

ζ

2
(un − un−1)

2

)

=
pn
m

. (3.4)
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The seond equation gives

ṗn = − ∂

∂un

(

p2n
2m

+
ζ

2
(un − un+1)

2 +
ζ

2
(un − un−1)

2

)

= −ζ (2un − un+1 − un−1) .

(3.5)

The former of Hamilton's equations gives the expression pn = mu̇n, whih when

inserted into the latter one yields the equation of motion

mün = −ζ (2un − un+1 − un−1) (3.6)

Sine n varies from −∞ to ∞, we got an in�nite set of equations. Seond

order ordinary di�erential equations with onstant oe�ients are solved with

exponentials, so un = Ane
−iωt

, where An and ω are onstants, should be a good

trial solution. Plugging it in yields

− ω2Ane
−iωt =

ζ

m
(−2An +An+1 +An−1) e

−iωt
(3.7)

Next we want an ansatz for the onstants An. Again we want an exponential,

so let us use An = Aeikan, where A is a onstant desribing the amplitude of

the wave and k is the amplitude of a wave vetor. Now we get the equation

− ω2Aeikane−iωt =
ζ

m

(

−2Aeikan +Aeika(n+1) +Aeika(n−1)
)

e−iωt
(3.8)

Dividing by Aeikane−iωt
leads to

− ω2 =
ζ

m

(

−2 + eika + e−ika
)

=
2ζ

m
(−1 + cos(ka)) = −4ζ

m
sin2

(

ka

2

)

(3.9)

Hene the frequeny ω depends on k as

ω = 2

√

ζ

m

∣

∣

∣

∣

sin

(

ka

2

)∣

∣

∣

∣

(3.10)

and the solutions of the equation are the waves

un(k) = Aeikane−iω(k)t. (3.11)

The solution of ourse only desribes a single wave. Waves an be in superpo-

sition, so the full solution to the equations of motion is a linear ombination of

the waves we got.

Exponents must be dimensionless, so the dimension of ω must be [time]
−1
.

Thus ω desribes the frequeny of the wave. a is the distane between the

equilibrium points of atoms in the lattie, so its dimension is [length]. Thus

the dimension of k is [length]
−1
, so it is a wavevetor in the reiproal spae of

the lattie. The very important equation (3.10) telling the relation between the

frequeny and the wavevetor is alled the dispersion relation. It also tells that

the frequeny of atomi vibrations is proportional to m−1/2
, and sine atoms

are very light, atoms must vibrate with huge frequenies.
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The waves we derived are alled elasti waves. Writing the wave as

un(k) = Ae−iω(t−kan/ω)
(3.12)

and noting that an tells the position of eah lattie site shows that the veloity

of the waves is v = ω/k and the wavelength is λ = 2π/k. When k is small,

elasti waves desribe sound propagation. For small k

ω = 2

√

ζ

m

∣

∣

∣

∣

sin

(

ka

2

)∣

∣

∣

∣

≈ 2

√

ζ

m

ka

2
= ka

√

ζ

m
, (3.13)

so the veloity of the wave is

v = a

√

ζ

m
, (3.14)

whih is in fat the veloity of sound in a rystal.

3.1.1 Brillouin zones of the 1D model

[5, hapter 4.2℄ Analyzing the dispersion relation (3.10) shows the importane

of Brillouin zones in lattie dynamis. The vibrational frequeny ω is a funtion

of

∣

∣

∣

∣

sin

(

ka

2

)∣

∣

∣

∣

, so it is periodi in k. More preisely all the values of ω are found

inside

− π

a
< k ≤ π

a
. (3.15)

Sine the distane between sites in the reiproal lattie is

2π

a
and the �rst

Brillouin zone of a lattie site is de�ned as the set of points in the reiproal

spae that are loser to the lattie site than to its neighbouring sites, we see

that the values of k in (3.15) form the �rst Brillouin zone of the lattie site.

It is important to notie that all the values of the wave

un(k) = Aeikane−iω(k)t
(3.16)

are ontained within the �rst Brillouin zone. If for example k >
π

a
or k < −π

a
,

then k − 2mπ

a
lies within the �rst Brillouin zone for some integer m, and

ei(k−2mπ/a)an = eikane−i2mπn = eikan (3.17)

and thus the wave un(k) gets the same values as a wave de�ned within the �rst

Brillouin zone. Therefore only values of k within the �rst Brillouin zone need

to be onsidered.
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3.1.2 Optial and aousti branhes

[5, hapter 4.2℄ Next we shall take a look at a one dimensional lattie with

two di�erent mass atoms in the unit ell, in order to introdue some onepts

and tehniques that will be useful later. Let the masses of the atoms be m1

and m2 and let un and vn be the displaements of the atoms respetively. The

Hamiltonian desribing the nth unit ell is

Hn =
p2u;n
m1

+
p2v;n
2m2

+
ζ

2
(un − vn−1)

2
+

ζ

2
(vn − un)

2
+

ζ

2
(un+1 − vn)

2
. (3.18)

Using Hamilton's equations results in the di�erential equations

u̇n =
pu;n
m1

(3.19)

v̇n =
pv;n
m2

(3.20)

ṗu;n = −ζ (2un − vn − vn−1) (3.21)

ṗv;n = −ζ (2vn − un − un+1) , (3.22)

whih yield the equations of motion

m1ün = −ζ (2un − vn − vn−1) (3.23)

and

m2v̈n = −ζ (2vn − un − un+1) . (3.24)

To get a wave like solution, we will use the trial funtions

un = Ue−iωteikan (3.25)

vn = V e−iωteikan, (3.26)

where a/2 is the distane between the two atoms of the ell. This results in the

equations

m1ω
2U = ζ

(

2U − V − V e−ika
)

(3.27)

and

m2ω
2V = ζ

(

2V − U − Ueika
)

. (3.28)

It is useful to write the equation in the matrix form

(

m1ω
2 − ζ ζ

(

1 + e−ika
)

ζ
(

1 + eika
)

m2ω
2 − ζ

)(

U
V

)

= 0. (3.29)

Now we do not have to atually solve the equations in order to get the dispersion

relation. The matrix equation has nontrivial solutions only if its determinant is

equal to zero, so

(

m1ω
2 − ζ

) (

m2ω
2 − ζ

)

− ζ2
(

1 + e−ika
) (

1 + eika
)

= 0. (3.30)
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The equation is quadrati in ω2
, so it results in two di�erent dispersion relations,

whih are

ω2
± =

ζ (m1 +m2)±
√

ζ2 (m1 +m2)
2 − 4m1m2ζ2 (1 + e−ika) (1 + eika)

m1m2

=
ζ

m1m2

(

m1 +m2 ±
√

(m1 +m2)
2 − 4m1m2 sin

2

(

ka

2

)

)

. (3.31)

The relation with a plus sign is alled the optial branh, and the relation

with a minus sign is alled the aousti branh. The reason for these names

is seen by alulating the amplitudes U and V of the waves. It is important

to distinguish di�erent branhes, beause di�erent dispersion relations lead to

di�erent properties for the system. Plugging in the dispersion relation to for

example the �rst of the equations (3.27) yields

m1ω
2
±U = ζ

(

2U − V − V e−ika
)

, (3.32)

whih results in

U± =
ζ
(

1 + e−ika
)

2ζ − ω2
±m1

V±. (3.33)

This tells how the amplitudes of the atoms with di�erent mass depend on eah

other.

Using the very long wavelength limit k = 0 in (3.31) leads to

ω2
+ =

2ζ

m1m2
(m1 +m2) (3.34)

and

ω2
− = 0, (3.35)

and thus

U+ = −m2

m1
V+ (3.36)

and

U− = V−. (3.37)

As is seen, in the aousti branh all the atoms vibrate in the same phase.

This is the reason the branh is alled aousti, sine when sound passes through

a medium, all the atoms in the medium vibrate in phase. For the optial branh

the atoms vibrate in opposite phases instead, and the enter of mass of eah

unit ell remains still, sine the amplitude for the enter of mass of a unit ell

where the �rst atom is at loation x is

m1U−x+m2V− (x+ a/2)

m1 +m2
=

a

2 (m1 +m2)
V− = constant. (3.38)

Thus the optial branh desribes, for example, the passing of eletromagneti

waves, and the name optial branh is sensible.
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When k is inreased from zero, the expression inside the square root in

(3.31) starts to derease, making the optial branh ω− smaller and the aousti

branh ω+ larger. This is an essential property separating the two kinds of

branhes from eah other. Optial branhes start at a onstant in the entre

of the Brillouin zone where k = 0 and derease towards the edges of the zone,

whereas aousti branhes start at zero and inrease towards the boundaries

of the Brillouin zone. Another important di�erene is that optial branhes

have always a higher frequeny than aousti branhes, as an be seen from the

dispersion relations.

The rest of the alulations in the thesis shall only onsider latties with

partiles that have equal mass, but the onepts of optial and aousti branhes

will remain relevant.

3.2 Three dimensional latties

[5, hapter 4.3℄ Next we want to introdue the onepts of the density of states

and spei� heat apaity. In this thesis we are interested in three-dimensional

solids, so we will ontinue with a three-dimensional lattie from now on to get

just the tools that we need.

In the model that will later be introdued to desribe the boson peak, we will

only onsider nearest neighbour interations, so that is what we will do here.

The boson peak is also studied only in very small temperatures, so we need to

onsider only small osillations of atoms.

Consider a lattie that is symmetri under the hange of any two axes and

has only one atom in eah unit ell. Let the primitive translation vetors of the

lattie be a1, a2 and a3. The Hamiltonian desribing the system is

Hl,m,n =
p2u;l,m,n + p2v;l,m,n + p2w;l,m,n

2m

+
ζ

2
(ul,m,n − ul+1,m,n)

2
+

ζ

2
(ul,m,n − ul−1,m,n)

2

+
ζ

2
(vl,m,n − vl,m+1,n)

2
+

ζ

2
(vl,m,n − vl,m−1,n)

2

+
ζ

2
(wl,m,n − wl,m,n+1)

2
+

ζ

2
(wl,m,n − wl,m,n−1)

2
, (3.39)

where ul,m,n, vl,m,n, and wl,m,n are the displaements of the atom at the lattie

site l,m, n and pu;l,m,n, pv;l,m,n and pw;l,m,n are the momenta in the three di-

retions. This is a sum of three independent one dimensional hains onsidered

in the previous subsetion. Thus the result should also be three instanes of the

dispersion relation in (3.10).

Let us onsider one of the diretions. Using Hamilton's equations

q̇ =
∂Hn

∂p
(3.40)

and ṗ = −∂Hn

∂q
(3.41)
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for q = ul,m,n and p = pu;l,m,n yields the equations

u̇l,m,n =
pu;l,m,n

m
(3.42)

and

ṗu;l,m,n = −ζ (2ul,m,n − ul+1,m,n − ul−1,m,n) , (3.43)

whih when ombined yield the familiar equation of motion

mül,m,n = −ζ (2ul,m,n − ul+1,m,n − ul−1,m,n) . (3.44)

We got the same equation as in the one dimensional ase, exept that now

our variables have three indies instead of one. For the other two diretions we

get similarly the equations

mv̈l,m,n = −ζ (2vl,m,n − vl,m+1,n − vl,m−1,n) (3.45)

and

mẅl,m,n = −ζ (2wl,m,n − wl,m,n+1 − wl,m,n−1) . (3.46)

Lets now try the solutions

ul,m,n (k) = Ueiωteik·Ll,m,n,
(3.47)

vl,m,n (k) = V eiωteik·Ll,m,n
and (3.48)

wl,m,n (k) = Weiωteik·Ll,m,n , (3.49)

where U , V and W are the amplitudes of the wave in the three diretions, k =
(k1, k2, k3) is the wave vetor, Ll,m,n = la1+ma2+na3 is the translation vetor
telling the loation of the lattie site and ω is the frequeny of the wave.

Plugging in the funtions yields

− ω2Ueiωteik·Ll,m,nm = −ζ
(

2− eik1a1 − e−ik1a1

)

Ueiωteik·Ll,m,n , (3.50)

− ω2V eiωteik·Ll,m,nm = −ζ
(

2− eik2a2 − e−ik2a2

)

V eiωteik·Ll,m,n
and (3.51)

− ω2Weiωteik·Ll,m,nm = −ζ
(

2− eik3a3 − e−ik3a3

)

Weiωteik·Ll,m,n . (3.52)

Solving ω from eah of these equations gives three of the dispersion relations

familiar from the one dimensional ase:

ω = 2

√

ζ

m
sin

∣

∣

∣

∣

(

a1k1
2

)∣

∣

∣

∣

,

ω = 2

√

ζ

m
sin

∣

∣

∣

∣

(

a2k2
2

)∣

∣

∣

∣

and

ω = 2

√

ζ

m
sin

∣

∣

∣

∣

(

a3k3
2

)∣

∣

∣

∣

. (3.53)

The three dispersion relations represent three di�erent branhes of vibrations

going in di�erent diretions. If a wave is passing through the lattie in the dire-

tion of one of the primitive translation vetors, then the branh assoiated with

that diretion is alled the longitudinal branh, while the two other branhes

are alled transverse.
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3.2.1 Boundary onditions

[5, hapter 4.2℄ Next we want to alulate a quantity alled the density of states,

but in order to do that we need to set boundary onditions for our system.

There is a variety of di�erent possible boundary onditions, but we are looking

for onditions that restrit the system only a little. This is reasonable sine

systems with an enormous amount of atoms should not depend too muh on the

onditions we set for spei� atoms.

We make the popular hoie of the Born and von Karman boundary on-

ditions, whih make the system periodially symmetri. This is mathemati-

ally very onvenient. Assume that the lattie repeats a formation of N =
N1 ×N2 ×N3 atoms. This means that for the waves at the site l,m, n

ul,m,n = ul+N1,m,n = ul,m+N2,n = ul,m,n+N3
. (3.54)

The larger N1, N2 and N3 are, the less the onditions restrit the system. If

we have three solutions ul,m,n, vl,m,n and wl,m,n for the three diretions, we set

the same onditions also for vl,m,n and wl,m,n.

The ondition sets a restrition on k. If

ul,m,n (k) = Ueiωteik·L (3.55)

as it was earlier, then

ul+N1,m,n (k) = Ueiωteik·L+ia1k1N1 = ul,m,n (k) = Ueiωteik·L (3.56)

and thus

eia1k1N = 1. (3.57)

This means that

k1 =
2π

a1N
g1, (3.58)

where g1 = 1, ..., N1. Therefore k1 has only N1 possible values. Similarly

k2 =
2π

a2N
g2, g = 1, ..., N2 (3.59)

and

k3 =
2π

a3N
g3, g3 = 1, ..., N3, (3.60)

and k2 and k3 have only N2 and N3 possible values.

Thus the whole wavevetor k has N1N2N3 possible values.
2π

a1
,

2π

a2
and

2π

a3
are the lengths of the reiproal primitive translation vetors. Let us all these

vetors again b1, b2 and b3, so

k = k1 + k2 + k3 =
g1
N1

b1 +
g2
N2

b2 +
g3
N3

b3. (3.61)

Sine g1, g2 and g3 take disrete values, we see that the expression for k

forms the reiproal lattie, and the lattie points must be distributed evenly.
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Thus using the fat that there are N1N2N3 di�erent values for k we see that

eah value takes the spae

∆k =
VB

N1N2N3
(3.62)

in the Brillouin zone, where VB is the volume of the zone. Let us express

this using volumes in the diret lattie. Comparing to the one dimensional ase

shows that the volume is VB = (2π)3 /VC , where VC is the volume of the physial

unit ell, beause the lattie onsists of three one dimensional hains. Sine we

started by assuming that the whole rystal repeats a formation of N1×N2×N3

atoms, VCN1N2N3 = V must give the volume of the whole rystal and

∆k =
(2π)

3

V
. (3.63)

This volume is needed to solve the density of states.

3.2.2 Density of state

[5, hapter 4.3.5℄ After deriving the dispersion relation, i.e. after showing how

the frequeny of atomi osillations depends on the wave vetor of the osilla-

tions, a natural question is to ask what is the amount of osillations in a spei�

frequeny. This is alled the phonon density states.

The name phonon omes from the normal modes of the osillations. The

name is in analogy to photons, whih are the quanta of vibrations of the ele-

tromagneti �eld, beause phonons are the quanta of atomi vibrations. Thus

the question is how many phonons are there of a spei� frequeny. The deriva-

tion of the normal modes or phonons is an interesting alulation, but it does

not bring any relevant tehniques to the main alulation of this thesis, so it

will not be shown here.

If g (ω) is the density of states telling the frequeny distribution of the osil-

lations, then g (ω) dω tells the number of phonons whose frequenies are between

ω and ω + dω. We will derive g (ω) by �rst alulating g (ω) dω.
Consider the surfae Sω in the reiproal spae de�ned by ω = ωk = constant

for a spei� branh of the vibrations. Di�erent branhes give di�erent surfaes,

sine they have a di�erent dispersion relation. dSωdk⊥ gives the in�nitesimal of

the volume ontaining the vibrations with a frequeny between ω and ω + dω,
where dk⊥ is the part of dk that is perpendiular to Sω.

Sine eah value of k and thus eah value of ω takes the spae∆k = (2π)
3
/V

in the reiproal spae, there must be

dSωdk⊥
∆k

=
V

(2π)
3 dSωdk⊥ (3.64)

phonons in the volume dSωdk⊥. Integrating over the surfae gives the number

of phonons in the frequeny range [ω, ω + dω]

g (ω) dω =
V

(2π)
3

∫∫

ω=ωk

dSωdk⊥ (3.65)
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This is not yet the result we want. ω is a funtion of k and grows in the

diretion perpendiular to Sω, so dω = |∇kωk| dk⊥, and

g (ω) dω =
V

(2π)
3

∫∫

ω=ωk

dω

|∇kωk|
dSω, (3.66)

so the density of states is

g (ω) =
V

(2π)3

∫∫

ω=ωk

dSω

|∇kωk|
. (3.67)

For the speial ase when the dispersion relation is isotropi there is a simpler

way to alulate g (ω). Isotropy means that the surfae de�ned by ω = ωk =
constant is a sphere. If Vω is the volume of the sphere, there are

V Vω

(2π)
3 (3.68)

phonons with frequeny ωk or less. Thus when the radius of the sphere is

inreased by dω, the amount of phonons inside the sphere grows by

V

(2π)3
dVω

dω
dω, (3.69)

whih means that the frequeny distribution, or density of states, at ωk is

g (ω) =
V

(2π)
3

dVω

dω
. (3.70)

If the dispersion relation was not isotropi, its dependene on diretion would

have to be onsidered when the volume inside the ω = constant surfae was

inreased, so the density of states would need to depend on the gradient ∇kωk.

3.2.3 Van Hove singularities

[7, hapter 6℄ Sine the integral in the formula for the density of states has

a denominator, it also ould have singularities at ∇kωk = 0. The singularity

points an be minima, maxima or saddle points of the frequeny. Let k0 be

suh a point. Expanding ω up to the seond order around k0 gives

ω = ω0 +
∑

i,j

1

2
Cij (ki − k0,i) (kj − k0,j) , (3.71)

where ω0 = ω (k0). The oe�ients Cij form a matrix, so we an hoose the

axes of the k spae along the prinipal axes of the matrix, so that the matrix

beomes diagonal and

ω = ω0 +
1

2

∑

λ

Cλ (kλ − k0,λ)
2
. (3.72)
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The last hange we will do to this expression for ω is the hange of variables

χλ =
√

|Cλ| (kλ − k0,λ), so

ω = ω0 +
1

2

∑

λ

sgn (Cλ)χ
2
λ, (3.73)

where sgn (Cλ) is the sign of Cλ.
Now the form is easier to analyze. There are three possible signs sgn (Cλ)

and di�erent hoies of them give di�erent types of ritial points for ω. If all
the signs are positive, ω has a minimum at k0 and the isofrequeny surfaes in

χ spae are spheres. The surfae element of the sphere is dSω = dSω,χ/
√
C =

χ2dΩ/
√
C, where dΩ is the di�erential of the solid angle and 1/

√
C is the

Jaobian from the hange of variables. The gradient ∇χωχ = χ, so the density

of states is

g (ω) =
V

(2π)
3 √

C

∫∫

ω=ωk

χ2dΩ

|χ| = g (ω0)+
V

2π2
√
C

|χ| = g (ω0)+
V

π2
√
2C

√
ω − ω0.

(3.74)

for ω ≥ ω0 and g (ω) = g (ω0) for ω ≤ ω0. After the hange of variables to

χ-spae we ould also have used the rule (3.70) for isotropi dispersion relations

yielding the same result.

The ase where all the signs sgn (Cλ) are negative is similar, but it desribes

a maximum of ω, and the density of states is

g (ω0) +
V

4π2
√
C

√
ω0 − ω (3.75)

for ω ≤ ω0 and g (ω) = g (ω0) for ω ≥ ω0.

If one of the signs sgn (Cλ) is di�erent from the other two, there is a saddle

point at k0. Take as an example the ase

ω = ω0 +
1

2

(

χ2
1 + χ2

2 − χ2
3

)

. (3.76)

The onstant frequeny surfaes are now hyperboloids. In the ase ω < ω0 the

hyperboloid has two sheets and in the ase ω > ω0 the hyperboloid has one

sheet. The integral is most easily done in ylindrial oordinates (χ⊥, φ, χ3) ,

where χ⊥ =
√

χ2
1 + χ2

2 and φ is the polar angle in the χ1χ2 plane. When ω < ω0

dSω =
2πχ⊥χ

|χ3|
dχ⊥ (3.77)

and again |∇χωχ| = 2χ, and

g (ω) =
2

(2π)
3 √

C

∫ K

0

2πχ⊥dχ⊥
√

χ2
⊥ + 2 (ω0 − ω)

=
1

2π2
√
C

(

K −
√

2 (ω0 − ω)
)

= g (ω0)−
1

π2
√
2C

√
ω0 − ω, (3.78)
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where K is some onstant. The ase ω > ω0 yields

g (ω) =
2

(2π)
3 √

C

∫ K

2(ω−ω0)

2πχ⊥dχ⊥
√

χ2
⊥ − 2 (ω0 − ω)

=
K

2π2
√
C

= g (ω0) . (3.79)

The ase where two of the signs are negative and one positive gives a similar

result, exept that

g (ω) = g (ω0)−
1

π2
√
2C

√
ω0 − ω (3.80)

for ω > ω0 and

g (ω) = g (ω0) (3.81)

forω < ω0 .

3.3 Heat apaity

[5, hapter 4.5.3℄ Heat apaity is one of the properties whih separate amor-

phous solids from rystals. There are several models for the heat apaity of

rystals, whih apply to di�erent situations, and we will introdue two of them,

so that we an ompare the results for amorphous materials to them.

The heat apaity C of an objet tells how muh the internal energy U of the

objet hanges when the temperate T of the objet hanges, or in other words

how muh energy is needed to hange the temperature of the objet a spei�

amount. We will use the de�nition

CV =

(

∂U

∂T

)

V

(3.82)

for the heat apaity CV , in whih we alulate the hange ∂U/∂T when the

volume of the system V is kept onstant. Another way to de�ne the heat

apaity is to keep the pressure of the system onstant, and this is the de�nition

used usually in experiments. [6℄

The energy levels of a harmoni osillator vibrating at frequeny ω are

(

1

2
+ n

)

ω, n ∈ N. (3.83)

The vibrations of a rystal are a sum of harmoni osillators, or phonons, in dif-

ferent frequenies, so the internal energy in the rystal aused by the vibrations

is

U =
∑

kj

(

1

2
+ nkj

)

ωkj, (3.84)

where nkj is the number of phonons with wave number k in branh j. There

is no Pauli exlusion priniple for bosons, so nkj is given by the Bose-Einstein

distribution

nkj =
1

eω/T − 1
. (3.85)
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The sum over di�erent wave numbers and branhes an be replaed by an in-

tegral, if we know the total density of states g (ω) of the system, that inludes

di�erent branhes:

U =

∫

dωg (ω)

(

1

2
+

1

eω/T − 1

)

ω (3.86)

Now taking the derivative with respet to T we get

CV =

∫

dωg (ω)

(

ω/T

eω/T − 1

)2

eω/T . (3.87)

The high temperature limit is easy to alulate. Using L'H�pital's rule twie we

see that

CV =

∫

dωg (ω)

(

ω/T

eω/T − 1

)2

eω/T →
∫

dωg (ω)
−ω2/T 2 − 2ω/T

−eω/T2 + 2

→
∫

dωg (ω) = 3Nn, (3.88)

whih is the number of possible osillations in a three-dimensional rystal of N
primitive ells with n atoms. An important remark is that aousti vibrations

have nothing to do with the number of atoms in a unit ell, so the number of

aousti branhes depends only on N . Indeed there are 3N aousti branhes in

a three-dimensional rystal, so the remaining 3N (n− 3) vibrations are optial.
Next, we shall onsider two models that desribe the ontributions of aousti

and optial waves to the heat apaity.

3.3.1 Debye model

[5, hapter 4.5.3℄ In low temperatures there are only low energy exitations, so

the wave numbers of osillations must be small. As was shown in subsetion

(3.1.2) there are only aousti waves in the k = 0 limit in one-dimensional

systems, but simple three dimensional systems are no di�erent sine they onsist

of one dimensional hains. Thus we expet to �nd only long wavelength aousti

waves at very low temperatures.

Consider the three dimensional dispersion relations in (3.53). Taking now

the long wavelength limit |k| ≪ 1 gives

ωj =

√

ζ

m
aj |k| = vj |k| , (3.89)

for eah of the three branhes j, where vj is the veloity of sound in eah of the

branhes, as in (3.14) in the one dimensional ase. Now that the three branhes

orrespond to three orthogonal diretions in the lattie, eah vj tells the veloity
of sound in a di�erent diretion.

The isofrequeny surfaes in the reiproal spae of eah of the branhes are

spheres with radius kj = ω/vj, and the gradients ∇kωk,j = vj k̂, so using the
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formula for the density of states (3.67) we get for eah branh

gj (ω) =
V

(2π)
3

∫∫

ω=ωk

dSω

vj
=

V ω2

2π2v3j
. (3.90)

Adding together the branhes we get

g (ω) =
V ω2

2π2

(

2

v3⊥
+

1

v3‖

)

=
3V ω2

2π2v3eff
(3.91)

where 2/v⊥ stands for the two transverse branhes, 1/v‖ omes from the longitu-

dinal branh, and veff is the e�etive sound veloity that omes from ombining

the branhes.

Before inserting the above expression of g (ω) to the formula for the heat

apaity, we need to add something to our model. Now the density of states only

grows with the frequeny, resulting in an in�nite amount of states if integrated

to in�nity. We however want the maximum amount of states from aousti

osillations to be 3N , so we will introdue a ut o� frequeny ωD for whih

∫ ωD

0

g (ω) dω = 3N. (3.92)

ωD is alled the Debye frequeny. Inserting the density of states (3.91) to the

above integral shows that

V ω3
D

2π2v3eff
= 3N, (3.93)

so that

ωD = veff

(

6Nπ2

V

)1/3

= veff

(

6π2

VC

)1/3

, (3.94)

where VC is again the volume of a unit ell. The Debye frequeny also de�nes

a temperature alled the Debye temperature, whih is TD = ~ωD/kB, but now
that we have set ~ = kB = 1 it is equivalent to the frequeny.

Using the ut o� the heat apaity is

CV =

∫ ωD

0

dω
3V ω2

2π2v3eff

(

ω/T

eω/T − 1

)2

eω/T
(3.95)

Opening the square and writing the onstant using the Debye frequeny leads

to

CV =
9N

T 2ω3
D

∫ ωD

0

dω
ω4

eω/T − 2 + e−ω/T

=
9N

4T 2ω3
D

∫ ωD

0

dω
ω4

sinh2 (ω/2T )

=
72NT 3

ω3
D

∫ ωD/2T

0

dx
x4

sinh2 x
, (3.96)
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Figure 3.1: The Debye model heat apaity saled as

CV

3N
as a funtion of

T

ωD

where x = ω/2T. This is the Debye model for the heat apaity of a rystal.

In the low temperature limit ωD/2T → ∞. Taking the upper bound of the

integral to in�nity results in

CV =
72NT 3

ω3
D

π4

30
=

12π4NT 3

5ω3
D

. (3.97)

The T 3
proportionality is indeed in good agreement with experiments for several

rystals [5℄.

An interesting thing is that the Debye model is also orret in the high

temperature limit. In high temperatures ω/T ≪ 1, so sinh (ω/T ) ≈ ω/T and

CV =
72NT 3

ω3
D

∫ ωD/2T

0

dxx2

= 3N, (3.98)

whih is exatly the maximum amount of aousti states.

The plot of the whole funtion CV is in �gure (3.1).

3.3.2 Einstein model

[5, hapter 4.5.3℄ A simple model desribing the ontribution of optial waves to

the heat apaity is the Einstein model. Assume that there are 3N (n− 3) opti-
al branhes and they all have the same frequeny ωE , so g (ω) = 3N (n− 3) δ (ω − ωE).
Now the heat apaity

CV =

∫

dωg (ω)

(

ω/T

eω/T − 1

)2

eω/T = 3N (n− 3)

(

ωE/T

eωE/T − 1

)2

eωE/T .

(3.99)
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In the high temperature limit eωE/T ≈ 1 + ωE/T , so

CV ≈ 3N (n− 3)
(ωE

T
+ 1
)

→ 3N (n− 3) as T → ∞, (3.100)

whih is indeed the ontribution optial waves should have so that the maximum

amount of vibrational modes is 3Nn. In low temperatures

CV ≈ 3N (n− 3)
ω2
E/T

2

eωE/T
→ 0 as T → 0, (3.101)

so aording to this model optial waves should not ontribute to the heat

apaity in low temperatures. Thus when we disuss our model for the boson

peak we should ompare it to the Debye model and expet the peak to be reated

by aousti modes.
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4 Nonommutative �uid theory

The aim of this thesis is to introdue a disordered lattie-like model for glasses,

even though glasses do not resemble a lattie. The trik is to make parts of the

lattie nonommutative, whih will result in an unertainty for loation, similar

to the unertainty of anonial variables in quantum mehanis, thus making

the lattie less �xed. Our model is based on the works of Polyhronakos, Jakiw,

Pi, Susskind and others [28�31℄ on nonommutative �uids. We will over some

of the nonommutative �uid theory shortly after introduing the formalism.

The nonommutativity in �uid theory means using the nonommutative ge-

ometry greatly developed by Alain Connes. In physis, nonommutative ge-

ometry has mostly been tied to the study of spae-time, but the language has

found its way to ondensed matter theory too. Nonommutative spaes have

been used for quantizing spaetime sine Snyder's Quantized Spae-Time [32℄

and suh geometries arise from ertain limits in string theory [33℄. In ondensed

matter nonommutativity has been used for studying, for example, the quantum

Hall e�et [31℄ and insulators [34℄.

4.1 Nonommutative geometry

Fairly little nonommutative geometry is needed in this thesis, but it is reason-

able to give a short introdution to the subjet. A good introdution would

need to be rather lengthy, so we will not prove results and the introdution will

be left a bit abstrat.

The bakground of nonommutative geometry is in C*-algebras. A C*-

algebra is a unital Banah algebra on C de�ned with an involution x → x∗
s.t.

‖x‖2 = ‖x∗x‖. The square of the norm ‖x‖2 is the spetral radius i.e. the largest
absolute value of the eigenvalues of x, so it is a spetral property. As usual, an

element x is self-adjoint if x∗ = x and unitary if x−1 = x∗
. C* algebras are

important both in lassial and quantum mehanis.

In physis the spae of the elements x is the phase spae. The Gelfand-

Naimark theorem gives an equivalene between C*-algebras and the geometry

of the phase spae and thus gives a geometri approah to the algebra [35℄. The

theorem is an important starting point in nonommutative geometry.

The basi elements in nonommutative geometry are observables as in quan-

tum mehanis. The observables obey a nonommutative C*-algebra, and the

irreduible representations of the algebra form a nonommutative spae, so in

the physis ontext we are talking of nonommutative C*-algebras operating on

Hilbert spaes.

Nonommutative geometry gives a ommon language and uni�es various

topis in physis. In addition to being useful in spae-time and the ondensed

matter subjets just mentioned, the formalism uni�es for example gauge �elds,

membranes, matrix models and many-body systems [28℄.
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4.1.1 Nonommuting oordinates

A good starting point for nonommutative spaes in physis is turning oordi-

nates into operators that have a small ommutator similarly to the anonial

variables in quantum mehanis:

[xµ, xν ] = iθµν . (4.1)

The produt of oordinates is still assoiative. In �at nonommutative spaes

the antisymmetri tensor θ is taken to ommute with the oordinates, as will

be done here, so it will onsist of onstant -numbers of dimension [length]
2
. In

some ases with even dimensions [30℄ θ has an inverse ωµν =
(

θ−1
)

µν
.

Changing the oordinate system hanges of ourse θ and the ommutation

rules. This way the spae an be divided into two-dimensional nonommutative

subspaes that ommute with eah other, plus into possible additional om-

muting oordinates [28℄. Thus there will be 2n nonommuting oordinates and

d− 2n ommuting ones, where d is the dimension of the whole spae. Then the

inverse ωµν =
(

θ−1
)

µν
if µ and ν are nonommuting oordinates, and for other

indies ωµν will be set zero.

Take as an example a three dimensional nonommuting spae with

θ =





0 θ12 θ31
−θ12 0 θ23
−θ31 −θ23 0



 . (4.2)

The oordinates an be hanged so that there is an even amount of nonom-

muting oordinates, and now the only possible nonzero even amount is two, so

with a hange of oordinates θ should be able to be written in the form

θ′ =





0 0 0
0 0 θα
0 −θα 0



 , (4.3)

where θα is a new nonommutativity parameter. Indeed if the old oordinates

are x1, x2 and x3, and we de�ne the oordinates y1 = θ23x1 + θ31x2 + θ12x3,

y2 = θ23x1−θ31x2 and y3 = θ23x1−θ12x3, then y2 and y3 do not ommute with

eah other, but they both ommute with y1, and the ommutation relations are

desribed by

θ′ =





0 0 0
0 0 θ12θ23θ31
0 −θ12θ23θ31 0



 . (4.4)

The nonommutative spae is a representation of the operator algebra de-

�ned by (4.1). For real spaes the operators xµ are Hermitian, and the imaginary

unit serves to make the ommutator anti-Hermitian. The eigenvalues of the op-

erators are possible values of the oordinates in the representation. However, all

of the oordinate operators annot be diagonalized simultaneously [28℄, so all of

24



the oordinates in the representation spae annot be given a value simultane-

ously. Therefore points annot be de�ned in the representation spae, and the

spae gets a similar blurring as the anonial variables in quantum mehanis.

It is important to notie that taking the limit θ → 0 gives a ommutative

limit of the theory. This shall be useful later on after onstruting our glass

model, where taking the ommutative limit yields a normal rystal lattie. We

shall disuss later the meaning of θ in our system.

4.2 Fluid mehanis

[31℄ There are two main formulations for �uid mehanis alled the Euler and

Lagrange formulations. The di�erene between the two approahes is that in

the Euler desription the �uid is studied from a �xed frame of referene and the

variables are written as funtions of just spae and time, whereas in the Lagrange

formulation variables are written for spei� partiles of the �uid with the help

of omoving oordinates. We are interested in the Lagrange formulation.

Let the Lagrangian for a �uid with n partiles of mass m be

L =

n
∑

i=1

mẊ
2
i

2
− U (X) , (4.5)

where Ẋi tells the veloity of eah partile and U is the potential governing

the motion at point X. In order to get to the proper Lagrange formulation we

will pass to the ontinuum limit, where the index i of partiles is replaed by

ontinuous oordinates x that at as labels for the partiles. The oordinates

X beome vetor �elds X (t,x). The initial value of the oordinates is usually
hosen to beX (0,x) = x, as will be done here, so that the omoving oordinates

x tell the initial position of eah partile. Thus summing over partiles an be

done by integration over the x spae An easy way to think of the oordinates is

with the parametrization

X (t,x) = x+ a (t,x) , (4.6)

where the deviation a tells how far the partile has moved from its initial loation

x.

Let us hoose the oordinates so that the number of partiles per unit area of

x spae is given by the onstant ρ0. Now the density of partiles in the physial

X spae is

ρ = ρ0

∣

∣

∣

∣

det
∂xi

∂Xj

∣

∣

∣

∣

. (4.7)

Assuming that the system reahes equilibrium and the potential vanishes when

ρ = ρ0, and that the temperature of the system is zero so that the potential

annot depend on temperature [31, page 3 footnote℄, the Lagrangian an be

written as

L =

∫

dxρ0

[

mẊ
2 (t,x)

2
− V

(

ρ0

∣

∣

∣

∣

det
∂xi

∂Xj

∣

∣

∣

∣

)

]

. (4.8)
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The zero temperature assumption is �ne for our use, sine the boson peak for

whih we shall need the tehniques of �uid mehanis is a very low-temperature

phenomenon.

The Lagrangian must obviously be invariant under relabeling of the partiles

by hoosing the oordinates x di�erently, as long as the density is left unhanged,

so it has a symmetry. More preisely this means invariane under unit Jaobian

di�eomorphisms of the x spae, i.e. hanges of variables from x to x
′
for whih

det
∂x′

i

∂xj
= 1. (4.9)

Let the transformation

x → x+ δx, (4.10)

where δx is in�nitesimal, be suh a di�eomorphism. This means that

∇ · δx = 0, (4.11)

so the transformation δx must be transverse. In other words it an be written

as the derivative of some gauge funtion f as

δx = ∇× f. (4.12)

Now we will make a step towards nonommutativity. Let us de�ne the

Poisson braket

{g, h} = θij
∂g

∂xi

∂h

∂xj
, (4.13)

where θ is an antisymmetri tensor whose diagonal values are zero. For the

oordinates x the braket is

{xi, xj} = θij . (4.14)

Assuming that θ is not singular we an now parametrize the �elds X as

Xi (t,x) = xi + θijA
j (t,x) , (4.15)

so their braket will be

{Xi, Xj} = θij + θikθjl

(

∂Al

∂xk
− ∂Ak

∂xl
+ {Ak, Al}

)

≡ θij + θikθjlF
jl, (4.16)

where F is a gauge �eld. F resembles a onventional Abelian gauge �eld when

the deviation A is small.

The Poisson brakets an be used to rewrite for example the di�eomorphisms

(4.12) and the �uid density [28�30℄. Using this formulation provides an easy

way to transition to nonommutative �uids. To make the �uid nonommutative

we will replae the Poisson brakets by i times a ommutator, similarly to the

transition from lassial mehanis to quantum mehanis. This will result in a

quanti�ation of the x spae, so the new nonommutative theory will desribe
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systems with �fuzzy� oordinates. The Poisson braket of the omoving oordi-

nates in (4.14) will be replaed by the ommutator in (4.1), so our system will

be desribed by a nonommutative geometry.

Note that the values of the nonommutativity parameter θ are still arbitrary.
The standard hoie is to make all of its o�-diagonal values equal and to relate

them to the inverse of the two-dimensional �uid density as

θ12 = θ23 = θ31 ≡ θ =
1

2πρ0
. (4.17)

The hoie an be justi�ed by thinking of the quantization of oordinate spae

brought by the nonommutativity. In quantum mehanis the anonial ommu-

tator [x, p] = i~ makes the phase spae quantized in ells of area 2π~. Similarly

the ommutator [xi, xj ] = iθ makes the oordinate spae quantized in ells of

area 2πθ. If we want eah partile of the �uid to oupy one ell of the x spae,

the density ρ0 will be exatly the density in (4.17).

This was our aim when introduing the �uid formalism. We want our glass

model to be a disordered version of a rystal lattie, so a �fuzzy� oordinate

spae where points annot be de�ned is desirable. This kind of �uid formalism

has already been used for desribing, for example, the quantum Hall e�et [31℄.
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5 The glass model

[14℄ Now we have gathered the tools needed for our glass model. The idea is

to desribe the glass using the three dimensional lattie in subsetion (3.2),

and to treat some of the partiles as if they were partiles of a nonmoving

nonommutative �uid. This is physially very sound, sine the disorder in a

glass is a remnant of the liquid form the matter was in before its quik ooling.

If the �uid partiles do not move, then in the parametrization of the Lagrange

�uid

X (t,x) = x+ a (t,x) (5.1)

we an set the deviation a (t,x) to zero, so the oordinates will be desribed by

their initial values x. Thus in the nonommutative setting the oordinates X

will inherit the ommutator (4.1) so that

[Xi, Xj] = iθij . (5.2)

In addition we will use the quantum mehanial anonial ommutators

[Xi, pj] = i~δij , (5.3)

although ~ will be set to 1.

Sine there is no atual lattie struture in glasses, we an hoose some of the

parameters in the system quite simply. The idea is to plae a lattie on the glass,

instead of �nding a lattie struture, so our system should not depend too muh

on how we orient the lattie. In other words, we should try to make the system as

isotropi as possible. This means that the distane between lattie sites should

be the same in all diretions, so the absolute values of the primitive translation

vetors a1, a2 and a3 will be equal. Similarly the nonommutativity parameter

should be the same for all diretions, i.e. θ12 = θ23 = θ31 ≡ θ. Isotropy will be

disussed more when we alulate the dispersion relations in the glass.

We shall not make every lattie site nonommutative. Equations of mo-

tion in the lattie will be alulated using only nearest neighbour interations,

so the lattie will already get disordered by treating every other partile in

the glass with nonommutative oordinates. This means that for eah partile

with ommuting oordinates the nearest neighbours will have nonommuting

oordinates, so the distane between all of the partiles in the system will be

disordered. The whole system will have two kinds of Hamiltonians, ones for

the partiles with ommuting oordinates and ones for the partiles with non-

ommuting oordinates. The whole system will be desribed by a sum of all

of the Hamiltonians, so we will have to onsider both kinds of Hamiltonians

when deriving quantities for the whole glass. We shall all the Hamiltonians

for partiles with ommutative oordinates ordered, and the Hamiltonians for

partiles with nonommutative oordinates disordered. Similarly we shall all

the partiles and lattie sites ordered and disordered. Note that by a partile

having nonommutative oordinates we mean that the partiles oordinates will

not ommute with each other, but they will ommute with the oordinates of

other partiles. All of this will beome lear in the alulation.
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Beause of the nonommutativity, the system annot be solved ompletely

similarly to usual rystals. Hamilton's equations will not give orret results

in nonommutative spaes, so time derivatives of oordinates and momenta

will have to be alulated di�erently. In nonommutative quantum mehanis,

di�erentials are de�ned by ommutators, and derivatives are given similarly to

the Heisenberg piture in quantum mehanis as

df

dt
= i [H , f ] , (5.4)

where H is the Hamiltonian of the system. [35℄ Calulating the time derivatives

this way will prove to be e�etive in our alulations.

Calulating the ommutators will be signi�antly easier after doing the trans-

formation

xi → xi − ǫij
θ

2
pj (5.5)

alled the Bopp shift for the nonommutative oordinates, where ǫij is the Levi-
Civita symbol and pj is the momentum in the diretion j. This is a mapping

to a orresponding ommutative oordinate system, so now the transformed

oordinates will ommute with eah other [36℄. In nonommutative quantum

mehanis, where the ommutator (4.1) applies, the Bopp shift appears for

example in the Shrödinger equation [37℄. This tehnique has been used in

for example alulating the orretion to the Lamb shift in nonommutative

quantum eletrodynamis [38℄.

After doing the transformation we ould also alulate the equations of mo-

tion using Hamilton's equations, but we will use the Heisenberg version anyway.

The only thing left to onsider in the Heisenberg ommutator is now the om-

mutator of x and p, as will be seen.

5.1 Equations of motion

5.1.1 Ordered lattie sites

[14℄ The Hamiltonian for the point l,m, n in a three dimensional vibrating lattie

is

Hl,m,n =
p2u;l,m,n + p2v;l,m,n + p2w;l,m,n

2m

+
ζ

2
(ul,m,n − ul+1,m,n)

2
+

ζ

2
(ul,m,n − ul−1,m,n)

2

+
ζ

2
(vl,m,n − vl,m+1,n)

2
+

ζ

2
(vl,m,n − vl,m−1,n)

2

+
ζ

2
(wl,m,n − wl,m,n+1)

2
+

ζ

2
(wl,m,n − wl,m,n−1)

2
, (5.6)

where p desribes the momenta to the diretions of the displaements u, v and w
and the indies l, m and n tell the lattie site whose momentum and displae-

ment we are onsidering.
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Now every other partile in the lattie is treated using nonommutative oor-

dinates, so that the displaements with indies l,m, n ommute with eah other

and the displaements where one of the indies l, m and n has been shifted by

±1 do not ommute with eah other. Had one of the indies of a displae-

ment been hanged by ±2, or had two of the indies been hanged by ±1, the
displaement would again ommute with other displaements.

We will start by doing the Bopp shift on the nonommutative displaements,

that is, do the hanges of variables

ul±1,m,n → ul±1,m,n − θ

2
pv;l±1,m,n +

θ

2
pw;l±1,m,n (5.7)

vl,m±1,n → vl,m±1,n − θ

2
pw;l,m±1,n +

θ

2
pu;l,m±1,n (5.8)

wl,m,n → wl,m,n±1 −
θ

2
pu;l,m,n±1 +

θ

2
pv;l,m,n±1. (5.9)

Now the Hamiltonian is

Hl,m,n =
p2u;l,m,n + p2v;l,m,n + p2w;l,m,n

2m

+
ζ

2

(

ul,m,n − ul+1,m,n +
θ

2
pv;l+1,m,n − θ

2
pw;l+1,m,n

)2

+
ζ

2

(

ul,m,n − ul−1,m,n +
θ

2
pv;l−1,m,n − θ

2
pw;l−1,m,n

)2

+
ζ

2

(

vl,m,n − vl,m+1,n +
θ

2
pw;l,m+1,n − θ

2
pu;l,m+1,n

)2

+
ζ

2

(

vl,m,n − vl,m−1,n +
θ

2
pw;l,m−1,n − θ

2
pu;l,m−1,n

)2

+
ζ

2

(

wl,m,n − wl,m,n+1 +
θ

2
pu;l,m,n+1 −

θ

2
pv;l,m,n+1

)2

+
ζ

2

(

wl,m,n − wl,m,n−1 +
θ

2
pu;l,m,n−1 −

θ

2
pv;l,m,n−1

)2

.(5.10)

The equations of motion for the partiles in ordered lattie sites are alulated

using the ordered Hamiltonian above, so that

u̇l,m,n = i[Hl,m,n, ul,m,n]. (5.11)

We will soon introdue also the disordered Hamiltonian.

After doing the Bopp shift, the only part of the Hamiltonian that does not

ommute with ul,m,n is p2u;l,m,n, so the ommutator yields the usual result

u̇l,m,n = i

[

p2u;l,m,n

2m
,ul,m,n

]

= − i

2m

[

ul,m,n, p
2
u;l,m,n

]

=
pu;l,m,n

m
. (5.12)
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For the seond time derivative we get

ül,m,n = i [Hl,m,n, u̇l,m,n] =
i

m
[Hl,m,n, pu;lm,n]

=
ζ

2m

[

(

ul,m,n − ul+1,m,n +
θ

2
pv;l+1,m,n − θ

2
pw;l+1,m,n

)2

+

(

ul,m,n − ul−1,m,n +
θ

2
pv;l−1,m,n − θ

2
pw;l−1,m,n

)2

, pu;lm,n

]

= − ζ

m
(2ul,m,n − ul+1,m,n − ul−1,m,n)

− ζθ

2m
(pv;l+1,m,n − pw;l+1,m,n + pv;l−1,m,n − pw;l−1,m,n) . (5.13)

To solve this equation we need an expression for the momenta of the lattie

points for whih the �rst index is l± 1. To get that we need the Hamiltonian of

those lattie points. Consider the point l + 1,m, n, for whih the Hamiltonian

is

Hl+1,m,n =
p2u;l+1,m,n + p2v;l+1,m,n + p2w;l+1,m,n

2m

+
ζ

2
(ul+1,m,n − ul+2,m,n)

2 +
ζ

2
(ul+1,m,n − ul,m,n)

2

+
ζ

2
(vl+1,m,n − vl+1,m+1,n)

2 +
ζ

2
(vl+1,m,n − vl+1,m−1,n)

2

+
ζ

2
(wl+1,m,n − wl+1,m,n+1)

2 +
ζ

2
(wl+1,m,n − wl+1,m,n−1)

2 .

(5.14)

Again we want to do a Bopp shift for the lattie points where only one of the

indies has been shifted by ±1. The shift is the same as it was for the previous
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Hamiltonian, so we get

Hl+1,m,n =
p2u;l+1,m,n + p2v;l+1,m,n + p2w;l+1,m,n

2m

+
ζ

2

(

ul+1,m,n − θ

2
pv;l+1,m,n +

θ

2
pw;l+1,m,n − ul+2,m,n

)2

+
ζ

2

(

ul+1,m,n − θ

2
pv;l+1,m,n +

θ

2
pw;l+1,m,n − ul,m,n

)2

+
ζ

2

(

vl+1,m,n − θ

2
pw;l+1,m,n +

θ

2
pu;l+1,m,n − vl+1,m+1,n

)2

+
ζ

2

(

vl+1,m,n − θ

2
pw;l+1,m,n +

θ

2
pu;l+1,m,n − vl+1,m−1,n

)2

+
ζ

2

(

wl+1,m,n − θ

2
pu;l+1,m,n +

θ

2
pv;l+1,m,n − wl+1,m,n+1

)2

+
ζ

2

(

wl+1,m,n − θ

2
pu;l+1,m,n +

θ

2
pv;l+1,m,n − wl+1,m,n−1

)2

.

(5.15)

As stated earlier, the displaements where the indies have been shifted by an

even amount desribe ordered partiles.

Lets �rst alulate the time derivative of vl+1,m,n.

v̇l+1,m,n = i [H, vl+1,m,n]

= i

[

p2v;l+1,m,n

2m
+

ζ

2

(

ul+1,m,n − θ

2
pv;l+1,m,n +

θ

2
pw;l+1,m,n − ul+2,m,n

)2

+
ζ

2

(

ul+1,m,n − θ

2
pv;l+1,m,n +

θ

2
pw;l+1,m,n − ul,m,n

)2

+
ζ

2

(

wl+1,m,n − θ

2
pu;l+1,m,n +

θ

2
pv;l+1,m,n − wl+1,m,n+1

)2

+
ζ

2

(

wl+1,m,n − θ

2
pu;l+1,m,n +

θ

2
pv;l+1,m,n − wl+1,m,n−1

)2

, vl+1,m,n

]

,

(5.16)
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whih equals

v̇l+1,m,n =
pv;l+1,m,n

m
− ζθ

2

(

ul+1,m,n − θ

2
pv;l+1,m,n +

θ

2
pw;l+1,m,n − ul+2,m,n

)

−ζθ

2

(

ul+1,m,n − θ

2
pv;l+1,m,n +

θ

2
pw;l+1,m,n − ul,m,n

)

+
ζθ

2

(

wl+1,m,n − θ

2
pu;l+1,m,n +

θ

2
pv;l+1,m,n − wl+1,m,n+1

)

+
ζθ

2

(

wl+1,m,n − θ

2
pu;l+1,m,n +

θ

2
pv;l+1,m,n − wl+1,m,n−1

)

=
pv;l+1,m,n

m
+

ζθ

2
(ul,m,n − 2ul+1,m,n + ul+2,m,n)

+
ζθ

2
(+2wl+1,m,n − wl+1,m,n+1 − wl+1,m,n−1)

+
ζθ2

4
(4pv;l+1,m,n − pw;l+1,m,n − pu;l+1,m,n) . (5.17)

This gives us the following equation for pv;l+1,m,n

pv;l+1,m,n = mv̇l+1,m,n − mζθ

2
(ul,m,n − 2ul+1,m,n + ul+2,m,n)

−mζθ

2
(2wl+1,m,n − wl+1,m,n+1 − wl+1,m,n−1) +O(θ2).

(5.18)

Doing the same alulation for ẇ+1,m,n gives us the equation for pw;l+1,m,n.

pw;l+1,m,n = mẇl+1,m,n − mζθ

2
(−ul,m,n + 2ul+1,m,n − ul+2,m,n)

−mζθ

2
(−2vl+1,m,n + vl+1,m+1,n + vl+1,m−1,n) +O(θ2).

(5.19)

The equations for pv;l−1,m,n and pw;l−1,m,n are derived similarly using Hl−1,m,n.

Hl−1,m,n is ompletely similar to Hl+1,m,n exept that all the l indies will be
shifted by −2. Thus we get

pv;l−1,m,n = mv̇l−1,m,n − mζθ

2
(ul,m,n − 2ul−1,m,n + ul−2,m,n)

−mζθ

2
(2wl−1,m,n − wl−1,m,n+1 − wl−1,m,n−1) +O(θ2)

(5.20)

and

pw;l−1,m,n = mẇl−1,m,n − mζθ

2
(−ul,m,n + 2ul−1,m,n − ul−2,m,n)

−mζθ

2
(−2vl−1,m,n + vl−1,m+1,n + vl−1,m−1,n) +O(θ2).

(5.21)
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Now we an solve ül,m,n. Inserting the expressions for pv;l+1,m,n, pw;l+1,m,n,

pv;l−1,m,n and pw;l−1,m,n into the expression for ül,m,n yields

ül,m,n = − ζ

m
(2ul,m,n − ul+1,m,n − ul−1,m,n)

−ζθ

2
v̇l+1,m,n +

ζ2θ2

4
(ul,m,n − 2ul+1,m,n + ul+2,m,n)

+
ζ2θ2

4
(2wl+1,m,n − wl+1,m,n+1 − wl+1,m,n−1)

+
ζθ

2
ẇl+1,m,n − ζ2θ2

4
(−ul,m,n + 2ul+1,m,n − ul+2,m,n)

−ζ2θ2

4
(−2vl+1,m,n + vl+1,m+1,n + vl+1,m−1,n)

−ζθ

2
v̇l−1,m,n +

ζ2θ2

4
(ul,m,n − 2ul−1,m,n + ul−2,m,n)

+
ζ2θ2

4
(2wl−1,m,n − wl−1,m,n+1 − wl−1,m,n−1)

+
ζθ

2
ẇl−1,m,n − ζ2θ2

4
(−ul,m,n + 2ul−1,m,n − ul−2,m,n)

−ζ2θ2

4
(−2vl−1,m,n + vl−1,m+1,n + vl−1,m−1,n) +O(θ3).(5.22)

Arranging the terms a bit leads to the equation of motion we were looking for

ül,m,n = − ζ

m
(2ul,m,n − ul+1,m,n − ul−1,m,n)

−ζθ

2
(v̇l+1,m,n + v̇l−1,m,n − ẇl+1,m,n − ẇl−1,m,n)

+
ζ2θ2

4
(4ul,m,n − 4ul+1,m,n − 4ul−1,m,n + 2ul+2,m,n + 2ul−2,m,n)

+
ζ2θ2

4
(2vl+1,m,n − vl+1,m+1,n − vl+1,m−1,n)

+
ζ2θ2

4
(2vl−1,m,n − vl−1,m+1,n − vl−1,m−1,n)

+
ζ2θ2

4
(2wl+1,m,n − wl+1,m,n+1 − wl+1,m,n−1)

+
ζ2θ2

4
(2wl−1,m,n − wl−1,m,n+1 − wl−1,m,n−1) +O(θ3). (5.23)

5.1.2 Disordered lattie sites

[14℄ Next we want to solve the equation of motion for the disordered lattie sites.

Similarly to the equation of v̇l+1,m,n in (5.17), we get an equation for u̇l+1,m,n
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as

u̇l+1,m,n =
pu;l+1,m,n

m
+

ζθ

2
(2vl+1,m,n − vl+1,m+1,n − vl+1,m−1,n)

+
ζθ

2
(−2wl+1,m,n + wl+1,m,n+1 + wl+1,m,n−1)

= +
ζθ2

2
(2pu;l+1,m,n − pv;l+1,m,n − pw;l+1,m,n) . (5.24)

With the help of this we get an equation for the momentum

pu;l+1,m,n =
1

1/m+ ζθ2

(

u̇l+1,m,n − ζθ

2
(2vl+1,m,n − vl+1,m+1,n − vl+1,m−1,n

−2wl+1,m,n + wl+1,m,n+1 + wl+1,m,n−1)

+
ζθ2

2
(pv;l+1,m,n + pw;l+1,m,n)

)

. (5.25)

Next we want to derive the time derivatives of the momenta. Using the

disordered Hamiltonian ṗu+1;l,m,n is

ṗu+1;l,m,n = i

[

ζ

2

(

ul+1,m,n − θ

2
pv;l+1,m,n +

θ

2
pw;l+1,m,n − ul+2,m,n

)2

+
ζ

2

(

ul+1,m,n − θ

2
pv;l+1,m,n +

θ

2
pw;l+1,m,n − ul,m,n

)2

, pu;l,m,n

]

= −ζ (2ul+1,m,n − ul+2,m,n − ul,m,n − θpv;l+1,m,n + θpw;l+1,m,n) .

(5.26)

Similarly

ṗv+1;l,m,n = −ζ (2vl+1,m,n − vl+1,m+1,n − vl+1,m−1,n − θpw;l+1,m,n + θpu;l+1,m,n)
(5.27)

and

ṗw+1;l,m,n = −ζ (2wl+1,m,n − wl+1,m+1,n − wl+1,m−1,n − θpu;l+1,m,n + θpv;l+1,m,n) .
(5.28)

Inserting the expression for pu;l+1,m,n to the expression for ṗu+1;l,m,n gives

us the equation

1

1/m+ ζθ2

(

ül+1,m,n − ζθ

2
(2v̇l+1,m,n − v̇l+1,m+1,n − v̇l+1,m−1,n

−2ẇl+1,m,n + ẇl+1,m,n+1 + ẇl+1,m,n−1) +
ζθ2

2
(ṗv;l+1,m,n + ṗw;l+1,m,n)

)

= −ζ (2ul+1,m,n − ul+2,m,n − ul,m,n − θpv;l+1,m,n + θpw;l+1,m,n) .

(5.29)
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From here we an solve ül+1,m,n.

ül+1,m,n = −
(

ζ

m
+ ζ2θ2

)

(2ul+1,m,n − ul+2,m,n − ul,m,n)

+
ζθ

m
(pv;l+1,m,n − pw;l+1,m,n)

+
ζθ

2
(2v̇l+1,m,n − v̇l+1,m+1,n − v̇l+1,m−1,n)

+
ζθ

2
(−2ẇl+1,m,n + ẇl+1,m,n+1 + ẇl+1,m,n−1)

−ζθ2

2
(ṗv;l+1,m,n + ṗw;l+1,m,n) +O

(

θ3
)

. (5.30)

Now we just have to insert the expressions for the momenta and their time

derivatives to get the equation of motion

ül+1,m,n = −
(

ζ

m
+ ζ2θ2

)

(2ul+1,m,n − ul+2,m,n − ul,m,n)

+ζθ (v̇l+1,m,n − ẇl+1,m,n)

−ζ2θ2

2
(ul,m,n − 2ul+1,m,n + ul+2,m,n)

−ζ2θ2

2
(2wl+1,m,n − wl+1,m,n+1 − wl+1,m,n−1)

+
ζ2θ2

2
(−ul,m,n + 2ul+1,m,n − ul+2,m,n)

+
ζ2θ2

2
(−2vl+1,m,n + vl+1,m+1,n + vl+1,m−1,n)

+
ζθ

2
(2v̇l+1,m,n − v̇l+1,m+1,n − v̇l+1,m−1,n)

+
ζθ

2
(−2ẇl+1,m,n + ẇl+1,m,n+1 + ẇl+1,m,n−1)

+
ζ2θ2

2
(2vl+1,m,n − vl+1,m+1,n − vl+1,m−1,n)

+
ζ2θ2

2
(2wl+1,m,n − wl+1,m+1,n − wl+1,m−1,n) +O

(

θ3
)

.

(5.31)

Again with a bit of rearranging and anelling of terms we get the simple ex-

pression

ül+1,m,n = − ζ

m
(2ul+1,m,n − ul+2,m,n − ul,m,n)

+
ζθ

2
(4v̇l+1,m,n − v̇l+1,m+1,n − v̇l+1,m−1,n) (5.32)

+
ζθ

2
(−4ẇl+1,m,n + ẇl+1,m,n+1 + ẇl+1,m,n−1) +O

(

θ3
)

.

(5.33)
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5.2 Density of states

Next we want to solve the density of states from the equations of motion we

derived. The main interest is to look for Van Hove singularities and to see if

they are related to the frequenies of the boson peak.

5.2.1 Ordered lattie site

[14℄ Now we want to solve the equation of motion given in (5.23). The situation

is very similar to the usual three dimensional lattie disussed in subsetion

(3.2), so we will try the same ansatz

ul,m,n = Ueiωteik·L,

vl,m,n = V eiωteik·L and

wl,m,n = Weiωteik·L, (5.34)

where again U , V and W are onstants telling the amplitude of the wave in

di�erent diretions, k = (k1, k2, k3) is the wave vetor, Ll,m,n = la1+ma2+na3
is the translation vetor telling the loation of the lattie site and ω is the

frequeny of the wave. Note that the absolute values of the primitive translation

vetors a1, a2 and a3 are equal, as explained in the beginning of this hapter,

so k · L = a (lk1 +mk2 + nk3), where a is the absolute value disussed.

The ansatz results in the equation

−ω2Ueiωteik·L

= −ω2
0

(

2− eiak1 − e−iak1

)

Ueiωteik·L − i
Kω

2

(

eiak1 + e−iak1

)

V eiωteik·L

+i
Kω

2

(

eiak1 + e−iak1

)

Weiωteik·L

+
K2

4

(

4− 4eiak1 − 4e−iak1 + 2e2iak1 + 2e−2iak1

)

Ueiωteik·L

+
K2

4

(

2eiak1 − ei(ak1+ak2) − ei(ak1−ak2)
)

V eiωteik·L

+
K2

4

(

2e−ia1k1 − ei(−ak1+ak2) − e−i(ak1+ak2)
)

V eiωteik·L

+
K2

4

(

2eia1k1 − ei(ak1+ak3) − ei(ak1−ak3)
)

Weiωteik·L,

+
K2

4

(

2e−iak1 − ei(−ak1+ak3) − e−i(ak1+ak3)
)

Weiωteik·L +O(θ3),

(5.35)

where we have de�ned the onstants ω0 =

√

ζ

m
and K = ζθ to shorten the

notation.
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Dividing with eiωteik·L and reognizing the osines yields

−ω2U = −2ω2
0 (1− cos (ak1))U + iKω cos (ak1) (−V +W )

+
K2

2
(2− 4 cos (ak1) + 2 cos (2ak1))U

+K2 (cos (ak1)− cos (ak1) cos (ak2))V

+K2 (cos (ak1)− cos (ak1) cos (ak3))W +O(θ3), (5.36)

whih after olleting terms with the same onstant beomes

0 =

{

ω2 − 2ω2
0 (1− cos (ak1)) +

K2

2
(2− 4 cos (ak1) + 2 cos (2ak1))

}

U

+
{

−iKω cos (ak1) +K2 (cos (ak1)− cos (ak1) cos (ak2))
}

V

+
{

iKω cos (ak1) +K2 (cos (ak1)− cos (ak1) cos (ak3))
}

W +O(θ3).

(5.37)

We an yet simplify the equation by using the identity cosx = 1− 2 sin2
x

2
:

0 =

{

ω2 − 4ω2
0 sin

2

(

ak1
2

)

+ 2K2

(

2 sin2
(

ak1
2

)

− sin2 (ak1)

)}

U

+

{

−iKω cos (ak1) + 2K2 cos (ak1) sin
2

(

ak2
2

)}

V

+

{

iKω cos (ak1) + 2K2 cos (ak1) sin
2

(

ak3
2

)}

W +O(θ3). (5.38)

To get rid of the three onstants U , V and W we need more equations. Thus we

shall onsider the equations for v̈l,m,n and ẅl,m,n. Looking at our Hamiltonians

we see that they are symmetri under the hange u → v, v → w and w → u.
Therefore the equations of motion for v̈l,m,n and ẅl,m,n are derived and solved

ompletely similarly to ül,m,n, so they must yield the same solution, exept for

hanging U , V and W as well as k1, k2 and k3 in the same manner as u, v and

w an be hanged. Thus starting with v̈l,m,n we should get the equation

0 =

{

ω2 − 4ω2
0 sin

2

(

ak2
2

)

+ 2K2

(

2 sin2
(

ak2
2

)

− sin2 (ak2)

)}

V

+

{

−iKω cos (ak2) + 2K2 cos (ak2) sin
2

(

ak3
2

)}

W

+

{

iKω cos (ak2) + 2K2 cos (ak2) sin
2

(

ak1
2

)}

U +O(θ3). (5.39)
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and from the equation for ẅl,m,n we get

0 =

{

ω2 − 4ω2
0 sin

2

(

ak3
2

)

+ 2K2

(

2 sin2
(

ak3
2

)

− sin2 (ak3)

)}

W

+

{

−iKω cos (ak3) + 2K2 cos (ak3) sin
2

(

ak1
2

)}

U

+

{

iKω cos (ak3) + 2K2 cos (ak3) sin
2

(

k2
2

)}

V +O(θ3). (5.40)

Sine all three of these equations have the same onstants U , V and W , we an

ombine the equations to matrix form. The matrix will be quite large, so we

will write all of the equations as

AU +BV + CW = 0, (5.41)

DU + EV + FW = 0 and (5.42)

GU +HV + IW = 0, (5.43)

where

A = ω2 − 4ω2
0 sin

2

(

ak1
2

)

+ 2K2

(

2 sin2
(

ak1
2

)

− sin2 (ak1)

)

, (5.44)

B = −iKω cos (ak1) + 2K2 cos (ak1) sin
2

(

ak2
2

)

, (5.45)

C = iKω cos (ak1) + 2K2 cos (ak1) sin
2

(

ak3
2

)

, (5.46)

D = iKω cos (ak2) + 2K2 cos (ak2) sin
2

(

ak1
2

)

, (5.47)

E = ω2 − 4ω2
0 sin

2

(

ak2
2

)

+ 2K2

(

2 sin2
(

ak2
2

)

− sin2 (ak2)

)

, (5.48)

F = −iKω cos (ak2) + 2K2 cos (ak2) sin
2

(

ak3
2

)

, (5.49)

G = −iKω cos (ak3) + 2K2 cos (ak3) sin
2

(

ak1
2

)

, (5.50)

H = iKω cos (ak3) + 2K2 cos (ak3) sin
2

(

ak2
2

)

and (5.51)

J = ω2 − 4ω2
0 sin

2

(

ak3
2

)

+ 2K2

(

2 sin2
(

ak3
2

)

− sin2 (ak3)

)

. (5.52)

Now we an write the equations as





A B C
D E F
G H J









U
V
W



 = 0. (5.53)
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Sine we are interested in the density of states of the system, we do not need to

solve the eigenvalues and eigenvetors of the matrix. Just as in the alulation

for optial and aousti waves in (3.1.2), there are nontrivial solutions to this

matrix equation only if the determinant

det





A B C
D E F
G H J



 = 0. (5.54)

This gives us another equation for the system. Solving ω from this equation

gives us the spetrum of vibrations and subsequently the density of states.

Sine the entries of the matrix are quite large, the determinant is enormous.

Therefore we will expand the sines to seond order in k1, k2 and k3, so that for
example sin2(ak1) beomes a2k21 and the determinant equation beomes

− ω4
(

3K2 − ω2
)

+ a2ω2
0ω

2
(

K2 − ω2
) (

k21 + k22 + k23
)

= 0. (5.55)

This is a reasonable approximation, sine in low temperatures the wavevetors

k should be small.

The isofrequeny surfaes in this equation are spheres with radius

r =
√

k21 + k22 + k23 , (5.56)

so this is one of the isotropi situations disussed in the end of the subsetion

(3.2.2). This is natural sine we assumed the system to be isotropi in the

beginning of this hapter. Therefore the density of states an be alulated

with the volume inside the isofrequeny surfaes.

Sine the determinant equals zero we get

r =

√

ω2
(

3K2 − ω2
)

a2ω2
0 (K

2 − ω2)
. (5.57)

Thus the volumes of the spheres are

4πr3

3
=

4π

3ω3
0a

3

(

ω2
(

3K2 − ω2
)

(K2 − ω2)

)3/2

. (5.58)

Here we an reognize the veloity of sound vc =

√

ζ

m
a = ω0a for a rystal

orresponding to our system shown in (3.89).

If we proeeded similarly to the alulations in subsetion (3.2.2), the density

of states g would be V/ (2π)
3
times the derivative of this volume with respet

to ω, where V is the volume of the whole glass. However now we have split the

lattie into two kinds of partiles, ordered and disordered, and both of the two
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kinds take only half of the lattie sites in the whole glass. Thus the density of

states has to be divided by two, so that for the ordered partiles

g0 (ω) =
1

2

V

(2π)3

∣

∣

∣

∣

∣

∣

∂

∂ω

4π

3ω3
0a

3

(

ω2
(

3K2 − ω2
)

(K2 − ω2)

)3/2
∣

∣

∣

∣

∣

∣

=
V

8π2v3c

∣

∣

∣

∣

∣

∣

√

ω2
(

3K2 − ω2
)

(K2 − ω2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ω
(

6K2 − 4ω2
)

(K2 − ω2)
+

2ω3
(

3K2 − ω2
)

(K2 − ω2)2

∣

∣

∣

∣

∣

=
V ω2

4π2v3c

∣

∣

∣

∣

∣

√
3K2 − ω2

(

3K4 − 2K2ω2 + ω4
)

(K2 − ω2)
5/2

∣

∣

∣

∣

∣

. (5.59)

The purpose of the absolute value is to keep go positive. Expanding the de-

nominator and omitting the K4
terms, sine K is proportional to the small θ,

simpli�es the expression into

go (ω) =
V ω2

4π2v3c

∣

∣

∣

∣

∣

√
3K2 − ω2

(

3K4 − 2K2ω2 + ω4
)

√
K2 − ω2 (K4 − 2K2ω2 + ω4)

∣

∣

∣

∣

∣

≈ V ω2

4π2v3c

∣

∣

∣

∣

∣

∣

√

3K2 − ω2

K2 − ω2

∣

∣

∣

∣

∣

∣

. (5.60)

The density of states has a divergene at

ωo,div = K. (5.61)

Thus the glass really has behaviour similar to van Hove singularities. Realling

that K = ζθ we see that the singularity is related to the nonommutativity of

our model. The more disordered the system is, the larger the nonommutativity

parameter θ should be, and therefore the higher the frequeny of the singularity

should be.

5.2.2 Disordered lattie sites

[14℄ Now we want to solve the equation of motion (5.32), whih desribes the

partiles in the disordered lattie sites. The proedure is the same as for the

ordered sites. Plugging in the same ansatz (5.34) as for the ordered partiles

and dropping the O
(

θ3
)

terms yields

−ω2Ueiωteik·Leiak1

= −ω2
0Ueiωteik·L

(

2eiak1 − e2iak1 − 1
)

+iω
K

2
eiωteik·Leiak1

(

4V − V eiak2 − V e−iak2

)

+iω
K

2
eiωteik·Leiak1

(

−4W +Weiak3 +We−iak3

)

. (5.62)
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Dividing with eik·Leiak1
gives the equation

{

ω2 − ω2
0

(

2− eiak1 − e−iak1

)}

U

+iω
K

2

{

4− eiak2 − e−iak2

}

V

−iω
K

2

{

4− eiak3 − e−iak3

}

W = 0. (5.63)

Expressed with osines it is

{

ω2 − 2ω2
0 (1− cos (ak1))

}

U

+iωK {2− cos (ak2)}V
−iωK {2− cos (ak3)}W = 0. (5.64)

Again the equation of motion for v̈l+1,m,n should lead to the same result,

exept that U should be hanged to V , V should be hanged to W and W
should be hanged to U , and k1, k2 and k3 should be permuted similarly. Thus

we get

{

ω2 − 2ω2
0 (1− cos (ak2))

}

V

+iωK {2− cos (ak3)}W
−iωK {2− cos (ak1)}U = 0. (5.65)

For ẅl+1,m,n the permutation should be done twie, leading to

{

ω2 − 2ω2
0 (1− cos (ak3))

}

W

+iωK {2− cos (ak1)}U
−iωK {2− cos (ak2)}V = 0. (5.66)

Colleting the three equations leads to the matrix





ω2 − 2ω2
0 (1− cos (ak1)) iωK (2− cos (ak2)) −iωK (2− cos (ak3))

−iωK (2− cos (ak1)) ω2 − 2ω2
0 (1− cos (ak2)) iωK (2− cos (ak3))

iωK (2− cos (ak1)) −iωK (2− cos (ak2)) ω2 − 2ω2
0 (1− cos (ak3))



 ,

(5.67)

whih has non-trivial solutions only if its determinant equals 0. Expanding in

k yields

− ω4
(

3K2 − ω2
)

+ a2
(

−K2ω4 +K2ω2ω2
0 − ω4ω2

0

) (

k21 + k22 + k23
)

+O
(

k
3
)

.
(5.68)

Omitting the O
(

k
3
)

terms and setting the determinant to zero gives

k21 + k22 + k23 =
ω2
(

3K2 − ω2
)

a2 (K2ω2
0 − (K2 + ω2

0)ω
2)
. (5.69)

The density of states an again be alulated with the volume of the isofrequeny

spheres. Using

√

k21 + k22 + k23 as the radius r of the sphere leads to the volume

4π

3
r3 =

4πω3
(

3K2 − ω2
)3/2

3a3 (K2ω2
0 − (K2 + ω2

0)ω
2)

3/2
. (5.70)
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Realling the disussion about the ordered and disordered partiles both taking

up half of the lattie, we see that the density of states

gd (ω) =
1

2

V

(2π)
3

∣

∣

∣

∣

∣

∂V

∂ω

4πω3
(

3K2 − ω2
)3/2

3a3 (K2ω2
0 − (K2 + ω2

0)ω
2)

3/2

∣

∣

∣

∣

∣

=
V

(2π)
3

4π

6a3

∣

∣

∣

∣

∣

3ω2
(

3K2 − ω2
)3/2 − 3ω4

(

3K2 − ω2
)1/2

(K2ω2
0 − (K2 + ω2

0)ω
2)

3/2

−3ω4
(

3K2 − ω2
)3/2 (−K2 − ω2

0

)

(K2ω2
0 − (K2 + ω2

0)ω
2)

5/2

∣

∣

∣

∣

∣

=
V ω2

4π2a3

∣

∣

∣

∣

∣

√
3K2 − ω2

(

3K4ω2
0 +K2ω4 − 2K2ω2

0ω
2 + ω2

0ω
4
)

(K2ω2
0 − (K2 + ω2

0)ω
2)

5/2

∣

∣

∣

∣

∣

(5.71)

or

V ω4

4π2v3c

∣

∣

∣

∣

∣

√
3K2 − ω2

(

2K2 −
(

K2/ω2
0 + 1

)

ω2
)

(K2 − (K2/ω2
0 + 1)ω2)

5/2

∣

∣

∣

∣

∣

(5.72)

after disarding the term with K4
in the nominator and using the veloity of

sound vc = ω0a =
√

ζ/ma in a orresponding rystal.

Now the density of states has a divergene at

ωd,div =
K

√

K2/ω2
0 + 1

. (5.73)

Expanding in K lets us write the divergene as

ωd,div = K +O
(

K3
)

, (5.74)

whih is the same result as for the ordered partiles. Therefore we an onlude

that making every seond partile of a lattie disordered gives the density of

states of all partiles the same peak frequeny. This is desirable for our model,

sine the boson peak appears only at one frequeny for every glass.

5.2.3 Whole glass

[14℄ Sine the ordered and disordered partiles both take up half of the glass,

the density of states for the whole glass has to be the sum of the densities of

states of the two kinds of partiles. For the ordered lattie sites

go =
V ω2

4π2v3c

∣

∣

∣

∣

∣

∣

√

3K2 − ω2

K2 − ω2

∣

∣

∣

∣

∣

∣

(5.75)

and for the disordered lattie sites we got

gd =
V ω4

4π2v3c

∣

∣

∣

∣

∣

√
3K2 − ω2

(

2K2 −
(

K2/ω2
0 + 1

)

ω2
)

(K2 − (K2/ω2
0 + 1)ω2)

5/2

∣

∣

∣

∣

∣

. (5.76)
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Thus for the whole glass

gglass = go + gd

=
V ω2

√

|3K2 − ω2|
4π2v3c

(

1
√

|K2 − ω2|
+

∣

∣

∣

∣

∣

ω2
(

2K2 −
(

K2/ω2
0 + 1

)

ω2
)

(K2 − (K2/ω2
0 + 1)ω2)

5/2

∣

∣

∣

∣

∣

)

.

(5.77)

This is a good moment to ompare our model to the Debye model for aousti

waves. If we set K = ζθ = 0 in the above model to remove the disorder, then

gglass = go + gd =
ω2V

4π2v3c
+

ω2V

4π2v3c
=

ω2V

2π2v3c
, (5.78)

whih is the density of states of one branh in the Debye model shown in (3.90).

In order to desribe the whole glass we have to add up the longitudinal and

transverse waves. We want our system to be as isotropi as possible, so the

sound veloities in longitudinal and transverse diretions should be the same,

whih means that the density of states has only to be multiplied by three. Thus

gglass =
3V ω2

√

|3K2 − ω2|
4π2v3c

(

1
√

|K2 − ω2|
+

∣

∣

∣

∣

∣

ω2
(

2K2 −
(

K2/ω2
0 + 1

)

ω2
)

(K2 − (K2/ω2
0 + 1)ω2)

5/2

∣

∣

∣

∣

∣

)

.

(5.79)

Now the ommutative limit gives exatly the same result as the Debye model.

This means that the boson peak ontribution has to be related to the nonom-

mutativity in our model, as we saw when disussing the singularities in the

density of states.

gglass and the gDebye derived from the Debye model are plotted in �gure

(5.1) and gglass/gDebye is plotted in �gure (5.2). In the former we have set the

onstant V/2π2v3c = 1. The plots have a disontinuity just as stated in the

introdution. In the �rst plot the disontinuity of gglass is at the frequeny of

the divergenes ωo,div = ωd,div = K, and it gives the boson peak frequeny.

5.3 Dispersion relations

Next we will derive the dispersion relations. Using them we an hek whether

the boson peak in our system orresponds to aousti or optial waves. Deriving

the dispersion relations from the equations of motion would be umbersome, so

we will instead use the determinants (5.54) and (5.67) similarly as in the one

dimensional model with two atoms.

Before alulating the dispersion relations, we shall make the system more

symmetri. The model is not ompletely isotropi, sine we have imposed a

lattie struture. Also the nonommutativity parameter is set to have the value

θ in the diretions of the primitive translation vetors, but in other diretions

the nonommutativity is di�erent. Reall that with a hange of oordinates

we an de�ne axes where only two diretions are nonommutative, as shown in

(4.4). This means that the nonommutativity is atually ompletely in the plane
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Figure 5.1: The blue line with the peak is gglass with K = 0.2 and ω0 = 1, and
the purple line that rises higher on the right is gDebye. We have set V/2π2v3c = 1,
so gDebye (1) = 1.

Figure 5.2: The plot of gglass/gDebye with K = 0.2 and ω0 = 1.
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de�ned by the two nonommuting diretions perpendiular to the ommuting

one. By hoosing θ12 = θ23 = θ31 ≡ θ we have just hosen the nonommutativity

plane to have equal projetions to eah of the lattie axes.

To make the system more isotropi, we shall hoose one of the diretions of

the wavevetor, and use that to represent the whole wavevetor. Thus we shall

set k3 = |k| ≡ k and k1 = k2 = 0. Now we study only waves whih have proper

nonommutativity, whih means a proper disorder in the lattie.

Notie that had we made this simpli�ation when alulating the density of

states, we would have got the same result, sine the wavevetors appeared only

as the sum k1 + k2 + k3 after doing the small angle approximation.

5.3.1 Ordered partiles

[14℄ Let us take another look at the equation (5.54). If we set k3 = |k| ≡ k and

k1 = k2 = 0 the matrix beomes

















ω2 −iKω iKω + 2K2 sin2
(

ak

2

)

iKω ω2 −iKω + 2K2 sin2
(

ak

2

)

−iKω cos (ak) iKω cos (ak) ω2 − 4ω2
0 sin

2

(

ak

2

)

+ 2K2

(

2 sin2
(

ak

2

)

− sin2 (ak)

)

















.

(5.80)

Thus the determinant is

ω2

(

8 cos4
(

ak

2

)

K2ω2 − 16 cos2
(

ak

2

)

K2ω2 − 4ω2
0K

2 cos2
(

ak

2

)

+4 cos2
(

ak

2

)

ω2
0ω

2 + 5K2ω2 + 4ω2
0K

2 + ω4 − 4ω2
0ω

2

)

. (5.81)

Setting the determinant to zero gives a quadrati equation for ω2
:

ω4 + ω2

(

8 cos4
(

ak

2

)

K2 + 4
(

ω2
0 − 4K2

)

cos2
(

ak

2

)

+ 5K2 − 4ω2
0

)

−4ω2
0K

2

(

cos2
(

ak

2

)

− 1

)

= 0. (5.82)

The solutions are

ω2
± =

ω2
0

2

{

(

−8 cos4
(

ak

2

)

K2

ω2
0

− 4

(

1− 4
K2

ω2
0

)

cos2
(

ak

2

)

− 5
K2

ω2
0

+ 4

±
[(

8 cos4
(

ak

2

)

K2

ω2
0

+ 4

(

1− 4
K2

ω2
0

)

cos2
(

ak

2

)

+ 5
K2

ω2
0

− 4

)2

+16
K2

ω2
0

(

cos2
(

ak

2

)

− 1

)]1/2
}

(5.83)
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or

ω2
± =

ω2
0

2

{

− 8 cos4
(

ak

2

)

R+ 4 (1− 4R) sin2
(

ak

2

)

+ 11R

±

√

(

8 cos4
(

ak

2

)

R− 4 (1− 4R) sin2
(

ak

2

)

− 11R

)2

− 16R sin2
(

ak

2

)

}

(5.84)

with the help of the Pythagorean identity and de�ning R =
K2

ω2
0

= mζθ2.

The expressions are very similar to the expressions for the aousti and

optial branhes for the two atom hain disussed in hapter (3.1.2), even though

we are now disussing a lattie with only idential partiles. In the entre of

the Brillouin zone where k3 = 0 the branh ω+ =
√
3K i.e. a onstant, and the

branh ω− = 0. In addition ω+ is always greater than ω−. Therefore ω+really

is an optial branh and ω− is an aousti branh.

An interesting point is that if K is set to zero to obtain the usual om-

mutative version, the aousti branh gives the usual dispersion relation for a

monoatomi lattie:

ω− = 2
√

ω2
0 sin

(

ak

2

)

(5.85)

and the optial branh vanishes. This is ompletely expeted, but it means

that having both ordered and disordered partiles reates optial branhes for

monoatomi latties.

Next we shall solve the dispersion relations for the disordered partiles and

then ompare the frequeny ranges of the branhes we have found to the fre-

queny of the peak in the density of states. This helps us interpret whih

branhes ontribute to the boson peak.

5.3.2 Disordered partiles

[14℄ If we set k3 = |k| ≡ k and k1 = k2 = 0 , the matrix in (5.67) beomes





ω2 iωK −iωK (2− cos (ak))
−iωK ω2 iωK (2− cos (ak))
iωK −iωK ω2 − 2ω2

0 (1− cos (ak))



 , (5.86)

so its determinant is

ω2
(

2K2 cos (ak)ω2 − 2K2ω2
0 cos (ak) + 2 cos (ak)ω2

0ω
2

−5K2ω2 + 2K2ω2
0 + ω4 − 2ω2

0ω
2
)

. (5.87)
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Equating this to zero gives again a quadrati equation in ω2
. The solutions are

ω2
± =

ω2
0

2

{

− 2

(

K2

ω2
0

+ 1

)

cos (ak) + 5
K2

ω2
0

+ 2

±

√

(

2

(

K2

ω2
0

+ 1

)

cos (ak)− 5
K2

ω2
0

− 2

)2

− 8
K2

ω2
0

(1− cos (ak))

}

(5.88)

or

ω2
± =

ω2
0

2

{

4 (R+ 1) sin2
(

ak

2

)

+ 3R

±

√

(

4 (R+ 1) sin2
(

ak

2

)

+ 3R

)2

+ 16R sin2
(

ak

2

)

}

(5.89)

using cos (x) = 1−2 sin2
(x

2

)

and R =
K2

ω2
0

= mζθ2. Solving the above equation

for ω− would give us an imaginary frequeny, so we will use the absolute value

instead when disussing ω−.

Again at the entre of the Brillouin zone (k = 0) the values of the branhes
are ω+ =

√
3K2

and ω− = 0, and ω+ is always greater than ω−. Thus ω+ is

the optial branh and ω− is the aousti branh.

The branhes derived from the ordered partiles and the branhes derived

above from the disordered partiles are plotted in �gures (5.3) and (5.4). In

addition the frequeny of divergene ωdiv = K = ω0

√
R found from the density

of states of the ordered and disordered partiles is plotted in the graphs. Sine

the dispersion relations are periodi in 2π/a we have plotted them on the interval

[0, 2π/a].

As is seen from the graphs, the optial branhes lie above the boson peak

frequeny, so they annot ontribute to it, just like we antiipated when dis-

ussing the Debye and Einstein models. The aousti modes however have a

long interval where their values are very lose to the peak frequeny, leading to

the van Hove singularity, so it is natural to assume that this interval is behind

the boson peak behaviour.

Comparing the two graphs we also see that as the nonommutativity param-

eter R = K2/ω2
0 = mζθ2 is inreased, the frequenies of the optial branhes

inrease and the di�erene between ordered and disordered ontributions in-

reases.
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Figure 5.3: The dispersion relations with R = 0.04.
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Figure 5.4: The dispersion relations with R = 0.09.
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5.4 Heat apaity

[39℄ In subsetion (3.3) we derived the following formula for the heat apaity

of a rystal:

CV =

∫

dωg (ω)

(

ω/T

eω/T − 1

)2

eω/T . (5.90)

Let us see how it works for our glass model. Using the density of states we

derived leads to

CV =

∫

dω

(

ω/T

eω/T − 1

)2

eω/T 3V ω2
√

|3K2 − ω2|
4π2v3c

×
(

1
√

|K2 − ω2|
+

∣

∣

∣

∣

∣

ω2
(

2K2 −
(

K2/ω2
0 + 1

)

ω2
)

(K2 − (K2/ω2
0 + 1)ω2)

5/2

∣

∣

∣

∣

∣

)

. (5.91)

CV and the Debye model heat apaity are plotted in �gure (5.5), and

CV T
−3

is plotted in �gure (5.6). The latter plot shows learly the e�et of

the boson peak. Finally in �gure (5.7), whih is taken from [14℄, the theoretial

values are alulated for three real glasses and ompared to experimental re-

sults. In the last �gure the parameters ω0 and θ are determined by �rst �tting

the theoretial urves to the experimental results so that the heat apaity and

frequeny math at the peaks. The graphs show that our model produes the

boson peak behaviour and espeially the shape of the urves in good agreement

with experimental data.

In this work we shall go further and alulate the integral, but �rst we

shall do several hanges to it. First of all we set the Debye temperature

ωD = veff
(

6Nπ2/V
)1/3

as an upper bound for the integral, and also write

the oe�ient in terms of ωD as 3V/2π2v3eff = 9N/ω3
D, as we did when dis-

ussing the Debye model. Then we shall use

eω/T

(

eω/T − 1
)2 =

1

4 sinh2 (ω/2T )
(5.92)

to simplify the formula. Now

CV =
9N

8ω3
DT

2

∫ ωD

0

dω
ω4
√

|3K2 − ω2|
sinh2 (ω/2T )

×
(

1
√

|K2 − ω2|
+

∣

∣

∣

∣

∣

ω2
(

2K2 −
(

K2/ω2
0 + 1

)

ω2
)

(K2 − (K2/ω2
0 + 1)ω2)

5/2

∣

∣

∣

∣

∣

)

. (5.93)

Let us next expand the integrand in K, so

CV =
9N

8ω3
DT 2

∫ ωD

0

dω
ω4

sinh2 (ω/2T )

(∣

∣

∣

∣

1− K2

ω2

∣

∣

∣

∣

+

∣

∣

∣

∣

1− K2

ω2
− 3K2

2ω2
0

∣

∣

∣

∣

)

+O
(

K4
)

.

(5.94)
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Figure 5.5: The glass heat apaity in blue and the Debye heat apaity in red,

saled as C/3N . We have set ωD = 100, K = 0.2 and ω0 = 1.
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Figure 5.6: CV T
−3

with ωD = 100, K = 0.2 and ω0 = 1.

Figure 5.7: Comparison of theoretial and experimental values of the heat a-

paity. The graphs are taken from [14℄. The irles are experimental values,

while the ontinuous urves are theoretial values alulated using an integral

similar to (5.93).
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Removing the absolute values ompliates the rest of the alulation. Let us

�rst assume that the ontribution to the integral below

ω = K/

√

1− 3K2

2ω2
0

≈ K +
3K3

4ω2
0

(5.95)

is negligible, so we an drop the absolute values, and

CV =
9N

8ω3
DT

2

∫ ωD

0

dω
ω4

sinh2 (ω/2T )

(

2− 2K2

ω2
− 3K2

2ω2
0

)

, (5.96)

after dropping the O
(

K4
)

terms.

Let us hange the integration variable to x = ω/2T , so

CV =
36NT 3

ω3
D

∫ ωD/2T

0

dx
x4

sinh2 (x)

(

2− K2

2T 2x2
− 3K2

2ω2
0

)

, (5.97)

and then use the low temperature limit to set the upper bound of the integral to

in�nity. Now the integral is simple to alulate with

∫∞

0
x4/ sinh2(x) = π4/30

and

∫∞

0 x2/ sinh2(x) = π2/6.

CV =
36NT 3

ω3
D

∫ ∞

0

dx
x4

sinh2 (x)

(

2− K2

2T 2x2
− 3K2

2ω2
0

)

=
12π4NT 3

5ω3
D

(

1− 3K2

4ω2
0

− 5K2

4π2T 2

)

. (5.98)

The �rst term is the same result as what the Debye model gives, and the rest

of the expression is a disordered addition to it.
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6 Conlusions and omparison to other models

In the thesis we introdued a lattie model for glasses starting from a rystal

lattie. We swithed the oordinates of half of the partiles in the rystal lattie

to nonommutative oordinates with a small ommutator θ, to give the loations
of the partiles an unertainty. This resulted in a Van Hove singularity in the

density of states of the partiles at a frequeny proportional to θ. The singularity
was loated at low frequenies and it resembled the boson peak found in glass

experiments, whih has been without a thorough theoretial model. Right after

the singularity the density of states of the system reverted to the Debye rystal

model.

Sine the model had two kinds of partiles, ones with ommutative, or or-

dered, oordinates and ones with nonommutative disordered oordinates, both

of the kinds of partiles had also their own vibrational branhes. Having two

kinds of partiles also reated optial branhes to the system.

Lastly we used the density of states to alulate the heat apaity of the

system. The heat apaity resembled mostly the Debye rystal model, but in

very low frequenies the heat apaity has a lear bump ompared to the Debye

T 3
law. This is exatly what has been found in experiments.

Several experiments and simulations have indiated a onnetion between

aousti waves and the boson peak. In [40℄ and [41℄ a onnetion to the aousti

Van Hove singularity is given, whilst [42℄ and [17℄ fous on aousti waves near

the pseudo-Brillouin zone. However, many of the theoretial models for the

boson peak explain the phenomenon as something not related to aousti waves

[20, 43�47℄

Looking at the dispersion relations we derived, we see that our model learly

relates the boson peak to aousti waves. The frequenies of the optial waves

are higher than the boson peak frequeny, whereas the aousti waves are loated

very lose to the peak frequeny for a large interval in the Brillouin zone. Also

the smaller the nonommutativity parameter is, the loser the aousti branhes

are to the peak frequeny, whih is seen easiest from the plots of the dispersion

relation. However the peak still is a result of the nonommutativity, sine the

peak frequeny is proportional to the nonommutativity parameter: ωdiv =
K = ζθ.

In [17℄ and [48℄ it is indiated that there are longitudinal aousti waves

well above the boson peak frequeny. Another �nding in the former is that

the frequeny of the boson peak is equal to the frequeny of the Io�e-Regel

limit for transverse phonons. The Io�e-Regel limit is the frequeny where the

wavelength of phonons equals their mean free path. Above the limit there are

no transverse phonons. This suggests that the boson peak is linked to transverse

phonons and the onlusion is drawn that the boson beak frequeny might be

the harateristi frequeny of the transverse vibrational modes, or in other

words the frequeny to whih the transverse waves resonate.

Our model in ontrast to [17℄ suggests that the maximum frequeny of aous-

ti waves is very lose to the peak frequeny, whih means that longitudinal

aousti waves ould still be related to the peak. However both models agree
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that the maximum frequeny of transverse aousti waves is very lose to the

boson peak frequeny.

There already has been introdued numerous glass models that start from

a rystal and then make it slightly disordered, by for example disloating eah

atom from its lattie site by a random amount [15℄ or by adding �utuations to

the fore onstants between lattie sites of the atom [40℄. Our model however

is vastly simpler, sine the alulations an be done essentially by only pen

and paper instead of with simulations. This makes our model very easy to

investigate and manipulate for further developments. It should also be noted

that our model has only two parameters ω0 and θ. ω0 is the harateristi

frequeny of the glass, and θ tells how disordered the glass is.

In this thesis we do not omment on the transition from a liquid to a glass.

An interesting possibility for further development would be to see does this

model bring anything to the transition disussion. One ould for example start

with a nonommutative �uid using the parametrization (4.15), and in ontrast

to the work here, not start with the deviation A set to zero but to see what

happens when A is gradually brought to zero. Then the �uid would initially

�ow. This might also bring insight on whether our model an truly be ompared

to �uid models, or is it just a nonommutative lattie.

An easier further alulation would be to alulate the sound veloity using

our dispersion relations. This should be an easy alulation, and it would allow

alulating the value of θ using measured sound veloities. Another interesting

alulation would be to alulate θ from the relation to the area density of

partiles (4.17) used in �uid models, to see whether it an be applied to the

glass model.
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