
An implementation research on software defect prediction us-
ing machine learning techniques

Laur Pulliainen

Helsinki September 10, 2018

Master’s thesis

UNIVERSITY OF HELSINKI
Department of Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/224636076?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Faculty of Science Department of Computer Science

Laur Pulliainen

An implementation research on software defect prediction using machine learning techniques

Computer Science

Master’s thesis September 10, 2018 58 pages + 3 appendix pages

software defect prediction, machine learning, supervised learning, software metrics

Software defect prediction is the process of improving software testing process by identifying defects
in the software. It is accomplished by using supervised machine learning with software metrics and
defect data as variables. While the theory behind software defect prediction has been validated in
previous studies, it has not widely been implemented into practice. In this thesis, a software defect
prediction framework is implemented for improving testing process resource allocation and software
release time optimization at RELEX Solutions. For this purpose, code and change metrics are
collected from RELEX software. The used metrics are selected with the criteria of their frequency
of usage in other software defect prediction studies, and availability of the metric in metric collection
tools. In addition to metric data, defect data is collected from issue tracker. Then, a framework
for classifying the collected data is implemented and experimented on. The framework leverages
existing machine learning algorithm libraries to provide classification functionality, using classifiers
which are found to perform well in similar software defect prediction experiments. The results from
classification are validated utilizing commonly used classifier performance metrics, in addition to
which the suitability of the predictions is verified from a use case point of view. It is found that
software defect prediction does work in practice, with the implementation achieving comparable
results to other similar studies when measuring by classifier performance metrics. When validating
against the defined use cases, the performance is found acceptable, however the performance varies
between different data sets. It is thus concluded that while results are tentatively positive, further
monitoring with future software versions is needed to verify performance and reliability of the
framework.

ACM Computing Classification System (CCS):
Software and its engineering → Software defect analysis
Computing methodologies → Supervised learning by classification
Computing methodologies → Cost-sensitive learning
Computing methodologies → Ensemble methods

Tiedekunta — Fakultet — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

ii

Contents

1 Introduction 1

2 Background and goals 3

2.1 RELEX Solutions . 3

2.1.1 RELEX software architecture 3

2.1.2 Releasing and testing process in the Release Management team 4

2.2 Current situation and goals . 6

3 Metrics in software defect prediction 7

3.1 Code metrics . 7

3.1.1 CK metrics . 8

3.1.2 CK extended metrics . 11

3.1.3 QMOOD metrics . 12

3.1.4 Martin’s metrics . 14

3.1.5 Other metrics . 15

3.2 Change metrics . 16

3.2.1 Moser’s change metrics . 16

3.2.2 Choudary’s extension to Moser’s change metrics 17

4 Classification in software defect prediction 19

4.1 Measuring classifier performance . 19

4.2 Overview of classifiers . 22

4.2.1 Random Forest . 22

4.2.2 Naive Bayes . 23

4.2.3 J48 . 23

4.2.4 Support Vector Machine . 24

4.2.5 Bayesian Network . 24

4.3 Enhancing classifier performance . 24

iii

4.3.1 Data preprocessing . 25

4.3.2 Feature selection . 25

4.3.3 Over and undersampling . 26

4.3.4 Cost-sensitive classification . 26

4.3.5 Cut-off value . 27

4.3.6 Bagging and boosting . 27

5 Implementation research 28

5.1 Data collection . 28

5.1.1 Defining required data . 28

5.1.2 Extracting defect data . 29

5.1.3 Extracting software metric data 30

5.1.4 Defining final data sets . 32

5.2 Implementing a software defect prediction framework 33

5.3 Narrowing down classifier selection 34

5.3.1 Defining initial configurations 34

5.3.2 Initial performance comparison and results 35

6 Analysis 38

6.1 Improving results . 38

6.1.1 Undersampling and cost sensitivity 38

6.1.2 Feature selection . 41

6.1.3 Log filtering . 41

6.1.4 Data normalization . 42

6.1.5 Deciding between data sets . 42

6.1.6 Bagging and Boosting . 43

6.2 Results for the final configurations . 45

6.2.1 Feature selection results . 45

6.2.2 Performance results and comparison to other studies 46

iv

6.2.3 Final results and discussion 49

6.3 Use case validation . 49

6.3.1 Validating usability for testing process improvement 50

6.3.2 Validating usability for version defectiveness estimation 51

6.3.3 Validating prediction usefulness 52

7 Summary 54

References 56

Appendices

1 Final data CM + CKE

1

1 Introduction

Software defect prediction is the process of using software metrics to predict defective
components in a software. Software defect prediction is associated with several
benefits [1]. It complements software testing process by pinpointing parts of the
software prone to defectiveness. This information can then be used to focus often
limited testing resources, and to reduce time to find defects. Additionally, it helps
in assuring software quality by locating defects that would not have been detected
otherwise.

Software defect prediction consists of two areas, software metrics and classification.
Software metrics are a wide collection of attempts at quantifying aspects of software
and software development. The simplest metrics are for example lines of code in
a file, or lines of code added per code update. Most of the software metrics have
been developed with a specific goal in mind, such as measuring quality, cohesion or
maintainability [2, 3, 4]. Interestingly, none of the software metrics in use for software
defect prediction were specifically designed for defect prediction by machine learning
techniques.

Classification in machine learning is the process of categorizing data into classes, for
example sunny and raining. It is a type of supervised learning, meaning that when
training the classification model, there are correct prediction answers available. In
software defect prediction, the classification problem is often binary, that is each
data point is classified as either defective or non-defective [5, 6]. Software defect
prediction can also be non-binary if the goal is to predict the number of defects,
however this case is not considered in this thesis. Classification became popular
for software defect prediction studies after 2005, when several data sets containing
software defect data were released [1]. Since then, several different classifiers and
configurations have been tested to determine the best configuration. However, so
far the results have been inconclusive.

This thesis will focus on a practical implementation of software defect prediction
for RELEX Solutions. The aim is to implement and evaluate a software defect pre-
diction framework based on the existing studies conducted in the field of software
defect prediction. While several studies with similar goals have been conducted,
the software defect prediction frameworks have previously often been assessed only
by classifier performance metrics. As the evaluation has focused on classifier per-
formance metric evaluation and comparison, the practical use cases have not been

2

considered, or have received less attention. In this thesis, focus will be on evaluating
both the theoretical and practical performance.

The framework implementation process begins with identifying and presenting the
use case for software defect prediction in Chapter 2. Additionally, the software
release process at RELEX Solutions will be presented. Finally, the research questions
are defined and described.

Next, the software metrics used for defect prediction are introduced in Chapter 3.
Two types of software metrics, code metrics and change metrics, are used. Chapter
4 then introduces the classifiers, which are the machine learning algorithms used to
make predictions based on the metric data. Additionally, several data management
techniques and classifier performance measurements are introduced.

The implementation of the software defect prediction is introduced in Chapter 5,
which consists of data collection and classification tools. Additionally, preliminary
classifier performance testing is done.

In Chapter 6, classifier performance improvement techniques are implemented and
analyzed, based on the techniques presented in Chapter 4. Additionally, an analysis
of classifier performance is conducted, in addition to which the results are compared
to other similar software defect prediction studies. Finally, a use case analysis is
conducted, to provide an estimate on the suitability of the implementation to the
use case presented in Chapter 2.

3

2 Background and goals

The software defect prediction framework which is presented in this thesis is created
for RELEX Solutions. The implementation process starts by first defining a potential
need for the defect prediction framework, and then validating whether and to what
extent the framework can be used. This Chapter first introduces RELEX from the
point of view of release management, and describes the processes used. Then, the
goals for the software defect prediction implementation are presented.

2.1 RELEX Solutions

RELEX Solutions is a software company offering a SaaS product for demand fore-
casting, automated replenishment, space planning and assortment optimization to
retailers and wholesalers. Software development work on RELEX software is split
into several teams, one of which is the Release Management (RM) team. The RM
team is mainly responsible for testing and managing the releases of new RELEX
software versions. The software defect prediction implementation described in this
thesis is targeted for the use of the RELEX RM team. This Subchapter introduces
the RELEX software architecture briefly, and then presents the release and testing
processes of the RM team.

2.1.1 RELEX software architecture

Figure 1 depicts a high level overview of the components of RELEX software ar-
chitecture. The software consists of JavaScript-based web client, labeled as "User’s
browser" in Figure 1, and a backend. The backend consists of an in-memory database
and business-logic calculations, labeled as kernel. both of which are programmed in
Java. Additionally, included in backend is a JRuby based interface which serves the
UI and data to the client.

The software is deployed as a Web Application Resource (WAR) file, along with
customer specific configurations, which include a Ruby-based database schema and
functionality configuration, and Java-based data adapters. However, for this thesis,
only the main software is considered for software defect prediction purposes.

4

Figure 1: RELEX software architecture

2.1.2 Releasing and testing process in the Release Management team

The RM team releases a new version of the RELEX software at approximately
three month intervals. The release process can be seen in Figure 2, where a version
control system overview of the process is presented. Each dot represents a change in
the software, and a labeled box represents the creation of a different branch of the
software. The releases are numbered with version numbers, with the format x.x, and
each new release incrementing the value by 0.1. For example the release following
6.5 would be 6.6.

The process starts with the creation of an alpha branch of the software, for example
6.5-alpha as in Figure 2. The alpha version is tested, and any defects found will
be reported and later fixed by the development team, to both the Master and the
6.5-alpha branches of the software. Not all found defects will necessarily be fixed
for the current version, some can be left to be fixed in later versions. The alpha
phase lasts two to three weeks, after which a beta branch of the product is created,
labeled 6.5-beta in Figure 2. Alternatively, if the alpha proves to be too defective, a
new alpha branch can be created later, in which case the process would start over.

In the beta phase, the version release is further tested for defects. Additionally,
the beta version will be subject to customer implementation specific testing. As in

5

Figure 2: The life cycle of a RELEX software version

the alpha phase, any found defects are reported and some are fixed. This phase
lasts approximately three weeks. The release branch is created when beta testing is
over, and when release-blocking defects are fixed. The release-blocking defects are
such known defects in the software that have been categorized by the RM team as
blocking. The criteria for the categorization is that the defect prevents calculation
in a core feature, or prevents normal usage of the software.

The new release version is released as a branch of the software, labeled 6.5 in Figure
2. When the new release version is released, a roll-out of the version to all customers
is started. However, not all customers update immediately, or possibly at all to a
new release. It is normal that a customer might skip a version and update later to a
newer release. Some defects found at this stage are still fixed for the current version.

The testing of the product is split into three categories. Firstly automated testing,
which features unit and unit integration testing, is used when making any changes to
the software. This category also includes, for example, black box testing and end-to-
end testing, which are not run as often as unit tests. Second, the RM team performs
manual testing on the product, which is targeted by testing the parts thought to
be most vulnerable to defects. This testing is mainly done at for alpha and beta
branches of the software, and the beta phase customer testing is part of the process.

6

Other teams than RM also do some amount of manual testing, for example project
delivery teams and business support teams. Finally, performance testing is done via
specialized tools by the development or the RM team.

2.2 Current situation and goals

The current goal for the RM team is to improve the quality of version releases.
Past versions, especially 6.2, have contained more defects on release than is desired.
However, automated testing can only capture a certain amount of defects, and com-
prehensive manual testing would require additional limited human resources.

One solution would be to target human test resources more effectively. If testers
would know more precisely which parts of the software to test, it would consider-
ably limit the amount of resources needed for manual testing, and improve defect
detection rate. This leads to the first Research Question (RQ) of this thesis:

RQ1: Can software defect prediction be used to improve testing process in
practice?

Furthermore, RM needs to decide the point in time at which an alpha version of the
product is created. If the alpha is created at a time when the desired features for a
release are present but have not yet been fully tested, testing in the alpha phase will
be more challenging, and more defects can end up in the release of the version. On
the other hand, it is important that new releases are released in time. This leads to
the second research question of this thesis.

RQ2: Can software defect prediction assist in choosing an optimal time for
release?

The second research question is closely related to the first one. An optimal release
time from defect prediction point of view is when the number of defects in the
system is minimal. A well functioning software defect prediction implementation
will provide an estimate on how many defects the system contains, which would
affect the timing of creating an alpha version, or releasing a new version. This
thesis will attempt to answer the research questions by implementing a software
defect prediction for the defined purposes.

7

3 Metrics in software defect prediction

Software metrics are any measures that define quantitatively a property of a soft-
ware. Software metrics have been designed and used for various purposes such as
estimating quality or complexity [4, 7].

In software defect prediction, software metrics are generally used to predict defective
components in a software, and in some cases also defect density. Most metrics
however attempt to quantify other software qualities than defect proneness, such as
cohesion, coupling or added lines of code [2, 8]. Thus, the usefulness of a software
metric in this case is determined by the correlation between the metric and the
defectiveness of the measured part of the software, rather than the values reported
by the metric itself. Nevertheless, it is important to evaluate what the metrics with
the highest correlation with defectiveness measure, to be able to better choose the
data set and further develop metrics for software defect prediction.

This Chapter presents an overview on some of the commonly used metrics in soft-
ware defect prediction studies. The selection of metrics is based mainly on which
metrics have available data collection tools, which are detailed more in Chapter 5.
Additionally, the selection is based on the success of the metric collections in soft-
ware defect prediction studies [1]. The metrics presented here can be divided into
two categories. The first is code metrics, which measures various attributes of the
code. The second category is change metrics, which measures changes in the code
of the software over time.

3.1 Code metrics

Most code metrics have been introduced as collections. When referring to the met-
rics, the names of the collections are normally used. The collections in turn are often
named by the authors of the respective papers that introduced the metric collec-
tion. Several collections have been used for software defect prediction, however some
collections have gained more popularity than others. These are presented below.

The most popular collection is the CK metrics collection [1, 2], which features several
object-oriented metrics. The CK metrics extended [3] complements the CK metric
collection by adding metrics to account for features the CK metrics do not measure.
The QMOOD metrics [4] introduce a quality- and object-oriented comprehensive
metric suite, featuring four different levels of metrics. Martin’s metrics [9] is an

8

attempt to measure the stability and reusability of the code. Finally, McCabe’s
cyclomatic complexity metric [7] measures the complexity of the code from the
different execution paths it can take.

The following Subchapters will present a more in-depth look into each of these metric
collections, discussing the motivations behind each metric, and the pros and cons of
their usage.

3.1.1 CK metrics

CKmetrics, short for the names of the authors of the paper, Chidamber and Kemerer
(C&K), is a collection of metrics introduced in 1994 [2]. In their paper, C&K
scrutinize the existing software metrics based on the lack of theoretical basis, and
the applicability of older non-object-oriented metrics to the object-oriented software
analysis. In response, they designed a set of object-oriented metrics that aim to be
theoretically solidly grounded.

Weighted methods per class (WMC) The WMC metric is defined as the
sum of complexity values for each method in a class. As an example, if a class
has n methods and the complexity value for each method is 2, then WMC =

2n. This metric leaves the definition of method complexity intentionally open for
interpretation.

C&K reasoned that this metric would provide an overview on how difficult devel-
oping and maintain the class in question is, due to the complexity of the class
represented by the metric. Additionally, the metric shows the number of methods in
the class, which impacts any children the class has due to the children inheriting all
the methods. Finally, the larger the number of methods, the more likely the class is
application specific, limiting reuse. Overall, a high WMC value is thus considered
worse than low values.

WMC metric has been criticized for being ambiguous in definition [10], and having
a dual purpose [11]. The two purposes are the complexity of the class as summed
by the complexity of each metric, and counting the amount of methods. As the
purposes do not correlate, the interpretations can cause difficulties in the usage of
metric, depending on how the metric is used. To solve this issue, Li proposed that
the metric should be split as two different metrics altogether.

9

Depth Inheritance Tree (DIT) The DIT metric is the length of the inheritance
tree of a class starting from the highest level object. For example if class A inherits
B, and B inherits C, then the DIT value for class A is 2. In many languages such
as Java, all objects inherit at least the Object class, therefore making the minimum
DIT value 1 for any given object.

DIT was created to represent the complexity of a class. The deeper a class is in the
inheritance tree, the more methods it has likely inherited from its parent classes,
making the class more complex. Additionally, the longer the inheritance trees are,
the more complex the overall design is likely to be, but the more likely the methods
of a parent class are to be reused. A high or low DIT value represents both good
and bad qualities of the software, depending on which qualities are desired.

DIT has also been criticized of having unintended ambiguity in its definition [11].
The definition of the length of the tree is unclear if there can be multiple roots for
the tree. Additionally, if multiple inheritance is in use, the length to the root, and
the number of ancestors the class has is no longer the same.

Number Of Children (NOC) The NOC metric measures the immediate chil-
dren of a class. To provide an example, class A that is inherited by classes B and C
has a NOC value of 2, no matter how many classes inherit B and C in turn.

The basis for the NOC metric, as argued by C&K, is to measure class reusage, which
correlates with the number of children of a class. On the other hand, if the class has
a large number of children, it may indicate bad sub-classing and be a detrimental
to the quality of the software. Furthermore, the more children a class has, the more
influential the class is, which makes changing the class more difficult. An optimal
NOC value should be balanced, rather than from either of the extremes.

While NOC has not received as much critique as the previous two metrics, Li ques-
tions why only immediate children are accounted for, instead of the whole inheri-
tance tree [11]. Li argues that the class that is inherited from has influence over all
descendant classes, and not only immediate inheritances.

Coupling Between Object classes (CBO) The CBOmetric measures the num-
ber of classes a class is coupled to, where coupling is defined as one object acting
upon other object. An example of coupling would be a method of class A using the
method of class B, where both classes would have CBO value of 1.

10

CBO represents mainly design modularity, as the more couplings a class has, the
less modular the design can be, and the less the class can be reused. Additionally,
a class with more coupling is more prone to break when changes to other classes
are made. Coupling also affects testing, making it harder to cover all cases the
more inter-object coupling there are. Low CBO values are desirable, however, some
coupling is considered good.

CBO has also been criticized for its ambiguity [11], with Li noting the lack of
one standard for class coupling. Other coupling measures include inheritance and
message passing.

Response For a Class (RFC) The RFC metric measures the response set of
a class. C&K define response set as "the set of methods that can be potentially
executed in response to a message received by an object of that class".

RFC captures the effect where if many methods are invokable from a class, the
complexity of the class is likely to be higher. Additionally, it makes testing more
difficult by requiring more understanding of the functionality by the tester.

RFC was cited by Li as being one of the more straightforward metrics [11], and no
criticism or improvement suggestions to this metric was offered.

Lack of Cohesion in Methods (LCOM) The LCOM metric estimates the lack
of cohesion in the methods of a class. Cohesion is defined by the absence of shared
instance variables between the methods of a class. Lack of cohesion is calculated
by subtracting the amount of methods that are cohesive, from the total amount of
methods that are not cohesive. As an example, consider a case where method A uses
variable set a,b,c,d,e, method B uses variable set a,b,e and method C uses variable
set x,y,z. Each of the methods is compared with all other methods in the class,
and cohesion is determined by whether the intersection of the instance variables is
nonempty (cohesive) or not (non-cohesive). In this case, the LCOM metric is 1,
due to A and B being cohesive, and C not being cohesive with either, resulting in
2− 1 = 1.

C&K note that cohesiveness in a class is desirable, due to encapsulation. Addition-
ally, if a class is not cohesive, it should probably be split into new classes. Finally,
low cohesion adds to complexity of the class.

The LCOM metric has been a subject of interest in many studies, and it has been

11

revised several times, including by C&K themselves, producing new versions of the
LCOM metric [11, 12]. An example of the newer LCOM metrics is a metric called
LCOM3. The new LCOM metric attempts to measure the same concept, but
using graph theory to aid in defining cohesiveness. LCOM3 is calculated by forming
a graph where the methods are the vertices, and an edge is formed between vertices
if the methods share at least one variable. Then, LCOM3 = | connected components
of graph |.

3.1.2 CK extended metrics

The CK extended metrics were introduced to complement the CK metric collection
[3]. Tang et al. approached the CK metric set from a validation point of view.
Their focus was to validate the CK metrics from fault predictiveness point of view.
They found several aspects of software measurement that the original CK metric
collection did not take into account.

Firstly, CK metrics do not take complexity sufficiently into account. Secondly, the
dynamic behavior of the software is not considered, as the impact of classes that
are used more frequently during execution is not taken into account in the CK
metrics. Thirdly, in addition to direct inheritance, also indirect inheritances should
be considered. This is the same notion that Li brought up in her criticism on
the NOC metric [11]. The reasoning by both authors was that indirect children also
have considerable impact and should be taken into account. Fourth, the relationship
between inherited and new methods is not considered in the CK metrics. Tang et al.
define that a method is dependent on another method, if the original method uses
data which is modified or defined by the other method, thus making the original
method dependent on it. The idea behind the concept is that if a new of redefined
method modifies data that is used by a redefined method, it will affect the defect-
proneness of the inherited method. Finally, the classes with more memory or object
allocations cause more faults in the software, which is not represented by CK metrics.

Based on the criticism presented on CK metrics, four new metrics were presented
to add to the existing CK metrics collection.

Inheritance Coupling (IC) The IC metric targets the fourth critique on CK
metrics. IC counts the number of parent classes the target class is coupled to. In
this metric coupling is defined as such that a class is coupled to its parent if any
of the methods of the parent class are functionally dependent on new or redefined

12

methods of the target class. Functional dependency is defined as such that a new
or redefined methods affects data used by an inherited method.

Lack of Cohesion in Methods (CBM) CBM further defines the relationship
of inherited and new or redefined methods between a class and its parent classes.
CBM counts the total number of such methods in a class that are coupled to the
methods of the parent classes. The metric is very closely related to the previously
presented IC metric, with the difference that this metric takes into account method
level count of the couplings, while IC more abstractly only counts it on class level.
Furthermore, CBM takes better into account the increased complexity of having
more methods coupled.

Number of Object or Memory Allocations (NOMA) The NOMA metric
addresses directly the concern for measuring memory allocation. It counts the total
of all statements that allocate memory in a class. However, indirect allocations are
not considered, such as calling another method.

Average Method Complexity (AMC) The AMC metric is the average of the
size of the methods of a class. The authors leave the exact definition for size open
for interpretation, but a simple measure such as lines of code could be used here.

3.1.3 QMOOD metrics

The Quality Model for Object Oriented Design (QMOOD) metric collection is a
quality-oriented attempt at creating a comprehensive standard for describing object-
oriented software [4]. The model consists of four levels. The highest, first level
defines overall quality attributes of a software, for example reusability and flexibility.
The second level defines design properties, which are for example hierarchies and
coupling. Third level of QMOOD defines design metrics, which are the concrete
software metrics. Finally, the lowest level is the fourth level, which defines design
components of the target architecture. These in practice refer to the code itself.

All of the levels in QMOOD are directly related to the level above it. To provide
an example, the fourth level is used to collect data for the metrics of the third level.
Then, each metric is mapped to a design property of level 2, so that for instance
Coupling is the Direct Class Coupling (DCC) metric. Finally, based on the values

13

of level 2, the quality attributes can be calculated by the formulas provided in the
paper. For example, Reusability is defined as Reusability = −0.25 ∗ Coupling +

0.25 ∗ Cohesion+ 0.5 ∗Messaging + 0.5 ∗DesignSize.

For defect prediction, only the level 3 of QMOOD model is used, due to the higher
levels values being derivations of the metrics defined in the third level. Despite this,
the full model helps to understand what was intended purpose of the level 3 metrics.
In total, QMOOD level 3 metric consists of eleven metrics.

Due to metric collection tool limitations, the software defect prediction implemen-
tation in this thesis uses only some of the metrics defined in the QMOOD metric
set. The metrics not selected will not be covered here.

Data Access metric (DAM) The DAM metric describes QMOOD level 2 En-
capsulation property. Encapsulation in object-oriented programming refers to qual-
ities such as class variable and method hiding, which are in Java for example pro-
tected or private variables and classes.

Based on this description, the DAM metric in practice is defined as being the ratio
of private and non-private variables within a class. Higher DAM values are more
desirable, meaning the more encapsulation there is the better the quality is. DAM
values range between 0 and 1.

Measure of Aggregation (MOA) The MOA metric measures Composition of
the QMOOD level 2 attributes. Composition is defined as the measure of so called
part-whole relationships, which is the amount of an entity participates in the whole,
and which entities the whole consists of.

To measure the part-whole relationship in practice, MOA uses the attributes of the
measured class. It counts the sum of attribute declarations, where the type of the
attribute is a class defined by the user.

Measure of Functional Abstraction (MFA) For the MFA metric, the corre-
sponding level 2 design property is Inheritance. In QMOOD Inheritance is defined as
"is-a" relationship between two classes, and relates to the level of nesting of classes
in the inheritance hierarchy.

This relationship is quantified in the MFA metric as a ratio of the inherited methods
of the target class, to the amount of methods accessible from a method in the target

14

class. The value range for this metric is from 0 to 1.

Cohesion Among Methods of Class (CAM) The CAM metric measures the
Cohesion of the QMOOD level 2 design attributes. Cohesion is defined in QMOOD
similarly to the cohesion defined by C&K, in which cohesion is the measure of
relatedness between the methods of a class.

To calculate the CAM metric, first the the sum of the number of different types of
method parameters in each method is taken. Then, the acquired sum is divided by
the multiplication of total number of different method parameter types and total
number of methods in the target class. The resulting value represents the relatedness
among the methods of the class. Values range from 0 to 1, where values closer to 1
are preferred.

Class Interface Size (CIS) The corresponding QMOOD level 2 design property
for CIS is Messaging. In QMOOD definitions, Messaging is the measure of the
services that the class provides. For the CIS metric, this is simply the count of
public methods in the measured class.

3.1.4 Martin’s metrics

Martin investigates in his paper what makes code stable and reusable [9]. His
main focus was on interfaces. He considered an example where a keyboard reader
and printer writer are used by a copy class. Then, the reader and writer are split
into reader and keyboard reader, and writer and printer writer respectively. Martin
argues that this provides better generality and reusability. Martin notes that the new
reader and writer classes are highly unlikely to change. Furthermore, the stability
of the interfaces makes for a good dependency.

Based on these observations Martin attempted to create a metric set that would
measure the independence, stability and responsibility of a class. If a class does not
depend on any other class, it is independent. If a class is relied on by other classes,
it is responsible. Stable classes are both responsible and independent. These three
qualities measure the role of a class from interfacing point of view.

In total Martin created five metrics, of which only two are commonly used in software
defect prediction studies. Since the three other metrics are rarely used, they are
covered here only briefly, and will not be used for defect prediction in this study.

15

Afferent and Efferent Couplings (Ca and Ce) The two main metrics that
were introduced are Ca and Ce. Ca measures the number of classes that depend
upon a class, while Ce measures the number of classes a class depends upon. The two
metrics are directly related to Martin’s theory of responsibility and independence,
and quantify the interface relationship of a class.

On the usage of these metrics, Martin warns that the usage of the metrics as strict
guidelines is not advised, and the appropriateness of the metrics will most likely
vary case to case.

Other Martin’s metrics The third of Martin’s metrics, instability (I), measured
the combination of Ca and Ce, representing the stability quality. Fourth metric is
Abstractness (A), which measures the rate of abstract classes in to the total classes,
and the final metric combines I and A to create the Distance (D) metric.

3.1.5 Other metrics

This Subchapter covers the few metrics that are not part of any collection, but are
nonetheless used widely in software defect prediction studies.

Cyclomatic Complexity (CC) McCabe’s CC metric is one of the oldest software
metric used for defect prediction, introduced already in 1976 [7]. The idea behind the
metric is straightforward, it measures the linearly independent paths that a program
can take. The more modern use case for program is CC in a method, which can be
averaged to produce the average CC for a class. More precisely, CC is calculated by
forming a graph from the paths of the program or function. The formula provided
by McCabe for CC is v(G) = e− n+ 2 ∗ p, where e is the number of edges, n is the
number of vertices, and p is the number of connected components. To provide an
example, the CC value for a single if-else function would be v(G) = 4 − 4 + 2 = 2.
The value of CC is always at least 1.

The CC metric has been used for many different purposes, such as unit-testing
effort [13], but the results have been mediocre at best. CC has also been criticized
for being too strongly correlated with LOC, thus making it simply a convoluted way
of measuring size of a method.

16

Lines of Code (LOC) The LOC metric is arguably the simplest code metric. It
is not specifically introduced as a part of any collection or study, but it is often used
in addition to other metric collections [1]. It measures the lines of code in a defined
target, which is often a method, class or file. Several variations of LOC exist, for
example Java code lines could be counted from either Java bytecode ".class" files,
or Java code lines from ".java" files. Furthermore, if code files are used, variations
include whether to include lines with only line breaks, or comment lines.

Despite the relative simplicity of LOC, it has had good success in defect-prediction
studies. This is explained by the fact that the largest modules tend to have the most
faults, with one study citing that 20% of the largest modules containing 51-63% of
all defects [14].

3.2 Change metrics

Change metrics measure changes in the code of a software over time. The existing
change metrics in defect prediction literature are not as well-defined as code metrics,
and they are used in fewer software defect prediction studies. Despite this, studies
comparing change and code metrics have achieved results where change metrics
outperform code metrics [8].

Arguably the greatest benefit of change metrics over code metrics is the language
agnosticism of change metrics. Furthermore, version control systems are widely in
use, making change data readily available. This makes change metrics in many cases
more accessible than code metrics.

While there are no generally used collections for change metrics, some basic metrics
are often same between different studies. In this thesis, the metrics defined by Moser
et al. are used [8]. Additionally, the extension to Moser’s change metrics defined
by Choudary et al. will be covered [15]. While the latter are not used for defect
prediction in this thesis, the paper provides good insight into the change metrics
overall.

3.2.1 Moser’s change metrics

Moser et al. hypothesized that change metrics contain more information on the
defectiveness of a file than code metrics [8]. To test the hypothesis, a collection of
change metrics was created . These were then tested against selected code metrics,

17

where promising results were achieved with the new change metric collection.

Two of Moser’s change metrics are not used in this defect prediction implementation,
as those rely on heuristics to extract values. These are Bugfixes and Refactorings,
which are extracted by analyzing commit messages from version control systems.
The rest of the change metrics are presented below.

• Revisions: The number of separate changes made to a single file.

• Authors: The number of unique authors that made changes to a file.

• LOC added: The sum of lines of code added to a file for all revisions. It is
also used to create metrics Max. LOC added and Avg. LOC added, instead
of using sum.

• LOC deleted: The sum of lines of code deleted from a file for all revisions.
It is also used to create metrics Max. LOC deleted and Avg. LOC deleted,
instead of using sum.

• Codechurn: The sum of LOC deleted, and LOC added, where the results of
this calculation are then summed over all revisions of a file. It is also used to
create metrics Max. Codechurn and Avg. Codechurn, where sum is replaced
with avg. and max. respectively.

• Changeset: It is the number of files per change, used as Avg. Changeset and
Max. Changeset. To use it on file level, each file in a commit is added the
value of change set for Avg. Changeset, which is at the end of data extraction
divided by the number of revisions for the file. To calculate Max. Changeset,
the file receives the largest commit change set value which the file was a part
of.

• Weighted age: The value of Weighted age metric is the number of weeks
between the first and the last changes made to a file.

3.2.2 Choudary’s extension to Moser’s change metrics

Choudary et al. continued developing change metrics based on Moser’s change
metrics [15]. While the Choudary’s extended set is not used for defect prediction in
this thesis, their work provides some valuable insight into change metrics overall.

18

In addition to the new metrics, the perhaps more interesting contribution in the
paper is a categorization for change metric types. Four categories are introduced.
The first category is standard change metrics, which includes for example LOC
added, LOC deleted and other similar metrics that measure direct changes to the
code. These are expected to have direct relationship with defect proneness. The
next category is developer-based change metrics, which includes metrics such as
LOC added per developer and codechurn per developer, both of which are new
metrics introduced in Choudary’s metrics. Additionally, Moser’s Authors metric
would fit into this category. The developer based metrics as the name suggests are
extracted per developer, not per code change as the other change metrics. The third
category is period-based change metrics, which includes metrics such as Weighted
age, or the new Choudary’s metric time-difference between commits. These metrics
measure intervals between changes, as opposed to types of changes. It is expected
that smaller change intervals cause more defectiveness in a file. Finally, the fourth
category is uniqueness-based change metrics, which contains metrics which attempt
to measure whether the change was unique to a file. This category contains only
the newer Choudary’s metrics, such as the single commits metric, which measures
the number of commits where a file was committed alone.

19

4 Classification in software defect prediction

Classification in machine learning is the process of separating data items into cat-
egories, based on a training data set given to a classifier. Data for classifiers is
separated into independent variables, which are the explanatory features for clas-
sification, and a dependent variable, which is the value the classifier attempts to
predict. The dependent variable is often also called the class variable. In software
defect prediction, the class variable is binary, and the two values are defective or
non-defective. Each prediction is made as a confidence percentage, which represents
the probability of the data item being positive.

This Chapter introduces how classification has been used in software defect predic-
tion studies. In addition to the classification algorithms, the classification process,
including data preprocessing classifier performance measurement, is likewise covered.

4.1 Measuring classifier performance

Measuring classifier performance is done using four measures of classification cor-
rectness. These four measures are the number of True Positives (TP), False Positives
(FP), True Negatives (TN) and False Negatives (FN). The four measures constitute
the confusion matrix as seen in Table 1, from which other measures of classifier
performance are derived from.

Table 1: Confusion matrix

Confusion matrix Condition true Condition false
Prediction true TP FN
Prediction false FP TN

Each of the four measures in the confusion matrix defines an aspect of the correctness
of the results of a classification. The formal definitions for each of the measures are
the following:

TP: True positive is the number of the result rows of a classification, where the
actual value of the class variable is positive, and the predicted value is also
positive. In software defect prediction, a positive value refers to defective files.
The consensus in classification studies is that the minority class is set as the
positive value in the confusion matrix.

20

FP: False positive is the number of classified result rows where the actual value
the class variable is negative, but the predicted value is positive.

TN: True negative is the number of classified result rows where the actual value of
the class variable is negative, and the predicted value is also negative. Here
negative refers to files that are non-defective or clean.

FN: False negative is the number of classified result rows where the actual value of
the class variable is negative, but the predicted value is positive.

An important concept regarding the measures in the confusion matrix is the cutoff-
point value. The cutoff-point defines the probability threshold above which classifi-
cation result rows are considered positive and below which result rows are considered
negative. The values of cost matrix will differ based on the chosen cutoff-point value.
For example, if cutoff-point is 0.0, then all results are either true positive or false
negative. The default cutoff-point value is 0.5 unless specifically otherwise stated.
In addition to affecting the confusion matrix measures, cutoff-point value also affects
the measures derived from it.

There are several different measures that can be derived from the confusion matrix.
Each of these measures a different aspect of the results of a classification. The most
prevalent and relevant measures to this thesis will be reviewed in the rest of this
Chapter. Due to each measure having several accepted names, the most common
names in general use will be presented here, and the name in the title will be the
one used in this thesis. A summary of the formulas for each of the measures can be
found in Table 2.

The first measure is Accuracy. It is also known as correct classification rate, and
is arguably the most intuitive measure of classifier performance. It measures the
percentage of results that have been correctly classified, including all four measures
of confusion matrix in the calculation. While accuracy gives an overview of classi-
fier performance, its values can, however, be often very misleading. For example,
consider a classifier that classifies all class variables as negative. If 950 out of a 1000
input rows are negative, then the accuracy for the classifier is 95%, even though the
classifier essentially did not predict anything.

True Positive Rate (TPR), also known as recall or sensitivity, is the second measure
that can be derived from the confusion matrix. The value of this measure is the
probability that a positive data row will be predicted as positive. In other words,

21

Table 2: Confusion matrix

Measure Formula

Accuracy TP+TN
TP+TN+FP+FN

TPR TP
TP+FN

TNR TN
TN+FP

FPR FP
FP+TN

FNR FN
FN+TP

PPV TP
TP+FP

F1-measure 2TP
2TP+FP+FN

it is the ratio of correctly predicted positive results to all results which have ac-
tual positive values. TPR is not as generally applicable as accuracy as a classifier
performance measure. Instead, it measures a specific quality of the performance
of a classifier, which it does well. Despite this, also used widely as a performance
measure for classifier comparisons [1].

True Negative Rate (TNR), which is also called specificity, is similar to the TPR
measure. TNR measures the probability of a negative data row being classified as
negative, while in comparison TPR predicts the same for positive rows. Furthermore,
like TPR, TNR is also a specific measure rather than an overall classifier ranking
measure.

False Positive Rate (FPR) or fall-out, is the fraction of actual positive data rows
that are predicted as negative. Similar to TPR and TNR, FPR is not very well
suitable for overall classifier performance analysis.

False Negative Rate (FNR) or miss rate, is similar to FPR, but with the classes
other way around. It measures the fraction of actual negative data rows that are
predicted as positive.

Positive Predictive Value (PPV), also known as precision or correctness, is the pro-
portion of actual positive data rows in all data rows that were predicted as positive.
This measure can be seen as an accuracy measure for positive rows only, which
makes it valuable as a performance measure if only positive classification results are

22

considered, as is often the case in for example software defect prediction. However,
in general, it is not a good overall benchmark for classifier performance, as it suffers
in part of the same problems as accuracy.

F1-measure or F-measure is an attempt at providing an overall measure of a classi-
fier’s performance. It is calculated as the harmonic mean of PPV and TPR.

Area Under the Curve (AUC) is another attempt at an overall measure for classi-
fication performance measurement. AUC is derived differently from the confusion
matrix as the other measures. It is calculated by first plotting the values of FPR
and TPR at each cutoff-point value on x and y axises respectively. The resulting
curve is called Receiver Operating Characteristics curve (ROC). The AUC value is
then calculated as simply the area under the ROC curve. The AUC value ranges
from 0 to 1, where 0.5 is the baseline, indicating the classifier is outputting arbitrary
results, and 1 indicating a perfect classification. AUC has been proposed as the pri-
mary measure for classifier performance measurement in defect prediction over the
other presented measures [5]. Regardless it is not used as often as some of the other
presented performance measures [1]. One of the key benefits of AUC is that it is
not dependent on choosing a cut-off point, as the other measures are. This increases
the stability of the AUC measure as comparison tool, especially between different
studies.

4.2 Overview of classifiers

Software defect prediction studies have experimented with a wide range of classifiers
in an attempt to find the best performing classifier for defect prediction [1]. However,
findings on which classifier performs best varies from study to study. Because of this,
no conclusive results on which classifier performs best has been achieved. Instead,
results implicate that the classifier should be chosen per case basis, depending on
which measures of classifier performance are emphasized.

In the rest of this Subchapter the classifiers that have overall been seen to have good
performance will be reviewed.

4.2.1 Random Forest

The Random Forest (RF) algorithm is one of the best-performing and most often
used classifiers in software defect prediction [1, 5, 16, 17, 18]. It is a tree-based en-

23

semble classifier introduced by Leo Breiman in 2001 [19]. The RF classifier functions
by combining votes from a collection of decision-trees to make its classification.

The popularity of the RF classifier is due to several factors. Firstly, it is is easy to
use, in part due to its resilience to outliers and noise in the data, and in part due
to its ease of configuration [1, 17]. Additionally, RF includes functionality to iden-
tify important parameters from the data, which increases prediction performance.
Finally, classification with the RF classifier is fast, which makes it optimal for large
data sets. In conclusion, while RF might not always the best performer, it scores
consistent results in terms of AUC values and ranks usually at least close to the best
performing classifiers.

4.2.2 Naive Bayes

The Naive Bayes (NB) classifier is a simple, statistical-based approach to classifying.
It is a well-known classifier that is used in other areas as well, such as text classifica-
tion and medical diagnosis [20]. The predictions for the NB classifier are calculated
for each of the attributes independently by applying the Bayes rule for calculating
probability of the class based on the attribute instances [21]. The simplicity of the
NB classifier comes from an assumption that the features provided to the classifier
are independent from each other. This makes it efficient, but naturally it does not
take into account feature correlation.

In defect prediction, NB is considered a benchmark for whether a more sophisticated
model is useful for classification or not, as NB is relatively simple compared to other
classifiers. Despite its simpleness, NB has also consistently achieved acceptable
performance in classification studies [1, 5], sometimes achieving best performance
compared to other, for example RF, classifiers in terms of AUC [16].

4.2.3 J48

The J48 algorithm is an open source implementation of the C4.5 decision tree clas-
sifier. The J48 classification algorithm forms decision trees with certain guiding
principles, and the results are presented based on the constructed tree [22]. J48
decision trees can also be pruned to generalize the tree, after the main algorithm
has created the tree. Pruning reduces outliers, thus reducing classification errors.

J48 has achieved good results in defect prediction studies [1], in some surpassing
the performance of RF for example [6]. Despite this, the results have arguably not

24

been as consistently good as other algorithms, such as RF or NB.

4.2.4 Support Vector Machine

Support Vector Machine (SVM) is a sophisticated maximum margin classifier in-
troduced in 1995 [23, 24]. SVM classifier functions by attempting to separate the
data points by a division where the difference is of maximum width. SVM be-
havior can be modified with a kernel function that maps each dot product into a
higher-dimensional feature space, which has the benefit of the data being more easily
linearly separable.

SVM has had varying success in defect prediction studies. A few studies advocate
strongly for SVM use, presenting good results achieved with SVMs [23, 24]. However,
in total SVM has had less success than most other popular classification algorithms
[1].

4.2.5 Bayesian Network

Bayesian Network (BN) classifier is an evolution of the NB classifier [21]. It is an
attempt to avoid assuming variable independence in the classifier, which is a main
criticism of the NB classifier. The technique leverages Bayesian networks to encode
independence statements for the variables.

In defect-prediction BN is quite rarely used [1]. Despite this, it has had acceptable
results and can perform better than some of the more sophisticated classifiers, such
as J48 or RF.

4.3 Enhancing classifier performance

Besides choosing a best fitting classifier, there are several ways to improve classi-
fication performance. This can be done either by manipulating the input data of
a classifier, or by using a meta-classifier with the originally selected classifier to
enhance the results.

Several of the presented techniques below require a certain amount of manual trial
and error to achieve the most suitable values. This presents the danger of overfitting
the model to only one use case or even to a single data set. Overfitting in classifi-
cation happens when a classifier is tuned too much for a specific training data set,

25

decreasing performance when the classifier is applied to broader data sets. Overfit-
ting should be avoided when using these techniques by using as generic setting as
possible while maintaining good results over multiple training data sets.

4.3.1 Data preprocessing

Data preprocessing is arguably the simplest way of improving prediction accuracy.
This category of performance improvements refers to data quality improvement and
applying different data filters. Data quality can be improved in several ways, includ-
ing removing outliers and dealing with missing values in the independent variables
[25].

Filtering refers to a function that can be applied to the data to transform it. As
an example log filtering has been found to work well with some classifiers [5, 25].
Log filtering is a technique where all numeric values n in the data are replaced with
ln(n) values.

Data normalization is another common data preprocessing technique. To normalize
the data, each numerical value is converted to a value between zero and one. This
reduces the impact of very large values to classifier performance.

4.3.2 Feature selection

Feature selection is the process of reducing the the independent variables to only a
subset of the original. It has the benefit of reducing processing time and in certain
cases enhancing classifier performance.

A type of feature selection which is popular in defect prediction is Correlation Fea-
ture Selection (CFS) [1], which was introduced in 2000 by Mark Hall [26]. This
technique analyses which independent variables are least correlated with the class
variable, and most correlated with each other. It then removes those independent
variables from the data set. The idea is that the remaining data set contains less
noise and gives better predictive accuracy.

Feature selection works best with less sophisticated classifiers that do not implement
some form of feature selection on their own. For example, the NB classifier is a
classifier where Feature selection has been found to perform well [5, 25], further
improving the results achieved by the classifier.

26

Table 3: Cost matrix

Cost matrix Condition true Condition false

Prediction true 0 (TP) 1 (FP)

Prediction false 10 (FN) 0 (TN)

4.3.3 Over and undersampling

Class imbalance problem is a classification issue where one class is featured consid-
erably more frequently in the data set than the other. This can cause the classifier
to classify more heavily towards the more frequent class than what is desired.

This problem can be alleviated by Over- or Undersampling the data set [27]. In
Oversampling, new rows for the minority class are generated until the classes are in
balance. Undersampling accordingly removes instances of the majority class until
the classes are in balance. Alternatively, Over- or Undersampling can balance the
classes to a certain ratio, instead of one to one relation. The benefits of these
techniques are their simpleness and effectiveness, however, the effectiveness can be
dependent on the chosen classifier and data set. Additionally, the rate of Over- or
Undersampling must be carefully chosen per case basis.

Overall, Undersampling is considered as the better of the two, and it has been proven
not to degrade the results of classification even though it reduces the amount of data
[28].

4.3.4 Cost-sensitive classification

Cost-sensitive classification is an alternative option to manage the class imbalance
problem [8, 29]. Cost-sensitive classification functions by assigning a cost value for
each measure in the confusion matrix. The result is a cost matrix, which contains
the cost weight of misclassification for each measure type. An example cost matrix
can be seen in Table 3.

The convention in cost matrix usage is for the values of TP and FP to be set to 0,
since these represent correct classification. Additionally, if the class that is in the
minority is the focus of the prediction, then the cost of FN should be higher that the
cost of FP. Thus the cost for misclassifying the majority class can be set to one, and

27

the cost for misclassifying the minority cast is set to n > 1. Table 3 is an example
of such a configuration. In practice, this setup aims to reduce the misclassification
of the positive class.

4.3.5 Cut-off value

Choosing the cut-off value is a means to adjust the performance of a classifier. By
default, the cut-off value is 0.5, with which predictions with a confidence value over
or equal to 0.5 are seen as positive, and under 0.5 negative. Most studies use the
default value of 0.5 for cut-off value [6]. While this makes it easier to compare the
results of the studies, the default value is likely not the best option for each use case.

The chosen cut-off value can affect which metric set or which classifier is the best
for a given use case. For example, consider a classifier that has a PPV value of 0.2
at cut-off point 0.5. The same classifier could have a PPV value of 0.6 at cut-off
point 0.75. If there are many items of data, then the performance of the 0.75 cut-off
value can be better for predicting only positive value, if a high PPV is desired, even
if it captures fewer actual positive values. This applies notably if the data set is
imbalanced [6]. Choosing a suitable cut-off value is difficult and must be chosen per
case basis, by experimenting with different cut-off values.

4.3.6 Bagging and boosting

Bagging and Boosting are meta-classifiers which are used for enhancing the perfor-
mance of a given classifier [30]. Both meta-classifiers work by manipulating training
data to generate improved classifiers given the base classifier. The Bagging technique
generates multiple training sets from the original by sampling with replacement, then
the results are combined by voting. Boosting on the other hand uses training data
as-is, but assigns different weights to instances. This training is repeated several
times, each time adjusting the weights, causing the classifier to focus on different in-
stances of the data. Finally, results from different iterations are combined by voting.
An often-used implementation of boosting is the Adaboost.M1 classifier.

In software defect prediction, Bagging and Boosting have been used to enhance
performance of some of the presented popular classifiers. For example, Adaboost
with J48 was found to be the best performing classifier of the studied classifiers in
a study by Wang et al. [27].

28

5 Implementation research

In this Chapter, the framework implemented for this thesis for data gathering, man-
agement and software defect prediction is introduced. The first step in this process
is defining data sets, after which data can be collected. This is done via pre-existing
tools, and collected from Java binaries and version control system data. Then, the
data management and classification tools are implemented as command line tools
in Java.

Additionally, a preliminary experiment and performance analysis on selected clas-
sifiers is conducted in order to narrow down the selection for analysis in Chapter
6. The experiment is performed on a set of five classifiers which were introduced in
Chapter 4, with minimal configurations applied.

5.1 Data collection

Data collection is a vital part of software defect prediction. The performance of
the classifiers can be severely improved or limited by the quality of the data set.
The data collected for this implementation of software defect prediction can be split
into two categories. First is the defect data, and the second is the software metrics
data. All data is collected with the goal of combining it together to produce a final
single file per each software version. This final version is then used to for defect
prediction. Different data can be combined to form different final data sets. The
RELEX software versions for which data is collected are 6.0 to 6.3. However, before
collecting the data, some key decisions on data collection should be considered.

5.1.1 Defining required data

First consideration of data collection is the level on which the data should be col-
lected. For software defect prediction, there are several options. Data can be col-
lected for example on per class [6], per file [8], or per module [23] level. The imple-
mentation of software defect prediction in this thesis uses file level data collection.
Thus, all data which are not on the file level must be aggregated to the file level.

Next, the desired data sets need to be defined. In this implementation, there are
two cases that need to be considered when deciding data sets. Firstly, the data set
for when an alpha branch is created, and secondly, a data set for when a release
branch is created. A part of the data can overlap with both data sets.

29

To satisfy the requirements made in the definition, six files of data are collected.
The first four are defect data for alpha and release, and code metric data for alpha
and release. Change metric data for alpha is collected using historical change data
from three previous versions, and using change data from alpha to release. These
six files form one complete data set for a single version.

5.1.2 Extracting defect data

With the desired data sets being defined, the data collection can commence. The
most important of the data sets is the defect data, without which the classifiers
cannot be trained. Thus defect data collection is done first.

The primary concern when collecting defect data is defining what is considered a
defect. This definition varies from study to study, with the most lenient definitions
being simply collecting all commits from a version control system (VCS) that contain
the word "bug". In this implementation, the definition for a defective file is any file
that has had any changes made to it in a issue that is marked as "Dev - Bug" in the
issue tracker used by RELEX. This process is similar to what was used by Gyimóthy
et al. [31].

The process for collecting the desired defect data starts with extracting data from the
issue tracker. RELEX uses Redmine as the issue tracker, in which an issue consists
of an issue number and additional descriptions such as who the issue is assigned to,
version number and other information. Any change made to the software should
have a issue assigned to it. From Redmine, all issues from the whole period of
development are extracted, filtering by issue type "Dev - Bug". The type field in
Redmine portrays what type of development the issue required. Some examples of
issue types are bugfixes, refactorings and feature additions. The data export is done
manually from the Redmine web UI, but could in future be done automatically using
Redmine API.

To link the issue data to bug fixes, it must be combined with VCS data. RELEX
uses Git as the VCS. All changes to the software are generally made to separate
branches, and when ready, the changes are squashed to a single commit. Squashing
is a process in Git where several commits in a branch are combined as one. The
squashed commits are the changes that are considered in this data collection. Each
squashed commit should contain a issue number prefixed to it, which is the number
of the issue that the commit is related to. The format is the following: "#12345:

30

Fixed bugs", where the number between the hash-tag and colon is the issue number.

Next step is then to combine the data sets from Git and Redmine. This is done using
a Python script, which does roughly the following. It requires as a parameter the
version for which version the defect data is collected. Then, it collects all commits
from the alpha version branch that have been made until the release version. The
same process is repeated for commits in the release branch, starting from the creation
of the release branch, and ending in the latest commit to that branch. Then, the
issue numbers in the commit messages are cross-referenced to the issue numbers in
the list of bug-fix issues extracted from Redmine, and reduced to only those commits
that have been made in response to a bug-fixing issue in Redmine. Additionally, a
list of files that were changed in the commit can be extracted from Git.

Now there are two files with a list of files that contain defects. One for the when
alpha of the version was created, and one for the when release was created. One
more step is required to complete the data sets. For release defect prediction, the
release defect list can be used as-is, but for alpha both release and alpha defects
are desired. Thus, for the final alpha defect list, both defect data sets are combined
together.

Overall, the defect data for each version contained at most approximately 550 rows
of defective files, and at least 200 rows. The process for collecting defect data can
also be seen in Figure 3. The figure contains the whole process of data collection,
with the final defect files being the files prefixed with "files_with_defects". The
defect data collection in this implementation is similar to the defect data collection
process of other software defect prediction studies, for example the data collection
done by Choudary et al. [15].

5.1.3 Extracting software metric data

The next step in data collection is the extraction of independent variables, which
here refers to the code and change metrics. For this purpose, two existing metric
collection tools are used to extract the two different types of software metrics. Both
tools were chosen as they were the only readily available and suitable tools, which
contained a wide array of the desired metrics.

For code metric extraction, the CKJM extended tool is used [32]. CKJM extended
is a tool for extracting several code metrics from compiled Java bytecode ".class"
files. It has also been used in other defect prediction studies, such as the study by

31

COMPLETE VERSION DATA

Redmine

Git

Extracted bug-fix
issue data

files_with_defects_all.csv
files_with_defects_only_release.csv

Commits for
release

Commits for alpha

Python combiner
script

cke_alpha.xml
cke_release.xmlCKE-tool

Change metrics
tool

Historical commits

cm_alpha.csv
cm_release.csv

Figure 3: Data extraction for a single version

Malhotra et al. [18]. Due to using compiled Java bytecode as the input for metrics,
CKJM extended can only extract data from software languages that are compiled
to Java bytecode.

CKJM extracts in total 19 code metrics, which are the code metrics introduced in
Chapter 3, disregarding the metrics that are specifically stated not to be included
in the defect-prediction of this thesis. It should be noted that due to some of the
definitions of code metrics being ambiguous, intentionally or accidentally, practical
implementation decisions when creating metrics have to be taken. This is also
the case with CKJM extended. The exact descriptions for how the metrics are
implemented in CKJM extended can be found in the documentation provided on
the CKJM extended project page [32].

The CKJM extended tool is used to collect two data sets for defect prediction for
the two branches, alpha and release. A data set for alpha is created by setting
the code base from Git to the point of alpha branch creation of the target version,
compiling all Java classes in the project, and running CKJM extended. The same
process is done for the point of release branch creation for the target version. In
total, approximately 3000 files were included in both data sets.

For change metric collection, the tool created by Maurício Aniche is used [33]. The
tool collects the change metrics defined by Moser from Git history [8]. While this
tool can collect data from any file in the project, the files with no changes at all
from the time period are not included in the data set. This is to prevent too many
rows containing only zero values from degrading classifier performance.

32

In practice, the process for the extraction of change metrics is conducted by first
deciding the amount of change history that is included. It is decided that three
previous versions of change history are included in the data, to obtain change metric
data for as many files as possible. Then, the change metric tool is used on Git commit
range between the creation of the version three versions behind the target version,
and the creation of the alpha version for the target version number. Additionally, the
tool is run for the range of commits between creation of alpha version and creation of
release version for the target version number. Generally, the change metric dataset
includes over 5000 files.

The extraction process of code and change metrics is visualized in Figure 3, where
the collected code metrics are the files with the prefix "cke_", and the collected files
for change metrics are files with the prefix "cm_".

5.1.4 Defining final data sets

Out of the total six collected files, eight final data sets are created for defect pre-
diction. Each data set is created out of one of the two defect data files, and a
combination of the metric files. A final data set contains both independent and
the dependent variables. Thus, a single final data set can be used as both training
or testing data. To provide an example, if defect prediction is done for the alpha
branch of the version 6.2 using CM, then the CM file for 6.1 is used as training data,
and the CM file for 6.2 is used as testing data. The final data sets are intended
for classifier performance analysis. In practical prediction tasks, the same dataset
would be used, but without defect data.

Three of the data sets are for defect prediction at the beginning of alpha phase.
These data sets use the list of defective files for the alpha phase only. The created
data sets are listed below, with the files that are used to create the data set.

• CM: files_with_defects_only_release.csv, cm_alpha.csv

• CKE (alpha): files_with_defects_only_release.csv, cke_alpha.xml

• CM+CKE: files_with_defects_only_release.csv, cke_alpha.xml, cm_alpha.csv

The remaining five data sets are for defect prediction at software version release.
For these data sets, the used defect data set is the complete list of defective files for
a version. Additionally, as both change metrics files are used, change metric files

33

need to be unified into a single file when creating the final data set. This is done by
either aggregating, in which case the weighted average is used for unifying each row
where the file names match, or by combining, in which case the values are retained
for both files in separate columns. The five created data sets are listed below.

• CKE (release): files_with_defects_all.csv, cke_release.xml

• CM aggregated: files_with_defects_all.csv, cm_release.csv

• CM combined: files_with_defects_all.csv, cm_release.csv

• CM+CKE aggregated: files_with_defects_all.csv, cke_release.xml, cm_release.csv

• CM+CKE combined: files_with_defects_all.csv, cke_release.xml, cm_release.csv

To provide a concrete example of a final dataset, Appendix 1 contains a sample
of the CKE + CM data set. File names have been replaced with a numeric id,
other data is unchanged. As described above, the dataset contains a file name, code
metrics data, change metrics data, and a categorization of the files into defective
and clean.

5.2 Implementing a software defect prediction framework

This Subchapter describes the tools used and created for software defect prediction
in this thesis. First is the machine learning framework used to provide classification
functionality in this thesis, which is the Waikato Environment for Knowledge Anal-
ysis (Weka) [34]. It is a Java-based collection of machine learning algorithms, which
includes a UI tool and a Java framework for data analysis. The Java framework is
used in this implementation for the classifier implementation. In addition to clas-
sification, Weka provides various tools for data loading and processing. Weka was
chosen as the framework due to it being used and found suitable in several other
studies [17, 24, 27].

Additionally, a customized tool named Seidr is created. Seidr uses the Weka frame-
work to provide data combining, preprocessing and classification. Furthermore,
Seidr is used for classifier performance measurements and for reporting results of
the classification. The rest of this Subchapter provides a more detailed description
of the functionality offered by Seidr.

34

The first feature of Seidr is data combining. This is used to create the eight previ-
ously defined final versions of the collected data sets for defect prediction. Data can
be combined for a single version, or for multiple versions.

Second feature of Seidr is data preprocessing. This is used to implement the data
preprocessing techniques introduced in Chapter 4. For Undersampling, Weka’s
SpreadSubsample class is used. Different ratios for the balance of majority and
minority class can be provided, for example with value 2 the ratio of majority to
minority class will be 2:1. Weka also supports CFS, which can be set as a data
preprocessing option in Seidr. Additionally, Weka includes a cost-sensitive meta-
classifier, which can also be set in Seidr as a data preprocessing option with a
parameter for the weight of FN misclassification. The costs for TP and TN are 0
and cost for FP is 1.

The third feature of Seidr is providing to the classifiers in the Weka framework.
Weka contains implementations of all five machine learning algorithms introduced
in Chapter 4. These can be used with the selected data preprocessing options to
train and evaluate a classifier. Data from a previous version is used as training
data, and data from the target version is used as testing data, based on which all
performance reporting is done. In addition, each classifier can be paired with a
either Bagging or Boosting meta-classifier.

The fourth feature of Seidr is reporting performance and results of a classification
in a desired format. This is an important feature due to the limited functionality of
customized reporting in Weka. This functionality can be used both for estimating
performance with training and testing data, and for making predictions.

5.3 Narrowing down classifier selection

As the number of classifiers selected for testing in this thesis is high, the selection
of classifiers is narrowed down in this Chapter before a more detailed performance
analysis is conducted in the next Chapter.

5.3.1 Defining initial configurations

Due to the number of configurations and different classifiers available, the initial
goal is to narrow down which classifiers perform best. This is done using as minimal
configurations as possible, while making the performance comparisons equal. The

35

chosen configurations are justified below.

The configurations which need to be taken into account when comparing perfor-
mance between classifiers are data preprocessing, the chosen classifier, data sets
over which the performance measures are gathered, and the eight different metric
data sets. For a limited performance comparison, only a few configurations can be
used. For this purpose, the final data sets are limited only to CM + CKE alpha data
set. CM + CKE is chosen to be able to include both metric types, and to disregard
the choice between aggregating or combining change metrics. Additionally, only
two data preprocessors, Bagging and Boosting are considered. CFS is used for the
Bayesian classifiers for which it is essential, and all available version data sets are
used. Finally undersampling is used due to the imbalanced data set. An optimal
value for undersampling ratio is chosen based on running each classifier on only a
data set of one version, 6.1. The chosen values for undersampling ranged from 1 to
4, and no undersampling for BN classifier.

Lastly, performance metrics for comparing the classifiers need to be chosen. Using
all of the possible measures is impractical, which is why only two measures are
chosen, while the rest of the measures are used only for a final performance analysis
and comparisons. The fist selected measure is AUC, which as discussed, is generally
accepted as a good overall measure of classifier performance. The second measure
is chosen to represent the use cases of the RELEX RM team, which would only
consider the top results measured by confidence of the prediction list. For this
purpose, the average of the PPV measure at three cut-off points is used. The three
cutoff points are the values of prediction confidence at row 50, 100 and 200 of the
predictions, where prediction results are sorted by the prediction confidence value.
This essentially measures how many correctly predicted defective files generally are
in the most confident prediction rows.

5.3.2 Initial performance comparison and results

The results for the initial performance comparison between the classifiers are repre-
sented in Figure 4. The x-axis represent the average PPV value, and y-axis repre-
sents the AUC value of the classifier. The results for each classifier per each of the
target versions are plotted as the function of the two values. The best results would
be at coordinates (1,1), which would represent a perfect classification, and worst at
(0,0).

36

Figure 4: Initial results

The clear outlier in the results is the SMO classifier, which is a Weka implementation
of SVM. The AUC score for SMO is noticeably lower than that of every other
classifier, and the average PPV is in the lower-end of the results. Due to these
factors, SMO is discarded from further analysis.

The next two in performance are the NB and J48 classifiers. While the AUC values
for NB are not as clear outliers as for SMO, it nevertheless scores consistently lower
compared to the rest of the classifiers, while having mostly worse average PPV
values. The best quality of the NB classifier is that it scores fairly consistent values
on both measures. J48 on the other hand achieves slightly better performance in
terms of AUC than NB. However, the average PPV values are not very consistent,
and overall mid-range at best. These two classifiers are thus also discarded from
further analysis.

The remaining classifiers RF and BN score the best out of the five selected classifiers.
The performance of these two classifiers is almost identical, with RF scoring slightly
less in AUC but more consistently in average PPV. The result of these two classifiers
performing best is not surprising, considering existing results from other studies [1].
Thus, the performance tuning and analysis will continue for BN and RF in the next
Chapter.

37

Table 4: Initial scores

BN RF J48 NB SMO

Score 1,31 1,29 1,15 1,13 0,99

The exact results are summarized in Table 4, where the score is calculated as the
average of results of AUC and average PPV separately from the three different
versions, and then the average of AUC and average PPV summed together. Here, a
value of 2 would represent a perfect score.

38

6 Analysis

In this Chapter a more thorough analysis is conducted on the two selected classi-
fiers, RF and BN. First, performance improvement optimizations are experimented
on using previously discussed data preprocessing techniques and meta-classifiers.
Then, the results are presented using classifier performance metrics, and finally, the
usability of classification results is validated against the use cases defined in Chapter
2.

6.1 Improving results

In this Subchapter, performance improvements are experimented on BN and RF.
The objective is to incrementally apply and evaluate techniques for improving re-
sults for both classifiers, with the goal of achieving the best performance for both
classifiers.

Table 5: Initial results

Avg. PPV AUC Score

BN 0,488 0,820 1,308

RF 0,5 0,789 1,289

The initial results on the two previously selected performance measures over three
different version data sets can be seen in Table 5. The same performance measures
will also be used to measure the performance after applying performance improve-
ment techniques. Any performance improving techniques will be retained in the
configuration in the tests following it.

6.1.1 Undersampling and cost sensitivity

The first performance improvement technique is to apply either Undersampling or
Cost-sensitivity, and finding the best value for the selected technique. To achieve the
initial results presented in the previous Subchapter, Undersampling with an initial
best guess value was applied. For RF this was 3.0, and for BN no Undersampling.
The comparison between Undersampling and cost-sensitivity which is done now thus
also validates the correctness of the initial choices.

39

The measured values for different configurations for undersampling and Cost-sensitivity
are plotted in Figure 5 for the BN classifier, and Figure 6 for the RF classifier. The
circle-shaped dots are the values of Undersampling (US) and triangle-shaped dots
are the values for the cost matrix (CM) of Cost-sensitivity. As before, x-axis repre-
sents the average PPV value and y-axis the AUC value.

For the BN classifier, the plot shows that Cost-sensitivity is the better technique
both in terms of AUC and average PPV. The best choices for cost matrix values
are between 5 and 10, where the range of the sum of AUC and average PPV is
between 1,320-1,323, making the choices almost identical in terms of performance.
The CM value 8 is chosen as the final value, as average PPV value is important for
the use case of improving testing process, and the trade-off in terms of AUC value
is minimal. Additionally, the sum of the two measures was highest for CM value 8.
The exact values for average PPV and AUC achieved with CM value 8 are listen in
Table 6. The performance measured by average PPV is better than with the initial
setup, while the AUC value remains the same.

Table 6: Results after feature selection and cost sensitivity

Avg. PPV AUC Score

BN 0,506 0,817 1,323

RF 0,509 0,788 1,297

For the RF classifier, Undersampling performs considerably better than Cost-sensitivity.
Additionally, the average PPV value correlates with higher undersampling values.
This is due to the classifier predicting less and less defective rows with an appar-
ently higher correctness rate. However, the AUC value decreases slightly the more
Undersampling is used. Additionally, while not a significant consideration in this
case, processing time is also longer the higher undersampling values are. The value
of 4.0 is chosen as the best trade-off between the two measures for Undersampling.
The performance measures with Undersampling value 4.0 are listed in Table 6. As
with the BN classifier, the AUC value remains the same compared to initial results,
while PPV performs slightly better.

40

Figure 5: Cost Matrix and Undersampling for BN

Figure 6: Cost Matrix and Undersampling for RF

41

6.1.2 Feature selection

Feature selection was also applied when calculating the initial results. Here, the
selection to use Feature selection with the BN classifier, and no feature selection
with the RF classifier, is validated. For this purpose, the RF classifier is tested with
Feature selection and the BN classifier without. The results are shown in Table 7.

Table 7: Feature selection validation

Avg. PPV AUC Score

BN without CFS 0,460 0,834 1,227

RF with CFS 0,462 0,837 1,300

The results provide no surprises, with both classifiers achieving lower performance
values than with the initial setup. Thus the initial configurations for Feature selec-
tion are kept going forward.

6.1.3 Log filtering

Log filtering is applied similarly to the two classifiers as Undersampling and Cost-
sensitivity. As every independent variable is numerical, the filter can be applied to
every variable.

The results for both classifiers with Log filtering are seen in Table 8. Log filtering
does not improve the results for either of the classifiers. For the RF classifier, the
results are essentially unchanged, with the sum of the measured being only 0.2
smaller. The same applies for BN, with the exception that the loss in value comes
mostly from PPV and not AUC. In conclusion, Log filtering does not impact the
classification results considerably and thus will not be used in this case.

Table 8: Log filtering results

Avg. PPV AUC Score

BN 0,482 0,820 1,300

RF 0,505 0,772 1,277

42

6.1.4 Data normalization

Data normalization is not required for either of the classifiers to perform well. For
the RF classifier, the algorithm uses only absolute values to create the decision trees,
thus normalization should not affect the performance. The BN classifier compares
the features only with each other, meaning that Data normalization should leave the
probabilities calculated for the classifier the same, despite the scale of the values.

This hypothesis is validated by running both test cases with both classifiers using
normalized data. The results show that using normalized data has no effect on either
of the classifiers, and thus it is not included in the configurations.

6.1.5 Deciding between data sets

Deciding between the data sets is essentially the question of whether to use code
metrics, change metrics, or both. As discussed, there are in total eight data sets,
three for predicting defects at alpha stage, and five for predicting defects at release.
Before comparing performance with different data set configurations, a quick look is
taken which files each type of data truly covers, and how many defects are already
left out at this stage.

The CKJM metrics only consider Java class files, and thus leave out a consider-
able amount of defects. Approximately only 25% of defective files are Java class
files, which makes the data set less valuable for comprehensive defect prediction.
The change metrics on the other hand consider only files that have had changes
made. Initial testing shows that the change metrics cover over 80% of all defective
files, still leaving some files out, but considerably less than with CKJM only. The
percentage improves only marginally when using combined data set of CKJM and
change metrics, compared to only change metrics, making the two data sets more
comparable.

The results of average PPV and AUC values are plotted for each data set, over the
three versions. The results for the BN classifier are shown in Figure 7, and for the
RF classifier in Figure 8. The data sets used for alpha defect prediction are plotted
as triangles, and data sets used for release defect prediction as circles.

The most noticeable difference between data sets for both classifiers is the difference
in performance of the CKE only data sets. The AUC values are considerably higher
than other data sets for all CKE data sets, while the average PPV is generally

43

lower, with the exception of the alpha CKE metrics for RF. This is explained by the
low amount of defects covered by the CKE set and the amount of files still being
relatively high. Due to this, the ratio of defective files to total files is higher. The
classifiers are able to classify effectively most of the clean files from the defective,
which explains the high AUC value. However, due to the low amount of defective
files the average PPV value is still generally lower than for the other data sets, since
the rate of correctly detected defective files would need to be higher than it needs to
be for other data sets to achieve same results in average PPV value. All in all, the
performance for change metric data sets for both classifiers is better than the other
data sets, but when considering the use cases, the performance is equal or worse, in
addition to which the data set covers less files and defects. Due to these factors, the
used data set will be picked out of the remaining data sets.

For the BN classifier, the unified data sets of CKJM and change metrics perform
noticeably better for both alpha and release defect prediction than the rest of the
data sets. The difference in performance is smaller for the release phase defect
prediction, with the data sets using only change metrics performing slightly better
in terms of average PPV value. However, due to the considerably higher AUC
value of the unified data sets, these are selected for both alpha and release defect
prediction. Of the two ways to unify change metric data sets, aggregation performed
best.

For the RF classifier, the differences in AUC value between data sets were smaller.
The best performing data sets were the same as for the BN classifier, although the
difference between CM + CKE combined and CM + CKE aggregated was almost
insignificant. However, the sum of AUC and average PPV was slightly lower for the
combined change metrics. For similar reasons as BN, the same datasets are chosen
for usage with RF.

6.1.6 Bagging and Boosting

In some situations the result of a classifier can be enhanced by the usage of a meta-
classifier. The two meta-classifier techniques introduced, Bagging and Boosting, will
be applied to the selected classifiers to determine if the results can be improved. The
meta-classifiers will be tested on both of the defect prediction cases.

The RF classifier itself is an ensemble classifier, which combines results from decision
trees. Thus it is not beneficial to further pair the RF classifier with another meta-

44

Figure 7: Data set comparison for BN

Figure 8: Data set comparison for RF

45

classification technique, and will not be selected here for testing with Bagging or
Boosting.

Table 9: BN with meta-classifiers

Avg. PPV AUC Score

Adaboost / alpha 0,257 0,784 1,041

Adaboost / release 0,233 0,777 1,010

Bagging / release 0,479 0,827 1,305

Bagging / release 0,459 0,831 1,290

The results for BN with Bagging and Boosting can be seen in Table 9. It shows
results for both defect prediction cases, with both meta-classification techniques.
The Adaboost technique does not pair well with BN in this case, with results being
considerably lower in both AUC and especially average PPV. The Bagging technique
performs considerably better than Adaboost. The average PPV value is slightly
lower, while AUC value is slightly higher. The sum of the two measures is still
however lower than for BN without Bagging. Due to this, in addition to the lower
average PPV value, Bagging is not used in this case.

6.2 Results for the final configurations

In this Chapter the final configurations are evaluated and compared to studies with
similar setups using the commonly used classifier performance measures presented
in Chapter 4. The performance measures will be reported for cut-off point value
0.5 to be able to better compare the results to results achieved in other studies.
Additionally, the results of Feature selection will be presented, to better understand
which features perform best at defect prediction in this case. Finally, a summary of
the selected configurations, and performance results, will be provided.

6.2.1 Feature selection results

The selected features by the classifiers provide insight into the classifiers perfor-
mance, and allow to compare the selections to other studies. As the RF classifier

46

does not use CFS and does not provide selection analysis, the CFS selection of BN
will be used.

Over three data sets for two defect prediction cases, the most selected features
with five or six inclusions out of six classifications were: Authors, Avg. Changeset,
Codechurn, LCOM, LOC added, LOC removed, Revisions and Weighted age. The
results are interesting since only one code metric, LCOM, has frequently been in-
cluded for classification. Furthermore, it is the LCOM metric, instead of LCOM3.
One explanation for it would be a high correlation between the two measures. In
any case, this finding would imply that the lack of cohesion measured by the metric
is a good predictor for defect proneness of a file. The second most frequent code
metric with 3 inclusions is RFC, which interestingly is also a CK metric, solidifying
the validity of CK metrics as the most used metric set.

On selected change metrics, the first observation is that metrics with different aggre-
gation method were very rarely selected twice, for example average LOC added and
total LOC added. As CFS selects metrics based on correlation with other metrics,
this means that the aggregated metrics correlate with the base metric, and that
aggregated metrics might not be necessary in this case. Perhaps the most interest-
ing often selected change metric is the Authors metric, which implies that the more
different authors have made changes the more defect prone the file is. While this
initially seems to imply that the number of authors should be kept to minimum, it
also likely correlates with the number of changes that have been made.

6.2.2 Performance results and comparison to other studies

To compare the overall classification performance to other similar studies, the per-
formance measures in general use are applied. The values will be calculated for a
cut-off point of 0.5, as that is the value used in most of the studies. For the sake
of brevity, the results are calculated for three data sets for each of the two cases
together. The results of the calculation are plotted as a min-max-average plot. The
performance measures can be seen in Figure 10 for the BN classifier, and Figure 9 for
the RF classifier. When looking at the results it should be kept in mind that most of
the measures correlate to a degree with AUC, which was not the only or necessarily
the main focus when optimizing classifier performance due to the selected use cases.

Compared to each other, the classifiers have some notable differences in performance.
Firstly, the RF classifier appears to perform more consistently in most performance

47

Figure 9: Performance measures for RF

measures compared to BN, with the exception of PPV., where BN while achieving
lower values does it more consistently. The second difference is the trade-off between
TPR and FPR. Compared to the BN classifier, RF has lower FPR values, but the
TPR values are accordingly considerably lower. As keeping FPR low is of critical
importance in defect prediction, due to imbalanced data, it looks like RF performs
better in this regard. However, both BN and RF achieve similar values in terms of
AUC, and the AUC measures how good trade-offs can be achieved between TPR
and FPR. This means that the different trade-off made for the classifiers in TPR and
FPR, while different, is nevertheless similar from the point of view of performance
measurement.

Due to using both change and code metrics, the performance measures are compared
to studies which also use both metrics. The study conducted by Choudary et al. is
the most similar study conducted to the software defect prediction implementation
in this thesis [15]. In the study, both code and change metrics were used, and the
selected metrics were largely the same as in this thesis. The RF classifier was also
used, but not BN or NB which would have been comparable. Thus only RF classifier
results are compared. The results in Choudary et al. study when training with a

48

Figure 10: Performance measures for BN

previous version and testing with current were similar to the results achieved here
with the RF classifier. Most notable difference was that the maximum PPV value
achieved was higher in some cases. However, TPR and F-measure were generally
lower. The differences are arguably surprisingly small despite using different data,
and small difference in configuration. Similarly to this thesis, Choudary et al. rec-
ommend that change metrics and code metrics should be used together to achieve
best performance.

The study conducted by Moser et al. also used code and change metrics [8], but the
results of the study are only somewhat comparable, as only accuracy, TP and FP
values are reported. Additionally, the used data set size was smaller, and the used
classifiers in the study includes NB, but neither BN or RF. Despite the differences,
accuracy values achieved in the study were comparable to the results of BN classifier
in this thesis, further validating the results as acceptable compared to other studies.

49

6.2.3 Final results and discussion

To conclude the configuration and performance evaluation, a summary of the results
is presented here. The best results measured by average PPV and AUC can be found
in Table 10. Additionally overall performance measures can be found in Figure 9
and Figure 10.

Table 10: Final results

Avg. PPV AUC Score

BN / alpha 0,506 0,817 1,323

RF / alpha 0,509 0,788 1,297

BN / release 0,479 0,826 1,305

RF / release 0,509 0,788 1,297

The configuration used for the RF classifier is Weka’s default parameters, in addition
to undersampling with a four to one split between clean and defective files. For the
BN classifier Weka’s default configuration was also used. Additionally, Cost-sensitive
meta-classifier was used with a cost value 8 for misclassification of defective files,
and Weka’s implementation of CFS was applied to data before classification.

Lastly, the choice of cut-off point selection is discussed here. While no specific cut-
off point is determined, the cut-off points that were used were defined as the the
confidence value of the prediction at row 50, 100 and 200 when the results were
sorted by the confidence value. In general, the confidence value at 200 rows for the
RF classifier was approximately 0.5, which is the default. The confidence values
at 100 and 50 were slightly higher. For the BN classifier however, then confidence
values were very high, with the value being over 0.999 even for confidence value at
200 rows. Based on these observations, the RF classifier could be used without any
additional cut-off point configuration in this case, while the cut-off point for BN
should be considered case-by case.

6.3 Use case validation

In this Subchapter, the prediction results are evaluated against the use cases defined
by the research questions. The evaluation is conducted in cooperation with RELEX

50

Figure 11: PPV values for RF classifier for different RELEX software versions

RM team. The first RQ is validated using a more thorough analysis on PPV values,
and the potential for selecting a suitable release time for the second RQ is investi-
gated. Additionally, an overall result quality and usefulness validation is conducted
by the RM team.

6.3.1 Validating usability for testing process improvement

As discussed before, the RM team would only use the prediction results with the
highest confidence value and thus PPV is the best performance measure to estimate
the usefulness of the prediction for this use case. As such, a closer look is taken into
the achieved PPV values for both classifiers.

The PPV values for each version for RF are shown in Figure 11. Three lines are
plotted for PPV value at 50, 100 and 200 rows respectively. The first observation
from the Figure is that in general, prediction accuracy measured by PPV does not
differ between alpha and release versions. This is a positive quality, as this shows that
the prediction is suitable for both alpha and release phase. Moreover, the difference
between PPV value at different number of rows is relatively consistent, with some
exceptions such as 6.1 alpha and release. In general the PPV values show that the
prediction performance is acceptable for the desired use case. This is especially true
when considering PPV at 50 rows, which is on average 0.7 for software versions
6.1 and 6.2. However, for software version 6.3 the values are considerably lower.

51

Figure 12: PPV values for BN classifier for different RELEX software versions

This reduces the usability as the reliability of the prediction cannot be assumed to
be consistent. The PPV value of under 0.4 is still usable for the use case, but its
usefulness is considerably lower.

The PPV values for the BN classifier are plotted in Figure 12. The results are
similar to the PPV values achieved with RF. However, the variance in PPV values
for versions 6.1 and 6.2 at 50 rows is higher than for RF, even though the best
results are slightly higher. Similarly to RF, the PPV values for BN are considerably
lower for version 6.3. This suggests that the cause for the lower PPV values is in
the data, with the most likely explanation being that the testing data contained less
defects than for other versions, while training data contained more. The trend in
the number of defective files in test data can be seen in Figure 13.

6.3.2 Validating usability for version defectiveness estimation

The number of rows predicted as defective optimally indicates the overall defective-
ness of a given software version. This is related to the RQ2, as the more defects
there are in the system, the worse time it is to release the version. This hypothesis
is validated by comparing the number of rows predicted defective to the amount of
defects that was actually in the version.

The number of rows predicted defective are plotted in Figure 13 for both classifiers,
in addition to the number of defects in test data, i.e. the version in question. The

52

Figure 13: Number of result rows predicted defective

left-side y-axis contains value range for RF and the number of defects in test data,
and right-side y-axis contains the value range for BN. A cut-off point value of 0.5
is used to calculate the amount of rows predicted defective, as a fixed cut-off point
recommendation was not defined for either of the classifiers, and a set number of
rows which was used for PPV cannot be used in this case.

For versions 6.1-alpha to 6.2-release, the number of defects in the version corre-
lates strongly with the number of rows predicted defective. However, for version
6.3-release and especially for 6.3-alpha, while the correlation is still present, it is
considerably lower. This is likely due to the same reason which caused a similar
drop in PPV value for version 6.3, which is the large amount of defects in training
data, but considerably lower amount of defects in testing data.

The second observation from Figure 13 is the considerable difference between number
of rows predicted defective between the two classifiers. This is due to the cut-off
point value recommendation being considerably higher for BN than 0.5. Despite
this, the correlation between BN and defects in test is effectively the same as for
RF.

6.3.3 Validating prediction usefulness

The quality and usefulness of the results was validated by RELEX RM team. The
process for validation was to check the top results from the predictions made by
both classifiers, and check what kinds of bug fixes had been made to those files.

53

In general, the quality of the predictions was found to be good. The rows which
were correctly predicted as being defective contained relevant bug fixes that were
implemented in later versions. This further validates the usefulness of the prediction
rows with highest confidence values. The difference between the two classifiers in
terms of predicted files was minimal, with both ranking same files to a large extent
in the top prediction confidence rows.

Despite only small differences in results between BN and RF, the RF classifier
was found to perform overall better. This was mainly due to ease of configuration
and easier cut-off point selection. The latter also affected performance for the use
case described in RQ2, which further supports the choice of RF. However, due
to the differences being relatively small between the classifiers in performance, it
is recommended to further monitor both classifiers, and further experiment with
different configurations.

All in all, the current results are promising for the two defect prediction cases pre-
sented. Currently the main concern regarding performance is the drop in PPV values
for software version 6.3. Validation of the framework will continue at RELEX with
future software versions, which will provide more data and thus a better estimate
of the average defect prediction performance. If the results prove to be consistently
acceptable, the framework can be used in practice for testing purposes and deciding
release times of the software.

54

7 Summary

In this thesis a software defect prediction framework was implemented to assist in
targeting testing resources and selecting optimal release times. The implementation
used software metrics and machine learning techniques to produce a list of files in
the RELEX software which were most likely to contain defects. The performance
of the implemented software defect prediction framework was validated by common
classifier performance metrics, and manual use case validation.

Based on analysis of the defect prediction performance, the RQ1 can be answered
tentatively positively. The prediction performance measured by PPV value for top
50 to 200 rows was overall high enough, even for version 6.3, that it could be used
as a tool for concentrating manual testing resources to those parts of the software.
However, further testing and monitoring of the results is still required to determine
if the reliability of the implemented software defect prediction framework is high
enough for practical use.

Similarly, the answer to RQ2 is tentatively positive. It was shown that the number of
result rows predicted defective correlates with the number of defects in the software,
measured by the amount of fixed defects in the next version. Again, software version
6.3 showed worse results in this regard than the two previous software versions,
which reduced the reliability of the result. Thus further testing and monitoring of
the results is required with future versions to better determine if the framework
provides acceptably reliable results.

In addition to continuing monitoring the performance in future versions, several
other measures can be taken in the future to further improve defect prediction per-
formance. Firstly, more software metrics can be tried and validated in the defect
prediction, for example Choudary’s change metrics. Additionally, performance eval-
uation can be performed on other classifiers and configurations for the classifiers
which were already experimented on can be further validated and optimized based
on future results.

Additionally, going forward with performance validation, it should be observed
whether the drop in performance seen in version 6.3 is an anomaly or does it cor-
relate with large differences in defect counts in the training data, i.e. the previous
version. Currently, the performance drop does lower the confidence of the results
and thus if the drops are common then it will affect the usability of the predictions
considerably. On the other hand, the effect can somewhat be mitigated if it is taken

55

into account when looking at the predictions whether the last version contained an
abnormally large amount of defect fixes. Alternatively, if the performance of RF and
BN stabilizes on the lower performance levels, then other classifier options should
be looked at.

The final improvement suggestion is to create a complementary tool which would
assist in the usage of prediction results. The tool would improve the usage of pre-
diction list for testing by linking the files which were predicted as defective back to
the issues in Redmine. This would provide context for which changes could have
caused the defect in the file, and more specifically where to look for it in the file.

56

References

1 R. Malhotra, “A systematic review of machine learning techniques for software
fault prediction,” Applied Soft Computing, vol. 27, pp. 504–518, 2015.

2 S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented design,”
IEEE Transactions on software engineering, vol. 20, no. 6, pp. 476–493, 1994.

3 M.-H. Tang, M.-H. Kao, and M.-H. Chen, “An empirical study on object-oriented
metrics,” in Software Metrics Symposium, 1999. Proceedings. Sixth International,
pp. 242–249, IEEE, 1999.

4 J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented design
quality assessment,” IEEE Transactions on software engineering, vol. 28, no. 1,
pp. 4–17, 2002.

5 S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking classification
models for software defect prediction: A proposed framework and novel findings,”
IEEE Transactions on Software Engineering, vol. 34, no. 4, pp. 485–496, 2008.

6 E. Arisholm, L. C. Briand, and E. B. Johannessen, “A systematic and compre-
hensive investigation of methods to build and evaluate fault prediction models,”
Journal of Systems and Software, vol. 83, no. 1, pp. 2–17, 2010.

7 T. J. McCabe, “A complexity measure,” IEEE Transactions on software Engi-
neering, no. 4, pp. 308–320, 1976.

8 R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis of the efficiency of
change metrics and static code attributes for defect prediction,” in Proceedings
of the 30th international conference on Software engineering, pp. 181–190, ACM,
2008.

9 R. Martin, “Oo design quality metrics,” An analysis of dependencies, vol. 12,
pp. 151–170, 1994.

10 D. R. Kumar and G. Kaur, “Comparing complexity in accordance with object
oriented metrics,” International Journal of Computer Applications, vol. 15, no. 8,
pp. 42–45, 2011.

11 W. Li, “Another metric suite for object-oriented programming,” Journal of Sys-
tems and Software, vol. 44, no. 2, pp. 155–162, 1998.

57

12 L. Badri and M. Badri, “A new class cohesion criterion: An empirical study on
several systems,” Proceedings of QAOOSE, vol. 3, 2003.

13 T. Mende and R. Koschke, “Effort-aware defect prediction models,” in Software
Maintenance and Reengineering (CSMR), 2010 14th European Conference on,
pp. 107–116, IEEE, 2010.

14 D. Radjenović, M. Heričko, R. Torkar, and A. Živkovič, “Software fault prediction
metrics: A systematic literature review,” Information and Software Technology,
vol. 55, no. 8, pp. 1397–1418, 2013.

15 G. R. Choudhary, S. Kumar, K. Kumar, A. Mishra, and C. Catal, “Empirical
analysis of change metrics for software fault prediction,” Computers & Electrical
Engineering, vol. 67, pp. 15–24, 2018.

16 C. Catal and B. Diri, “Investigating the effect of dataset size, metrics sets, and
feature selection techniques on software fault prediction problem,” Information
Sciences, vol. 179, no. 8, pp. 1040–1058, 2009.

17 R. Malhotra and Y. Singh, “On the applicability of machine learning techniques
for object oriented software fault prediction,” Software Engineering: An Inter-
national Journal, vol. 1, no. 1, pp. 24–37, 2011.

18 R. Malhotra and A. Jain, “Fault prediction using statistical and machine learn-
ing methods for improving software quality,” Journal of Information Processing
Systems, vol. 8, no. 2, pp. 241–262, 2012.

19 L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

20 I. Rish, “An empirical study of the naive bayes classifier,” in IJCAI 2001 workshop
on empirical methods in artificial intelligence, vol. 3, pp. 41–46, IBM, 2001.

21 N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian network classifiers,” Ma-
chine learning, vol. 29, no. 2-3, pp. 131–163, 1997.

22 T. S. Korting, “C4. 5 algorithm and multivariate decision trees,” Image Processing
Division, National Institute for Space Research–INPE Sao Jose dos Campos–SP,
Brazil, 2006.

23 D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson, “Software defect
prediction using static code metrics underestimates defect-proneness,” in Neural

58

Networks (IJCNN), The 2010 International Joint Conference on, pp. 1–7, IEEE,
2010.

24 K. O. Elish and M. O. Elish, “Predicting defect-prone software modules us-
ing support vector machines,” Journal of Systems and Software, vol. 81, no. 5,
pp. 649–660, 2008.

25 Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu, “A general software defect-
proneness prediction framework,” IEEE Transactions on Software Engineering,
vol. 37, no. 3, pp. 356–370, 2011.

26 M. A. Hall, “Correlation-based feature selection of discrete and numeric class
machine learning,” 2000.

27 S. Wang and X. Yao, “Using class imbalance learning for software defect predic-
tion,” IEEE Transactions on Reliability, vol. 62, no. 2, pp. 434–443, 2013.

28 T. Menzies, B. Turhan, A. Bener, G. Gay, B. Cukic, and Y. Jiang, “Implications
of ceiling effects in defect predictors,” in Proceedings of the 4th international
workshop on Predictor models in software engineering, pp. 47–54, ACM, 2008.

29 G. M. Weiss, K. McCarthy, and B. Zabar, “Cost-sensitive learning vs. sampling:
Which is best for handling unbalanced classes with unequal error costs?,” DMIN,
vol. 7, pp. 35–41, 2007.

30 J. R. Quinlan et al., “Bagging, boosting, and c4. 5,” in AAAI/IAAI, Vol. 1,
pp. 725–730, 1996.

31 T. Gyimothy, R. Ferenc, and I. Siket, “Empirical validation of object-oriented
metrics on open source software for fault prediction,” IEEE Transactions on
Software engineering, vol. 31, no. 10, pp. 897–910, 2005.

32 M. Jureczko and D. Spinellis, Using Object-Oriented Design Metrics to Pre-
dict Software Defects, vol. Models and Methodology of System Dependability
of Monographs of System Dependability, pp. 69–81. Wroclaw, Poland: Oficyna
Wydawnicza Politechniki Wroclawskiej, 2010.

33 M. Aniche, “Change metrics.” https://github.com/mauricioaniche/

change-metrics, 2015.

34 I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical
machine learning tools and techniques. Morgan Kaufmann, 2016.

file wmc dit noc cbo rfc lcom ca ce npm lcom3 loc dam moa mfa cam ic cbm amc cc revisions authors locAdded locRemoved maxLocAdded

1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 72,00 32,00 1562,00 1362,00 91,00

2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2,00 2,00 37,00 1,00 36,00

3 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2,00 1,00 6,00 6,00 4,00

4 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2,00 2,00 24,00 2,00 23,00

5 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1,00 1,00 53,00 0,00 53,00

6 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2,00 2,00 1,00 1,00 1,00

7 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 4,00 4,00 34,00 8,00 20,00

8 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1,00 1,00 20,00 0,00 20,00

9 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 4,00 2,00 79,00 5,00 45,00

10 6 0 0 14 16 11 2 13 3 0,60 63,00 1,00 1,00 0,00 0,33 0,00 0,00 9,17 1,00 2,00 1,00 93,00 6,00 91,00

11 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2,00 1,00 88,00 88,00 60,00

12 0 1 0 2 0 0 2 0 0 2,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 ? ? ? ? ?

13 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1,00 1,00 5,00 0,00 5,00

14 14 1 0 34 21 91 28 14 14 2,00 52,00 0,00 0,00 0,00 0,15 0,00 0,00 2,71 1,00 3,00 1,00 841,00 78,00 595,00

15 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1,00 1,00 371,00 0,00 371,00

16 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 3,00 3,00 9,00 7,00 5,00

17 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 61,00 51,00 902,00 72,00 72,00

18 2 0 0 5 3 1 1 5 2 2,00 29,00 0,00 0,00 0,00 0,58 0,00 0,00 13,50 1,00 ? ? ? ? ?

19 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1,00 1,00 3,00 3,00 3,00

20 43 1 0 33 188 701 5 32 8 0,86 1556,00 0,83 6,00 0,00 0,12 0,00 0,00 34,91 3,00 15,00 10,00 549,00 460,00 217,00

21 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1,00 1,00 0,00 0,00 0,00

22 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 20,00 9,00 202,00 82,00 59,00

23 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1,00 1,00 0,00 0,00 0,00

24 13 1 0 10 31 30 1 10 9 0,79 184,00 1,00 1,00 0,00 0,18 0,00 0,00 12,69 1,00 ? ? ? ? ?

25 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2,00 2,00 1,00 1,00 1,00

26 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1,00 1,00 0,00 0,00 0,00

27 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2,00 1,00 42,00 4,00 38,00

28 109 0 0 59 160 5886 40 21 109 1,01 828,00 1,00 0,00 0,00 0,08 0,00 0,00 6,59 1,00 131,00 71,00 1278,00 490,00 22,00

29 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2,00 2,00 45,00 5,00 45,00

30 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1,00 1,00 0,00 0,00 0,00

31 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1,00 1,00 14,00 0,00 14,00

32 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 10,00 7,00 43,00 19,00 16,00

33 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1,00 1,00 237,00 0,00 237,00

34 18 1 0 22 41 87 14 8 15 0,42 405,00 1,00 1,00 0,00 0,38 0,00 0,00 21,11 2,00 2,00 2,00 8,00 7,00 5,00

35 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 12,00 6,00 162,00 45,00 122,00

36 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 5,00 4,00 107,00 80,00 91,00

37 10 0 0 6 17 37 0 6 4 0,72 77,00 1,00 1,00 0,00 0,45 0,00 0,00 6,50 1,00 1,00 1,00 52,00 0,00 52,00

38 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1,00 1,00 0,00 0,00 0,00

39 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 4,00 4,00 71,00 70,00 51,00

40 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 3,00 3,00 11,00 15,00 8,00

41 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 3,00 2,00 208,00 210,00 156,00

42 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1,00 1,00 1,00 0,00 1,00

43 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1,00 1,00 0,00 0,00 0,00

44 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1,00 1,00 1,00 0,00 1,00

45 2 0 0 7 4 1 2 7 0 1,00 24,00 0,00 3,00 0,00 0,58 0,00 0,00 9,50 1,00 ? ? ? ? ?

46 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 4,00 3,00 5,00 3,00 2,00

47 16 0 0 8 32 16 2 8 12 0,27 241,00 1,00 1,00 0,00 0,24 0,00 0,00 13,88 1,00 ? ? ? ? ?

48 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 7,00 4,00 74,00 19,00 30,00

49 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 4,00 4,00 36,00 37,00 28,00

Appendix 1. Final data CM + CKE

maxLocRemoved avgLocAdded avgLogRemoved codeChurn maxChangeset avgChangeset weeks defective_class

85,00 0,00 0,00 2924,00 916,00 0,00 47,00 defective

1,00 18,50 0,50 38,00 92,00 69,00 32,00 clean

4,00 3,00 3,00 12,00 276,00 258,50 9,00 defective

2,00 12,00 1,00 26,00 742,00 371,50 6,00 clean

0,00 53,00 0,00 53,00 194,00 194,00 0,00 clean

1,00 0,50 0,50 2,00 916,00 458,50 4,00 clean

7,00 8,50 2,00 42,00 916,00 434,75 38,00 clean

0,00 20,00 0,00 20,00 17,00 17,00 0,00 clean

3,00 19,75 1,25 84,00 916,00 452,50 31,00 clean

6,00 46,50 3,00 99,00 9,00 7,00 17,00 clean

60,00 44,00 44,00 176,00 276,00 258,50 9,00 defective

? ? ? ? ? ? ? clean

0,00 5,00 0,00 5,00 2,00 2,00 0,00 clean

76,00 280,33 26,00 919,00 43,00 34,67 23,00 clean

0,00 371,00 0,00 371,00 383,00 383,00 0,00 clean

5,00 3,00 2,33 16,00 916,00 318,67 5,00 clean

2,00 0,00 0,00 974,00 92,00 0,00 35,00 clean

? ? ? ? ? ? ? clean

3,00 3,00 3,00 6,00 17,00 17,00 0,00 clean

196,00 36,60 30,67 1009,00 659,00 64,20 44,00 defective

0,00 0,00 0,00 0,00 916,00 916,00 0,00 clean

24,00 10,10 4,10 284,00 916,00 62,55 47,00 defective

0,00 0,00 0,00 0,00 214,00 214,00 0,00 clean

? ? ? ? ? ? ? clean

1,00 0,50 0,50 2,00 916,00 649,50 13,00 clean

0,00 0,00 0,00 0,00 214,00 214,00 0,00 clean

4,00 21,00 2,00 46,00 742,00 468,00 23,00 clean

13,00 0,00 0,00 1768,00 181,00 0,00 50,00 defective

5,00 22,50 2,50 50,00 916,00 649,50 13,00 clean

0,00 0,00 0,00 0,00 916,00 916,00 0,00 clean

0,00 14,00 0,00 14,00 1,00 1,00 0,00 clean

10,00 4,30 1,90 62,00 614,00 91,80 43,00 clean

0,00 237,00 0,00 237,00 90,00 90,00 0,00 clean

4,00 4,00 3,50 15,00 659,00 368,00 22,00 clean

19,00 13,50 3,75 207,00 916,00 89,83 42,00 clean

59,00 21,40 16,00 187,00 916,00 190,00 42,00 defective

0,00 52,00 0,00 52,00 35,00 35,00 0,00 clean

0,00 0,00 0,00 0,00 916,00 916,00 0,00 clean

59,00 17,75 17,50 141,00 916,00 416,25 32,00 clean

7,00 3,67 5,00 26,00 659,00 264,33 5,00 clean

156,00 69,33 70,00 418,00 276,00 186,00 31,00 clean

0,00 1,00 0,00 1,00 351,00 351,00 0,00 clean

0,00 0,00 0,00 0,00 916,00 916,00 0,00 clean

0,00 1,00 0,00 1,00 351,00 351,00 0,00 clean

? ? ? ? ? ? ? clean

1,00 1,25 0,75 8,00 351,00 88,50 29,00 defective

? ? ? ? ? ? ? clean

5,00 10,57 2,71 93,00 916,00 244,29 48,00 defective

27,00 9,00 9,25 73,00 659,00 243,00 41,00 clean

