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1 Introduction

Thesis tries to explore if we use sentence embeddings produced by Universal Sentence
Encoder [CYK+18] for paragraph text similarity task. We take triplets dataset
to make ground truth dataset [DOL15]. Triplets dataset contains set of triplets.
Triplet is list of 3 links that are similar. We mine Wikipedia for these texts and
create ground truth dataset by setting similar label if two paragraphs are in triplet
and use negative sampling for negative labels. We use binary cross entropy loss to
evaluate models. We ask simple questions in the thesis. Can we use simple feed
forward neural network for this task and can we benefit more from using LSTM?
We also wonder if we use stacked LSTM do we have extra benefit if using output
lower levels of LSTM as features. If lower level of stacked LSTM for word vectors
capture syntactic information while higher level capture semantic, is there similar
analogy for sentence vectors?

With ever growing amount of data on the Internet, machine learning results in
unsupervised area of machine learning are gaining more importance due to cost tied
to getting labeled data. Researchers and industry for long time have wanted to make
use of wast amounts of data by using unsupervised methods and relying on data
quantity alone. Promises of such approaches can have a positive impact in society if
we could harness wast amounts of data publicly available which would be expensive
to label on large scale. As technology continues to be intertwined with society ever
more, increasing data generated from all types of sources could be valuable if we
could develop algorithms that take advantage of that data alone. This potential
has driven the surge of research in academia and industry in field of unsupervised
machine learning whose goal is to help make this a reality.

One fruit of this work that we consume every day is Google translate which in field
of natural language processing revolutionized how industry approaches translation.
With successfully using vector embeddings of natural text to capture semantic infor-
mation and then converting these vector embeddings into words in various languages
we see one of prime examples demonstrating just how much usability these methods
can deliver and information that could be captured from data by an algorithm alone.
Initial research done on word vectors by Tomas Mikolov that powered new version
of Google translate created interest in developing new types of word vectors which
encode different information. These encodings are produced with neural networks
by encoding words as vectors with neural networks called autoencoders.
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Simplified description of autoencoder is that it is neural network with same type of
data on it’s input and output. Example would be transferring word representations
x into some latent space vector z

z = W ∗ x (1)

Translating latent space representation z into result y that can be word in different
language.

y = W ∗ z (2)

Above equations are simple linear equations but this transformation is most often
non linear in a form of a deep neural network. See Figure 1. Same words in embedded
space can have close distance across languages due to nature of human language.
So distance between queen and king embedding in English can be the same as in
French.

Figure 1: Autoencoder structure(taken from wikipedia)

If we have wast amounts of data now it becomes clear why autoencoders are a good
tool if they can produce value. We only need to supply data we collected to them
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without any extra labor like labeling data. The hidden representation depending
on algorithm used can encode different types of information. Loss function is often
crafted so that embeddings produced capture specific information.

1.1 Why is this thesis useful?

Besides being written to demonstrate authors mastery of the subject, one might ask
is there any other use in experiments we’re about to read and results we’re about to
see? Since author of this thesis tries to attain machine learning mastery one of goals
is for use not just to work on technical fluency but to attain craftsmanship through
practices, techniques and methods that form state of the art and yield tangible
results. Although sometimes these techniques capture just spirit of our time never
the less they are of crucial importance for aspiring practitioner.

Besides improving technical fluency and demonstrating mastery there is also added
value in finding out more about embeddings themselves since if somebody tried
them out I could not find work that would be exact as in this thesis which explores
practicalities related to modern state of the art sentence vector embeddings and how
semantics they capture can be utilized. NLP is wast area and this direction seemed
not that much sought after since specific sentence embeddings are relatively new.

Often we see researchers benchmarking and exploring vector embeddings for infor-
mation embeddings encode since it is not always obvious to analytically know, from
methods used to obtain embeddings, what information is captured by specific em-
bedding and for what tasks can it be useful. In this work we try to explore sentence
embeddings, which are relatively new and haven’t been as benchmarked as word
embeddings.

Having even simple technique tried and tested on modern embeddings gives us more
info about characteristics of vectors that we are about to discuss. It is challenging
to analytically determine can stacked LSTM be useful for specific task if we expose
lower layers of stacked LSTM as feature to feed forward network on top? We can
run experiments to try to statistically determine if information captured by these
vectors can indeed be used in particular way. Experiments like that brings us closer
to understanding embeddings better and managing them. Since embeddings became
corner stone of modern NLP it is important to understand them in order to use
them for solving various NLP problems or for applying them in industry related
applications.
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1.2 Thesis outline

Related work section of the thesis starts with work that seems very similar to what
was tried in this thesis and summaries of theory in modern and popular NLP trends
that influenced and inspired work conducted in this thesis. After introduction, work
that was used as foundation for thesis in terms of data and work that looks similar
is described, descriptions of more modern work is given related to how embeddings
used in the thesis are produced. Universal sentence encoder is described.

First description is given of special type of neural networks called LSTM networks
and summaries are given of some of top results in recent years that advanced state
of the art when it comes to specific area of NLP that deals with vector embed-
dings. From these papers summaries crucial concepts are described, with which
paper contributes to NLP community, and that inspired this work to experiment
with thoughts these scientists lay out to the community. Summary of modern work
on vector embeddings is done to highlight more the area of NLP that became foun-
dation for solving many NLP problems today. Researchers have explored crafting
embeddings of different characteristics and when we describe techniques used by
state of the art research in the field we survey part of the theoretical background
and material needed once thesis starts to discuss experiments that rely on modern
work while exploring exciting area of NLP that deals with vector embeddings.

Data preparation section speaks about substantial work that was done in scope
of this thesis to prepare data. Since the thesis was done over several months
large portion of time went into preparing and managing data. The work included
finding Wikipedia dumps, post processing them, extracting appropriate data from
Wikipedia, experimenting with optimal ways to clean the data, experimenting with
ways of embedding data in vector space that is reasonable on home computer, load-
ing the data into clean pandas data frames fit for experiments chosen to be conducted
while doing this in way that is computationally reasonable on home computer. Dur-
ing this work I published few blog posts that were referenced in the thesis related
to process of manipulating Wikipedia data in cost effective way. One of the key
takeaways is that by using command line data science tricks we don’t have to clean
data and load it into a database.

Models section describes model structure used. This description is foundation for
models used in experiments although throughout experiments there are variations of
basic description, variations all look similar. Model in experiment 2 has its structure
picked based on authors intuition grounded in modest machine learning experience,
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although model might be not optimal due to having two stacked LSTM’s for two
paragraphs it is in my opinion reasonable since it looks similar to what community
uses often, like usage of fully connected network on top of LSTM output.

Experiments section then goes on to describe results related to conducting ex-
periments with purpose of exploring how we can use these embeddings for simple
task of text similarity. First experiment uses simple model and second uses LSTM
based model. Experiments describe variations of the tried model and experiences
from trying out different variations. There is discussion section for each experiment
trying to provide intuition on model variation and result.

Appendices contain parts of code that was used for this thesis. Since work on
thesis was ongoing for longer period of time and often I had to do things differently
due to hardware constraints code is not saved in order of execution as things were
done ad hoc in Jypiter notebook but crucial parts of code that actually did the work
can be seen like for example function that fetches the data from disk, functions that
clean wikimedia markdown, functions that parse xml, attempts at writing parser
for wikimedia markdown, that did work quite well but I picked other solution that
looked more tested.

1.3 Overview of theoretical descriptions in this paper

Master thesis starts with theoretical description that describe how sentence embed-
dings used in this thesis are obtained what is theory behind producing them and
why are these modern embeddings so significant today. Then theoretical description
moves towards ideas in ElMo embeddings paper that inspired experiments to an ex-
tent. ElMo paper has very interesting technique employed to produce state of the
art word embeddings. Can we make use of this technique for sentence embeddings?

1.4 Overview of action points in the thesis

• get wikipedia dump and triplets dataset

• extract triplets out of wikipedia

• clean it so that it is in pandas dataframe and tokenized

• implement testbed for experiments
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• implement model

• modify model in small variations and report results

1.5 Overview of data preparation

Ground truth dataset is prepared by taking triplets dataset and Wikipedia dump.
We construct dataset that consists of paragraph pairs as input and label that is a
flag indicating if paragraphs are similar. Since triplets dataset gives us information if
two paragraphs are similar if two paragraphs are in one triplet in triplets dataset we
can put label indicating they are similar. We can pick two random paragraphs from
triplets dataset that are not in the same triplet to get paragraphs that are not similar.
Dataset obtained in this way is ground truth dataset and there are approximately
50% of similar paragraphs while other half comes from negative sampling. After
splitting dataset obtained in before mentioned fashion into test and train datasets
binary cross entropy loss is used to evaluate models.

Data preparation part involves external software being used and command line tech-
niques in order to manage data without having to use database. Wikipedia dump
is processed in command line to create index of titles on disk and then command
line tools are used to retrieve articles. Gensim open source software is used to clean
data. Also I tried of writing parser on my own and tried various other libraries but
in the end most popular one was used to parse wikimedia format.

1.6 Models overview

There are two models tried. First one is fully connected network and second one is
stacked LSTM with fully connected layer on top. Fully connected network is chosen
for simplicity and LSTM based model is chosen to experiment on how well does
stacking LSTM work when it comes to paragraphs and sentences.

1.7 Experiments overview

First experiments start out with simple model then each model is varied until better
results are obtained. Modern deep learning techniques are applied. Variations are
testing out various assumptions and at the end each experiment results are reported
and discussion tries to provide intuition.
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2 Related work

Rapid progress in the field of machine learning hasn’t left autoencoders without
fair share of innovation. Researchers are embedding units of text with more and
more information, semantic and syntactic. Growing the domain of applications and
pushing state of the art. Plenty of modern methods and tools are now available for
researchers to build on. Methods for embedding different units of text like paragraph,
sentence and words are being developed. Embeddings they produce encode variety
of information that is useful for problems that machine learning aims to solve.

Autoencoders have been gaining traction recently in industry applications perhaps
most notably with Google translate using sentence embedding vectors to power
it’s translation service. Skip-thought vectors[MCCD13b] have become increasingly
prevalent as means of encoding word semantics into a vector space paving path for
new research that led to creation of different types of word embeddings[GPH+16b]
that could have different amount of information captured [AKB+16b]. This work
enables further NLP research and industry applications by providing methods to
capture language semantics together with other information and provide solid ab-
stractions for further development. It is these abstractions that enabled new re-
search in sentiment analysis and other areas. GloVe[PSM14], Word2Vec[MCCD13a,
MSC+13], FastText[BGJM16], ElMo [PNI+18] are just some of word embedding
names that have gained traction in the field. These vectors encode semantic rela-
tionships once trained on large corpora of text such as Wikipedia and often constitute
basis for further work. Researchers have for some time went beyond just word em-
beddings but used unsupervised learning to expose latent features of sentence and
paragraph embeddings.

Ever since [KZS+15] published skip-thought vectors there has been plenty of work
taking advantage of autoencoders to produce vector embeddings of various units of
text.

Work done on paragraph similarity on triplets dataset [DOL15] inspired most of the
work for this thesis. What is of interest in the paper is that it references hand built
triplets dataset that was rarity at the time of this writing. Ground truth dataset
dataset in the thesis is produced based on triplets dataset. Alternative to it would be
scraping search engine results as early work of Mr. Mikolov does [LM14] to evaluate
semantic text similarity. Another alternative although seems less suitable is ’News
Aggregator Data Set’ from [DKT17].
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Usually sentence and paragraph embedding methods rely on word embeddings and
there have been plenty of them recently. Different word vectors encode different
information [AKB+16a]. There are many of word embedding flavors like fastText
[BGJM16] from Facebook or the one from Microsoft research that allows for en-
gineering of semantics that is to be embedded into vector besides learning general
purpose representations with unsupervised approach [GPH+16b]. Most notable re-
cent work that provided improvements across the board of nlp tasks is ElMo word
vector embeddings [PNI+18] that encodes various semantic and syntactic informa-
tion that aims to be general enough to provide improvement on many NLP tasks
that use word vectors as basis for solutions provided.

There is plenty of work on embedding paragraphs and sentences. Sentence encoding
has seen more exposure with universal sentence and paragraph embedder [CYK+18]
being provided on tensorflow hub.

Recent work coming from Facebook [WFC+17] provided method for embedding en-
tities among which are paragraphs and sentences but with accent for domain specific
tasks. Although method mentions that it could be used for semantic text similarly
it does not focus on this task in particular nor provides more elaboration that would
provide richness of embedding information as previously mentioned papers.

Recently while this thesis was in progress a work was published on github using sim-
ilar model for text summarization[don]. Author demonstrates mastery in building
on top of work readily available in tensorflow library and this work will also try to
look up to this work.

While I was writing this thesis another work showed up closely related to this where
authors evaluate different sentence embeddings for downstream tasks[PSP18].

Embeddings are hot commodity in modern NLP works and we can hope they rise
to the glory of buzzwords like big data and blockchain.

2.1 LSTM

LSTM stands for Long Short Term Memory. Term is used in context of neural
networks and is used to qualify cell term in order to describe regime of operation of
a neural network building block.

Unlike neuron, simple building block of neural networks, LSTM cell is building block
that has more parameters and is more complex. Diagram of a LSTM can be seen
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in Figure 2.

Figure 2: Autoencoder structure(taken from wikipedia)

Contrasted to neuron besides input it has internal state refereed to as C.
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Regime of operation can be described in few equations that govern how internal
state c and output h is calculated[Wik18].

ft = σg(Wfxt + Ufht−1 + bf )

it = σg(Wixt + Uiht−1 + bi)

ot = σg(Woxt + Uoht−1 + bo)

ct = ft ◦ ct−1 + it ◦ σc(Wcxt + Ucht−1 + bc)

ht = ot ◦ σh(ct)
Equations above correspond to circles in the Figure 2. referred to as gates. Gates
are linear transformations of input through matrices assigned to each gate which are
learned parameters of LSTM.

We could say that input gate transforms current input vector and previous cell
output which is also part of input. That is difference to simple neuron as it has only
one input. Here LSTM cell takes as input previous cell output besides current input
vector and this is discussed in LSTM terminology as timestamp. Once cell takes as
input previous cell state it takes as input previous timestamp.

Output is named ht often referred to as hidden state and index t signifies point of
time as in other parts of LSTM diagram. Output is calculated as function of output
gate,ot, and previous state.

Internal state is calculated as function of previous state, input gate,input and pre-
vious output.

Intuition related to these elements usually follows components of the diagram. Inter-
nal state is used as memory(memory part of LSTM acronym). Forget gate governs
when to reset and when to keep effect of this state on the output and on next state.
It determines how long or short will this memory be kept by linear transformation
dependent on the input and previous output.

Forget gate can be imagined as learned parameter that governs what word in a
sentence has influence on this current output if input would be word vector for
example.

LSTM networks have gained popularity recently due to their successful applications
across many tasks that benefited memory contributions for sequential calculations
that LSTM offer. Time series data and NLP have in particular benefited this method
and for long time LSTMs were dominant model but recently as we’ll go over in
next sections these models are being surpassed by more modern models that are
simpler but more effective. Universal sentence encoder does not use LSTMs but
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produces state of the art embeddings. Before LSTM based models were considered
state of the art. When describing internals of Universal sentence encoder principles
behind modern techniques will be described that powered modern results avoiding
computationally expensive LSTMs completely.

2.2 USE

Universal sentence encoder is an example of application of modern models that sur-
pass LSTM based models that held state of the art results for some time. Universal
sentence encoder or USE is a term used to describe two methods employed by authors
to produce sentence embeddings. One method is Deep averaging networks[IMBgI]
and other one is transformer architecture[VSP+17]. They both are methods that
use model simpler and less computationally challenging like LSTM. For this thesis
DAN version will be used due to practical reasons. It was available out of the box
to be loaded via tensorflow like in Figure 3 . Universal sentence encoder set new

Figure 3: Tensorflow usage(taken from original paper)

state of the art on STS benchmark[CDA+17].

USE uses both of these methods to encode sentence into 512 length vector. Main
reason why these sentence embeddings are useful is to achieve better results as they
might encode more information useful for various models that use these embeddings
to try to solve different NLP problems. So far alternative has been to either use
various word level embeddings and train model based on them or produce sentence
level embeddings to be used for a task. Usually information captured in word
level embeddings can be thought of as means of transfer learning. Big unlabeled
datasets that are easily available are used to obtain word embeddings in unsupervised
fashion and information they capture is then transfered to other tasks. Sentence level
embeddings produced by two methods USE uses aim to provide exact same building



12

block for researchers to use for solving different NLP problems and they are done
with purpose of improving the yield of machine learning algorithms by providing
richer amount of information encoded.

What is notable and very valuable is that USE delivers on above mentioned tasks
without using computationally expensive algorithms based on LSTM cells. Not only
do these methods provide better results but they do it more elegantly and at lower
computational cost.

Authors state in original USE paper that they picked these two approaches due to
their different design goals and trade offs they offer. DAN offers less accuracy but
with advantage of being less computationally expensive while Transformer network
has higher accuracy and requires more computational power. In this way authors
offer flexibility with advanced state of the art methods making USE a valuable
contribution in NLP world with increased potential for broad range of applications.

Figure 4: USE usage(taken from original paper)
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Figure 4 displays matrix of cosine distance between different sentences, demonstrat-
ing that these vectors embed sentences in space so that cosine distance becomes
effective measure of semantic similarity, achieving state of the art on STS bench-
mark.

2.2.1 DAN

DAN stands for deep averaging network[IMBgI]. If we look at original paper for
deep averaging network we can see that original authors provide brief summary of
the method as:

1. average word embeddings of input sentence

2. pass average value through feed one or more layers of feed forward network

3. use last layer for classification

Basic diagram can be found in original authors paper as displayed in Figure 5.

Although USE authors mention bi-grams being averaged in their paper, when they
describe DANs, we can use original paper authors summary to describe mode of
operation of DANs.

We see in the figure that simple deep neural network is what suffices for this encoder.
Intuition behind could be summarized as few linear transformation build nonlinear
transformation and, like kernel trick, transfer original network into latent space we
train for. We can reason about it analogous to reasoning for kernel based methods
and can assume that properties of data that can be linearly separable are found with
this network like with trainable kernel.

It is fast, efficient, can take advantage of GPU contrasted to LSTM and its simplicity
makes it elegant and attractive as method that comes among top state of the art
results. This result seems to illustrate the amount of information underlying word
vectors compress since this result drives state of the art for sentence embeddings.
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Figure 5: DAN structure(taken from original paper)

2.2.2 Transformer network

Transformer network recently gained a lot of Internet coverage in paper Attention
is all you need[VSP+17]. One of good explanations of this architecture that tries to
convey intuition really good is in youtube tutorial[Kil].

Figure 6 displays architecture of this network. As we see in the picture there is no
trace of LSTM cells. There are just feed forward layers that form bulk of neural
units. What makes this architecture stand out is that it can compete with LSTM
when it comes to capturing dependencies between different part of sentences.

LSTMs capture different information on different levels. If we take stacked LSTM as
an example we can expect lower layers to capture syntactic information while higher
layers to capture semantics as we will see latter when ElMo embeddings[PNI+18]
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are described.

The way this network manages to compete with LSTM is by having attention mech-
anism between encoder and decoder. This mechanism is what is responsible for
learning what parts of sentence should model pay attention to in order to learn
relevant language model.

Encoder consists of 6 layers as original authors say. Each of these has two sub layers
if we follow authors terminology. Second layer is simple neural network layer while
first one is multi head attention layer. This layer we can intuitively describe as
parallel querying of input with set of keys K. We can imagine individual query as
applying function whose input is input of encoder and one key in key set K. This
gives us some vector. Now if we apply this function with n keys and sum all of these
outputs we get output of multi head attention vector layer. This can be perceived
as weighted sum where function we apply is the weight. Each key tells where to
look in the input. It is the attention mechanism. If we query by multiple keys it
is multi head attention. This is implemented as matrix multiplication. Output is
normalized. We can now have more intuition why this can compete with LSTM.
Like LSTM capture where should we pay attention in original sentence by learning
gate matrices. This vector K effectively does the same by weighing inputs. Multiple
vectors K increase this effect and learn more. Now there are multiple layers stacked
one on top of each other in order to have even more capacity to capture syntax and
semantic information.

Authors take note from computer vision where residual connections were introduced
as operation that makes error propagate faster to lower layers and shortening feed-
back loop thus enabling faster and more efficient learning. They employ residual
connections across layers to have it train faster and that lover layers don’t get stuck
at one set of weights if they are not yielding any result.

Second part of network is decoder. What is interesting is that decoder takes entire
output that was generated until point in time in order to have it as input besides
vectors generated by encoder. We see that in Figure 6. at the bottom where output
besides input is fed into decoder. Result that decoder gives is a language model. We
pick word with highest probability and then we can feed it together with previous
words again to input of decoder.
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Figure 6: Transformer structure(taken from original paper)
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2.3 ElMo

ElMo stands for Embeddings from Language Models[PNI+18]. Authors improve
state of the art results across the board of different NLP problems that use word
embeddings. ElMo encodings are produced with bidirectional stacked LSTM that
has language model as objective. That means that bidirectional LSTM tries to
predict word based on other words in the sentence and since it is bidirectional it
tries to maximize probability of a word not just by previous words but those that
came after. Since conditional probability of a word px is maximized given all other
words px−1, .., p0 we call this type of objective language model objective.

Authors claim that their representation captures syntactic and semantic meaning of
a word as well as polysemy since final output that represents encoding is a weighted
sum of all LSTM layers and word is function of all other words in a sentence.

Lower layers of LSTM can capture syntactic meaning while higher levels can capture
semantic meaning and once we have weighted sum of those then we convey both of
these informations. Authors also use character convolutions on word level.

While summing the vectors authors use hyperparameter to determine scale so that
task specific training can be applied to improve results. Also batch normalization is
used between the LSTM layers.

What is of interest about ElMo paper is that stacked LSTM is used and that is to
be tried as one of the experiments in this thesis.
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3 Data preparation

3.1 Overview

Triplets dataset is freely available dataset referenced in Document Embedding with
Paragraph Vectors paper[DOL15]. Dataset consists of triplets of wikipedia links.
There are 20k triplets. It tree links that represent similar articles first link and
second are more similar than second and third.

3.2 Processing protocol

Wikipedia dump[Wik] is downloaded in media wiki format. Media wiki format is
internal wikipedia xml format that encodes metadata on top article content. This
wikipedia dump in media wiki format is prepared by making index of it according
to this blob post[tym].

There are multiple open source tools for parsing the content of media wiki like for
example mwparserfromhell. During preparations for this thesis I even developed
custom parser using pyparsing python package. With this package you can declar-
atively specify grammars and media wiki format is small. There are also examples
online of people parsing media wiki so its a waste of time to develop this parser
on one’s own because if other people invested more time in perfecting edge case
handling better to use that one.

Gensim[ŘS10] library provides methods to do exact same thing but they are not
very advertised. This library is in widespread use and I assumed that it handles
better potential edge cases when it comes parsing markdown in mediawiki format.

3.3 Processing

For task of this thesis uses just one triplets file from original dataset, specifically file
wikipedia_2014_09_27_examples.txt which is not hand produced but automati-
cally.

Wikipedia dump is mined according to blog post on tymbac.tech website[tym]. Gnu
parallel[Tan11] is used together with ripgrep to search entire wikipedia dump almost
instantly with simple file system based index that is made with few command lines.
For article title as input we get entire wikimedia markup for an article. Wikipedia
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dump that was used in this work is of never date than in original paper. Some
articles are missing and some are redirected. Python code on top of shell script
follows redirects. If what is retrieved with shell script returns redirect then shell
script will be invoked again to fetch an article mentioned in redirect. Then Gensim
function for parsing is applied to extract text from markdown. After text is retrieved
spacy[HM17] python library is used for sentence parsing. Stop words, whitespace
and punctuation are removed while words are lowercased. For all processing with
spacy library ’en_core_web_sm’ model is used.

Result of above postprocessing is saved to dataframe and then fed through universal
sentence encoder[CYK+18].

These sentences in vector form are fed into lstm model.

Task that is to be tried out is binary classification determining if two texts are
similar or not. So data in triplet form is converted for this purpose. If two texts are
in the triplet that pair is marked with positive label. Negative pooling is used to
determine negative label.

Data is then split into train test and validation datasets. Training set is 80% of
data, test and validation datasets are 10% each.f

In similar fashion instead of piping data through universal sentence encoder data is
passed through ElMo [PNI+18] encoder. Embeddings that are output of it are word
embeddings instead sentence embeddings.
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4 Model

4.1 LSTM model

Model used is multilayer LSTM that has dense layer on top. It was implemented
in TensorFlow and latter implementation uses Keras. Model is implemented in
multiple variations so actually this can be interpreted as different similar models
benchmarked and their parameters tuned. Model consists of two layers of stacked
LSTM network and several dense layers on top are added.

There are two layers of LSTM for each paragraph so in total 4 LSTM layers. That
might seem like model might learn same thing twice or we can look at it as ensemble
of two. Anyway it is good to see how it works although it looks unusual especially
since this is master thesis and goal is demonstrating mastery of the topic.

Then two final hidden states of top LSTM is concatenated and fed into several dense
layers. Batch normalization is done between them to learn better. This feed forward
network is also varied across attempts to increase performance and in general the
bigger the better up to around size of concatenated vector on input. First layer is
biggest then following layers size decreases by factor of two until final layer that has
only one neuron for classification.
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+-------------------------+ +-------------------------+

| input vec 2 (300,512) | | input vec 2 (300,512) |

+-------------------------+ +-------------------------+

+-------------------+ +-------------------+

| | | |

| LSTM | | LSTM |

| | | |

+--------+----------+ +--------+----------+

v v

+-------------------+ +-------------------+

| | | |

| LSTM | | LSTM |

| | | |

+-------------------+ +-------------------+

+-----------------------------------------+

| concatinated vector |

+-----------------------------------------+

+---------------------+

| dense |

+---------------------+

+----------+

| |

+----------+

+------+

| |

+------+

+-+

| |

+-+

Figure 7: Model 1 structure and training
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5 Experiments and results

Original dataset is shuffled pseudo randomly and similar documents are taken from
this shuffled dataset. Negative sampling is used to get not similar documents.

Network is implemented as tensorflow estimator for first experiment. Tensorflow
version used is 1.8 and data is passed through dataset tensorflow api before being
fed into estimator.

For other experiments keras is used.

For Keras experiments in experiment 2.2 seeds of random number generator are
controlled more like written in Jason Brownlee’s post[Jas]. Although due to GPU
present it does not remove randomness so simulations are used.

For all experiments same dataset is used with same negative sampling. Since dataset
is split and picked with random number generator fixed seeds are used to make
selection always the same.

After experiment is done a result and discussion follows it. Result section tends to
be focused on reporting numbers and performance while discussion tends to provide
some intuition.
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5.1 Experiment 1

5.1.1 Preparation

First experiment will involve simple model for start. Paragraphs after having each
sentence converted with universal sentence encoder will have each paragraph aver-
aged. Average of sentence vectors of a document will be input to multi layer feed
forward neural network with one neuron at the end of the model used to signal
similarity. Sentence vector has length of 512 and since we take average it will also
be of length 512. There are two documents to be compared so there are two vectors
of length 512 as input.

Model concatenates these two vectors and has feed forward network on top that has
single neuron as indicator of similarity.

5.1.2 Training

Figure 8: Model 1 structure and training
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5.1.3 Result

As we see model did not learn anything. It is slightly better than random.

5.1.4 Discussion

This model was implemented in tensorflow as estimator it might be that technical
complexity contributed to failure too besides having no proper initialization and
batch normalization.

5.2 Experiment 1.2

5.2.1 Preparation

Continuing from data prepared for experiment 1 keras library will be used for con-
venience. Model is simple feed forward network

5.2.2 Training

On Figure 8 we see model definition and hyper parameters selected. For first varia-
tion we’ll use stochastic gradient descent as optimizer and relu activation. Learning
rate was selected based on few runs. Model consists of nonlinear transformation of
two average vectors concatenated. Average vectors are average of all sentence vector
in paragraph. Dropout layers are used with higher rate at bottom layers and they
make the model train like ensemble. It is not good to have higher than 0.5 dropout
as it will quickly make model useless.

5.2.3 Result

This model yields 74% on test set

With variation like in Figure 9 that implements some deep learning tricks like Xavier
initialization[GB] and batch normalization and uses different optimizer one is able
to raise accuracy on the test set to 78% in just 5 epochs while result above took 45
after which model breaks.
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Figure 9: Model 1 structure and training

Figure 10: Model 1 structure and training

Notable thing is that wrong parameters and methods can ruin this model completely
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in terms of what it learns while deep learning methods actually make it even go
further than 80.28%. When using learning rate of 0.5 and 25 epochs it gets to
80.98% With 50 epochs it goes to 81.88%. Selu activation function turned out to
work best and just after 10 epochs with learning rate of 0.5 can get 81.78%.

With little bit more neurons and more parameter tweaking we can get to 88% in 10
epochs

Figure 11: Model 1 structure and training

With another 10 epochs this model does not yield more.

5.2.4 Discussion

Model is implemented in keras. Deep learning practices were actually what made
the result happen. Learning rate could be high.

Intuition around batch normalization[bno] and its usage can be perceived to be of
technical nature related to learning. What is argued in before mentioned article is
that with batch normalization we introduce to neural network concept similar to
a prior in Bayesian models. We are not fitting anymore all parameters of previous
layers but we are introducing normal prior on them that makes observations for
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following layer be part of normal distribution. So we are fitting two parameters
of batch normalization layer instead of relying solely on updating previous layer
weights. If we update previous layer weights article argues that we change input
distribution to next layer to much for the next layer to be effective in memorizing
what it learned. After updates propagate this can cause staling in learning and
optimizing. Our model would not learn anything if it is deep network just due to
the fact that these internal distributions keep changing once we update weights.
By normalization we put priors on internal layers and learning propagates through
these two parameters which is considerably less than if layer has 1k neurons which
would count 1k parameters.

Intuition behind initialization trick is that if we don’t have extremes in the weights
we would not end up in not solvable extremum of optimization space.
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5.3 Takeaway from experiment 1

What is important takeaway from experiment 1 is that these embeddings truly en-
code information sufficient to provide semantic similarity information on paragraph
level. It is not that much of value for this thesis to try to sharpen initial feed forward
model until it provides higher and higher yield but demonstration that encodings
have this potential is of value for next experiment where LSTMs will be tried. If
simple feed forward network with relatively small number of neurons provides high
yield it would be interesting to see what computationally more complex and power-
ful LSTM would do(under the assumption that authors ineptitude does not produce
failure). We have seen that we can get a lot of information just from deep learning
network on top of average of sentence vectors in a paragraph. These vectors seem to
capture information good enough to be used for paragraph semantic text similarity
in very simple way by just training feed forward network on top of two vectors. We
also seen that without proper deep learning techniques model will not only perform
badly but often break and not train at all, advancements in deep learning are make
or break for even simplest of tasks and parameter changes that might look small
give highly different results.

5.4 Experiment 2

For second experiment LSTM will be used. We’ll start out with random model
that does not look good actually. It has two LSTM heads for each paragraph that
seems redundant and those LSTM parts are stacked LSTMs. After that feed forward
neural network from previous experiment copied as is.

There are 100 timestamps per sample and LSTM has dimension of 6. Last timestamp
in a sample is average of entire paragraph.
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Figure 12: Model 1 structure and training

5.4.1 Result

This model achieves around 80% accuracy at best on test set on over fitted model it
can drop to 70. It is worse than just feed forward network alone. Given that output
of stacked LSTM is just vector of length 6 and when we concatenate two of those as
input to feed forward neural network that has 128 neurons on start layer it does not
seem that bad since it is initial attempt and not tuned much. It seems good that
from just 12 length vector we can get such result and from 100 sample length. It is
not good that it performed worse then just feed forward network. When we swap
first layer to have 128 neurons. When we increase number of timestamps to 300 we
get 83% accuracy on test set. with 26 epochs.

5.4.2 Discussion

Due to size of the model this experiment is slightly more lengthy to train and
due to LSTM more computationally expensive. Although it under performs fully
connected layers it is still quite good. It could have failed to produce any result
but LSTMs did let signal propagate to further layers with output vector of just 6.



30

Previous experiment had similar neural network that concatenated two 512 average
networks. Lets say that LSTM chose to pick last vector in sample that is average
and should contain most information still having compression to just 6 instead of
512 is to note.

5.5 Experiment 2.1

In this variation we set dim1 to 60 instead of 6.

Figure 13: Model 2 structure and training
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5.5.1 Result

Model under performs significantly if it is made to work at all. Performance is in
terms of 30% - 40% on train set.

5.5.2 Discussion

Training is very unstable. When using optimizers from previous models model is
not trainable. It is too big and learning rate is too high. If we drop learning rate
and play with fully connected layer at the top we can somehow with optimizers like
rmsprop with momentum get it to train poorly. At best after 100 epochs it will get
to slightly above 40% accuracy. In order to get it to train at all we need to use
rmsprop optimizer and low learning rate that is just big enough not to get stuck in
any minor local optima. One of most obvious things that come to mind is that state
vector is not appropriate to sentence length. If this state vector is to tell us what
to keep and what to drop in sentence if it is too large network might not only be to
big but might struggle to learn.

Lets try to explore what happened by looking at distribution of sentence length.
Figure 13 shows distribution of sentence length in only one column of links. If there
are 3 link columns we should be safe if we think one is representative. They should
all look the same they are just paragraphs from Wikipedia.
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Figure 14: Histogram of sentence length

As we see sentences are small in length on average. Mean is 59 and median is 33
while mode is 13. Lets now try to zoom in on Figure 14. We see that most sentences
are small in length so having vector of 60 to remember which ones are important or
not is too much.



33

Figure 15: Histogram of sentence length zoomed

If we try to fit normal distribution in Figure 15 we see that it does not look nice there
is this concentration of sentence lengths in low numbers and standard deviation is
high.
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Figure 16: Histogram of sentence length zoomed

When having big state vector exposing lower level LSTM states for feed forward
network has negative effect.

With learning rate used in past successful models loss goes to nan very soon if not
right away and at some learning rates it will be stuck. To get it to progress before
breakage very careful parameter picks are needed. We can go on to hypothesize
without further checks that most probably big state just fails to generalize properly if
long tail of sentence length distribution causes the optimizer to flip flop between what
sentences are important since tail is substantial in size although mass is concentrated
further down. Although this is just intuitive guess.

If we have two layers on fully connected part one 32 in front and another 16 right
after it learning after 26 epochs is 10% less

5.6 Experiment 2.2

Lets try to see is there anything in that hypothesis from experiment 2.1 by increasing
LSTM dimension. It would be interesting to experiment with this parameter to try
to find more optimal solution. Feed forward network on top is displayed in Figure
16.
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Figure 17: Histogram of sentence length zoomed

5.6.1 Result

When we increase dimension to 10 from 6 we see sudden surge in learning rate now
in just 6 epochs we get to 77% accuracy as shown in Figure 17.

Figure 18: Histogram of sentence length zoomed

5.6.2 Discussion

Model is not stable initialization makes big difference. Setting random seeds through
the model and setting random numpy seed including tensorflow seed still leaves
model not reproducible most probably due to training on GPU. Going from 6 to 10 in
LSTM dimension gave only imaginary improvement in example above. Initialization
has huge impact on stability and training and dropout layers do to due to large
drop rate set in the model. It is 0.5 percent in first that can yield totally different
ensemble. For some seeds 6 will outperform 10 and for others 10 will outperform 6
in this model. More controlled environment is needed to determine impact of this
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dimension. To estimate better we’ll have to run experiment multiple times to get
better picture of what is going on.

After running 20 simulations where 3 different variations are benchmarked for fixed
seed here are results for

• dimension of 6 for LSTM and without exposing hidden state of lower layers

• dimension of 10 for LSTM and without exposing hidden state of lower layers

• dimension of 10 for LSTM and with exposing hidden state of lower layers

These charts display fitted normal distribution on accuracy after each model
was trained 20 epochs for 20 times. Accuracy is on x axis.

On Figure 18. we see first attempt with 6 as dimension of LSTM layer and
accuracy is quite stable at average of 0.80494949 and standard deviation rel-
atively low at 0.023993939

Figure 19: LSTM dimension 6 and hidden states of lower layer not exposed

When we increase dimension to 10 as in Figure 19. we see that standard
deviation increases to 0.033474071 while mean drops to 0.79973545. This is
very minor difference after 20 simulations.
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Figure 20: LSTM dimension 10 and hidden states of lower layer not exposed

After exposing hidden state of lower level LSTM in Figure 20 we see that
performance increases on average to 0.80722222 with standard deviation of
0.021451334.

Figure 21: LSTM dimension 10 and hidden states of lower layer exposed
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We see that model where we exposed hidden states of lower LSTM layers with
increased dimension of 10 for LSTM layer performed best even though going from
6 to 10 layers decreased accuracy on average. It seems to show that exposing lower
layers works analog to the same trick used in ElMo paper[PNI+18] where exposing
syntactic information captured at lower layers of LSTM as features to feed forward
network contributes to overall model performance and is one of the things critical
for success of ElMo embeddings. So since ElMo embeddings use weighted sum and
here lower layers are just exposed this feed forward layer on top can learn that sum
if information is there. Although we did not do weighted sum it is highly likely that
this information is present.
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6 Conclusion

We saw from experiments that we can utilize sentence vectors for paragraph text
similarity. We also saw that simple feed forward network can be used very effectively.
Its quick to train and very simple but results are very good. That makes it useful
for usage in limited environments for example we can load it easily on a page or in
embedded device.

When we tried to see if we can get easy improvement with stacked LSTM we saw
that model although performed really well like the feed forward network in scope of
this thesis there was not significant improvement. We could try to come up with
intuition for that by saying that we could benefit from LSTM if temporal order
would be important for semantic similarity. We could speculate that if we move
order of sentences and if that would change meaning of paragraphs then that might
be the case.

Although we saw that if we use lower levels of LSTM as features we can improve
result. To me that looks like most interesting result. If lower level of stacked
LSTM for word vectors capture syntax and higher levels capture semantic info then
question can be asked what is analog when it comes to sentences? Is it that lower
layers capture local topics and higher capture some higher concepts? Could that
be useful for summary of paragraphs potentially? Could it be that they just add
to faster error propagation downstream? If latter is the case then for ElMo it must
have happened too so it seems that this direction is good for further investigation.

These are all highly interesting questions and very hot topics in modern LSTM and
although they are not explored in scope of this thesis we managed to show that
there is strong basis for pursuing research in this direction. We can also feel content
that we found easy way for paragraph semantic similarity with simple feed forward
network.
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A creating wikipedia index on disk

Once unzipping wikipedia dump from that directory with

ls -la enwiki-20180220-pages-meta-current* > cc

we get list of files into file cc

then to fetch all titles and their line numbers and put it into index file we use gnu
parallel[Tan11] and ripgrep.

parallel -j54 -a cc "rg -n ’<title>’ {} > index/{} "

from here python code in notebook in next appendix can takeover to get article from
very big wikipedia dumps in short amount of time.

Appendices

A Wikipedia cleaning



utility functions
In [ ]:

def url2title(url): 

   slug=url2slug(url) 

   title=slug2title(slug) 

   print(title) 

   return u''+title 

def url2sentences(url): 

   print(url) 

   slug=url2slug(url) 

   title=slug2title(slug) 

   return title2sentences(title) 

url2slug=lambda x: x.split('/')[-1] 

def slug2title(x): 

   #r=urllib.parse.unquote(x.replace("_"," "), encoding='utf-8', errors='replac

e').decode('utf8') 

   r=urllib.parse.unquote(x.replace("_"," ")).encode('utf8').decode() 

   #r=urllib.unquote(x.replace("_"," ")).decode('utf8') 

   if '&' in r : 

       r= escape(r).encode('utf8', 'xmlcharrefreplace').decode() 

   return r 

def loadTitles(titlesdf): 

   # make the Pool of workers 

   pool = ThreadPool(256)  

   # open the urls in their own threads 

   # and return the results 

   results0 = pool.map(wiki_article_rawpy3, titlesdf[0]) 

   results1 = pool.map(wiki_article_rawpy3, titlesdf[1]) 

   results2 = pool.map(wiki_article_rawpy3, titlesdf[2]) 

   # close the pool and wait for the work to finish  

   pool.close()  

   pool.join()  

   return pd.DataFrame([results0,results1,results2]) 

Load original triplets for preprocessing

In [ ]:

tripletsr=open('/data/triplets/wikipedia_2014_09_27_examples.txt',encoding='utf

8').readlines() 

In [ ]:

triplets=map(lambda x: x.rstrip(),tripletsr) 

In [ ]:

triplets=[x.split(' ') for x in triplets] 



In [ ]:

titlesdf=pd.DataFrame(triplets) 

In [ ]:

ardf=loadTitles(titlesdf) 

In [ ]:

ardff=ardf.transpose() 

In [ ]:

m=(ardff[0]=="404") | (ardff[1]=="404") | (ardff[2]=="404") 

In [ ]:

def saveDataFrame(df,filename="/data/trpl4.obj"):     

   import _pickle as pickle 

   out_s = open(filename, 'wb') 

   pickle.dump(df,out_s) 

   out_s.flush() 

   out_s.close() 

    

def loadDF(filename="/data/trpl4.obj"): 

   import _pickle as pickle 

   in_s = open(filename, 'rb') 

   try: 

       # Read the data 

       while True: 

           try: 

               o = pickle.load(in_s, encoding='utf8') 

           except EOFError: 

               break 

           else: 

               print('READ:') 

               return o 

   finally: 

       in_s.close() 

In [ ]:

tripletsNC=loadDF() 

In [ ]:

tripletsNC 

use this to extract text from xml that is in wikipedia
dump this will extract wikimedia markdown



In [ ]:

def extractText(ar): 

   if ar=="404": 

       return "404" 

   a=ET.fromstring(ar) 

   #print(a.find('revision/text').text.replace('\'','')) 

   z=a.find('revision/text').text 

   return z 

In [ ]:

def thradm(ff,titlesdf): 

   # make the Pool of workers 

   pool = ThreadPool(256)  

   # open the urls in their own threads 

   # and return the results 

   results0 = pool.map(ff, titlesdf.loc[:,0]) 

   results1 = pool.map(ff, titlesdf.loc[:,1]) 

   results2 = pool.map(ff, titlesdf.loc[:,2]) 

   # close the pool and wait for the work to finish  

   pool.close()  

   pool.join()  

   return pd.DataFrame([results0,results1,results2]) 

In [ ]:

tm=thradm(extractText,tripletsNC.loc[:,:]) 

In [ ]:

tm.shape 

this will now use gensim to clean wikimedia
markdown
In [ ]:

tm=thradm(gensim.corpora.wikicorpus.filter_wiki,tm.transpose()) 

In [ ]:

tm.shape 

In [ ]:

saveDataFrame(tm,'/data/tripletsCleaned.pickle') 

In [ ]:

i=loadDF('/data/tripletsCleaned.pickle') 



In [ ]:

i.shape 

In [ ]:

ii=i.transpose() 

follow redirects if we get that article is redirected from
markdown
In [ ]:

m=ii[0].str.contains("#REDIRECT") 

m1=ii[1].str.contains("#REDIRECT") 

m2=ii[2].str.contains("#REDIRECT") 

In [ ]:

ai0=ii[m][0].apply(lambda x: re.search('#REDIRECT\s*([^\n]+)', x, re.IGNORECASE)

.group(1)).apply(lambda x: gensim.corpora.wikicorpus.filter_wiki(extractText(wik

i_article_rawpy3(x)))) 

ai1=ii[m1][1].apply(lambda x: re.search('#REDIRECT\s*([^\n]+)', x, re.IGNORECASE

).group(1)).apply(lambda x: gensim.corpora.wikicorpus.filter_wiki(extractText(wi

ki_article_rawpy3(x)))) 

ai2=ii[m2][2].apply(lambda x: re.search('#REDIRECT\s*([^\n]+)', x, re.IGNORECASE

).group(1)).apply(lambda x: gensim.corpora.wikicorpus.filter_wiki(extractText(wi

ki_article_rawpy3(x)))) 

In [ ]:

ii[0][m]=ai0 

In [ ]:

ii[1][m1]=ai1 

In [ ]:

ii[2][m2]=ai2 

In [ ]:

saveDataFrame(ii,'/data/tripletsCleaned2.pickle') 
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convert parsed markdown into broken down
sentences after this paragraph will be array of
sentences and sentence is array of words without
stop words, spaces, punctuation and
alphanumerics
In [ ]:

import _pickle as pickle 

in_s = open("/data/tripletsCleaned2.pickle","rb") 

pds=pickle.load(in_s,encoding="utf8") 

from multiprocessing.dummy import Pool as ThreadPool  

def paragraph2sent(d): 

   try: 

       return (np.array([np.array([y.lower_ for y in x if not y.is_stop and not

y.is_space and not y.is_punct and y.is_alpha]) for x in nlp(d).sents])) if d!=

"404" else "404" 

   except Exception as e: 

       print(e) 

       print(d) 

       return "fail" 

def thradm(ff,titlesdf): 

   # make the Pool of workers 

   pool = ThreadPool(8)  

   # open the urls in their own threads 

   # and return the results 

   results0 = pool.map(ff, titlesdf.loc[:,0]) 

   results1 = pool.map(ff, titlesdf.loc[:,1]) 

   results2 = pool.map(ff, titlesdf.loc[:,2]) 

   # close the pool and wait for the work to finish  

   pool.close()  

   pool.join()  

   return pd.DataFrame([results0,results1,results2]) 

pds2=thradm(paragraph2sent,pds) 

saveDataFrame(pds2,'/data/trpl66.obj') 

In [ ]:

triplets=loadDF('/data/trpl66.obj') 

convert data set into vector embeddings
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In [ ]:

kk=aa(triplets.transpose()[0]) 

kkk=np.array(kk) 

ll=[np.array(k).flatten() for k in kkk.flatten()] 

lll=np.hstack(ll) 

p1(lll,0) 

kk=aa(triplets.transpose()[1]) 

kkk=np.array(kk) 

ll=[np.array(k).flatten() for k in kkk.flatten()] 

lll=np.hstack(ll) 

p1(lll,1) 

kk=aa(triplets.transpose()[2]) 

kkk=np.array(kk) 

ll=[np.array(k).flatten() for k in kkk.flatten()] 

lll=np.hstack(ll) 

p1(lll,2) 

convert triplets to USE embeddings

In [ ]:

kk=aa(triplets.transpose()[0]) 

e=[] 

kkk=np.array(kk) 

ll=[np.array(k).flatten() for k in kkk.flatten()] 

lll=np.hstack(ll) 

tf.reset_default_graph() 

with tf.Session() as session: 

   embed = hub.Module("https://tfhub.dev/google/universal-sentence-encoder/1") 

   

   session.run(tf.global_variables_initializer()) 

   session.run(tf.tables_initializer()) 

   i=0 

   emb=session.run(embed(lll)) 

   e.append(emb) 

saveDataFrame(e,'/data/t0s.obj') 

In [ ]:

kk=aa(triplets.transpose()[1]) 

e=[] 

kkk=np.array(kk) 

ll=[np.array(k).flatten() for k in kkk.flatten()] 

lll=np.hstack(ll) 

tf.reset_default_graph() 

with tf.Session() as session: 

   embed = hub.Module("https://tfhub.dev/google/universal-sentence-encoder/1") 

   

   session.run(tf.global_variables_initializer()) 

   session.run(tf.tables_initializer()) 

   i=0 

   emb=session.run(embed(lll)) 

   e.append(emb) 

saveDataFrame(e,'/data/t1s.obj') 
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In [ ]:

kk=aa(triplets.transpose()[2]) 

e=[] 

kkk=np.array(kk) 

ll=[np.array(k).flatten() for k in kkk.flatten()] 

lll=np.hstack(ll) 

tf.reset_default_graph() 

with tf.Session() as session: 

   embed = hub.Module("https://tfhub.dev/google/universal-sentence-encoder/1") 

   

   session.run(tf.global_variables_initializer()) 

   session.run(tf.tables_initializer()) 

   i=0 

   emb=session.run(embed(lll)) 

   e.append(emb) 

saveDataFrame(e,'/data/t2s.obj') 

Here we imports libraries
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In [1]:

from sklearn.model_selection import train_test_split 

from random import sample 

import subprocess 

from multiprocessing.dummy import Pool as ThreadPool  

import re 

import numpy as np 

import pandas as pd 

import json 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

import matplotlib.pyplot as plt 

from pyparsing import * 

import itertools 

from functools import partial 

from IPython.core.display import display, HTML 

display(HTML("<style>.container {width:100% !important;}</style>")) 

#pd.options.display.max_columns=None 

plt.rcParams["figure.figsize"]=20,20 

import warnings 

from string import Template 

warnings.simplefilter("ignore") 

%matplotlib inline 

import os 

os.popen('ls -la /data').read() 

import urllib 

import html 

import gensim 

import spacy 

from keras import optimizers 

/usr/lib/python3.5/importlib/_bootstrap.py:222: RuntimeWarning: nump

y.dtype size changed, may indicate binary incompatibility. Expected 

96, got 88 

 return f(*args, **kwds) 

/usr/lib/python3.5/importlib/_bootstrap.py:222: RuntimeWarning: nump

y.dtype size changed, may indicate binary incompatibility. Expected 

96, got 88 

 return f(*args, **kwds) 

/usr/lib/python3.5/importlib/_bootstrap.py:222: RuntimeWarning: nump

y.dtype size changed, may indicate binary incompatibility. Expected 

96, got 88 

 return f(*args, **kwds) 

/usr/lib/python3.5/importlib/_bootstrap.py:222: RuntimeWarning: nump

y.dtype size changed, may indicate binary incompatibility. Expected 

96, got 88 

 return f(*args, **kwds) 

Using TensorFlow backend. 
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In [4]:

import os 

import tensorflow as tf 

import tensorflow_hub as hub 

import matplotlib.pyplot as plt 

import numpy as np 

import os 

import pandas as pd 

import re 

import seaborn as sns 

from gensim.models import Doc2Vec 

import gensim.downloader as api 

import pandas 

import scipy 

import math 

import spacy 

import tensorflow as tf 

import tensorflow_hub as hub 

import matplotlib.pyplot as plt 

import numpy as np 

import os 

import pandas as pd 

import re 

import seaborn as sns 

from gensim.models import Doc2Vec 

import gensim.downloader as api 

import pandas 

import scipy 

import math 

import spacy 

from nltk.translate.bleu_score import corpus_bleu 

import spacy 

import functools 

import nltk 

import torch 

import gensim 

from tensorflow.python import debug as tf_debug 

import tensorflow_hub as hub 

from keras.layers import Dropout 

from keras import backend as K 

from keras.layers import Dense 

from keras.objectives import categorical_crossentropy 

from keras.metrics import categorical_accuracy as accuracy 

from sklearn.metrics.pairwise import cosine_similarity 

from keras import backend as K 

from sklearn.metrics.pairwise import cosine_similarity 

import sklearn 

from sklearn.model_selection import train_test_split 

tow=lambda x: [x.lower_ for x in nlp(str(x)) if not x.is_stop and not x.is_punct

] 

from sklearn.metrics import accuracy_score 

from tensorflow.python import debug as tf_debug 

import keras 
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In [5]:

tf.logging.set_verbosity(tf.logging.ERROR) 

utlity functions here wiki_article_rawpy3 is what
actually gets wikipedia article from raw wikipedia
dump from disk and after postprocessing
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In [9]:

def wiki_article_rawpy3(title="Las Leyendas"): 

   try: 

       #wiki_article_rawpy3("Muharram museum") 

       val = subprocess.check_output(("/data/srch \"%s\"" % title).encode(),   

shell=True) 

       return '<page>'+val.decode('utf8') 

   except Exception as e: 

       return "404" 

import xml.etree.ElementTree as ET 

def wiki_article_cleaned(title="Helsinki"): 

   a=wiki_parsed(title) 

   return a 

def wiki_parsed(title="Helsinki"): 

   article=wiki_article_raw(title) 

   a=ET.fromstring(article) 

   #print(a.find('revision/text').text.replace('\'','')) 

   z=a.find('revision/text').text 

   b=mwparserfromhell.parse(z) 

   return b.strip_code(normalize=True,collapse=True) 

def text2wordlists(z): 

   return np.array([" ".join(np.array(re.findall("\w+",x))) for x in  z.split(

'.')]) 

def text2sentencAverage(text): 

   sent=text2wordlists(z) 

   return sent 

def article2sentences(article): 

   def convertToHTML_A(s,l,t): 

       return '' 

       print(t[0]) 

       return t[0] 

       #return t[0].split('.') 

       #ry: 

           #text,url=t[0].split("->") 

       #xcept ValueError: 

       #    raise ParseFatalException(s,l,"invalid URL link reference: " + t

[0]) 

       return t 

   def convertToHTML(opening="",closing=""): 

       def conversionParseAction(s,l,t): 

           #print(t[0].split('.')) 

           return  t[0] 

       return conversionParseAction 

   def convertToHTMLAA(opening="",closing=""): 

       def conversionParseAction(s,l,t): 

           #print(t[0].split('.')) 

           return  t[0][1:-1] 

       return conversionParseAction 

   #sentence =  w + sentence | sentence +w  

   def convertToHTML_AB(s,l,t): 

       return t[0] 

   a = QuotedString("== ",endQuoteChar=" ==").setParseAction(convertToHTML_AB) 

   italicized = QuotedString("*").setParseAction(convertToHTML_A) 

   bolded = QuotedString("**").setParseAction(convertToHTML_A) 
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   boldItalicized = QuotedString("***").setParseAction(convertToHTML_A) 

   urlRef = QuotedString("{{",endQuoteChar="}}").setParseAction(convertToHTML_A

B) 

   urlRe2f = QuotedString("[[",endQuoteChar="]]").setParseAction(convertToHTML_

AB) 

   urlRe2ff = QuotedString("<ref>",endQuoteChar="</ref>").setParseAction(conver

tToHTML_A) 

   w=urlRe2f | urlRef | boldItalicized | bolded | italicized |  a | urlRe2ff | 

(Regex(r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-f

A-F]))+')).setParseAction(convertToHTML_A)   | (Regex(r"\*+?[^\n]")).setParseAct

ion(convertToHTMLAA())  

   wikiMarkup =w | (Regex(r".+?")).setParseAction(convertToHTML())  

   #| w + wikiMarkup 

   #print t 

   b=wikiMarkup.transformString(article) 

   b=re.sub(r"\n+",'\n',b) 

   b=re.sub(r"[']+",'',b) 

   b=re.sub(r"[\:]+",' ',b) 

   b=re.sub(r"[\|]+",' ',b) 

   b=re.sub(r"[\]\[\)\(]+",'',b) 

   prin(b.split("\n")) 

   bb=list(itertools.chain(*[x.split('.') for x in b.split("\n")])) 

   return np.array([np.array(re.findall('\w+',x)) for x in bb]) 

def wiki_parsed2(article): 

   a=ET.fromstring(article) 

   #print(a.find('revision/text').text.replace('\'','')) 

   z=a.find('revision/text').text 

   b=mwparserfromhell.parse(z) 

   return b.strip_code(normalize=True,collapse=True,keep_template_params=False) 

def text2wordlists2(b): 

   b=re.sub(r"\n+",'\n',b) 

   b=re.sub(r"[']+",'',b) 

   b=re.sub(r"[\:]+",' ',b) 

   b=re.sub(r"[\|]+",' ',b) 

   b=re.sub(r"[\]\[\)\(]+",'',b) 

   #print b.split("\n") 

   bb=list(itertools.chain(*[x.split('.') for x in b.split("\n")])) 

   return np.array([np.array(re.findall('\w+',x)) for x in bb if len(re.findall

('\w+',x))]) 

def title2sentences(title): 

   return text2wordlists2(wiki_parsed(title)) 
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In [8]:

def url2title(url): 

   slug=url2slug(url) 

   title=slug2title(slug) 

   print(title) 

   return u''+title 

def url2sentences(url): 

   print(url) 

   slug=url2slug(url) 

   title=slug2title(slug) 

   return title2sentences(title) 

url2slug=lambda x: x.split('/')[-1] 

def slug2title(x): 

   #r=urllib.parse.unquote(x.replace("_"," "), encoding='utf-8', errors='replac

e').decode('utf8') 

   r=urllib.parse.unquote(x.replace("_"," ")).encode('utf8').decode() 

   #r=urllib.unquote(x.replace("_"," ")).decode('utf8') 

   if '&' in r : 

       r= escape(r).encode('utf8', 'xmlcharrefreplace').decode() 

   return r 

def loadTitles(titlesdf): 

   # make the Pool of workers 

   pool = ThreadPool(256)  

   # open the urls in their own threads 

   # and return the results 

   results0 = pool.map(wiki_article_rawpy3, titlesdf[0]) 

   results1 = pool.map(wiki_article_rawpy3, titlesdf[1]) 

   results2 = pool.map(wiki_article_rawpy3, titlesdf[2]) 

   # close the pool and wait for the work to finish  

   pool.close()  

   pool.join()  

   return pd.DataFrame([results0,results1,results2]) 

utility functions
In [11]:

sentence_size=300 



8/13/2018 master-thesis-experiments-Copy3

file:///home/chrome/Downloads/master-thesis-experiments-Copy3%20(1).html 10/33

In [12]:

from cgi import escape 

import csv 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

from sklearn.metrics import confusion_matrix 

tripletDoc2sent = lambda d: np.hstack(np.array([np.array([y.lower_ for y in x if

not y.is_stop and not y.is_space and not y.is_punct]) for x in nlp(d).sents])) 

if d!='404' else "404" 

nlp = spacy.load('en') 

#nlp = spacy.load('en') 

paragraph2sent = lambda d: np.hstack(np.array([np.array([y.lower_ for y in x if 

not y.is_stop and not y.is_space and not y.is_punct]) for x in nlp(d).sents])) i

f d!="404" else "404" 

doc2text=lambda d: gensim.corpora.wikicorpus.filter_wiki("\n".join(d['section_te

xts'])) 

doc2arr=lambda d: paragraph2sent(doc2text(d)) 

def sent2arr(sent): 

   return [y.lower_ for y in next((nlp(sent).sents)) if not y.is_stop and not y

.is_space and not y.is_punct] 

def paragraph2sent(d): 

   try: 

       return np.hstack(np.array([np.array([y.lower_ for y in x if not y.is_sto

p and not y.is_space and not y.is_punct]) for x in nlp(d).sents])) if d!="404" e

lse "404" 

   except Exception as e: 

       print(e) 

       print(d) 

       return "fail" 

from multiprocessing.dummy import Pool as ThreadPool  

def saveDataFrame(df,filename="/data/trpl4.obj"):     

   import _pickle as pickle 

   out_s = open(filename, 'wb') 

   pickle.dump(df,out_s) 

   out_s.flush() 

   out_s.close() 

    

def loadDF(filename="/data/trpl4.obj"): 

   import _pickle as pickle 

   in_s = open(filename, 'rb') 

   try: 

       # Read the data 

       while True: 

           try: 

               o = pickle.load(in_s, encoding='utf8') 

           except EOFError: 

               break 

           else: 

               print('READ:') 

               return o 

   finally: 

       in_s.close() 

import keras 

def variable_summaries(var): 

 """Attach a lot of summaries to a Tensor (for TensorBoard visualization).""" 
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 with tf.name_scope('summariesx'): 

   mean = tf.reduce_mean(var) 

   tf.summary.scalar('mean', mean) 

   with tf.name_scope('stddev'): 

       stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean))) 

   tf.summary.scalar('stddev', stddev) 

   tf.summary.scalar('max', tf.reduce_max(var)) 

   tf.summary.scalar('min', tf.reduce_min(var)) 

   tf.summary.histogram('histogram', var) 

    

def loadDF(filename="/data/trpl4.obj"): 

   import _pickle as pickle 

   in_s = open(filename, 'rb') 

   try: 

       # Read the data 

       while True: 

           try: 

               o = pickle.load(in_s, encoding='utf8') 

           except EOFError: 

               break 

           else: 

               print('READ:') 

               return o 

   finally: 

       in_s.close() 

        

sent2vecs =  lambda sent,v=glovetwitter100: np.array([v.get_vector(x) for x in s

ent if x in v]) 

sent2avg = lambda sent,v=glovetwitter100: np.average([v.get_vector(x) if x in v 

else np.zeros(100) for x in sent ],axis=0) 

vsent2avg = lambda sent,v=glovetwitter100: np.average(sent,axis=0) 

sent2vecs = lambda sent,v=glovetwitter100: np.array([v.get_vector(sent[x]) if (x

<len(sent) and sent[x] in v) else np.zeros((100)) for x in range(sentence_size) 

]) 

doc2vecs=lambda doc,v=glovetwitter100: np.array([*map(sent2vecs,doc)]) 

doc2avg=lambda doc,v=glovetwitter100: np.average(np.array([*map(sent2avg,[*filte

r(len,doc)])]),axis=0) if (len(doc)>0) else np.zeros((100)) 

vdoc2avg=lambda doc,v=glovetwitter100: np.average(np.array([*map(vsent2avg,doc

)]),axis=1) 

def negative_sampling(q2): 

   return np.random.permutation(q2) 

def build_dataset(q1,q2): 

   neg=negative_sampling(q2) 

   q11=np.hstack((np.array(q1),np.array(q1))) 

   q22=np.hstack((q2,neg)) 

   return [*zip(q11,q22)],np.hstack([np.ones(len(q1)),np.zeros(len(q1))]) 

def triplets_clean(triplets): 

   t=[] 

   ii=0 

   print('start') 

   print(triplets.shape) 

   for i,triplet in triplets.iterrows(): 

       if not isinstance(triplet[0],(int, str)): 

           if not isinstance(triplet[1],(int, str)): 

               t.append([triplet[0],triplet[1]]) 

           if not isinstance(triplet[2],(int, str)): 

               t.append([triplet[0],triplet[2]]) 
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       if not isinstance(triplet[1],(int, str)): 

           if not isinstance( triplet[2],(int, str)): 

               t.append([triplet[1],triplet[2]]) 

       ii+=1 

       if ii%1000==0: 

           print(ii/1000) 

   return np.array(t) 

def partition(dataset,start): 

   for ll in range(start,10000): 

       m=int(lll.shape[0]/10000) 

       print(ll*m,(ll+1)*m) 

       yield lll[ll*m:(ll+1)*m] 

        

       

    

   m=int(lll.shape[0]/10000) 

   print((ll+1)*m,(lll.shape[0])) 

   yield lll[(ll+1)*m:(lll.shape[0])] 

    

def tovec(lll,v,vv): 

   tf.reset_default_graph() 

    

   with tf.Session() as session: 

       elmo = hub.Module("https://tfhub.dev/google/elmo/1", trainable=True) 

       session.run(tf.global_variables_initializer()) 

       session.run(tf.tables_initializer()) 

       i=0 

       elmo1=[] 

       el=elmo(lll, 

           signature="default", 

           as_dict=True)["elmo"] 

       emb=session.run(el) 

       elmo1.append(emb) 

       saveDataFrame(elmo1,'/data/t%selmo%s.obj'%(vv,v)) 

        

def p1(lll,v,start=0,end=0): 

   i=start 

   for ll in partition(lll,start): 

       tovec(ll,i,v) 

       if end!=0 and i==end: 

           break 

       i+=1 

def clear_logs(): 

   import os, shutil 

   folder = '/data/logs' 

   for the_file in os.listdir(folder): 

       file_path = os.path.join(folder, the_file) 

       try: 

           if os.path.isfile(file_path): 

               os.unlink(file_path) 

           #elif os.path.isdir(file_path): shutil.rmtree(file_path) 

       except Exception as e: 

           print(e) 
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load post processed dataset that is still not vectorised 

In [16]:

triplets=loadDF('/data/trpl66.obj') 

In [17]:

t0=loadDF('/data/sentences/sentences/t0s.obj') 

t1=loadDF('/data/sentences/sentences/t1s.obj') 

t2=loadDF('/data/sentences/sentences/t2s.obj') 

In [18]:

len2=[len(x) for x in triplets.transpose()[2]] 

len1=[len(x) for x in triplets.transpose()[1]] 

len0=[len(x) for x in triplets.transpose()[0]] 

In [19]:

np.mean(len2) 

since triplets dataset is flatten we need to unflatten
those arrays by reconstructing paragraphs by their
length since after conversion they are flatten
In [31]:

f0=[True if isinstance(x, (list, tuple, np.ndarray)) and len(x)>0 else False for

x in triplets.transpose()[0]] 

f1=[True if isinstance(x, (list, tuple, np.ndarray)) and len(x)>0 else False for

x in triplets.transpose()[1]] 

f2=[True if isinstance(x, (list, tuple, np.ndarray)) and len(x)>0 else False for

x in triplets.transpose()[2]] 

In [32]:

t0sum=np.cumsum(len0) 

tt0=np.split(t0[0],t0sum) 

t1sum=np.cumsum(len1) 

tt1=np.split(t1[0],t1sum) 

t2sum=np.cumsum(len2) 

tt2=np.split(t2[0],t2sum) 

READ: 

READ: 

READ: 

READ: 

Out[19]:

59.3843
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utility functions for making dataset

In [33]:

def d(X,Y): 

   return (lambda: input_fn(X,Y)) 

In [34]:

SEED = 2018 

np.random.seed(SEED) 

pick similar or not similar from triplets
In [35]:

def pickExisting(r,r2=None): 

   #print('sampling') 

   if r2!=None: 

       if f0[r] and f0[r2]: 

           return np.array([tt0[r],tt0[r2]]) 

       if f0[r] and f1[r2]: 

           return np.array([tt0[r],tt1[r2]])    

       if f0[r] and f2[r2]: 

           return np.array([tt0[r],tt2[r2]])    

       if f1[r] and f1[r2]: 

           return np.array([tt1[r],tt1[r2]]) 

       if f1[r] and f2[r2]: 

           return np.array([tt1[r],tt2[r2]]) 

       if f2[r] and f2[r2]: 

           return np.array([tt2[r],tt2[r2]]) 

   else: 

       if f0[r] and f1[r]: 

           return np.array([tt0[r],tt1[r]]) 

       if f1[r] and f2[r]: 

           return np.array([tt1[r],tt2[r]]) 

       if f0[r] and f2[r]: 

           return np.array([tt0[r],tt2[r]]) 

In [36]:

LEN=20000 

pick one pair for a dataset
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In [ ]:

def sample(mode): 

   if mode==tf.estimator.ModeKeys.TRAIN: 

       rb,rt=0, int(LEN*0.8) 

   if mode==tf.estimator.ModeKeys.PREDICT: 

       rb,rt=int(LEN*0.8), int(LEN*0.9) 

   if mode==tf.estimator.ModeKeys.EVAL: 

       rb,rt=int(LEN*0.9), (LEN-1) 

  

   for i in itertools.count(rb): 

       if(i>rt): 

           return 

       r=np.random.randint(rb,rt) 

       if r%2: 

           #print("range %s"%(r))   

           pick=pickExisting(i) 

           if(pick is None): 

               continue 

           yield np.array([pick,1]) 

       else: 

           r2=np.random.randint(rb,rt) 

           #print("range %s %s"%(r,r2))   

           pick=pickExisting(i,r2) 

           if(pick is None): 

               continue 

           yield np.array([pick,0]) 

        

here datasets are built that will go into model
In [38]:

SEED = 2018 

np.random.seed(SEED) 

X_test,Y_test=np.array([x for x in sample(tf.estimator.ModeKeys.PREDICT)]).T 

In [39]:

SEED = 2018 

np.random.seed(SEED) 

X_validation,Y_validation=np.array([x for x in sample(tf.estimator.ModeKeys.EVAL

)]).T 

In [40]:

SEED = 2018 

np.random.seed(SEED) 

X_train,Y_train=np.array([x for x in sample(tf.estimator.ModeKeys.TRAIN)]).T 

Here utility functions are set for tensorflow estimator
to enable quick itteration
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In [41]:

def lossf(labels,predictions): 

   return tf.losses.hinge_loss(labels,predictions) 

optimizer = tf.train.AdamOptimizer(learning_rate=0.0000005) 
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In [42]:

def model_fn(features, labels, mode, params): 

    

   """The model_fn argument for creating an Estimator.""" 

   predictions=model(features,labels) 

   global optimizer 

   #saver = tf.train.Saver() 

   if mode == tf.estimator.ModeKeys.PREDICT: 

       return tf.estimator.EstimatorSpec( 

           mode=mode,  

           predictions= predictions 

       ) 

   print(labels) 

    

   print(predictions) 

    

   loss=lossf(labels,predictions) 

   accuracy = tf.metrics.accuracy( 

       labels=labels, predictions=predictions) 

   if mode == tf.estimator.ModeKeys.TRAIN: 

        

       train_op = optimizer.minimize( 

           loss=loss, 

           global_step=tf.train.get_global_step()) 

       # If we are running multi-GPU, we need to wrap the optimizer. 

       if params.get('multi_gpu'): 

           optimizer = tf.contrib.estimator.TowerOptimizer(optimizer) 

       # Name tensors to be logged with LoggingTensorHook. 

       #tf.identity(LEARNING_RATE, 'learning_rate') 

       tf.identity(loss, 'train_loss') 

       tf.identity(accuracy[1], name='train_accuracy') 

       # Save accuracy scalar to Tensorboard output. 

       tf.summary.scalar('train_accuracy', accuracy[1]) 

       training_hooks = tf.train.SummarySaverHook( 

                                   save_steps=100, 

                                   output_dir= "/data/logs", 

                                   summary_op=tf.summary.merge_all()) 

       return tf.estimator.EstimatorSpec( 

           mode=tf.estimator.ModeKeys.TRAIN, 

           loss=loss, 

           train_op=optimizer.minimize(loss, tf.train.get_or_create_global_step

()), 

           training_hooks=[training_hooks] 

       ) 

   if mode == tf.estimator.ModeKeys.EVAL: 

       tf.identity(loss, 'validation_loss') 

       tf.identity(accuracy[1], name='validation_accuracy') 

       # Save accuracy scalar to Tensorboard output. 

       tf.summary.scalar('validation_accuracy', accuracy[1]) 
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       validation_hooks = tf.train.SummarySaverHook( 

                                   save_steps=100, 

                                   output_dir= "/data/logs", 

                                   summary_op=tf.summary.merge_all()) 

       return tf.estimator.EstimatorSpec( 

           mode=tf.estimator.ModeKeys.EVAL, 

           loss=loss, 

           evaluation_hooks=[validation_hooks], 

           eval_metric_ops={ 

               'validation_accuracy': accuracy 

           }) 

In [43]:

def train(steps=100,epochs=1): 

   clear_logs() 

   #hook = tf_debug.TensorBoardDebugHook("5992c370992f:6008") 

   tf.reset_default_graph() 

   global classifier 

   global X_train 

   global Y_train 

   classifier = tf.estimator.Estimator( 

     model_fn=model_fn, 

     params={ 

     }, 

     model_dir='/data/logs', 

     config=tf.contrib.learn.RunConfig( 

                save_checkpoints_steps=10, 

                save_summary_steps=10, 

                save_checkpoints_secs=None) 

   ) 

   SEED = 2018 

   np.random.seed(SEED) 

   for i in range(epochs): 

       classifier.train(input_fn=d(X_train,Y_train) 

                        ,steps=steps 

                        #,hooks=[hook] 

                       ) 

   return classifier 

In [44]:

cutoff=0.5 
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In [45]:

def test_set(): 

   SEED = 2018 

   np.random.seed(SEED) 

   global classifier 

   global X_test 

   global Y_test 

   global cutoff 

   predictions=classifier.predict(input_fn=d(X_test,Y_test)) 

   preds1=np.array([*predictions]).flatten() 

   preds=preds1.copy() 

   print("cutoff %s"%cutoff) 

   preds[preds>cutoff]=1 

   preds[preds<=cutoff]=0 

   preds=np.asarray(preds, dtype=int) 

   accuracy=accuracy_score(preds,[int(x) for x in Y_test]) 

   print("accuracy %s"%accuracy) 

   return preds1 

In [46]:

def train_set(): 

   SEED = 2018 

   np.random.seed(SEED) 

   global classifier 

   global X_train 

   global Y_train 

   global cutoff 

   predictions=classifier.predict(input_fn=d(X_train,Y_train)) 

   preds1=np.array([*predictions]).flatten() 

   print("cutoff %s"%cutoff) 

   preds=preds1.copy() 

   preds[preds>cutoff]=1 

   preds[preds<=cutoff]=0 

   preds=np.asarray(preds, dtype=int) 

   accuracy=accuracy_score(preds,[int(x) for x in Y_train[0:preds.shape[0]]]) 

   print("accuracy %s"%accuracy) 

   return preds1 
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In [47]:

def eval_set(): 

   SEED = 2018 

   np.random.seed(SEED) 

   global classifier 

   global X_eval 

   global Y_eval 

   global cutoff 

   predictions=classifier.predict(input_fn=d(X_eval,Y_eval)) 

   preds1=np.array([*predictions]).flatten() 

   print("cutoff %s"%cutoff) 

   preds=preds1.copy() 

   preds[preds>cutoff]=1 

   preds[preds<=cutoff]=0 

   preds=np.asarray(preds, dtype=int) 

   accuracy=accuracy_score(preds,[int(x) for x in Y_eval[0:preds.shape[0]]]) 

   print("accuracy %s"%accuracy) 

   return preds1 

In [48]:

def lossf(labels,predictions): 

   return tf.losses.sigmoid_cross_entropy(labels,predictions) 

optimizer = tf.train.AdagradOptimizer(learning_rate=0.005) 

various utility functions to get sum of vectors in paragraph 
or to get average etc.

In [50]:

sent2vecs =  lambda sent,v=glovetwitter100: np.array([v.get_vector(x) for x in s

ent if x in v]) 

sent2avg = lambda sent,v=glovetwitter100: np.average([v.get_vector(x) if x in v 

else np.zeros(100) for x in sent ],axis=0) 

vsent2sum = lambda sent,v=glovetwitter100: np.sum(sent,axis=0)/np.linalg.norm(np

.sum(sent,axis=0)) 

vsent2avg = lambda sent,v=glovetwitter100: np.average(sent,axis=0) 

sent2vecs = lambda sent,v=glovetwitter100: np.array([v.get_vector(sent[x]) if (x

<len(sent) and sent[x] in v) else np.zeros((100)) for x in range(sentence_size) 

]) 

doc2vecs=lambda doc,v=glovetwitter100: np.array([*map(sent2vecs,doc)]) 

doc2avg=lambda doc,v=glovetwitter100: np.average(np.array([*map(sent2avg,[*filte

r(len,doc)])]),axis=0) if (len(doc)>0) else np.zeros((100)) 

vdoc2avg=lambda doc,v=glovetwitter100: np.average(np.array([*map(vsent2avg,doc

)]),axis=1) 

experiment 1

this is testbed for experiment 1
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In [55]:

def input_fn(X,Y): 

   SEED = 2018 

   np.random.seed(SEED) 

   batch_size=6 

   import itertools 

   def gen(xs,output_shape=(1)): 

       def b(): 

           batchx=[] 

           batchy=[] 

           i=0 

           for n in xs: 

               i+=1 

               bx={"sent1":vsent2sum(n[0][0]),"sent2":vsent2sum(n[0][1])} 

               assert not np.any(np.isnan(np.asarray(bx["sent1"], dtype=float

))) 

               assert not np.any(np.isnan(np.asarray(bx["sent2"], dtype=float

))) 

               by=np.array([n[1]]).reshape((1)) 

               yield bx,by 

           return 

       return b 

   dataset = tf.data.Dataset.from_generator(gen(zip(X,Y)), ({"sent1": (tf.float

32),"sent2": (tf.float32)},(tf.int32)), 

                                         output_shapes=({"sent1": [512],"sent2"

: [512]},[1])) 

   dataset=dataset.apply(tf.contrib.data.batch_and_drop_remainder(batch_size)) 

   iterr = dataset.make_one_shot_iterator() 

   elem= iterr.get_next() 

   return elem 

In [56]:

from sklearn.preprocessing import normalize 

In [57]:

input_doc_shape=[512] 

In [58]:

def model(features,labels): 

   tf.set_random_seed(SEED) 

   dev_scores0 = labels 

   input_layer1 = tf.feature_column.input_layer(features,[tf.feature_column.num

eric_column("sent1", shape=input_doc_shape)]) 

   input_layer2 = tf.feature_column.input_layer(features,[tf.feature_column.num

eric_column("sent2", shape=input_doc_shape)]) 

   sim_scores=tf.concat([input_layer1, input_layer2], 1) 

   bb4=tf.layers.dense(sim_scores,1024) 

   bb4=tf.layers.dropout(bb4, rate=0.8) 

   bb4=tf.layers.dense(bb4,512) 

   bb4=tf.layers.dropout(bb4, rate=0.5) 

   bb4=tf.layers.dense(bb4,32) 

   bb4=tf.layers.dense(bb4,1) 

   return bb4  
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In [60]:

def lossf(labels,predictions): 

   return tf.losses.sigmoid_cross_entropy(labels,predictions) 

optimizer = tf.train.AdamOptimizer(learning_rate=0.05) 

In [ ]:

classifier=train(steps=None,epochs=3) 

In [ ]:

classifier.train(input_fn=d(X_train,Y_train) 

                        ,steps=100 

                        #,hooks=[hook] 

                       ) 

In [ ]:

cutoff=0.0 

In [ ]:

cutoff=0.5 

In [ ]:

preds1=train_set() 

In [ ]:

preds1=test_set() 

In [ ]:

preds1 

experiment 1.2

In [ ]:

tbCallBack = keras.callbacks.TensorBoard(log_dir='/data/logs', histogram_freq=0,

write_graph=True, write_images=True) 

In [ ]:

init=keras.initializers.glorot_normal(seed=None) 

clear_logs() 

here we try just feed forward network
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In [ ]:

input1 = keras.layers.Input(shape=(512,)) 

input2 = keras.layers.Input(shape=(512,)) 

added = keras.layers.Concatenate(axis=-1)([input1, input2])   

x3=keras.layers.BatchNormalization(axis=-1)(added) 

x3 = keras.layers.Dense(512, activation='selu',kernel_initializer=init)(x3) 

x3=keras.layers.BatchNormalization(axis=-1)(x3) 

x3 = keras.layers.Dropout(0.5)(x3) 

x3 = keras.layers.Dense(128, activation='selu',kernel_initializer=init)(x3) 

x3=keras.layers.BatchNormalization(axis=-1)(x3) 

x3 = keras.layers.Dropout(0.5)(x3) 

x3 = keras.layers.Dense(64,kernel_initializer=init)(x3) 

x3=keras.layers.BatchNormalization(axis=-1)(x3) 

x3 = keras.layers.Dropout(0.2)(x3) 

x3 = keras.layers.Dense(16, activation='selu',kernel_initializer=init)(x3) 

x3=keras.layers.BatchNormalization(axis=-1)(x3) 

out = keras.layers.Dense(1)(x3) 

model = keras.models.Model(inputs=[input1, input2], outputs=out) 

In [ ]:

sgd = optimizers.SGD(lr=0.00001, decay=1e-6, momentum=0.9, nesterov=True) 

nadam = optimizers.Nadam() 

adadelta=keras.optimizers.Adadelta(lr=0.000001, rho=0.95, epsilon=None, decay=1e

-6) 

In [ ]:

model.compile(loss='binary_crossentropy', 

             #optimizer=sgd, 

             optimizer=nadam, 

             #optimizer=adadelta, 

             metrics=['accuracy']) 

In [ ]:

model.fit([np.array([vsent2avg(x[0]) for x in X_train]),np.array([vsent2avg(x[1

]) for x in X_train])], Y_train, 

         epochs=10, 

         batch_size=10, callbacks=[tbCallBack]) 

In [ ]:

scores = model.evaluate([np.array([vsent2avg(x[0]) for x in X_test]),np.array([v

sent2avg(x[1]) for x in X_test])], Y_test) 

print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1]*100)) 

In [ ]:

scores = model.evaluate([np.array([vsent2avg(x[0]) for x in X_train]),np.array([

vsent2avg(x[1]) for x in X_train])], Y_train) 

print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1]*100)) 
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if paragraph has more than maxLen sentences it will have maxLen after this function 
last sentence vector is average of all sentence vectors in paragraph if there are more sentences than
max len 
if there are less then average will be padded to fill up maxLen number of sentences for paragraph

In [3]:

def normlz(doc): 

   avg = np.average(doc,axis=0) 

   sh=np.vstack((doc[0:(maxLen-1)],np.tile(np.array(avg),(abs(maxLen-len(doc)) 

if maxLen>len(doc) else 1 ,1)))) 

   return sh 

this function generates batches for input dataset

In [4]:

def gen(xs,batch_size=25): 

   def b(): 

       batchx1=[] 

       batchx2=[] 

       batchy=[] 

       while 1: 

           i=0 

           batchx1=[] 

           batchx2=[] 

           batchy=[] 

           for n in xs: 

               i+=1 

               bx1=normlz(n[0][0]) 

               bx2=normlz(n[0][1]) 

               batchx1.append(bx1) 

               batchx2.append(bx2) 

               batchy.append(n[1]) 

               if(i%batch_size==0): 

                   yield [np.array(batchx1),np.array(batchx2)],np.asarray(batch

y) 

                   batchx1=[] 

                   batchx2=[] 

                   batchy=[] 

       return 

   return b 

Here we evaluate model with 6 for LSTM dimension 
we run it 20
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In [ ]:

acc=[] 

for i in range(1,20): 

   from tensorflow import set_random_seed 

   set_random_seed(2) 

   maxLen=300 

   seed=2017 

   tbCallBack = keras.callbacks.TensorBoard(log_dir='/data/logs', histogram_fre

q=0, write_graph=True, write_images=True) 

   init=keras.initializers.glorot_normal(seed=seed) 

   clear_logs() 

   batch_size=30 

   np.random.seed(1) 

   input1 = keras.layers.Input(batch_shape=(batch_size,maxLen,512), 

                               shape=(maxLen,512),dtype='float32') 

   input2 = keras.layers.Input(batch_shape=(batch_size,maxLen,512), 

                               shape=(maxLen,512),dtype='float32') 

   #here we set dimension 

   dim1=6 

   stateful=False 

   X1=input1 

   lstm1, state_h1, state_c1 = keras.layers.LSTM(dim1, 

                          return_sequences=True, 

                          return_state=True, 

                          stateful=stateful, 

                          kernel_initializer=init, 

                          recurrent_initializer=init, 

                          activation='selu' 

                         )(X1) 

   X1 = keras.layers.LSTM(dim1, 

                          stateful=stateful, 

                          kernel_initializer=init, 

                          recurrent_initializer=init, 

                          activation='selu' 

                         )(lstm1) 

   X2=input2 

   lstm2, state_h2, state_c2  = keras.layers.LSTM(dim1,  

                          return_sequences=True, 

                          return_state=True, 

                          stateful=stateful, 

                          kernel_initializer=init, 

                          recurrent_initializer=init, 

                          activation='selu' 

                         )(X2) 

   X2 = keras.layers.LSTM(dim1, 

                          stateful=stateful, 

                          kernel_initializer=init, 

                          recurrent_initializer=init, 

                          #recurrent_activation='selu', 

                          activation='selu' 

                         )(lstm2) 

   added = keras.layers.Concatenate(axis=-1)([X1, X2])   
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   x3=added 

   x3 = keras.layers.Dense(512, activation='selu',kernel_initializer=init)(x3) 

   x3=keras.layers.BatchNormalization(axis=-1)(x3) 

   x3 = keras.layers.Dropout(0.5,seed=seed)(x3) 

   x3 = keras.layers.Dense(128, activation='selu',kernel_initializer=init)(x3) 

   x3=keras.layers.BatchNormalization(axis=-1)(x3) 

   x3 = keras.layers.Dropout(0.3,seed=seed)(x3) 

   x3 = keras.layers.Dense(64,kernel_initializer=init, activation='selu')(x3) 

   x3=keras.layers.BatchNormalization(axis=-1)(x3) 

   x3 = keras.layers.Dropout(0.2,seed=seed)(x3) 

   x3 = keras.layers.Dense(32, activation='selu',kernel_initializer=init)(x3) 

   x3=keras.layers.BatchNormalization(axis=-1)(x3) 

   x3 = keras.layers.Dense(16, activation='selu',kernel_initializer=init)(x3) 

   x3=keras.layers.BatchNormalization(axis=-1)(x3) 

   out = keras.layers.Dense(1,kernel_initializer=init)(x3) 

   print(out) 

   model = keras.models.Model(inputs=[input1, input2], outputs=out) 

   sgd = optimizers.SGD(lr=0.0001, decay=1e-6, momentum=0.9, nesterov=True) 

   nadam = optimizers.Nadam(lr=0.45) 

   adadelta=keras.optimizers.Adadelta(lr=0.5, rho=0.95, epsilon=None, decay=1e-

6) 

   model.compile(loss='binary_crossentropy', 

                 #optimizer=sgd, 

                 optimizer=adadelta, 

                 #optimizer=nadam, 

                 metrics=['accuracy']) 

   size=5000 

   size=X_train.shape[0] 

   model.fit_generator(gen([*zip(X_train[0:size],Y_train[0:size])],batch_size)

(),steps_per_epoch=int(size/batch_size), 

             epochs=20, callbacks=[tbCallBack]) 

   batch_size=30 

   size=X_test.shape[0]  

   scores = model.evaluate_generator(gen(zip(X_test[0:size],Y_test[0:size]),bat

ch_size)(),steps=int(size/batch_size),workers=5, use_multiprocessing=True,verbos

e=True) 

   print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1]*100)) 

   acc.append(scores[1]) 

now we set dimension to 10
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In [ ]:

acc2=[] 

for i in range(1,20): 

   from tensorflow import set_random_seed 

   set_random_seed(2) 

   maxLen=300 

   seed=2017 

   tbCallBack = keras.callbacks.TensorBoard(log_dir='/data/logs', histogram_fre

q=0, write_graph=True, write_images=True) 

   init=keras.initializers.glorot_normal(seed=seed) 

   clear_logs() 

   batch_size=30 

   np.random.seed(1) 

   input1 = keras.layers.Input(batch_shape=(batch_size,maxLen,512), 

                               shape=(maxLen,512),dtype='float32') 

   input2 = keras.layers.Input(batch_shape=(batch_size,maxLen,512), 

                               shape=(maxLen,512),dtype='float32') 

   #here we set dimension to 10 

   dim1=10 

   stateful=False 

   X1=input1 

   lstm1, state_h1, state_c1 = keras.layers.LSTM(dim1, 

                          return_sequences=True, 

                          return_state=True, 

                          stateful=stateful, 

                          kernel_initializer=init, 

                          recurrent_initializer=init, 

                          activation='selu' 

                         )(X1) 

   X1 = keras.layers.LSTM(dim1, 

                          stateful=stateful, 

                          kernel_initializer=init, 

                          recurrent_initializer=init, 

                          activation='selu' 

                         )(lstm1) 

   X2=input2 

   lstm2, state_h2, state_c2  = keras.layers.LSTM(dim1,  

                          return_sequences=True, 

                          return_state=True, 

                          stateful=stateful, 

                          kernel_initializer=init, 

                          recurrent_initializer=init, 

                          activation='selu' 

                         )(X2) 

   X2 = keras.layers.LSTM(dim1, 

                          stateful=stateful, 

                          kernel_initializer=init, 

                          recurrent_initializer=init, 

                          #recurrent_activation='selu', 

                          activation='selu' 

                         )(lstm2) 

   added = keras.layers.Concatenate(axis=-1)([X1, X2])   

   x3=added 

   x3 = keras.layers.Dense(512, activation='selu',kernel_initializer=init)(x3) 
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   x3=keras.layers.BatchNormalization(axis=-1)(x3) 

   x3 = keras.layers.Dropout(0.5,seed=seed)(x3) 

   x3 = keras.layers.Dense(128, activation='selu',kernel_initializer=init)(x3) 

   x3=keras.layers.BatchNormalization(axis=-1)(x3) 

   x3 = keras.layers.Dropout(0.3,seed=seed)(x3) 

   x3 = keras.layers.Dense(64,kernel_initializer=init, activation='selu')(x3) 

   x3=keras.layers.BatchNormalization(axis=-1)(x3) 

   x3 = keras.layers.Dropout(0.2,seed=seed)(x3) 

   x3 = keras.layers.Dense(32, activation='selu',kernel_initializer=init)(x3) 

   x3=keras.layers.BatchNormalization(axis=-1)(x3) 

   x3 = keras.layers.Dense(16, activation='selu',kernel_initializer=init)(x3) 

   x3=keras.layers.BatchNormalization(axis=-1)(x3) 

   out = keras.layers.Dense(1,kernel_initializer=init)(x3) 

   model = keras.models.Model(inputs=[input1, input2], outputs=out) 

   sgd = optimizers.SGD(lr=0.0001, decay=1e-6, momentum=0.9, nesterov=True) 

   nadam = optimizers.Nadam(lr=0.45) 

   adadelta=keras.optimizers.Adadelta(lr=0.5, rho=0.95, epsilon=None, decay=1e-

6) 

   model.compile(loss='binary_crossentropy', 

                 optimizer=adadelta, 

                 metrics=['accuracy']) 

   size=5000 

   size=X_train.shape[0] 

   model.fit_generator(gen([*zip(X_train[0:size],Y_train[0:size])],batch_size)

(),steps_per_epoch=int(size/batch_size), 

             epochs=20, callbacks=[tbCallBack]) 

   batch_size=30 

   size=X_test.shape[0]  

   scores = model.evaluate_generator(gen(zip(X_test[0:size],Y_test[0:size]),bat

ch_size)(),steps=int(size/batch_size),workers=5, use_multiprocessing=True,verbos

e=True) 

   print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1]*100)) 

   acc2.append(scores[1]) 

here we keep dimension to 10 but expose lower level layers
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In [ ]:

acc3=[] 

for i in range(1,20): 

   from tensorflow import set_random_seed 

   set_random_seed(2) 

   maxLen=300 

   seed=2017 

   tbCallBack = keras.callbacks.TensorBoard(log_dir='/data/logs', histogram_fre

q=0, write_graph=True, write_images=True) 

   init=keras.initializers.glorot_normal(seed=seed) 

   clear_logs() 

   batch_size=30 

   np.random.seed(1) 

   input1 = keras.layers.Input(batch_shape=(batch_size,maxLen,512), 

                               shape=(maxLen,512),dtype='float32') 

   input2 = keras.layers.Input(batch_shape=(batch_size,maxLen,512), 

                               shape=(maxLen,512),dtype='float32') 

   dim1=10 

   stateful=False 

   X1=input1 

   lstm1, state_h1, state_c1 = keras.layers.LSTM(dim1, 

                          return_sequences=True, 

                          return_state=True, 

                          stateful=stateful, 

                          kernel_initializer=init, 

                          recurrent_initializer=init, 

                          activation='selu' 

                         )(X1) 

   X1 = keras.layers.LSTM(dim1, 

                          stateful=stateful, 

                          kernel_initializer=init, 

                          recurrent_initializer=init, 

                          activation='selu' 

                         )(lstm1) 

   X2=input2 

   lstm2, state_h2, state_c2  = keras.layers.LSTM(dim1,  

                          return_sequences=True, 

                          return_state=True, 

                          stateful=stateful, 

                          kernel_initializer=init, 

                          recurrent_initializer=init, 

                          activation='selu' 

                         )(X2) 

   X2 = keras.layers.LSTM(dim1, 

                          stateful=stateful, 

                          kernel_initializer=init, 

                          recurrent_initializer=init, 

                          activation='selu' 

                         )(lstm2) 

   #here we use state from lower level LSTM 

   added1 = keras.layers.Concatenate(axis=-1)([X1,state_h1, X2,state_h2])   

   x3=added1 

   x3 = keras.layers.Dense(512, activation='selu',kernel_initializer=init)(x3) 

   x3=keras.layers.BatchNormalization(axis=-1)(x3) 

   x3 = keras.layers.Dropout(0.5,seed=seed)(x3) 
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   x3 = keras.layers.Dense(128, activation='selu',kernel_initializer=init)(x3) 

   x3=keras.layers.BatchNormalization(axis=-1)(x3) 

   x3 = keras.layers.Dropout(0.3,seed=seed)(x3) 

   x3 = keras.layers.Dense(64,kernel_initializer=init, activation='selu')(x3) 

   x3=keras.layers.BatchNormalization(axis=-1)(x3) 

   x3 = keras.layers.Dropout(0.2,seed=seed)(x3) 

   x3 = keras.layers.Dense(32, activation='selu',kernel_initializer=init)(x3) 

   x3=keras.layers.BatchNormalization(axis=-1)(x3) 

   x3 = keras.layers.Dense(16, activation='selu',kernel_initializer=init)(x3) 

   x3=keras.layers.BatchNormalization(axis=-1)(x3) 

   out = keras.layers.Dense(1,kernel_initializer=init)(x3) 

   print(out) 

   model = keras.models.Model(inputs=[input1, input2], outputs=out) 

   sgd = optimizers.SGD(lr=0.0001, decay=1e-6, momentum=0.9, nesterov=True) 

   nadam = optimizers.Nadam(lr=0.45) 

   adadelta=keras.optimizers.Adadelta(lr=0.5, rho=0.95, epsilon=None, decay=1e-

6) 

   model.compile(loss='binary_crossentropy', 

                 optimizer=adadelta, 

                 metrics=['accuracy']) 

   size=5000 

   size=X_train.shape[0] 

   model.fit_generator(gen([*zip(X_train[0:size],Y_train[0:size])],batch_size)

(),steps_per_epoch=int(size/batch_size), 

             epochs=20, callbacks=[tbCallBack]) 

   batch_size=30 

   size=X_test.shape[0]  

   scores = model.evaluate_generator(gen(zip(X_test[0:size],Y_test[0:size]),bat

ch_size)(),steps=int(size/batch_size),workers=5, use_multiprocessing=True,verbos

e=True) 

   print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1]*100)) 

   acc3.append(scores[1]) 

here we report results from experiment 2.1(above
code was run not in notebook and results were saved
to files expr[n])
In [20]:

sns.set(color_codes=True) 

In [21]:

a=pd.read_csv('/data/expr1.txt',header=-1) 

b=pd.read_csv('/data/expr2.txt',header=-1) 

c=pd.read_csv('/data/expr3.txt',header=-1) 
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In [22]:

sns.distplot(a) # 6 

In [23]:

sns.distplot(b) #10 

Out[22]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f1e01dc97f0>

Out[23]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f1d9e8c0860>
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In [24]:

sns.distplot(c) #10$ 

In [25]:

import numpy as np 

import matplotlib.pyplot as plt 

from scipy import stats 

In [26]:

n, bins, patches = plt.hist(len2, bins = range(0,60)) 

plt.show() 

Out[24]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f1d9e8427b8>
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In [27]:

import numpy as np 

from scipy.stats import norm 

import matplotlib.pyplot as plt 

# Generate some data for this demonstration. 

data = len2 

# Fit a normal distribution to the data: 

mu, std = norm.fit(data) 

# Plot the histogram. 

plt.hist(data, bins=range(0,300), density=True, alpha=0.6, color='g') 

# Plot the PDF. 

xmin, xmax = plt.xlim() 

x = np.linspace(xmin, xmax, 100) 

p = norm.pdf(x, mu, std) 

plt.plot(x, p, 'k', linewidth=2) 

title = "Fit results: mu = %.2f,  std = %.2f" % (mu, std) 

plt.title(title) 

plt.show() 

In [28]:

maxLen=max(max(len0),max(len1),max(len2)) 

In [29]:

maxLen 

Out[29]:

2738


