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First-order phase transitions in the electroweak sector are an active subject of research as they

contain ingredients for baryon number violation and gravitational-wave production. The electroweak

phase transition in the Standard Model (SM) is of a crossover type, but first-order transitions are

possible in scalar extensions of the SM, provided that interactions of the Higgs boson with the

new particles are sufficiently strong. If such particles exist, they are expected to have observable

signatures in future collider experiments. Conversely, studying the electroweak transition in theories

beyond the SM can bring new insight on the cosmological implications of these models.

Reliable estimates of the properties of the transition require non-perturbative approaches to quan-

tum field theory due to infrared problems plaguing perturbative calculations at high temperatures.

We discuss three-dimensional effective theories that are suitable for lattice simulations of the tran-

sition. These theories are constructed perturbatively by factorizing correlation functions so that

contributions from light field modes driving the phase transition can be identified. Resummation

of infrared divergences is naturally carried out in the construction procedure, and simulating the

resulting effective theory on the lattice allows for a non-perturbative phase-transition study that

is also free of infrared problems. Dimensionally-reduced theories can thus be used to probe the

conditions under which perturbative treatments of the electroweak phase transition are valid.

We apply the method to the SM augmented with a real SU(2) triplet scalar and provide a detailed

description of dimensional reduction of this model. Regions of a first-order transition in the pa-

rameter space are identified in the heavy triplet limit by the use of an effective theory for which

lattice results are known. We provide a rough estimate for the accuracy of our results by consi-

dering higher-order operators that have been omitted from the effective theory and discuss future

prospects for the three-dimensional approach.
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1 Introduction

Explaining the observed asymmetry in the numbers of baryons and their antiparticle coun-

terparts is a long-standing problem in particle physics and cosmology. Most recent cosmo-

logical observations suggest a baryon to entropy density ratio of [1]

ρB
s

= (8.61± 0.09)× 10−11, (1.1)

and while the behavior of antimatter is described well by quantum field theories (QFT),

the origin of this baryonic excess remains a mystery. Furthermore, if this asymmetry was

something the universe was born with, any excess of particles of either kind is expected to

be quickly washed away by thermal fluctuations in the early universe [2]. This suggests

that the universe was initially matter-antimatter symmetric with a vanishing total baryon

number B. The symmetry is then broken at some later stage by an unknown baryogenesis

process.

Minimum requirements for baryogenesis to occur are summarized in the three Sakharov’s

conditions [3]:

1. Existence of baryon number violating processes

2. Violation of both C and CP symmetries

3. Interactions outside of thermal equilibrium.

While the first requisite is self-explanatory, the remaining conditions are necessary to pre-

vent baryon number compensation by antimatter-producing processes. Various mecha-

nisms satisfying all three Sakharov’s conditions have been proposed, many of which rely on

physics beyond the Standard Model (SM) of particle physics (see Refs. [4–6] for reviews).

The baryonic excess should be produced before light elements are formed in the primor-

dial nucleosynthesis [7], and most proposed models predict baryogenesis at energy scales

ranging from that of Grand Unification Theories (GUT) to the electroweak (EW) scale.

One particularly interesting scenario is electroweak baryogenesis (EWBG), which at-

tempts to explain generation of the observed baryon number during the spontaneous sym-

metry breaking of the SU(2)L × U(1)Y gauge symmetry and takes place in a hot plasma

of interacting particles in the early universe [6, 8–15]. In the language of thermodynamics,

the transition corresponds to a Bose-condensation of the Higgs field [16–19] and occurs

at a critical temperature of Tc ∼ 100 GeV [17, 18]. The two phases are characterized by

the vacuum expectation value (vev) v of the Higgs field. The third Sakharov’s condition

requires this transition to be of first-order, so that thermodynamic quantities of relevance

change discontinuously as the universe transitions into the present EW vacuum of v = 246

GeV in the minimal SM. Such transitions proceed by bubble nucleation, in which expand-

ing bubbles of the broken phase form inside the symmetric phase. This nucleation is a

consequence of metastability of the v = 0 vacuum state at temperatures higher than Tc.

During the transition, the two phases are separated by bubble walls of finite thickness,

and as the bubbles expand, particles in the plasma are forced to interact with the walls.
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These interactions provide a framework in which all Sakharov’s conditions are satisfied and

a baryonic excess can be generated.

Baryon number B violation in the SM manifests itself via the axial anomaly [20].

The processes responsible for B violation are topologically non-trivial field configurations

satisfying the classical equations of motion. These correspond to transitions from one de-

generate SU(2)L minimum to another, and for baryogenesis, the most interesting solutions

are sphalerons, corresponding to classically passing over the potential barrier separating

two minima [21]. Sphalerons are strongly amplified by the external temperature, and at

the electroweak scale of T ∼ 100 GeV, sphaleron transition rates become unsuppressed

and are able to cause significant baryon number violation [22–24].

However, the sphalerons are CP-symmetric, and external CP violation is thus needed

to produce a net baryon asymmetry. This is achieved via scattering processes in the

vicinity of the bubble walls: the SM provides CP violation via a complex phase in the

Cabicco-Kobayashi-Maskawa (CKM) matrix, causing fermions and antifermions to have

different transition amplitudes when interacting with the bubble boundaries [25, 26]. The

magnitude of this CP violation determines the total amount of baryons created during the

transition. Finally, for any baryonic excess produced in the electroweak phase transition

(EWPT) to survive, the sphaleron rate has to become suppressed after the transition ends.

In the phase of broken SU(2)L symmetry, sphalerons are suppressed by a Boltzmann factor

whose magnitude is directly related to the strength of the transition, characterized by the

latent heat [23, 27]. The minimum criterion for a successful EWBG is therefore a strong

first-order phase transition, accompanied by a suitable amount of CP violation.

Independently of the question of baryogenesis, a first-order EWPT may also act as a

source of gravitational waves [28, 29]. These are produced as the bubbles of broken phase

expand and interact with the surrounding plasma, causing friction and converting vacuum

energy into kinetic energy. Strong enough phase transitions are expected to leave behind

gravitational-wave signatures that could be observed in the near future with detectors such

as LISA [30].

Making quantitative estimates of the final baryon number density or the gravitational-

wave power spectrum requires comprehensive knowledge of bubble nucleation dynamics in

the plasma, such as the speed at which the bubbles expand [10]. Computation of many

of these quantities in perturbation theory is unreliable due to the non-equilibrium nature

of the transition and infrared (IR) problems related to perturbative expansions in the

symmetric phase [10, 31, 32]. Non-perturbative methods are thus needed for quantitative

studies of the EWBG and possible gravitational-wave signals.

The most robust non-perturbative results are obtained by directly simulating the sys-

tem on a lattice. Lattice simulations, however, suffer from slow convergence due to the

sign problem when applied to theories containing chiral fermions, such as the SM [33].

One way to bypass this problem is provided by the effective theory approach in which

fermionic fields can be integrated out, resulting in a simpler theory that can be studied

on the lattice. In practice, the effective theory is most conveniently constructed by us-

ing dimensional reduction (DR), a well-defined technique for building three-dimensional

(3d) effective field theories from the full four-dimensional (4d) theory at high temperature
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[34, 35]. The method is based on factorization of fields into static and time-dependent

components, the latter of which generate effective masses via their interactions with the

surrounding plasma. Static long-distance Green’s functions of the full theory can then

be reproduced to a good accuracy by a time-independent 3d theory containing only the

static field modes. DR produces a direct temperature-dependent mapping from the 4d

fields and couplings to parameters of the 3d theory. In particular, the effective theory con-

tains no fermions, whose effects have been encoded into the coupling constants and fields

of the dimensionally-reduced theory. Furthermore, the 3d theory is super-renormalizable,

providing a great simplification for lattice analyses.

Extensive lattice simulations performed on a dimensionally-reduced effective theory in

the 1990’s have demonstrated that the EWPT in the SM is inadequate for baryogenesis

[36, 37]. In particular, the measured Higgs boson mass mH = 125 GeV results in an

analytic crossover instead of a first-order transition [35, 38], rendering EWBG impossible

in the SM. Similar results have been obtained from simulations in the full 4d theory with

a discarded fermion sector in Refs. [39, 40]. Furthermore, even if the transition was of first

order, the CP violation provided by the CKM matrix would be insufficient to produce the

observed baryonic excess [41–43]. Remarkably, perturbative approaches using the effective

potential in the full 4d theory tend to overestimate both the order and the strength of the

transition, at least in the SM case [44].

Modern research of EWBG is centered around extensions of the SM and their effects

on the EWPT. New particles in the Higgs sector can considerably modify dynamics of the

transition and may allow for extra CP violation beyond that of the CKM matrix, as well as

provide strong first-order phase transitions. An essential feature of these extended models

is that for EWBG to be possible, the new scalar fields cannot be much more massive than

the electroweak scale and must couple to the Higgs doublet with moderate strength [14].

These properties imply that the predictions of EWBG models should be testable in collider

experiments in the near future. This property is the main advantage of EWBG over its

strongest competitor, leptogenesis, which assumes new physics only at an energy scale of

1010 GeV [45–47].

Despite the IR catastrophe of high-temperature QFT, which causes a breakdown of per-

turbative expansions when massless particles are present [10, 31, 32], the primary method

of EWPT studies in Beyond Standard Model (BSM) theories today is to use the pertur-

bative effective potential. While these analyses are generally easy to perform relative to

a full lattice study, the reliability of the fully perturbative approach is questionable al-

ready on theoretical grounds. In addition to the IR problems, it has been known for a

long time that the traditional effective potential approach is inadequate for calculation of

gauge invariant quantities relevant for baryogenesis [48, 49]. An alternative perturbative

method for constructing the effective potential in a gauge-invariant way has been discussed

in Refs. [50, 51], but this method is particularly sensitive to higher-order loop corrections.

On the other hand, gauge fixing on the lattice is not required at all, and the parameter

mappings produced by DR can be explicitly shown to be gauge invariant [35].

Recently, attempts to validiate perturbative results by analyzing the nature of the

EWPT using dimensionally-reduced effective theories have arisen in various BSM models.
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One of these is the triplet Higgs extension, in which the SM is augmented with an SU(2)

triplet scalar field Σ. This model has been studied perturbatively in the context of the

EWPT in Ref. [52] and, more recently, non-perturbatively using DR in Ref. [53], on which

this thesis is based on. DR has also been used to study the EWPT in the Minimally

Supersymmetric Standard Model in [54–56], the Two Higgs Doublet Model in [57–60] and

the real singlet extension of the SM in [61].

The aim of this thesis is to present a detailed description of the dimensionally-reduced

effective theory approach to studying the EWPT non-perturbatively. We begin reviewing

the mathematical formalism needed to describe field theories at nonzero temperatures in

section 2.1, before proceeding to discuss the framework of dimensional reduction in sec-

tion 3. For the latter part of the thesis we focus on the triplet Higgs model, describing its

general properties and dimensional reduction of the model in detail in sections 4 and 5.

Finally, in section 6 we use existing lattice results to find regions of a first-order phase tran-

sition in the limit of a heavy triplet field. The results presented here have previously been

published in the main paper [53], while many omitted technical and computational details

are presented in this thesis. In particular, a diagrammatic calculation of the correlation

functions needed to construct the DR mappings are presented in the appendices.
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2 Aspects of thermal field theory

As a prerequisite for understanding dimensional reduction, we start by reviewing how

statistical mechanics is incorporated into QFT. Since thermal field theory by itself is a

vast area of theoretical physics, we shall only concentrate on topics of importance for DR.

Throughout the thesis we shall use a natural system of units by setting c = kB = ~ = 1.

2.1 Imaginary time formalism

In statistical mechanics, the main quantity of interest is the partition function Z, defined

in terms of the Hamiltonian H as

Z = Tr e−βH =
∑
φ

〈φ| e−βH |φ〉 (2.1)

with β being the inverse temperature. Thermodynamic quantities, such as free energies,

can be calculated from Z by direct differentation, and we would now like to construct a

field theoretical counterpart of the partition function. The most practical way of achieving

this is to let the time coordinate take on imaginary values. In this section, we shall

mainly describe the formalism for the case of a scalar field theory for simplicity, as more

complicated systems are treated in a similar manner.

Consider the path integral representation for the amplitude that a field configuration

changes from |φ0〉 at time t = 0 to |φ′〉 at some later time t = t′. The path integral can

be expressed in Hamiltonian formalism by performing a Legendre transformation on the

Lagrangian, L = πφ̇−H(φ, π), and integrating over the conjugate momentum π:

〈φ′| e−iHt |φ0〉 = N

∫
DπDφ exp

[
i

∫ t′

0
dt

∫
d3x
[
πφ̇−H(φ, π)

]]
. (2.2)

Here N is a normalization factor. Next, consider Wick rotating the system to Euclidean

spacetime by analytically continuing the time variable onto the imaginary axis, τ = it. If

the Hamiltonian density is at most quadratic in π, we can bring the rotated path integral

back to the Lagrangian form by completing the square and performing the momentum

integral. For a careful analysis of how this is done in a more general case, where e.g.

gauge fields are present, see Refs. [62, 63]. The result after integrating over the canonical

momentum is a functional integral resembling the usual path integral of quantum field

theory,

〈φ′| e−Hτ |φ0〉 = N ′
∫
Dφ exp

[ ∫ τ ′

0
dτ

∫
d3xL(τ = it, φ, φ̇)

]
. (2.3)

The form of the new normalization factor N ′ is irrelevant, as it cancels when calculating

correlation functions.

It is now clear that by requiring that the field returns to its initial value after time τ ′

and identifying the period as the inverse temperature β = 1/T , one gets a path integral

expression for the partition function in Euclidean space. However, integration is now
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2.1 Imaginary time formalism

restricted to only include paths that are periodic in the imaginary time coordinate. The

partition function has then the schematic form

Z[φ] =

∫
Dφe−SE , (2.4)

where we have defined the Euclidean action as

SE =

∫ 1/T

0
dτ

∫
d3xLE , (2.5)

and the Euclidean Lagrangian is obtained from its Minkowskian counterpart by LE =

−LM (τ = it). From now on, we will drop the subscripts and work solely in the Euclidean

formalism, unless stated otherwise.

The equilibrium dynamics of the theory are characterized by Euclidean correlation

functions, which can be computed from the path integral using familiar methods from

zero-temperature QFT, with the modification that the metric is now Euclidean. Note,

however, that we explicitly break rotational symmetry by imposing periodicity on the time

coordinate but not on the spatial coordinates. Physically, this can be interpreted to mean

that a system coupled to a heat bath has a preferred frame of reference, and therefore

Lorentz invariance does not hold in finite temperature QFT [62, 63].

The periodicity of the field φ implies that one can represent it as a Fourier series

expansion in the imaginary time coordinate τ . We therefore write

φ(τ,x) =

∞∑
n=−∞

φ̃(ωn,x)eiωnτ . (2.6)

From the above discussion it follows instantly that for scalar fields and, in fact, for bosonic

fields in general, ωbn = 2πnT . For fermionic fields, there is a complication arising from

their anti-commutative nature, and Fourier modes for fermions are characterized by ωfn =

(2n+ 1)πT [62, 63]. These frequences are called Matsubara modes and the case of bosonic

n = 0 is called the Matsubara zero-mode. In particular, bosonic fields have a vanishing

zero-mode, while fermions do not. Remarkably, the bosonic n = 0 modes are static in the

sense that the exponential containing dependence on the temporal coordinate τ vanishes.

A Fourier expansion with respect to the remaining spatial coordinates is readily con-

structed by restricting the system into a finite volume V and taking the limit V → ∞.

The temporal coordinate remains discrete and has to be treated carefully when performing

momentum-space loop calculations. A Matsubara sum-integral is associated with each loop

momentum (in D = 4− 2ε dimensions):

T
∑
n

∫
ddp

(2π)d
, (2.7)

where d = D − 1. We adopt the shorthand notation

T
∑
n

∫
p
≡
∫∑

P
, (2.8)
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2.2 Effective masses and the thermal scale hierarchy

which is understood to include the integration measure as well as any constant factors

associated with it.

Computation of these thermal sum-integrals is usually done by applying techniques

from complex analysis after a careful change of integration and summation order. It is

worth noting that one can always separate the Matsubara zero-mode from other modes in

the sum and write ∫∑
P

= T

∫
p,n=0

+

∫∑′

P
, (2.9)

where all non-zero modes are included in the primed sum-integral. This separation is

useful in construction of dimensionally-reduced theories where it is important to distinguish

between static and time-dependent field modes.

2.2 Effective masses and the thermal scale hierarchy

An important consequence of thermal field theory is that fields generate temperature-

dependent effective masses. For concreteness, let us first see how this occurs for a scalar

field of mass m0. As discussed in the previous section, periodicity in the imaginary time

coordinate has the consequence that the temporal momentum component becomes dis-

cretized, P = (ωn,p). The free Euclidean propagator in momentum space is found by

Wick-rotating the Klein-Gordon operator and reads

G̃0(P ) =
1

P 2 +m2
0

=
1

p2 + ω2
n +m2

0

. (2.10)

This corresponds to the propagator of a field mode of mass
√
ω2
n +m2

0. Using perturbation

theory, one is able to calculate loop corrections to the mass of the original scalar field. This

correction obtains contributions from all Matsubara modes via sum-integrals, and the one-

loop corrected mass has the form m(T )2 = m2
0 + γT 2, where γ depends on the type of

the field in question and m0 is the zero-temperature mass. The temperature-dependent

term is understood as an effective thermal mass and its existence reflects the fact that the

propagation of the field is altered by its interactions with the heat bath.

Consider now a Yang-Mills theory possessing gauge invariance. In zero-temperature

QFT, gauge fields are generally made massless by their corresponding Ward identities. The

situation becomes more complicated when considering systems at finite temperatures as

the heat bath breaks Lorentz invariance, forcing the temporal component of a vector gauge

field to behave differently from its spatial counterparts. Physically, this behaviour arises

from the fact that presence of mobile charge carriers causes exponential damping in the

corresponding interaction strength. This phenomenon is known as screening and occurs in

both electroweak theory and quantum chromodynamics (QCD) [62, 63]. For our purposes,

the relevant heat bath is a hot plasma in the early universe with temperature T ∼ 100

GeV. Damping caused by the plasma manifests itself as a T -dependent effective mass,

called the Debye mass mD, in the temporal gauge field component when loop corrections

are taken into account. The spatial components, on the other hand, are protected by gauge

invariance and remain massless.
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2.3 The infrared problem of perturbative calculations

In the SM, there are three gauge fields Cµ, Aµ, Bµ, associated with the SU(3)c, SU(2)L
and U(1)Y symmetries respectively, that all generate effective masses. Their Debye masses

can be computed perturbatively by calculating the gauge field two-point functions to the

required loop order and identifying the arising correction to the propagator [63]. In sec-

tion 3.3, we compute them as a natural part of dimensional reduction, but at this stage,

it is useful to note that the Debye mass of a gauge field is proportional to the respective

gauge coupling. In particular, the n = 0 mode of the temporal SU(2) gauge field A0 has

the thermal mass mD ∼ gT .

Let us now consider the situation from the point of view of the Matsubara field modes.

We may interpret each of these modes as an independent field, with their respective mass

parameters having the form m2
n = m2

0 +ω2
n, meaning that all bosonic n 6= 0 modes obtain a

mass correction of order πT . The Matsubara frequencies for fermions are ωfn = (2πn+1)T ,

implying that the thermal mass correction for all fermionic modes is always of O(πT ). We

now observe that the heat bath has generated a natural scale hierarchy in the system: At

sufficiently large temperatures, thermal corrections to the masses of the Matsubara modes

will dominate over the zero-temperature masses, so that the bosonic modes with n 6= 0

and all fermionic modes have effective masses of order πT , while the zero-mode of Aµ has

mass proportional to gT . The canonical terminology here is to call the thermal scale πT

superheavy and the scale gT heavy. In addition, the scale g2T – which can arise if the loop

correction to a mass parameter is close to cancelling the tree-level mass – is dubbed light.

Spatial gauge fields that remain completely massless are also included in this category.

In a realistic model describing the EWPT, there should exist a scalar field that spon-

taneously breaks the electroweak symmetry. In the SM, this role is played by the Higgs

field φ, with its potential being V (φ) = −µ2
φ(φ†φ) + λ(φ†φ)2. The transition occurs when

the initial minimum of the potential at φ = 0 becomes a metastable state due to a decrease

in the temperature, and in the tree-level potential, this corresponds to a change of sign in

the squared mass. At the critical temperature, the mass parameter is thus forced to be

light due to a cancellation caused by the thermal mass correction.

The emergence of a thermal scale hierarchy suggests the possibility of constructing

simplified effective theories for describing physics at different energy scales. For large T , the

superheavy scale becomes so massive that its effect on long-distance physics is negligible.

Integrating the superheavy fields out from the partition function results in a theory for

heavy and light fields that is considerably easier to use for studying the EWPT than the

full theory. Similar reasoning can be applied to the scale gT to integrate out the heavy

scale as well; this gives a theory containing only light field modes. These considerations

underlay the discussion of section 3, where we give a detailed description of the effective

theory approach.

2.3 The infrared problem of perturbative calculations

Perturbative calculations of quantum correlators in the imaginary time formalism come

with intrinsic problems related to small momenta [31, 32]. The situation is especially

grief in the symmetric phase, where all known fields, with the exception of the Higgs

doublet, are massless. Formally, these IR divergences arise from the leading contributions of

8



2.3 The infrared problem of perturbative calculations

bosonic propagators inside loop integrals, i.e, from Matsubara zero-modes. The appropriate

expansion parameter for high-T perturbative expansions is ρ ∼ g2nB(E), where

nB(E) =
1

e−E/T − 1
(2.11)

is the Bose distribution function, arising from the thermal loop integrals, and E corresponds

to the energy of individual particles in the plasma [62, 63].

The distribution function obtains its largest contribution from the Matsubara n = 0

modes, and in particular, the largest expansion parameter for bosonic fields is ρ ∼ g2T/m,

indicating a breakdown of perturbation theory in the limit m→ 0. Conversely, all fermionic

and n 6= 0 bosonic propagators contain an effective thermal mass and are IR safe, even if the

fields in vacuum were massless. Perturbation theory for the superheavy scale, constructed

using the expansion parameter ρ ∼ g2/T 2, is then free of IR problems and valid for large

T . In the broken phase, an IR cutoff is provided by the gauge boson masses and the

SU(2) sector can thus be treated perturbatively. However, knowledge of the system in

the symmetric phase is indispensable for quantitative analysis of the EWPT, and the IR

problems have to be accounted for when performing perturbative calculations.

The breakdown of perturbative expansions can be postponed by identifying the IR-

divergent contributions and summing them together to infinite order in perturbation theory

[64, 65]. This is known as thermal resummation and has the effect of generating a dynamical

mass that dampens IR divergences in the problematic propagators. However, this method

of IR regularization can become cumbersome at higher loop orders, and resummation of

the light scale is especially problematic as the loop-corrected masses can be close to zero.

For these reasons, it is often more convenient to implement resummation via an effective

theory approach. We shall discuss resummation in detail in the context of dimensional

reduction in section 5.4.
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3 Dimensional reduction

The emergence of a thermal mass hierarchy suggests that at length scales parametrically

larger than 1/gT , both superheavy and heavy fields decouple from physics. The statement

of dimensional reduction is that there exists a mapping from the full 4d theory at high

temperature to a simpler Euclidean theory in three dimensions that only contains light

fields and procudes the same long-distance Green’s functions as the underlying theory.

Originally applied to QCD to study its high-T behavior [66, 67], it was realized in the 1990’s

that the same method of DR could be used to facilitate lattice studies of the EWPT [34, 35].

The resulting effective theory possesses 3d gauge invariance and is able to describe physics

of the EWPT at sufficient accuracy via the remaining scalar zero-modes. In practice,

construction of this mapping requires perturbative computation of several two- and four-

point functions. In this section, we describe how the dimensionally-reduced theory can

be constructed by an explicit matching of Green’s functions and discuss the conceptual

foundations of the method.

3.1 High-temperature effective theories

To illustrate the basic principles behind dimensional reduction, consider a general renor-

malizable gauge field theory in a 4d Euclidean space and write the fields in terms of their

Fourier components as in Eq. (2.6). When the expansions are inserted into the path in-

tegral, the partition function factorizes into integrals over zero-modes and modes with

ωn 6= 0. The Matsubara zero-modes contain no dependence on the imaginary time, and

the integration over τ can, in principle, be trivially carried out for the zero-modes. The

remaining field modes obtain thermal masses of order ∼ πT , and at a high temperature,

decouple from physics at distances larger than 1/T .

The bosonic n = 0 mode part of the action is then treated as an effective action for

a time-independent theory, obtained by integrating out the decoupled superheavy modes.

Before going into details about how this theory is, in practice, constructed, let us make a few

historical remarks about effective theory approaches to thermal field theory. The original

method of constructing high temperature dimensionally-reduced theories, described in [66],

consists of writing an effective action of the form

e−Seff =

∫
DψDφn6=0 e

−S (3.1)

and perfoming integrations over superheavy fields. The effective action is then to be cal-

culated perturbatively to the desired order in 1/T , dropping all induced higher-order op-

erators. As has been pointed out in Refs. [35, 68], a perturbative computation of Seff

constructed from Eq. (3.1) is problematic due to the emergence of non-local operators

caused by the integration over the superheavy fields. All diagrams integrated out in this

way consist solely of superheavy internal lines, ignoring diagrams that can additionally

contain light propagators. Since light fields interacting with superheavy fields can have

momenta on the scale of T , the effect of these diagrams cannot be expanded in terms of

p2/T 2, causing a breakdown of perturbation theory when attempting to calculate Seff.
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3.2 Construction of the heavy-scale theory by parameter matching

While this complication has been taken into account in more modern approaches (see

[69] for a review), we will follow the method introduced in Refs. [34, 35] that bypasses the

problem discussed above by using an explicit matching of the static Green’s functions of

the full and effective theories. Super-renormalizability of the effective 3d theory plays an

important role in construction of the parameter mapping and will be discussed in detail in

section 5.3. It is useful to carry this matching procedure out in two separate steps, first

mapping the full 4d theory to a 3d theory for heavy and light scales, and then integrating

the remaining heavy fields out of the theory. It is worth emphasizing that in this method,

fields are not actually ”integrated out” in the Wilsonian sense as the effective theory is

constructed simply by first writing down a field theory in three dimensions, and then

defining its parameters so that the effective vertices match those of the underlying theory.

Throughout the thesis, we shall describe DR with the assumption that the underlying

4d theory is an SM-like gauge theory in the unbroken SU(2)L×U(1)Y phase, unless stated

otherwise.

3.2 Construction of the heavy-scale theory by parameter
matching

To facilitate the upcoming discussion, we adopt a power counting scheme similar to that of

Ref. [35]. All relevant gauge and Yukawa couplings are assumed to scale as ∼ g, where g is

the SU(2) coupling, while scalar couplings scale as ∼ g2. The main purpose of this power

counting is to provide a systematic method for estimating the accuracy of dimensionally-

reduced effective theories. In Ref. [35], the scaling assumption g′ ∼ g3/2 was presumed

for the U(1) coupling; we choose to use the power counting g′ ∼ g to obtain slightly more

accurate matching relations. We shall perform DR perturbatively to O(g4) accuracy, with

the exception of Debye mass computations, which we only do at O(g2) accuracy.

Consider a finite-temperature theory containing only static bosonic modes. This theory

can possess 3d gauge invariance and contain gauge, ghost and scalar fields, which we identify

as the Matsubara zero-modes of the fields of an underlying 4d theory. The Lagrangian bears

no time dependence, and effectively corresponds to a 3d field theory. We can write the

action as

Seff =
1

T

∫
d3x L3d, (3.2)

where the prefactor 1/T follows from the integral over τ . The 3d theory is super-renormalizable

due to the reduced number of spacetime dimensions, providing a significant simplification

over the full theory. In order for this theory to be a true effective theory for the underlying

4d theory, we define its parameters so that to a given accuracy, the connected Green’s

functions of this theory match to the static Green’s functions of the full theory.

To see how this matching can be performed, consider the Higgs doublet in four dimen-

sions, with the potential V (φ) = m2φ†φ + λ(φ†φ)2 and with the mass being either heavy

or light. Suppose this theory has a 3d counterpart with the 3d fields φ3 corresponding to

the n = 0 modes of the 4d theory. The 3d scalar potential has the same form as in four

dimensions, but the mass and the coupling are different, denoted m3 and λ3. In the 3d

11



3.2 Construction of the heavy-scale theory by parameter matching

theory, we can write the renormalized two-point function for the field φ3 as

G̃−1
3 (p) = p2 +m2

3 −Π3(p2), (3.3)

where p is an external 3d momentum and the self-energy Π3(p2) contains loop corrections

from one-particle-irreducible (1PI) diagrams evaluated in the 3d theory1. Since the 3d

theory consists of heavy and light field modes only, Π3(p2) receives no corrections from

fields at the superheavy scale.

Next, consider the analogous quantity in the 4d theory, evaluated for the Matsubara

zero-modes:

G̃−1(P ) = P 2 +m2 −Π(P 2), (3.4)

where P = (0,p) is now the n = 0 external momentum in four Euclidean dimensions and

the Π-function receives correction from superheavy field modes in addition to the heavy

and light contributions. By requiring that the n = 0 mode corresponds to the scalar field

φ3 in the 3d theory, we can separate the self-energy into a contribution from zero-modes

only that is reproduced by the 3d theory, and an additional contribution that comes solely

from diagrams containing superheavy propagators. We write the self-energy as

Π(P 2) = Π3(p2) + Π̄(p2), (3.5)

where superheavy diagrams are contained in Π̄(p2). Strictly speaking, Π3 is reproduced

correctly only if resummation is implemented in the 4d theory. We shall postpone this

discussion until section 5.4.

Analyticity of Π̄(p2) is guaranteed by the fact that the superheavy scale is free of IR

problems, so for p � T it can be expanded in the external momentum p2. Following our

power counting scheme, already the p4 term in the expansion will be of order O(g6) if the

momentum is restricted to the heavy scale (p . gT ). Thus

Π̄(p2) = Π̄(0) + Π̄′(0)p2 +O(g6), (3.6)

where it is assumed that Π̄′(0) has been computed to O(g2) accuracy and Π̄(0) to O(g4)

accuracy, corresponding to one-loop and two-loop orders respectively.

We can now write the 4d two-point function as

G̃−1(P ) = [1− Π̄′(0)]
{
p2 + [m2 − Π̄(0)][1 + Π̄′(0)]−Π3(p2)

}
, (3.7)

which is equivalent to Eq. (3.4) up to terms of order O(g4). It is then straightforward

to match Eq. (3.7) against the two-point function in the effective theory, Eq. (3.3), by

demanding that the fields are related as

(φ†φ)3d =
1

T
[1− Π̄′(0)](φ†φ)4d (3.8)

1We find it convenient to define the self-energy with a minus sign. Π is then given directly by the sum

of 1PI diagrams [62].
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3.2 Construction of the heavy-scale theory by parameter matching

and that the mass in the 3d theory is given by

m2
3 = [m2 − Π̄(0)][1 + Π̄′(0)]. (3.9)

Note that we have absorbed the factor of 1/T multiplying the action into the normalization

of the 3d fields. The fields then have mass dimensionality of 1/2. A one-loop computation

of the correction to the field normalization suffices, as the product m2Π̄′(0) is then of O(g4)

when the 4d mass is heavy.

Other fields and couplings can be matched in a similar fashion, by calculating renor-

malized correlation functions to a given order in g and deriving matching relations as above.

O(g4) accuracy for mass parameters generally requires perturbative computation of self-

energy correlators to two-loop order, while for coupling constants, a one-loop calculation

of their respective four-point correlators is sufficient. For example, the quartic coupling λ3

in three dimensions can be matched by directly equating the effective vertices of the two

theories:

−2λ3T (δijδjk + δilδjk)(φ
†
iφjφ

†
kφl)3d = [−2λ+ Π̄4(0)](δijδjk + δilδjk)(φ

†
iφjφ

†
kφl), (3.10)

where Π̄4(0) is the renormalized one-loop correction from the superheavy modes to the four-

point function, and the SU(2) structure has been written down explicitly. The coefficient

T on the left-hand side follows from the definition of 3d fields. Taking into account the

field normalization factor in Eq. (3.8), the 3d coupling is then given to O(g4) by

λ3 = T

(
λ+ 2λΠ̄′(0)− 1

2
Π̄4(0)

)
. (3.11)

Note that for couplings appearing in more than one vertex, such as g, it is sufficient to

calculate the correction to just one of the relevant vertices, and the final matching relations

will not depend on this choice.

In some BSM theories, additional complications can arise due to reducible diagrams

that are not necessarily reproduced by the effective theory. Such situation arises in, for

example, models containing multiple Higgs doublets [54, 60]. If the second doublet is

integrated out as a heavy field, the two-loop diagram depicted in Fig. 1 is not reproduced

by the resulting 3d theory due to the internal heavy line connecting the two 1PI parts.

This diagram has to be explicitly included in the matching procedure for the connected

Green’s functions to match.

Since the matching procedure is performed perturbatively, usual constraints of pertur-

bation theory hold. In particular, DR becomes unreliable if the couplings of the full 4d

theory are large. The accuracy of the resulting effective theory can be estimated by cal-

culating higher-order correlation functions in the 4d theory and explicitly matching their

effect to the heavy-scale theory. This allows for a simple power-counting estimate for the

accuracy at which the static Green’s functions are reproduced. If the heavy-scale param-

eters are matched at O(g4) accuracy, the theory is able to reproduce the light and heavy

Green’s functions up to terms of order g4 [35]. We will discuss the omitted dimension-six

operators further in section 5.6.
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3.3 Induced adjoint scalars in the heavy-scale theory

Figure 1: Example of a reducible diagram that needs to be included when performing

matching. If the double line is a superheavy propagator, this diagram is not reproduced

by the effective theory.

3.3 Induced adjoint scalars in the heavy-scale theory

As an illustrative example of the matching procedure, let us continue the discussion of

section 2.2 about the temporal components of gauge fields. Dimensional reduction of vector

fields requires extra care. We would like to write an effective 3d theory that incorporates

effects of the temporal gauge field components, despite the fact that at most 3d gauge

invariance is expected in this theory. Broken Lorentz symmetry in the temporal direction

and the generation of a Debye mass suggest that the Matsubara zero modes of these

temporal components should behave not as gauge fields, but as massive scalars in the

effective theory.

Consider the Standard Model in the imaginary time formalism. Focusing especially on

the SU(2) field Aµ and ignoring the other gauge fields for simplicity, we write a heavy-scale

Lagrangian for a SU(2) temporal scalar adjoint field A0 in three dimensions as follows:

L(3)
temporal =

1

2
(DrA

a
0)2

3 +
1

2
m2
D(Aa0A

a
0)3 + h3(φ†φAa0A

a
0)3 +

1

4
κ3(Aa0A

a
0)2

3. (3.12)

Here mD is the Debye mass and the subscripts denote a 3d field or coupling. This is the

most general 3d scalar Lagrangian consistent with SU(2) gauge symmetry, and our claim

is that A0 can be directly matched to the zero-component of Aµ in the full 4d theory.

Following the matching procedure described above, we need to calculate the two-point

correlator of the temporal gauge field component A0 in the 4d theory at external momentum

P . To get a full O(g4) result, we would need the correlator at two-loop order. However, the

effect of the temporal scalars on DR in total is small compared to that of the superheavy

scale [35], so we shall be content with the much simpler one-loop result.

The self-energy correction has been calculated in Refs. [35, 61]. In order to counter

inevitable ultraviolet (UV) divergences, dimensional regularization inD = 4−2ε dimensions

has been used in conjunction with the MS renormalization scheme. The fully renormalized

result in the SM reads

(3.13)Aa0� Ab0 = −g2δab

[
T 2 11

6
− P 2

16π2

(
1 +

25

6
Lb − 4Lf )

)]
,

14



3.4 Effective theory for the light scale

where P = (0,p), and dependence on the renormalization scale Λ has been incorporated

into the shorthand notations

Lb = 2 ln
Λ

T
− 2[ln(4π)− γ], (3.14)

Lf = Lb + 4 ln 2, (3.15)

with γ being the Euler-Mascheroni constant.

According to Eq. (3.8), we then find that the corresponding field (Aa0)3 in the 3d theory

is given by

(Aa0A
a
0)3d =

(Aa0A
a
0)4d

T

[
1− g2

16π2

(
1 +

25

6
Lb − 4Lf )

)]
. (3.16)

The Debye mass can then be calculated from Eq. (3.9), with the 4d mass parameter being

zero. Note, however, that by restricting ourselves to O(g2) calculation of mD, the derivative

term can be neglected, as its contribution is of O(g4). The result is thus

m2
D = g2T 2 11

6
, (3.17)

showing explicitly that mD ∼ gT . Therefore, the temporal scalar (Aa0)3 is indeed a heavy

field, justifying its inclusion in the 3d theory.

3.4 Effective theory for the light scale

The effective 3d theory constructed above can be further simplified by integrating out the

heavy degrees of freedom. These include the temporal scalar fields and possible additional

heavy scalars that do not directly take part in the phase transition. The resulting theory is

a 3d theory containing only light field modes and is valid for momenta p ≤ g2T . It can be

constructed by performing parameter matching similarly as in the case of the heavy-scale

theory. For example, two-point function of a light scalar field is

G̃−1
3 (p) = p2 +m2

3 −Π3(p2)− Π̄3(p2), (3.18)

where Π̄3(p2) receives contributions from heavy fields and can be expanded in the external

momentum p. We may now write down the corresponding two-point function in the light-

scale theory,

G̃−1
3,light(p) = p2 + m̄2

3 −Π3(p2), (3.19)

and follow the recipe given in section 3.2. This results in the matching relations

(φ†3φ3)light = [1− Π̄′(0)](φ†3φ3), (3.20)

m̄2
3 = [m2

3 − Π̄(0)][1 + Π̄′(0)]. (3.21)

Couplings are, again, matched by comparing the effective vertices. Loop corrections

should be computed to O(g4
3) for consistency; the leading order matching results are then

of O(g4). In practice, this step of DR is often simpler to perform than the first step due to

the lack of superheavy field modes, as well as because of the super-renormalizable nature of

the 3d theories. We may again estimate the validity of this DR step by computing omitted

higher-order operators. Green’s functions computed in the light-scale theory are within

O(g3) of the respective 4d Green’s functions (see section 5.6).
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3.5 Phase transitions in the light-scale theory

3.5 Phase transitions in the light-scale theory

Of particular interest is the light-scale theory obtained by performing DR on the SM. After

the first step of DR, the only remaining heavy fields are the temporal scalars A0,B0 and C0.

Integrating them out leaves a theory containing only the 3d gauge fields and a light scalar

field that drives a phase transition in the effective theory. To be precise, this theory is only

valid near the transition, as the scalar field cannot be guaranteed to be light otherwise.

The scalar potential is

V (φ) = µ̄3(φ†φ) + λ̄3(φ†φ)2, (3.22)

where the fields and couplings are now understood to be those of the light scale theory.

Since this simpler theory is constructed to reproduce the same long distance physics as the

underlying 4d theory, it can be used to study various properties of the EWPT. In particular,

non-perturbative lattice simulations are more readily performed on the light-scale theory

than the full 4d theory due to the lack of fermions. However, we emphasize that the utility

of DR is limited to studying time-independent quantities, since the effective theories are

completely static with respect to the temporal coordinate.

In the context of non-perturbative EWPT studies, a good approximation to the SM is

given by a SU(2)+ Higgs theory, as the effect of the U(1) field on the transition is small [37].

Notably, the dimensionally-reduced form of this theory only contains three parameters that

the transition can depend on: the gauge coupling ḡ3, the scalar mass µ̄3 and the quartic

coupling λ̄3. After dimensional reduction, the full light scale Lagrangian reads

Llight =
1

4
F arsF

a
rs + (Drφ)†(Drφ) + µ̄3(φ†φ) + λ̄3(φ†φ)2, (3.23)

where Drφ = (∂r − iḡ σ2 ·Ar)φ is a spatial covariant derivative and Frs is the SU(2) field

strength tensor. Note that we have suppressed irrelevant ghost and gauge-fixing terms.

Due to the matching procedure used to construct the theory, the parameters ḡ3, µ̄3, λ̄3

are dimensionful and have intrinsic temperature-dependence. It is convenient to parametrize

the theory using the dimensionless quantities

x ≡ λ̄3

ḡ2
3

, y ≡ µ̄2
3

ḡ4
3

. (3.24)

At tree-level, transition from the symmetric to the broken phase occurs when the squared

mass parameter changes sign. The mass obtains temperature dependence from the match-

ing procedure and in general, has the form

µ̄2
3 = m2 + Γ(T ), (3.25)

withm being the mass in the underlying full theory. Γ(T ) is the thermal correction obtained

by integrating out superheavy and heavy fields. The tree-level transition occurs when the

4d mass is cancelled by the thermal effects encoded in Γ(T ), causing the minimum to

shift from its original location at φ = 0 to a non-zero field value. The actual critical line

is not exactly at y = 0 due to radiative corrections [37], but we shall approximate the
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3.5 Phase transitions in the light-scale theory

critical point to be that at which the y parameter changes sign. It is then possible to find

the critical temperature by varying the temperature inputted into the matching relations.

However, in order to obtain additional information about the transition, such as the latent

heat or the nucleation rate, further analysis using either perturbative or lattice methods is

required.

The theory defined in Eq. (3.23) has been studied non-perturbatively on the lattice in

Ref. [36], where it was found that the transition is of first order if 0 < x . 0.11 at the

critical temperature, while for x & 0.11, the transition is of a crossover type, meaning that

all derivatives of thermodynamic quantities are continuous. Furthermore, the transition

becomes increasingly stronger the closer x is to zero. If x < 0, the potential is no longer

bounded from below and the effective theory breaks down. This can happen if the pertur-

bative construction of the matching relations has failed, in particular, when the omitted

higher-dimension operators are large enough to cause considerable errors (see section 5.6).

DR accompanied with the above lattice results was applied to the Standard Model in

Ref. [35]. A remarkable finding is that in the SM, the electroweak phase transition is of

first order only if the Higgs mass has an unphysically small value of mH . 75 GeV, and is

a crossover for larger mH . The endpoint at which the transition turns into a crossover is

not achievable perturbatively [44], highlighting the importance of lattice approaches. We

also stress that the DR procedure is free of the IR problems that usually plague high-T

perturbation theory. This is because the IR divergences are caused by massless propagators

of Matsubara zero-modes, but we have only performed integrations over superheavy and

heavy field modes, which are IR finite. The problematic zero-modes can then be treated

completely non-perturbatively on the lattice. There is one complication arising at two-loop

level where diagrams can contain mixed n = 0 and n 6= 0 propagators, and resummation

needs to be applied. The resummations are, however, easy to implement for O(g4) DR,

and the perturbative expansions remain IR finite (for details, see section 5.4).

We emphasize that the light-scale theory in Eq. (3.23), and the existing lattice results

for it, are also useful in the study of the EWPT in scalar extensions of the SM. If the

additional scalar fields appearing in the theory are sufficiently heavy, corresponding to

masses of order ∼ gT or larger, it is possible to integrate them out in either the first or

the second step of DR. This results in a light-scale theory identical to the one discussed

in this section – neglecting the U(1) field – with modified matching relations, and a non-

perturbative analysis can be carried out without the need for new simulations. Note,

however, that dynamical information is lost when fields are integrated out, and the effective

theory of Eq. (3.23) is unable to describe phase transitions in which more than one light

scalar take part in the symmetry breaking.

Finally, we point out that it is also possible to apply perturbative methods to the 3d

theories. The downside of this approach is that by construction, the effective theories pos-

sess the same IR behavior as the underlying theory, and an effective potential constructed

from the effective theory will thus suffer from the same IR problems as a similar approach

in four dimensions. However, since proper resummations for the heavy and superheavy

scales have been implemented when constructing the effective theories, we can expect bet-

ter convergence near the phase transition than what is achieved in the full theory [70]. A
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3.5 Phase transitions in the light-scale theory

3d perturbative analysis may therefore be useful for improving the results obtained from

the corresponding 4d effective potential. This has been performed for the SM in Ref. [34].
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4 The triplet Higgs model

For the rest of this thesis, we shall concentrate on the triplet extension of the SM, abbrevi-

ated ΣSM. It is a model where, in addition to the usual Higgs doublet, a real-valued scalar

field Σ belonging to the adjoint representation of the SU(2) group is introduced. New par-

ticle content in the ΣSM includes a neutral scalar Σ0 and a charged scalar pair Σ±. What

makes the triplet model particularly interesting in the study of baryogenesis is its ability

to produce a phase transition occuring in two steps [52]. The first step consists of isospin

symmetry breaking for the triplet field, while in the second step, there is a transition from

the isospin breaking phase to the phase where the Higgs doublet obtains a vacuum expeca-

tion value. It is, of course, possible that the transition only occurs in the doublet direction.

We will identify the regions of parameter space where a two-step transition is possible, and

derive a dimensionally-reduced effective theory that can be used to study the EWPT in

this model. For numerical analysis, we limit ourselves to the simpler single-step case.

4.1 Full structure of the theory

We write the full symmetric-phase Lagrangian in Euclidean space as

L = Lgauge + Lghost + LGF + Lfermion + LYukawa + Lscalar, (4.1)

where the scalar sector reads

Lscalar = (Dµφ)†(Dµφ) +
1

2
(DµΣa)(DµΣa) + V (φ,Σ) (4.2)

and the potential is given by

V (φ,Σ) = −µ2
φφ
†φ− 1

2
µ2

ΣΣaΣa + λ(φ†φ)2 +
b4
4

(ΣaΣa)2 +
a2

2
φ†φΣaΣa. (4.3)

Here φ is the Higgs doublet and Σ is the SU(2) triplet. Collider experiments at the

Large Hadron Collider (LHC) set strong constraints on first-order EWPT scenarios in BSM

models involving scalars transforming non-trivially under SU(3) [71, 72]; we therefore omit

gluon-Σ couplings. Furthermore, we choose to set the hypercharge of the triplet to zero,

so that its covariant derivative reads DµΣa = ∂µΣa + gεabcAbµΣc.

The potential possesses a global symmetry under SO(3)Σ. Adding terms of the form

φ†(ΣaT a)φ, where T a are the SU(2) generators, would break this rotational symmetry and

induce a non-zero vev for the neutral triplet component in the broken phase [73]. However,

the triplet vev is strongly restricted by electroweak precision tests and has negligible effect

on the EWPT in the its allowed value range [52], so we have chosen to discard the O(3)Σ

breaking terms from the potential. Furthermore, in Ref. [74] it has been pointed out that

the neutral BSM scalar can fit the role of a cold dark matter (CDM) candidate in the

absence of a vev. Note that this scalar potential is also symmetric under cyclic group Z2

transformations:

φ→ −φ, Σ→ −Σ. (4.4)
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4.2 Triplet model phenomenology

We use a simplified Yukawa sector in which only the top quark is coupled to the Higgs

doublet, as the other Yukawa couplings are small and insignificant for EWPT. Furthermore,

possible fermion couplings to the triplet field would lead to right-handed neutrinos and are

generally strongly restricted by experiments [75], so we omit them. Yukawa sector of the

Lagrangian reads

LYukawa = gY (qtφ̃t+ tφ̃†qt), (4.5)

where qt is the left-handed top quark.

Rest of the theory has the same form as in the SM, but for clarity, we write it down

explicitly as well. The gauge fields Aaµ, Bµ, C
α
µ are contained in the field strength tensors

Gaµν , Fµν , H
α
µν . Their respective ghost fields are ηa, ξ, ζα, and the gauge sector reads

Lgauge =
1

4
GaµνG

a
µν +

1

4
FµνFµν +

1

4
Hα
µνH

α
µν , (4.6)

Lghost = ∂µη̄
aDµη

a + ∂µξ̄
a∂µξ + ∂µζ̄

αDµζ
α, (4.7)

LGF =
1

2ξ
(∂µA

a
µ)2 +

1

2ξ
(∂µBµ)2 +

1

2ξ
(∂µC

α
µ )2. (4.8)

We choose to express the intermediate diagrammatic results for parameter matching using

the Landau gauge ξ = 0, but emphasize that the final DR relations are gauge invariant. All

parameters introduced here are to be understood as the bare parameters; we will discuss

renormalization in section 5.

New vertices induced by the triplet and their respective Feynman rules have been listed

in Appendix A.

4.2 Triplet model phenomenology

In order to study zero-temperature vacuum structure of the scalar sector, we parametrize

the fields as

φ =

(
ω+

1√
2
(h+ iz)

)
, Σ =

σ1

σ2

σ3

 , (4.9)

where the physical neutral scalars are h and σ3. The potential possesses multiple stationary

points, which can be identified by imposing extremization conditions in neutral component

directions,

∂V

∂h
=
∂V

∂σ3
= 0, (4.10)

with other components set to zero. We find nine solutions, but due to Z2 symmetry, only

four of these correspond to distinct extrema. Apart from the symmetric phase vacuum at

h = 0, σ3 = 0, the extrema are given by

(h, σ3) = (v, 0) (4.11)

(h, σ3) = (0, x), (4.12)

(h, σ3) =

(√
2a2µ2

Σ − 4b4µ2
φ

a2
2 − 4b4λ

,

√
2a2µ2

φ − 4λµ2
Σ

a2
2 − 4b4λ

)
, (4.13)
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4.2 Triplet model phenomenology

where v = µφ/
√
λ is the usual SM vev and x = µΣ/

√
b4. The first choice corresponds to

the standard vacuum of broken electroweak symmetry, given that λ > 0. Since we restrict

the triplet field to real values, the solution σ3 = x is only meaningful if µ2
Σ > 0.

Mass spectrum in the (h, σ3) = (v, 0) vacuum is found by shifting h → h + v and

diagonalizing the potential. In the absence of aforementioned O(3)Σ breaking terms, there

is no mixing between mass eigenstates of φ and Σ, and the calculation is straightforward.

The four degrees of freedom of φ become three Goldstone bosons and the physical Higgs

boson of mass

m2
H = 2µ2

φ = (125 GeV)2. (4.14)

The triplet sector is already diagonal with degenerate mass eigenvalues,

m2
Σ = −µ2

Σ +
1

2
a2v

2. (4.15)

The neutral scalar is given by Σ0 = σ3 and σ1, σ2 mix to form the charged scalars: Σ± =
1√
2
(σ1 ∓ iσ2). Note that at tree level, all three BSM particles have an equal mass of mΣ.

However, loop corrections are different for the neutral and charged scalars, the latter of

which obtains additional contributions from its interactions with photons. This leads to a

slight splitting of the physical masses by roughly M±Σ −M0
Σ = 160 MeV.

Stability of the EW vacuum requires that (h, σ3) = (v, 0) gives the global minimum,

with real mass eigenvalues. A direct calculation shows that the stationary point h 6=
0, σ3 6= 0 does not correspond to a physically meaningful local minimum. Provided that

λ > 0, a stability condition can then be found by requiring that V (v, 0) < V (0, x), which

is satisfied for b4 > 0 if

1

2
m2
Hv

2 >
1

b4

(
m2

Σ −
1

2
a2v

2
)2

or µ2
Σ < 0. (4.16)

If the latter inequality holds, the stationary point in the σ3 direction is achieved only with

complex field values and is ruled out for a real-valued Σ. Furthermore, for the discussion

of a two-step phase transition, it is useful to identify regions of the parameter space where

the solution (h, σ3) = (0, x) is a local minimum of the potential. This requires2

µ2
Σ > 0 and

1

2
m2
H <

a2

2b4

(1

2
a2v

2 −m2
Σ

)
. (4.17)

In particular, the EW vacuum is always stable in the region of a single-step transition.

Finally, measurements of decay widths in collider experiments set additional con-

straints on the ΣSM parameters. In particular, presence of the charged triplet modifies

the observable Higgs-diphoton branching fraction ΓH→γγ [52, 73, 76]. In the SM, leading-

order contributions to this process come from top quark and W boson loop diagrams. The

branching fraction is modified by the portal coupling a2, and the change in ΓH→γγ can be

calculated. For sufficiently large values of the triplet mass, small deviations in the branch-

ing fraction are currently not excluded by experiments [52, 73]. This may change once the

2Note that in Ref. [52], there are misprints in both vacuum stability and second minimum conditions.
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4.3 Two step EWBG in the ΣSM

LHC enters the high luminosity phase, which is expected to allow the determination of

ΓH→γγ with precision of ∼ 5− 10% [77]. Furthermore, the charged triplet can decay into

Σ0 via pion emission, which would leave signatures in charge tracks [73]. Due to the short

lifetime of the neutral triplet however, no significant restriction have yet been obtained

for this decay [78, 79], and the ΣSM parameter space remains relatively unconstrained by

experiments.

4.3 Two step EWBG in the ΣSM

In the SM, EWPT takes place when the Higgs doublet obtains a non-zero vacuum expecta-

tion value. When additional scalars are introduced, it becomes possible that the transition

is driven by multiple scalars instead of just the SM Higgs. For two scalars transforming

non-trivially under the SU(2)L group, this scenario is usually modeled in two steps [80].

First, the BSM field undergoes a phase transition by generating a non-zero vev. If this

transition is of first order, bubbles of the new phase are formed and baryon creation via

sphaleron processes becomes possible. In the second step, the SM doublet settles to its vev

of v = 246 GeV. The electroweak symmetry is broken already during the first step, causing

considerable suppression of B violation in the second step [81]. It is thus preferable to have

the baryon excess generated in the first step. For successful baryogenesis, re-excitement of

the SM sphalerons in the later step needs then to be avoided, as these could negate the

non-zero baryon number of the first step.

In the ΣSM, this scenario has been considered perturbatively in Ref. [52]. In the

parameter space spanned by a2, b4 and mΣ, there exists a region of stable EW vacuum

where the potential additionally possesses a local minimum in the Σ direction. When

thermal corrections to the potential are taken into account, this triplet minimum can

become energetically favorable over the symmetric phase vacuum, and the universe can

then undergo a transition into the minimum at (h, σ3) = (0, x). As the temperature

decreases, the global minimum shifts to the EW vacuum and an another transition occurs.

In the model considered in Ref. [52], the triplet vev is relaxed to zero during the second

transition, allowing the neutral component become a CDM candidate. Furthermore, it was

demonstrated that a first-order transition is achievable for ΣSM couplings within current

phenomenological bounds. The perturbative analysis also suggests that in the region of

a viable two-step transition, the second step occurs via a strongly first-order transition.

This is favorable for baryogenesis, as the expanding bubble walls allow for CP violating

scattering processes, preventing a baryon washout by the SM sphalerons. As the existence

of a metastable minimum requires µ2 > 0, a single-step transition is expected in regions

not satisfying this condition.

Quantitative estimates concerning the baryon excess produced during a two-step tran-

sition in the ΣSM have been left for a future study. For this, non-perturbative methods

become essential. We will now apply DR to the ΣSM and describe the resulting 3d theories

that can be used for lattice studies of this model.
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4.4 Effective 3d theories for the ΣSM

4.4 Effective 3d theories for the ΣSM

Dimensionally-reduced effective theories for heavy and light scales are constructed as de-

scribed in section 3, by calculating the relevant correlation functions to order O(g4) and

matching the static Green’s functions to those of the underlying theory. Conceptually, DR

is made possible by the emergence of a thermal scale hierarchy in the effective field masses;

therefore, a scaling assumption for the triplet mass parameter µΣ is in order. If the triplet

is sufficiently light, its zero-mode will remain in the final effective theory together with that

of the doublet field, and this theory can describe a two-step phase transition. However, if

the triplet belongs in the ”superheavy” or ”heavy” category, we may integrate it out in

first or second step of DR and obtain the light-scale theory of Eq. (3.23). We may study

this case by using the existing lattice results of Ref. [36].

For concreteness, let us write down the 3d theories for different choices of µΣ scaling.

In a pure SM theory, the field driving the EWPT is the Higgs doublet φ, and therefore

its mass parameter is assumed to scale at least as µφ ∼ gT . After integrating out the

superheavy field modes, we obtain a Euclidean 3d theory defined as

L(3) = L(3)
gauge + L(3)

ghost + L(3)
GF + L(3)

scalar + L(3)
temporal, (4.18)

with the scalar section

L(3)
scalar = (Drφ)†(Drφ) +

1

2
(DrΣ

a)2 + V (φ,Σ), (4.19)

V (φ,Σ) = µ2
φ,3φ

†φ+
1

2
µ2

Σ,3ΣaΣa + λ3(φ†φ)2 +
b4,3
4

(ΣaΣa)2 +
a2,3

2
φ†φΣaΣa. (4.20)

The index r runs from 0 to 3. In order to simplify the notation, we have denoted the 3d

fields, defined as in Eq. (3.8), with the same symbol as their 4d counterparts, while 3d

couplings are denoted by a subscript. We have now assumed that the triplet is heavy. In

the case of a superheavy triplet, even its zero mode has to be integrated out in the first

step of DR and so the resulting 3d theory only contains the doublet field. We will not

consider this scenario in this thesis; see, however, appendix B of Ref. [53].

The temporal scalars Aa0, B0, C
α
0 are contained in L(3)

temporal, which reads

L(3)
temporal =

1

2
(DrA

a
0)2 +

1

2
m2
D(Aa0A

a
0) +

1

2
(∂rB0)2 +

1

2
m′D

2
B2

0 +
1

2
(∂rC

α
0 )2 +

1

2
m′′D

2
(Cα0 C

α
0 )

+
1

4
κ3(Aa0A

a
0)2 +

1

4
κ′3B

4
0 +

1

4
κ′′3A

a
0A

a
0B

2
0 + h3(φ†φAa0A

a
0) + h′3(φ†φB2

0)

+ h′′3B0(φ†Aa0σ
aφ) + δ3(ΣaΣa)(Ab0A

b
0) + δ′3(ΣaAa0)2 + ω3C

α
0 C

α
0 φ
†φ, (4.21)

where σa are the Pauli matrices. Performing parameter matching for the couplings κ3, κ
′
3, κ
′′
3

one finds that their leading-order results are ∼ g4, so their effects to O(g4) DR are always of

higher order [53, 60]. Furthermore, we have suppressed operators of the form Aa0A
a
0C

α
0 C

α
0 ,

B2
0C

α
0 C

α
0 and (Cα0 C

α
0 )2, which only contribute at higher orders in our power counting. We

have also simplified the SU(3) sector by omitting the gluon coupling to Cα0 . This is because

spatial gluons do not couple to the scalars φ,Σ, and thus do not contribute to light-scale
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4.4 Effective 3d theories for the ΣSM

matching. Other parts of the Lagrangian are analogous to those defined in section 4.1,

with the couplings and fields replaced by their respective 3d counterparts.

In the second step of DR, a light-scale theory is constructed by integrating out the

heavy temporal scalars. Near the transition, mass corrections from the first DR step force

the doublet mass parameter µφ,3 to be light. If a similar cancellation occurs for the triplet,

it is justified to include Σ in the light-scale theory as well. We then obtain the theory

L̄(3) = L̄(3)
gauge + L̄(3)

ghost + L̄(3)
GF + L̄(3)

scalar, (4.22)

constructed as described in section 3.4. The scalar sector reads

L̄(3)
scalar = (Drφ)†(Drφ) +

1

2
(DrΣ

a)2 + µ̄2
φ,3φ

†φ+
1

2
µ̄2

Σ,3ΣaΣa

+ λ̄3(φ†φ)2 +
b̄4,3
4

(ΣaΣa)2 +
ā2,3

2
φ†φΣaΣa. (4.23)

This theory is able to describe a two-step phase transition, since the triplet field is included

dynamically. We plan on simulating this theory on the lattice in the near future in order

to make non-perturbative statements about the effect the triplet field has on transition

dynamics.

However, given the amount of effort required for such simulations, we shall now focus

on the simpler case in which the triplet is integrated out as a heavy field. This modifies

the matching relations for the light-scale theory, and scalar potential in the final theory is

then given by

V (φ) = µ̂2
φ,3φ

†φ+ λ̂3(φ†φ)2. (4.24)

Effects of the triplet field are incorporated into the matching relations for the fields and

parameters. We then simplify this theory further by discarding SU(3) and U(1) gauge

fields which have little effect on the transition, obtaining the effective theory discussed in

section 3.5. Lattice results for this theory are known, and we can obtain non-perturbative

results in the limit where the triplet field only affects transition dynamics via its interactions

with the doublet. The transition then occurs in a single step driven by the doublet field,

from the 〈φ〉 = 0 symmetric phase directly to the EW vacuum 〈φ〉 = 246 GeV. In the SM,

this transition is of a crossover type. However, the 3d parameters are now modified by the

triplet field in a way determined by the matching relations, and the transition may become

strong enough to be of first order in some regions of the 4d parameter space.

Matching relations in each of these cases can be found in the main paper [53], while

intermediate results of a diagrammatic calculation of the relevant correlation functions are

listed in Appendices B and C of this thesis.

24



5 Technical details of dimensional reduction of the
ΣSM

While the construction of the effective theories described above is, in principle, straight-

forward, there are subtleties that we previously overlooked when describing the matching

procedure. In order to produce sensible mappings to the effective 3d theories, a proper

renormalization of the 4d theory is required. This subsection is devoted to discussion of

technical subtleties related to renormalization of both the full underlying theory as well as

the effective theories. Furthermore, the importance of resummation is discussed in detail.

We address numerical uncertanties related to dimensionally-reduced effective theories and

perform a simple error estimate that can provide insight into the reliability of our results.

It is worth pointing out that the techniques presented here can readily be generalized to

other scalar extensions of the SM as well.

5.1 One-loop renormalization of the 4d theory

Let us begin with the first step of DR and seek to integrate out the superheavy field modes.

As described in section 3.2, calculation of several two and four-point functions is needed to

construct parameter mappings to the 3d theory. Remarkably, it is enough to compute only

the contributions from superheavy Matsubara modes, as the diagrams containing solely

light and heavy modes are reproduced by the 3d theory and need not be matched. For

now, we will assume that the triplet field is heavy; superheavy contributions then come

from bosonic n 6= 0 modes and all fermionic modes.

We apply the MS renormalization scheme in D = 4 − 2ε dimensions and define the

bare fields and parameters as

φi,(b) = Z
1/2
φi
φi = (1 + δZφi)

1/2φi (for gauge, fermion and scalar fields), (5.1)

gi,(b) = Λε(gi + δgi) (for gauge couplings) (5.2)

and

yt,(b) = Z
− 1

2
φ Z

− 1
2

q Z
− 1

2
u Λε(gY + δgY ), λ(b) = Z−2

φ Λ2ε(λ+ δλ), (5.3)

b4,(b) = Z−2
Σ Λ2ε(b4 + δb4), a2,(b) = Z−1

φ Z−1
Σ Λ2ε(a2 + δa2), (5.4)

µ2
φ,(b) = Z−1

φ (µ2
φ + δµ2

φ), µ2
Σ,(b) = Z−1

Σ (µ2
Σ + δµ2

Σ). (5.5)

Here Λ is the renormalization group (RG) scale, and its inclusion in bare coupling definitions

makes the renormalized couplings dimensionless. Technically, all O(g4) Feynman diagrams

then come with a factor of Λ4ε, but we absorb it into the integration measure by introducing

the shorthand notation ∫
p
≡
(
eγΛ2

4π

)ε ∫ ddp

(2π)d
, (5.6)

where d = 3 − 2ε. Note that due to broken Lorentz invariance, dimensionality of the

temporal direction is exactly one, while the spatial space is d-dimensional. As usual in

dimensional regularization, all integrals encountered are at most logarithmically divergent.

25



5.1 One-loop renormalization of the 4d theory

O(g4) matching relations for the coupling constants are obtained from one-loop cor-

rections to their respective vertices. For example, matching of the SU(2) gauge coupling g

is readily performed by calculating the φ†φAaµA
b
ν correlator. It contains the ring diagram

depicted in Fig. 2, which is proportional to the sum-integral∫∑
P

1

(P 2 + µ2
Σ)2

. (5.7)

As pointed out in section 2.1, we can now separate the above expression into a zero-mode

part and a sum-integral over all n 6= 0 modes. The zero-mode contribution is reproduced

by the 3d theory and is not needed for the construction of the DR mapping. For heavy

µΣ, we may simplify these integrals by expanding in µ2
Σ/T

2 ∼ g2 in the n 6= 0 part:∫∑′

P

1

(P 2 + µ2
Σ)2

=

∫∑′

P

1

P 4
+ µ2

Σ

∫∑′

P

1

P 6
+O(g8), (5.8)

where it is sufficient to only pick the zeroth-order term, since the diagram itself is propor-

tional to g4 and thus any positive powers of µΣ lead to corrections beyond O(g4). Note that

a similar expansion is not allowed for zero-mode propagators as each term in the resulting

expansion would vanish in dimensional regularization, leading to a wrong result [63].

Figure 2: Ring diagram containing a Σ loop. For spatial Aµ, this diagram cancels against a

triangle diagram at O(g4), and the temporal part contributes only to the matching relation

for the φ−A0 portal coupling h3.

Under the assumption that all mass parameters appearing in the theory scale at least

as ∼ gT , we can follow the recipe introduced above to reduce all other integrals appearing

in the four-point function to bosonic sum-integrals of the form

I4b
α,β,δ ≡

∫∑′

P

(P 2
0 )β(p2)δ

(P 2)α
, (5.9)

which can further be simplified using common algebra (see the list of integrals in Ref. [60]).

A direct computation then shows that for spatial Aµ, the diagram in Fig. 2 cancels against

a triangle diagram of the same type at O(g4). Two particularly important one-loop sum-

integrals are [35, 61]

I4b
1 ≡

∫∑′

P

1

P 2
=
T 2

12

{
1− εLb − 4ε

(
c+ ln

3T

Λ

)}
+O(ε2), (5.10)

I4b
2 ≡

∫∑′

P

1

P 4
=

1

16π2

(
1

ε
+ Lb

)
+O(ε), (5.11)
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5.1 One-loop renormalization of the 4d theory

where logarithms of Λ are contained in Lb as defined in Eq. (3.14), and we have denoted

c ≡ 1

2

(
ln

(
8π

9

)
+
ζ ′(2)

ζ(2)
− 2γ

)
. (5.12)

The O(ε) terms are important for two-loop renormalization of two-point functions where

products of the above sum-integrals appear. Note in particular that at one-loop, logarithms

of the form ln(Λ2/T 2) always come with the same coefficient as the corresponding UV-

divergent 1/ε term. This is a reflection of the fact that UV and IR divergences cancel each

other in dimensional regularization, as the role of an IR regulator is played here by T . The

counterterm δg is defined, as usual, to exactly cancel the 1/ε poles arising from these sum-

integrals, and the renormalized four-point function is what enters the matching relations.

Note, however, that an additional computation and renormalization of the respective two-

point functions are needed to obtain the correct field normalization relations.

In the ΣSM, δg is given by

δg = − g3

16π2ε

(
41

12
− 2

3
Nf

)
, (5.13)

where Nf = 3 is the number of fermion families and we have separated it from the bosonic

contributions for convenience. Using this, one is able to find the corresponding β-function

by requiring that the bare parameter g(b), defined in Eq. (5.2), is independent of Λ. The

O(g4) result reads

β(g) = − g3

16π2

(
41

6
− 4

3
Nf

)
. (5.14)

The β-functions are needed to account for running when studying dimensionally-reduced

effective theories. A full list of one-loop counterterms in the ΣSM is presented in Ap-

pendix D, while the β-functions can be found in the main paper [53].

After calculating the relevant correlator functions in the ΣSM, one finds the O(g4)

matching relation for g3:

g2
3 = g(Λ)2T

[
1 +

g2

16π2

(
41

6
Lb(Λ)−

4Nf

3
Lf (Λ) +

2

3

)]
. (5.15)

Running of g4 is of higher order and we have simplified the notation to reflect this fact.

Note that the total coefficient of the ln(Λ2/T 2) term is exactly the renormalization group

equation β(g2) = 2gβ(g) with its sign flipped. This is because the only UV-divergent

sum-integral we face at one-loop level is I4b
2 , and therefore all emerging logarithmic Λ

dependence is equal to the 1/ε poles. What this implies is that any Λ dependence in the

O(g2) term will cancel against the logarithmic term, rendering the 3d coupling independent

of Λ at O(g4). This is a general result that reflects the super-renormalizable nature of the

effective theory, and applies to all coupling constants in the matched theory [34, 35, 82].

A remarkable result of thermal field theory is that a Wick rotation from vacuum to an

Euclidean finite-temperature theory preserves the ultraviolet behavior of the theory. The

omitted zero-mode integrals at one-loop level are all UV-finite (see section 5.3), implying
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5.2 Two-loop mass parameter matching

that the one-loop counterterms calculated from the superheavy diagrams are sufficient

to renormalize the corresponding vacuum theory as well. This comes in handy when

considering loop corrections to relations between physical and MS parameters, discussed

in section 5.5.

5.2 Two-loop mass parameter matching

Matching becomes more complicated at two-loop level. It is still useful to decompose

bosonic sum-integrals into purely zero-mode contributions and n 6= 0 mode sum-integrals,

but one also gets mixed terms:∫∑
P,K

= T 2

∫
p,k

+T

∫∑′

P

∫
k

+T

∫∑′

K

∫
p

+

∫∑′

P,K
. (5.16)

Again, the zero-mode term proportional to T 2 corresponds to a 3d integral and has a direct

counterpart in the effective theory, while the terms linear in T turn out to be irrelevant for

parameter matching (for details, see section 5.4). Finally, the last contribution consisting

only of non-zero mode momenta is what enters the matching relations for mass parameters.

The total two-point function is renormalized by O(g4) counterterm diagrams containing

one-loop counterterms. However, at two-loop level even the purely zero-mode 3d integrals

can be UV divergent, and one would find an excess of logarithmic divergence if attempting

to renormalize only the supermassive contributions. This leftover divergence cancels exactly

against the remaining UV divergence in the zero-mode parts, and the total correlator is

thus UV finite. In fact, this observation allows one to find the O(g4) result for the mass

counterterm of the effective 3d theory in terms of parameters of the 4d theory.

Integrals relevant for two-loop DR can be found in Ref. [60], and remarkably, all n 6= 0

mode contributions can be expressed as products of the integrals in Eq. (5.10), from which

we can deduce the UV structure of the scalar self-energy functions. Two-loop diagrams, as

well as one-loop counterterm diagrams, therefore produce logarithms of the type ln(3T/Λ)

that were not present in one-loop calculations. These logarithms correspond to two-loop

running, and their RG-scale dependence cannot be canceled by one-loop β functions.

Renormalized mass parameters of the heavy scale theory are obtained from Eq. (3.9).

One-loop diagrams now produce O(g4) terms proportional to mass squared when the in-

tegrals are expanded as in Eq. (5.8); these lead to logarithmic terms of the form µ2Lb(Λ),

where µ denotes a general heavy mass. Similar terms are also produced by the one-loop

field normalization correction Π̄′(0), which is proportional to I4b
2 on dimensional grounds.

As in coupling constant matching, this implies that the one-loop logarithmic structure

corresponds to the UV divergence of these terms, and the Λ dependence is cancelled by

running of the tree-level term. Finally, note that Lb cancels in the product I4b
1 I

4b
2 . This

means that terms of the form T 2Lb emerge from counterterm diagrams and O(g4) parts

of one-loop diagrams, but not from two-loop diagrams. We can therefore write down the
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5.2 Two-loop mass parameter matching

general structure for the matched mass parameters:

µ2
3(Λ) = −µ2(Λ) +

(
T 2f1(Λ)

)
O(g2)

+

(
β(µ2)Lb(Λ) + T 2

{
f2 + f3Lb(Λ) + f4

(
ln

3T

Λ
+ c

)})
O(g4)

, (5.17)

where the fi are functions of the couplings and only the running of f1 is of O(g4), canceling

exactly the Λ dependence of the T 2Lb terms originating from one-loop diagrams. Note the

that we have accounted for the sign difference in mass parameter definitions.

As opposed to the 3d couplings, µ2
3 by itself will generally not be Λ invariant. This is

because of the two-loop logarithms discussed earlier, and reflects the fact that 3d theory

requires renormalization at two-loop level. However, the 3d bare mass parameter, defined

as

µ2
3,(b) = µ2

3 + δµ2
3 (5.18)

is independent of the renormalization procedure of either theories and ought to be RG

invariant. This statement is physically justified, as the bare mass parameter corresponds

to a screening mass similar to the Debye masses and bears physical meaning [83]. This

implies that running of the counterterm δµ2
3 must match that of the ln(3T/Λ) terms.

The counterterm can be calculated to O(g4) accuracy in the 4d theory either by directly

computing the contributions from Matsubara zero modes, or by looking at the leftover

divergence in the superheavy contributions. It is of the form

δµ2
3 =

T 2

4ε
∆4d, (5.19)

where ∆4d is an O(g4) function of the couplings. Naively, one might think that its running is

of higher order, but this is only true in the limit ε→ 0. To be more specific, the ε-dependent

scaling of the couplings in Eq. (5.3) induces O(ε) running: For gauge and Yukawa couplings

we find Λ d
dΛgi ∼ −εgi + O(ε0), while the quartic couplings run as Λ d

dΛλ ∼ −2ελ + O(ε0).

The O(g4) running of δµ2
3 is therefore

Λ
d

dΛ
δµ2

3 = −T 2∆4d, (5.20)

and Eq. (5.18) is RG invariant at O(g4) if running of the two-loop logarithms in Eq. (5.17)

is cancelled by this running of the counterterm, i.e, if ∆4d = −f4. This can be verified by

directly calculating the zero-mode contributions. By doing so, one indeed finds that the

bare 3d mass is independent of Λ by construction.

Strictly speaking, DR is only valid when the logarithmic corrections are small [34, 82].

With the choice Λ = 4πTe−γ ∼ 7T , all one-loop logarithms can be set to zero. We shall

next discuss how super-renormalizability of the effective theory can be used to increase the

accuracy of two-loop matching.
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5.3 Renormalization of the effective theories

5.3 Renormalization of the effective theories

UV divergences in the 3d theories arise at two-loop level and renormalization of the heavy-

scale theory is required for O(g4) mass parameter matching to the light-scale effective

theory. Application of the MS scheme in three dimensions introduces a new renormalization

scale Λ3 that is independent of the RG-scale Λ in the underlying theory. This follows from

the fact that the bare 3d parameters are explicitly RG-invariant with respect to Λ at order

O(g4) [35].

The reduced amount of spacetime dimensions guarantees that all one-loop diagrams

are UV finite [83]. To see this, consider an integral of the type∫
d3p

(p2 +m2)n
(5.21)

and averaging it over angles. UV behavior of the resulting integral is
∫
d3p/p2n, which

converges for n ≥ 2 and for n = 1 gives a power divergence that vanishes in dimensional

regularization. This suggests that no renormalization is needed for the couplings nor the

fields. In order to give the couplings an integer dimension in dimensional regularization, we

nevertheless scale them as in Eq. (5.3), with the counterterms set to zero and Λ replaced

by the 3d scale Λ3.

Mass divergences in this effective theory are artifacts of the matching process in which

the superheavy scale is integrated out. We have already defined the bare mass parameter

µ2
3,(b) in Eq. (5.18), and pointed out that it can be calculated in the 4d theory to O(g4)

accuracy. However, due to super-renormalizability, it is possible to include higher order

corrections by computing it directly in the effective theory. The mass counterterms are

especially important for 3d lattice analyses, as they can be used in calculation of discretized

counterterms for substracting lattice divergences.

By calculating the UV divergence to order O(g4
3), one finds

δµ2
3 =

1

4ε
∆3d, (5.22)

which is equal to Eq. (5.19) up to higher-order corrections in g. As the 3d couplings only

have O(ε) running, solving the RG equation for µ2
3 is trivial. Integration over Λ3 produces

a constant mass scale Λ0, and the mass parameter reads

µ2
3 = −∆3 ln

(
Λ0

Λ3

)
+ constant. (5.23)

Λ0 can be fixed by comparing this expression against the full matching relation for µ2
3,

computed in terms of 4d parameters in Eq. (5.17). In the previous section we argued that

invariance with respect to the 4d RG scale requires the running of the counterterm to cancel

that of the two-loop logarithms. The O(g4) counterpart of the logarithm in Eq. (5.23) is

therefore the term f4

(
ln 3T/Λ + c

)
, and we deduce that

Λ0 = 3Tec ≈ 2.1T. (5.24)
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5.4 Resummation in DR

The matching relation for µ2
3 thus defines an initial condition for the RG equation of the

3d theory.

Note that both the mass counterterm and the RG equation are exact quantities due to

the super-renormalizable nature of the theory and receive no corrections at higher orders of

perturbation theory [34]. We can use this information to our advantage by performing the

parameter matching at scale Λ3 = Λ and replacing the two-loop logarithmic term in the

matching relation by its higher-order corrected value, given by Eq. (5.22). This discussion

demonstrates that the structure of the matching relations is determined in a non-trivial

way by RG equations of both the 4d and 3d theories.

5.4 Resummation in DR

When we described construction of the heavy-scale theory in section 3.2, it was essential

to be able to separate the 4d correlation functions into a static 3d part and a contribution

from the superheavy modes, denoted Π̄. In order to match the off-shell Green’s func-

tions, it was then assumed that the static contribution, corresponding to diagrams that

only contain light or heavy propagators, could be directly matched to the full correlation

function of the 3d theory. There is a complication, however, since the masses entering the

propagators are different in the two theories. The importance of this statement becomes

explicit when considering diagrams containing gauge fields. In 4d, the 〈φ†φ〉 correlator

obtains a contribution from the gauge bubble diagram depicted in Fig. 3a. Since gauge

fields are massless in the symmetric phase, the n = 0 portion of this diagram vanishes

in dimensional regularization. However, in the 3d theory the gauge fields only have three

components, and to compensate for this, there exist additional massive scalars that are not

present in the 4d theory. The corresponding 3d diagrams are shown in Fig. 3b, and the

A0 contribution is non-vanishing due to the propagator containing a mass scale. The mass

in question is exactly the Debye mass, generated in the temporal component by screening

effects. The contribution from this diagram is not present in the 4d theory, and it seems

like the matching procedure has failed.

The above discussion demonstrates the need for a systematic method for distinguishing

between diagrams that are reproduced by the 3d theory and those that are not, the latter

of which contribute to the parameter matching. This becomes even more important at two-

loop level where the integrals can contain mixed n = 0 and n 6= 0 field modes. The formal

way of identifying the 3d contributions is to use the resummation method of Arnold and

Espinosa [84]. For all fields appearing in both the 4d and the 3d theory, we explicitly add

and subtract thermal mass terms for their Matsubara zero-modes in the 4d Lagrangian.

For example,

1

2
µ2

ΣΣa(0,p)Σa(0,p) =
1

2
µ2

Σ
Σa(0,p)Σa(0,p)− 1

2
Π̄ΣΣa(0,p)Σa(0,p), (5.25)

where µ2
Σ
≡ µ2

Σ + Π̄Σ is called a resummed mass and enters the propagator, while Π̄Σ

is the squared thermal mass of the triplet field, corresponding to a loop correction from

the n 6= 0 modes to the two-point correlator. Similar procedure is carried out for the

doublet field. The term −1
2Π̄ΣΣa(0,p)Σa(0,p) is treated as an interaction, producing
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5.4 Resummation in DR

(a) 4d gauge field loop (b) 3d temporal scalar and gauge field loops

Figure 3: A 4d diagram that is screened into two separate diagrams in the 3d theory.

The scalar contribution needs to be separated in the 4d diagram in order to match the

two-point functions.

additional vertices in perturbation theory. For this reason, we refer to terms of the form

−Π̄Σ as ”thermal counterterms”, despite being both UV and IR finite. For gauge fields

in particular, resummation is only performed for the temporal component by adding and

subtracting the term mDA
a
0(0,p)Aa0(0,p) for the SU(2) field, and similarly for B0 and C0.

This introduces a term of the form 1/(p2 +m2
D) in the n = 0 mode propagator, generating

the contribution that was previously seemingly missing from the 4d theory.

The thermal counterterms have a subtle effect on the construction of the matching re-

lations. The tree-level interaction diagram will just cancel the added term in the resummed

propagator, but at O(g4), the thermal counterterms appear also in one-loop diagrams con-

tributing to self-energies. Recall that a general two-loop sum-integral can be written as in

Eq. (5.16). The thermal counterterm diagrams are proportional to T Π̄ times a resummed

3d integral and their added effect is to cancel the mixed n = 0 and n 6= 0 contributions

linear in T from the sum-integrals [35, 84]. This is the reason for neglecting these terms

from parameter matching in the previous section. The mixed terms are problematic due

to the zero-mode propagators that can cause IR divergences. The fact that they can be

canceled by reorganizing the perturbative expansion indicates that the linear terms do not

contribute to physical screening effects.

The main advantage of DR over the perturbative 4d effective potential approach lies

in the handling of IR divergences. The resummation described here shows explicitly that

integration over the superheavy scale is completely IR safe, despite being perturbative

in nature. The inevitable IR problems have been included into the 3d theory where their

effects are easier to study. To see the cancellation of the linear terms, it suffices to compute

the thermal masses at one-loop level. Ultimately, the outcome is that only the purely n 6= 0

modes are needed for DR, and resummed masses do not enter the matching relations. In

fact, as long as one knows which diagrams contribute to matching, it is possible to ignore

this procedure completely, calculating only the relevant contributions. It is, however, useful

to verify the cancellation explicitly by performing resummation as described here.

When integrating out heavy fields in the second DR step, similar considerations are in

order to identify contributions that are reproduced by the light-scale theory. If a field has

a counterpart at light scale, a mass correction is introduced in the heavy-scale Lagrangian.
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5.5 Loop corrections to MS parameters

For the Higgs doublet specifically,

µ2
φ,3φ

†φ = µ2
φ,3
φ†φ− Π̄φ,3φ

†φ, (5.26)

and the triplet field is treated similarly in the case of a light µΣ,3. Π̄φ,3 is again computed

from the two-point correlator, and a one-loop evaluation is sufficient. New diagrams gener-

ated by −Π̄φ,3φ
†φ cancel two-loop contributions proportional to 1/µφ,3, which would other-

wise cause IR divergences near the phase transition. Again, construction of the light-scale

theory is thus free of IR problems. The resulting effective theory can then be discretized

and studied non-perturbatively on the lattice, avoiding IR divergences completely.

5.5 Loop corrections to MS parameters

In the MS scheme, mass parameters and couplings of the full 4d theory are explicitly RG-

scale dependent and do not reflect any on-shell physics by themselves. They nevertheless

are indispensable for DR, as the whole point is the matching of off-shell Green’s functions.

We therefore need to relate the MS parameters to measurable quantities, such as physical

masses and charges. At tree-level, this is done by bringing the broken-phase Lagrangian

into a mass-diagonal basis as in section 4.2. Inverting the mass eigenvalue relations, we

obtain

µ2
φ =

1

2
m2
H , (5.27)

µ2
Σ = −m2

Σ + 2
a2

e2

m2
W

m2
Z

(m2
Z −m2

W ), (5.28)

λ =
e2

8

m2
Hm

2
Z

m2
W (m2

Z −m2
W )

, (5.29)

y2
t =

e2

2

m2
tm

2
Z

m2
W (m2

Z −m2
W )

, (5.30)

g2 = e2 m2
Z

m2
Z −m2

W

, (5.31)

g′2 = e2 m
2
Z

m2
W

(5.32)

where mt,mW ,mZ are the tree-level masses of the top quark and the W and Z bosons,

respectively. e is the elementary charge unit, related to the fine-structure constant α as

e2 = 4πα.

However, matching the MS parameters only at tree-level can lead to significant errors

in the matching relations if couplings and masses are allowed to be large. Loop correc-

tions to the above relations are thus necessary for reliable results – see section 6.2 for

comparison. These are achieved by a perturbative calculation of pole masses in the phase

of broken SU(2) symmetry, where particle masses are measured. This computation can be

performed in Minkowski space at zero temperature, as definitions of the MS parameters are

T -independent. For convenience, we choose to use the Feynman gauge in this calculation,

since the resulting physical quantities are independent of the choice of gauge.
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5.5 Loop corrections to MS parameters

By definition, the mass of a particle is given by the pole of its propagator, and exper-

imentally determined masses correspond to pole masses computed to an infinite order in

perturbation theory. Loop-corrected propagators for the physical particles read

〈h(−p)h(p)〉 =
i

p2 −m2
H −ΠH(p2)

, (5.33)

〈Σ0/±(−p)Σ0/±(p)〉 =
i

p2 −m2
Σ −ΠΣ0/±(p2)

, (5.34)

〈Wµ(−p)Wν(p)〉 =
gµν

p2 −m2
W −ΠW (p2)

, (5.35)

〈Zµ(−p)Zν(p)〉 =
gµν

p2 −m2
Z −ΠZ(p2)

, (5.36)

〈tα(p)t̄β(p)〉 =

[
i

/p−m2
t − /pΣv(p2)− /pγ5Σa(p2)−mtΣs(p2)

]
αβ

. (5.37)

The Π functions now obtain corrections from reducible tadpole diagrams in addition to

the usual 1PI diagrams. This is a general feature of theories with spontaneously broken

symmetries [85, 86]. For a consistent O(g4) analysis, the loop corrections need to be

calculated at one-loop order, and proper renormalization needs to be implemented [35].

Note that since the UV behavior is the same both in vacuum and at finite temperature,

we may use the one-loop counterterms that were previously calculated for DR.

Denoting the physical masses by capital M , we obtain pole conditions for bosons in

the form

M2
i − Re[m2

i + ΠH(M2
i )] = 0. (5.38)

For the fermionic propagator, the situation is somewhat more complicated as the self-energy

consists of independent axial, vector and scalar parts. The pole condition is

ū(p)

[
/p−m2

t − /pΣv(p
2)− /pγ5Σa(p

2)−mtΣs(p
2)

]
u(p)

∣∣∣∣
p2=M2

t

= 0, (5.39)

where u(p) is an asymptotic spinor satisfying the Dirac equation. Using the Gordon de-

composition identity

ū(p)/pu(p) = ū(p)
p2

Mt
(p), (5.40)

we find

M2
t = m2

t (1 + 2Σs + 2Σv). (5.41)

Note that the axial Σa does not contribute to the pole mass.

From the pole conditions we can solve loop-corrections to the mass eigenvalues. In

section 4.2 we stated that the triplet field has three mass eigenstates with the eigenvalue

mΣ being degenerate. The loop corrections are, however, slightly different for neutral and

charged scalars, and we choose to write the MS parameter µΣ in terms of the correction
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5.6 Error estimates from omitted higher-dimension operators

to the neutral scalar mass. Pole masses are measured at the scale of weak interactions,

so the Π functions and α should be evaluated at Λ = mZ , with the exception of the top

Yukawa coupling, which is evaluated at Λ = Mt. Substituting these into Eqs. (5.27)-(5.32)

gives O(g4) corrected expressions for the MS parameters. They have been listed in the

main paper [53]. Note that loop corrections to the ΣSM parameters a2 and b4 need not be

calculated as their values have not been determined experimentally, and we can treat their

input values as corresponding directly to their values at scale Λ = MZ .

5.6 Error estimates from omitted higher-dimension opera-
tors

Effective theories always come with intrinsic uncertainties, and error estimates should be

provided to address the reliability of the DR procedure. Errors arise both from higher-order

contributions to parameter matching, as well as from effective higher-order operators that

have not been explicitly matched. These correspond to n-point operators of the formOn/T
n

that are generated when performing integrations over fields. Provided that the couplings

are small enough for perturbation theory to be applicable, the leading-order error comes

from omitted dimension-six operators. In principle, the effects of these operators could

be included in the effective theories by calculating six-point functions in the underlying

theory and matching them into the 3d coefficients. A comprehensive estimation of the

error caused by neglecting these corrections is generally a non-trivial task. In this section,

we present rough estimates for reliability of DR based on the analysis in Ref. [35], and

derive an expression for the leading-order error in the ΣSM that can be used to estimate

the validity of our EWPT study.

Inclusion of higher-order operators allows for a simple power-counting estimate of the

accuracy at which the Green’s functions are reproduced. For example, consider introducing

an operator of the form Ω6φ
†φ(Aa0A

a
0)2 in the heavy-scale effective theory. Note that

dimensionality of this operator is three and the coefficient Ω6 is dimensionless. In the 4d

theory, an effective six-point operator is generated via loop corrections to the 〈φ†φ(Aa0A
a
0)2〉

six-point function. Denoting the leading-order correction by Π̄6 ∼ g6, we can perform

matching for the 3d parameter Ω6 just as we would match quartic couplings. The effective

vertices are matched as

Ω6(φ†φ(Aa0A
a
0)2)3d =

1

T
Π̄6(0)

(φ†φ(Aa0A
a
0)2)4d

T 2
, (5.42)

and the O(g4) result is just Ω3 = Π̄6. The six-point operator now generates new diagrams

in the heavy-scale theory. In particular, new contributions to the 〈φ†φ〉 correlator are

dominated by the diagram

�
A0

A0

∼ Ω6

∫
pk

1

p2 +m2
D

1

k2 +m2
D

, (5.43)
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5.6 Error estimates from omitted higher-dimension operators

which is scales as g6m2
D ∼ g8. The 3d mass parameter squared µ2

φ,3, produced by matching

of Green’s functions, is of order g4T 2. We therefore estimate that the relative error in the

reproduced Green’s functions of the heavy-scale theory is of O(g4).

We would now like to address the accuracy at which our DR is able to describe the

EWPT. For this, consider the six-point operator Λ6(φ†φ)3 at heavy-scale. The coefficient

Λ6 can be matched to the one-loop corrected six-point function 〈(φ†φ)3〉 in the 4d theory

by Λ6 = Π̄φ
6 (0). The value of this loop correction is most conveniently obtained from the

one-loop effective potential. In the ΣSM, the result is [53]

Λ6 =
ζ(3)

16384π4

(
3g6 + g′

6
+ 3g2g′

2
(g2 + g′

2
) + 640λ3 − 224y6

t + 8a3
2

)
. (5.44)

In Ref. [35], the effect of dimension-six operators has been estimated by calculating the

relative shift these operators cause to the Higgs vev in the final effective theory. In the

minimal SM, the leading-order contribution to the (φ†φ)3/T 2 operator comes from the top

quark and causes an error of roughly one percent in the vev. In the ΣSM, there is an

additional contribution proportional to a3
2, and we can estimate its effect by comparing it

against the top quark term in Eq. (5.44).

However, dominant BSM contributions to the higher-dimension operators are obtained

from integrating out the triplet field as a heavy degree of freedom in the second step of

DR. We may include an operator of the form Λ̄6(φ†φ)3 in the final light-scale theory and

match it to the corresponding six-point function at heavy scale. At O(g6), we find simply

that

Λ̄6 = Λ6 + Λheavy
6 , (5.45)

where one-loop corrections from the triplet and temporal scalars are contained in Λheavy
6 .

Errors caused by the temporal scalars are subdominant relative to that of the top quark

in the first DR step [35]. In the ΣSM, there is a new contribution to Λ̄6, coming from

the diagram depicted in Fig. 4. By a direct calculation, we find that the heavy triplet

contributes as

Λheavy, BSM
6 =

1

512π

(
a2,3

µΣ,3

)3

, (5.46)

which scales parametrically as ∼ g3.

In our analysis, this heavy-scale contribution generally dominates over the effective

coupling Λ6, obtained in the first step. We therefore identify Eq. (5.46) as the dominant

source of errors in our DR procedure. The relative shift caused to the Higgs vev can be

approximated by comparing the dominant BSM term to the top quark contribution,

Λt6 = − 7ζ(3)

512π4
y6
t , (5.47)

and we define

∆6 =

∣∣∣∣Λheavy, BSM
6

Λt6

∣∣∣∣. (5.48)
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5.6 Error estimates from omitted higher-dimension operators

Figure 4: 3d diagram providing a dominant contribution to the omitted light-scale oper-

ator (φ†φ)3
3d when the triplet is integrated out.

If this ratio is large in some region of the parameter space, we can expect severe uncertain-

ties in our results within this region.

Finally, let us note that if the triplet zero-mode itself is light and is included in the

light-scale theory, error estimates become more difficult. In this case, we also have to

consider omitted operators of the Σ field. For present purposes, we shall be content with

the rough estimate provided above for the heavy Σ case, and leave a more comprehensive

analysis of the dimension-six operators for a future study.
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6 Single-step transition in the ΣSM: results

We shall now assume that the triplet field is integrated out in the second step of DR and

study the one-step scenario in this approximation. By performing DR as described above,

we obtain a parameter mapping from the full ΣSM to the simplified 3d theory introduced

in section 3.5. Nature of the EWPT and its critical temperature can be studied non-

perturbatively by looking at the parameters x ≡ λ̄3/ḡ
2
3 and y ≡ µ̄2

φ,3/ḡ
4
3, evaluated at RG

scale Λ̄3 = ḡ2
3. Since these are now functions of the ΣSM parameters MΣ, a2 and b4, we

proceed to scan the parameter space spanned by MΣ, a2, b4 and evaluate x and y at each

point using the DR mapping. Temperature is then varied from 80 GeV to 200 GeV in

steps of 10 GeV and the critical temperature Tc is determined by looking for solutions

to y(T ) = 0 using linear interpolation. At points with y = 0, the type of the transition

is then determined by the value of x. Our scans reveal a region in the heavy Σ domain

where 0 < x < 0.11, indicating a first-order phase transition. In particular, we are able

to accurately find the endpoints at which the first-order transition turns into a crossover,

characterized by x > 0.11. This is not possible with purely perturbative methods.

Results of the parameter space scans have previously been published in the main paper

[53]. Here we present additional plots that provide insight into inner workings of DR.

6.1 Main results and physical implications

Fig. 5 shows regions of first-order phase transition in (MΣ, a2) and (MΣ, b4) planes, scanned

uniformly in steps of 5 GeV for MΣ and 0.05 for a2, b4. The plots have been produced

using full O(g4) DR for couplings and scalar masses, including the loop corrections to

MS parameters, but Debye masses have been matched using O(g2) relations. The gray area

corresponds to µΣ > 0 where a two-step transition becomes possible. To quantitatively

describe the EWPT in this region, the triplet needs to be dynamically included in the

Monte Carlo simulations and therefore we make no statement about the phase transition

there.

Curves of constant ∆6, defined in Eq. (5.48), are illustrated in Figs. 5a and 5b to

address credibility of the results. First-order transitions are found in a region where the

above analysis of dimension-six operators estimates an error of roughly 10%. As the error

grows larger, construction of the effective theory breaks down due to neglected higher-order

operators in the dark-green region. Fig. 5b indicates that the transition bears reduced

sensitivity to the triplet self coupling b4. This is to be expected, since in the single-step

scenario, transition dynamics are modified mainly by interactions of Σ with the Higgs field.

A first-order transition requires the remaining two parameters be sufficiently large,

and we obtain lower bounds of MΣ & 200 GeV and a2 & 1.5. The reason for this becomes

clear if one considers the effective theory used to study the transition: In the SM, the

EWPT is a smooth crossover, with the x parameter becoming larger as the physical Higgs

mass is increased. For mH fixed at 125 GeV, large thermal corrections and therefore large

couplings are needed to strengthen the transition enough to bring x sufficiently close to zero

for a first-order transition to be possible. This raises concerns whether the perturbative

construction of DR mappings is reliable in the region of interest. This question has been
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(b) Fixed a2 = 2.0. The transition is relatively

insensitive to the self-coupling b4.
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(c) Contour plot showing the relative shift caused to the SM value of H → γγ decay width. We

find first-order transitions in the negative-δ region, which is also slightly preferred by experiments

[73].

Figure 5: Main results of our effective theory approach in the single-step transition region.

Plots (a) and (c) have been published in the main paper [53].

addressed in Refs. [87, 88], where the authors conclude that the high-T expansion used in

DR works well even if couplings are allowed to become large. We hope that forthcoming

simulations on a dynamical triplet model will bring new insight on both the validity of DR,

as well as that of perturbative studies of the EWPT performed in the full 4d theory.

A connection to collider phenomenology is provided by Fig. 5c. Parameter δ is defined
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Figure 6: Critical temperature curves in the single-step transition region. A similar plot

can be found in Ref. [53].

as the change in the Higgs-diphoton partial width relative to its SM value [52, 53],

δ =
ΓΣSM(h→ γγ)− ΓSM(h→ γγ)

ΓSM(h→ γγ)
. (6.1)

Our analysis sees no first-order transitions in the light Σ region where δ is strongly con-

strained by experiments [73]. Conversely, deviations of ∼ 10% when MΣ & 200 GeV

are within current experimental bounds. Fig. 5c demonstrates that the requirement of

a first-order transition sets a lower bound on the deviation |δ| for a given MΣ. Future

measurements on the decay rate may thus be used to probe the validity of the model.

Contours of critical temperature are shown in Fig. 6. Our analysis predicts a first-order

transition in temperature range of 120− 130 GeV. Values of both the physical triplet mass

MΣ as well as the mass parameter µΣ are well below the thermal scale πT , justifying the

inclusion of the triplet field in the heavy-scale 3d theory. Note that the curves of constant

Tc closely follow x-contours, which determine the strength of the EWPT. The criterion for

a transition strong enough for baryogenesis and graviational waves is roughly x & 0.04,

as demonstrated by the lattice analysis of Ref. [36]. Fig. 6 suggests that the transition

strength is inversely proportional to Tc, which is in concordance with perturbative results

[52].
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6.2 Importance of the vacuum renormalization procedure

6.2 Importance of the vacuum renormalization procedure

It is interesting to see how the results change if we omit loop corrections to the mass

eigenvalues and match the MS parameters to physical quantities using only the tree-level

relations given in Eqs. (5.27)-(5.32). This modifies the initial conditions of our DR map-

ping. Following the scanning protocol described above, this approximation leads to Fig. 7.

Critical temperature in the white region is too large for realistic EWPT, Tc > 200 GeV, so

we have not included it in our scans.
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Figure 7: Regions of first-order phase transition and the respective Tc curves in the

simplified case where tree-level eigenvalue relations have been used for the parameters.

Errors in both Tc and x are significant in the large MΣ limit.

The most obvious change from the proper loop-corrected plot in Fig. 6 is the behavior of

Tc contours, which suffer from large deviations in the heavy MΣ region. This is unfortunate,

as knowledge of the critical temperature is crucial for gravitational-wave or baryon number

predictions. Neglecting the initial loop corrections also cause considerable shrinking of the

first-order region. We conclude that O(g4) corrections to MS parameters are indispensable

in order to reliably study the EWPT via DR, at least if the BSM parameters are allowed

to obtain large values.

6.3 One-loop approximation

Finally, let us consider omitting O(g4) corrections to mass parameter matching relations in

both steps of DR. The two-loop calculation of scalar self-energies is often the most involved
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6.3 One-loop approximation
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Figure 8: Results of parameter space scanning using one-loop matching for the scalar

mass parameters. Input parameters have been evaluated at RG scale Λ = 4πe−γ using β

functions. This approximation highly overestimates the critical temperature.

stage of the DR procedure, and it would be convenient to skip this computation if a one-

loop matching is able to provide sufficient accuracy. Unfortunately, O(g2) mass parameter

matching is unreliable already on theoretical grounds, as the resulting bare 3d mass is then

explicitly dependent on the 4d RG scale Λ, and a similar problem arises in the second

DR step. One may attempt to minimize the logarithmic running effects by performing the

analysis at scale Λ = 4πe−γ , which sets all one-loop logarithms to zero in the 4d theory.

The results in this approximation are illustrated in Fig. 8, with fixed b4 = 0.75 as

before. The first-order transition region becomes distorted at large MΣ and a2 due to

running of 4d parameters that is not properly canceled from the mass parameter matching

relations at one-loop level. Furthermore, relative errors in critical temperatures in the

first-order region compared to the more accurate Fig. 6 are large, almost fifty percent at

the worst. This behavior is unsurprising, as the critical temperature is directly related

to the thermal correction of the doublet mass parameter. Corrections to the triplet mass

also propagate to the final theory and can have considerable effect on the y parameter,

especially. Thus, two-loop mass parameter matching should not be neglected in DR for

quantitative results.
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7 Summary

Electroweak baryogenesis is a promising candidate for explaining the origin of the baryon

asymmetry in the present universe during the electroweak phase transition. It relies on

sphaleron transitions that convert CP violation into baryon asymmetry during the bubble

nucleation stage of the transition, provided that the phase transition is of strongly first

order. However, new physics is required, as this transition in the Standard Model is

a smooth crossover. By introducing new scalar fields, it is possible to strengthen the

transition and make it first order, rendering electroweak baryogenesis a viable scenario in

these extended models.

Independently of the question of baryogenesis, the full structure of the scalar sector re-

mains an active area of both theoretical and experimental research. New scalars modify the

phase transition dynamics via their couplings to the SM particles, which can leave observ-

able signatures in branching ratios that can potentially be measured in collider experiments.

Furthermore, first-order phase transitions are expected to produce gravitational-wave sig-

nals that could be detected in future detectors. Research of the electroweak baryogenesis

is thus strongly coupled to the phenomenology of BSM theories and can provide insight

into the viability of such models.

In this thesis, we have discussed effective theories that can be used to facilitate the

study of the electroweak phase transition. These theories are three dimensional and are

constructed by matching of static Green’s functions. The effective theories have a universal

structure, determined by the renormalization procedure that is essential for the parameter

mapping. Although the matching procedure is perturbative, construction of the effective

theories is free of infrared problems that otherwise render high-temperature perturbative

calculations unreliable. Dimensional reduction bypasses these complications by implement-

ing a resummation process that takes advantage of a thermal scale hierarchy generated by

the heat bath. For this reason, dimensionally-reduced theories are, in many cases, preferred

for EWPT analyses over the traditional effective potential approach in four dimensions. Of

particular importance are non-perturbative lattice simulations that are readily performed

on the effective theories.

We have applied dimensional reduction to the Standard Model augmented with a real

triplet scalar. By treating the triplet as a sufficiently heavy field, it becomes justified

to integrate it out, resulting in a light-scale theory identical to that obtained from the

minimal SM. Using existing lattice results for this theory, we have performed a scan over

the triplet model parameter space, identifying regions of a first-order phase transition

and the corresponding critical temperatures in the domain where transition dynamics are

not largely modified by the presence of the triplet. Such single-step transitions necessitate

large values for the Higgs-triplet portal coupling, which may cause large uncertainties in the

perturbative construction of the effective theory. However, this concern is present in many

other extensions of the SM as well, and lattice simulations are needed to verify perturbative

results obtained in these models. Starting by simulating the triplet dynamically on the

lattice in the near future, our hope is to provide a trustworthy benchmark for the accuracy

of perturbative calculations concerning the electroweak phase transition.
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A Symmetric phase Feynman rules for the real
triplet

We list Feynman rules for new vertices appearing in the ΣSM, with the theory being as

defined in section 4.1. Rules for SM vertices in a similar setting have been presented in

Ref. [61].

Scalar propagators:

j� i = δij
1

P 2 + (−µ2
φ) + δP0Π̄φ

, (A.1)

a� b = δab
1

P 2 + (−µ2
Σ) + δP0Π̄Σ

, (A.2)

where δP0 ≡ δP0,0, and Π̄ are the thermal masses needed for resummation and are applied

only for the n = 0 modes. The sign in front of the mass parameters follows from our sign

convention in defining the scalar potential.

Interactions with the SU(2) gauge field:

�PK
c

b

aµ = igεabc(K − P )µ �
d

c

bν

aµ

= g2(δacδbd + δadδbc − 2δabδcd)δµν

(A.3)

Scalar interactions:

�
b

a

c

d

= −2b4(δacδbd + δadδbc + δabδcd) �
b

a

j

i

= −a2δ
ijδab.

(A.4)

For unoriented lines, the momenta are understood to flow into the vertex.

Counterterms and the thermal counterterm as defined in sections 5.1 and 5.4:

a� b = −δab
(
P 2δZΣ − δµ2

Σ

)
, a� b = δabΠ̄Σ. (A.5)

	
d

c

bν

aµ

=
(

2gδg + g2(δZA + δZΣ)
)

(δacδbd + δadδbc − 2δabδcd)δµν
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b

a

c

d

= −2δb4(δacδbd + δadδbc + δabδcd) �
b

a

j

i

= −δa2δ
ijδab.

(A.6)

Rules for the heavy-scale 3d theory

Relevant propagators and vertex rules for the second step of DR are presented below. The

theory is as defined in section 4.4.

Temporal scalar propagators:

�A0 = δab
1

p2 +m2
D

,


B0 =
1

p2 +m′2D
,

�C0 = δαβ
1

p2 +m′′2D
.

(A.7)

Interaction vertices:

�pk
Ac0

Ab0

ar = ig3ε
abc(k − p)r, �

Ad0

Ac0

bs

ar

= g2
3(δacδbd + δadδbc − 2δabδcd)δrs,

(A.8)

�
Ab0

Aa0

j

i

= −2h3δ
abδij , �

B0

B0

j

i

= −2h′3δ
ij , �

B0

Aa0

j

i

= −h′′3(σa)
ij ,

(A.9)

�
Cβ0

Cα0

j

i

= −2ω3δ
αβδij , �

Ac0

Ad0

b

a

= −4δ3δ
abδcd − 2δ′3(δacδbd + δadδbc). (A.10)

(A.11)

Interactions with the 3d mass correction terms are given by

i� j = δijΠ̄φ,3, (A.12)

a� b = δabΠ̄Σ,3. (A.13)
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B Diagrams for integration over the superheavy
scale

Diagrams needed to construct the O(g4) DR mapping to the heavy-scale theory, calculated

in the MS scheme, are listed in this appendix. It is assumed that the triplet field is either

light or heavy. The results are written in terms of master integrals that have been defined

and computed in Ref. [60]. For simplicity, the calculation is performed in Landau gauge;

this reduces the number of needed diagrams drastically. Furthermore, we introduce the

following short-hand notations to facilitate the calculation:

d = 3− 2ε, (B.1)

Nc = 3 (number of quark colors), (B.2)

Nf = 3 (number of fermion families), (B.3)

Nd = 1 (contributions from the SU(2) doublet), (B.4)

Nt = 1 (contributions from the SU(2) triplet). (B.5)

Fermion hypercharges are given by Y` = −1, Ye = −2, Yq = 1
3 , Yu = 4

3 , Yd = −2
3 .

B.1 Four-point correlators

We list the one-loop corrections from superheavy fields to the relevant four-point correlation

functions. These are needed for coupling constant matching relations.

The Aa0A
b
0A

c
0A

d
0 correlator

� =
1

6
(d− 1)(d− 3)

(
8d− 8 +Nd + 8Nt + (1− 24−d)Nf (1 +Nc)

)
× g4(δabδcd + δacδbd + δadδbc)I

4b
2 . (B.6)

The φ†iφjA
a
µA

b
ν correlator

� = δijδab
{
d(d− 25

8 )g4 + d
8g

2g′2 + 3(d− 3)λg2 + 2(d− 3)a2g
2 (B.7)

+ 1
2(24−d − 1)(2− d)g2Ncg

2
Y

}
I4b

2

for µ = ν = 0,

δijδabδrs
{
−3

8g
4 + 3

8g
2g′2 − 1

2(24−d − 1)g2Ncg
2
Y

}
I4b

2

for µ = r, ν = s. (B.8)
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B.2 Two-point correlators

The ΣcΣdAaµA
b
ν correlator

� =
(

2(3− d)g2b4 + d(d− 4)g4
)

(δacδbd + δadδbc)I
4b
2

+
(

(d− 3)(8b4 + a2)g2 + 2d(d− 2)g4
)
δabδcdI

4b
2 (B.9)

for µ = ν = 0,

= −3g4δrs(−2δabδcd + δacδbd + δadδbc)I
4b
2 (B.10)

for µ = r, ν = s.

The φ†iφjφ
†
kφ` correlator

� =
(

24λ2 +
3

2
a2

2 +
d

8
(3g4 + g′

4
+ 2g2g′

2
)− 2(24−d − 1)Ncg

4
Y,n

)
(δikδj` + δi`δjk)I

4b
2 .

(B.11)

The φ†iφjΣ
aΣb correlator

� =
(

6a2λ+ 5a2b4 + dg4 + 2a2
2

)
δijδabI

4b
2 . (B.12)

The ΣaΣbΣcΣd correlator

� =
(

2a2
2 + 22b24 + 4dg4

)
(δabδcd + δacδbd + δadδbc)I

4b
2 . (B.13)

Correlators not listed here obtain no contributions from the triplet and have been calculated

in Refs. [35, 61].

B.2 Two-point correlators

Again, we only list the superheavy contributions, needed for mass parameter and field

matching.
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B.2 Two-point correlators

SU(2)L gauge boson self-energy at one-loop

aµ� bν

= g2δab
[
−(d− 1)(2d− 2 +Nd + 2Nt)I

4b
1

+ 1
6

(
− 4(−5 +Nd + 2Nt) + d(Nd + 2Nt − 4 + 2d)

)
P 2I4b

2

]
(B.14)

+ g2δab(d− 1)Nf (1 +Nc)
[
(22−d − 1)I4b

1 − 1
6(24−d − 1)P 2I4b

2

]
for µ = ν = 0,

= g2δab
[

1
6(32−Nd − 2Nt − 2d)− 1

3(24−d − 1)Nf (1 +Nc)
]
(δrsP

2 − PrPs)I4b
2 (B.15)

for µ = r, ν = s.

P 2 is the external momentum, and its coefficient gives the 3d field normalization correction

according to Eq. (3.8).

U(1)Y gauge boson self-energy at one-loop

µ� ν

= g′2Nd

[
(1− d)I4b

1 − 2
3(1− d

4)P 2I4b
2

]
− 1

2g
′2(d− 1)Nf (B.16)

× [2Y 2
` + Y 2

e +Nc(2Y
2
q + Y 2

u + Y 2
d )]
[
(1− 22−d)I4b

1 + 1
6(24−d − 1)P 2I4b

2

]
for µ = ν = 0,

= −1
6g
′2{Nd + (24−d − 1)Nf [2Y 2

` + Y 2
e +Nc(2Y

2
q + Y 2

u + Y 2
d )]
}

(B.17)

× (δrsP
2 − PrPs)I4b

2

for µ = r, ν = s.

Gluons play an irrelevant role in the 3d theories, and loop corrections to temporal gluons

are of higher order, so we omit writing down their correlators [61].

Scalar doublet φ self-energy

One-loop diagrams, evaluated at external momentum P :

� +� +�+�+�
= −6λδij

(
I4b

1 + µ2
φI

4b
2

)
− 3

2
a2δij

(
I4b

1 + µ2
ΣI

4b
2

)
− 1

4
d(3g2 + g′

2
)δijI

4b
1

+ 2(22−d − 1)Ncy
2
t δijI

4b
1 +

(
9

4
g2 +

3

4
g′

2 − (24−d − 1)Ncy
2
t

)
δijP

2I4b
2 . (B.18)

The one-loop thermal mass correction Π̄φ, needed for resummation, is obtained from the

renormalized P = 0 part. After including the tree-level mass counterterm diagram, one
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B.2 Two-point correlators

obtains the O(g4) result

Π̄φδij = − i� j =
T 2

12

(
6λ+

3

2
a2 +

3

4
(3g2 + g′

2
) +Ncy

2
t

)
δij .

Two-loop fermionic diagrams:

	 +
︸ ︷︷ ︸
(a)

+� +� +
 +� +�︸ ︷︷ ︸
(b)

(B.19)

+� +�︸ ︷︷ ︸
(c)

+� +�︸ ︷︷ ︸
(d)

+�︸ ︷︷ ︸
(e)

,

where

(a) =
(1

2
g′

2
YqYuF1(m′D) + 8g2

sF1(m′′D)
)
y2
t δij ,

(b) =
(3

2
g2NcF2(mD) +

1

2
g′

2
Nc(Y

2
q + Y 2

u )F2(m′D) + 16g2
sF2(m′′D)

)
y2
t δij , (B.20)

(c) =
Nf

4
δij

(
3g4(1 +Nc)F3(mD) +

1

2
g′

4
(

2Y 2
` + Y 2

e +Nc(2Y
2
q + Y 2

u + Y 2
d )
)
F3(m′D)

)
,

(d) = −6y4
tNcδijF4(µφ),

(e) = −12Ncλy
2
t δijF5(µφ).
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B.2 Two-point correlators

Two-loop bosonic diagrams without the Σ field:

�︸ ︷︷ ︸
(a)

+� +�︸ ︷︷ ︸
(b)

+� +�︸ ︷︷ ︸
(c)

+�︸ ︷︷ ︸
(d)

+�︸ ︷︷ ︸
(e)

+� +� +�︸ ︷︷ ︸
(f)

+� + ︸ ︷︷ ︸
(g)

+!︸ ︷︷ ︸
(h)

(B.21)

+" +#︸ ︷︷ ︸
(i)

+$︸ ︷︷ ︸
(j)

,

where

(a) = 36λ2S1(µφ, µφ)δij ,

(b) =
3

2
λ
(

3g2B11(µφ,mD) + g′
2
B11(µφ,m

′
D)
)
δij ,

(c) =
1

4

(
3g4B12(µφ,mD) + g′

4
B12(µφ,m

′
D)
)
δij ,

(d) = −3

4
g4 B2(mD)δij ,

(e) = 12λ2 S3(µφ, µφ, µφ)δij , (B.22)

(f) =
1

8

(
3g4B6(µφ,mD,mD) + g′

4
B6(µφ,m

′
D,m

′
D) + 6g2g′

2
B6(µφ,mD,m

′
D)
)
δij ,

(g) = −3

2
λ
(

3g2B4(µφ,mD) + g′
2
B4(µφ,m

′
D)
)
δij ,

(h) = −3g4B7(mD)δij ,

(i) = −1

8

(
3g4B5(µφ,mD) + g′

4
B5(µφ,m

′
D)
)
δij ,

(j) =
3

2
g4B3(mD)δij .

Note that the 3d counterparts of diagrams (h) and (j) vanish in dimensional regularization

due to exact cancellation of UV and IR divergences. When calculating the mass countert-

erm directly in the 3d theory, UV divergent contributions need to be explicitly extracted

for the total counterterm to match that of the 4d theory.
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B.2 Two-point correlators

Finally, two-loop contributions new in the ΣSM:

% +& +'︸ ︷︷ ︸
(a)

+()︸ ︷︷ ︸
(b)

+*︸ ︷︷ ︸
(c)

+ +,︸ ︷︷ ︸
(d)

, (B.23)

(a) = 9λa2δijS1(µφ, µΣ) + 3a2
2δijS1(µΣ, µφ) +

15

2
a2b4δijS1(µΣ, µΣ),

(b) = 3a2g
2δijB11(µΣ,mD) +

3

2
g4δijB12(µΣ,mD),

(c) =
3

2
a2

2δijS3(µφ, µΣ, µΣ),

(d) = −3a2g
2δijB4(µΣ,mD)− 3

4
g4δijB5(µΣ,mD). (B.24)

One-loop counterterm diagrams:

-+.︸ ︷︷ ︸
(a)

+/ +0︸ ︷︷ ︸
(b)

+1 +2︸ ︷︷ ︸
(c)

+3 +4︸ ︷︷ ︸
(e)

(B.25)

+5︸ ︷︷ ︸
(f)

+6︸ ︷︷ ︸
(g)

+7 +8︸ ︷︷ ︸
(g)

,

51



B.2 Two-point correlators

where

(a) = 4Nc

(
ytδyt +

1

2
yt(δZφ + δZq + δZt)

)(
22−d − 1

)
δijI

4b
1 ,

(b) = −2Ncyt(δZq + δZt)
(

22−d − 1
)
δijI

4b
1 ,

(c) = 6λδZφδijI
4b
1 − 6δλδijI

4b
1

(d) =
1

4

(
3g2δZA + g′

2
δZB

)
δijd I

4b
1 , (B.26)

(e) = −3

4

(
2gδg + g2(δZφ + δZA)

)
δijd I

4b
1 ,

(f) = −1

4

(
2g′δg′ + g′

2
(δZφ + δZB)

)
δijd I

4b
1 ,

(g) =
3

2
a2δijδZΣI

4b
1 −

3

2
δa2δijI

4b
1 .

Thermal counterterm diagrams that cancel terms linear in T from two-loop diagrams:

9 +: +; +<
= −6λδijΠ̄φTI

3
2 (µ

φ
)− 3

2
a2δijΠ̄ΣTI

3
2 (µ

Σ
)− 3

4
g2δijm

2
DTI

3
2 (mD)− 1

4
g′

2
δijm

′2
DTI

3
2 (m′D).

(B.27)

Scalar triplet Σ self-energy

One-loop diagrams, evaluated at external momentum P :

= +> +? +@
= −2a2δab

(
I4b

1 + µ2
φI

4b
2

)
− 5b4δab

(
I4b

1 + µ2
ΣI

4b
2

)
− 2g2dδabI

4b
1 + 6g2P 2δabI

4b
2 . (B.28)

The O(g4) thermal mass correction is found to be

Π̄Σ =
T 2

12
(2a2 + 5b4 + 6g2). (B.29)
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B.2 Two-point correlators

Two-loop diagrams:

A +B +C +D︸ ︷︷ ︸
(a)

+E +F︸ ︷︷ ︸
(b)

+G +H +I︸ ︷︷ ︸
(c)

+J︸ ︷︷ ︸
(d)

+K +L +M︸ ︷︷ ︸
(e)

(B.30)

+N +O +P +Q︸ ︷︷ ︸
(f)

+R +S +T︸ ︷︷ ︸
(g)

+U +V︸ ︷︷ ︸
(h)

,

(a) = 12λa2δabS1(µφ, µφ) + 3a2
2δabS1(µφ, µΣ) + 10b4a2δabS1(µΣ, µφ)

+ 25b24δabS1(µΣ, µΣ),

(b) =
1

2
a2δab

(
3g2B11(µφ,mD) + g′

2
B11(µφ,m

′
D)
)
,

(c) = 10b4g
2δabB11(µΣ,mD) + 2g4δabB12(µφ,mD) + 4g4δabB12(µΣ,mD),

(d) = −2g4δabB2(mD), (B.31)

(e) = 2a2
2δabS3(µφ, µφ, µΣ) + 10b24δabS3(µΣ, µΣ, µΣ) + 6g4B6(µΣ,mD,mD),

(f) = −10b4g
2δabB4(µΣ,mD)− 1

2
a2δab

(
3g2B4(µφ,mD) + g′

2
B4(µφ,m

′
D)
)

− 4a2y
2
tNcδabF5(µφ),

(g) = −2g4δabB5(µΣ,mD)− g4δabB5(µφ,mD) + 2Nf (1 +Nc)g
4δabF3(mD),

(h) = −8g4δabB7(mD) + 4g4δabB3(mD).
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B.2 Two-point correlators

One-loop counterterm diagrams:

W +X +Y +Z︸ ︷︷ ︸
(a)

+[ +\︸ ︷︷ ︸
(b)

(B.32)

(a) = 2a2δZφδabI
4b
1 + 5b4δZΣδabI

4b
1 − 2δa2δabI

4b
1 − 5δb4δabI

4b
1

(b) = 2g2dδZAδabI
4b
1 − 2

(
2gδg + g2(δZΣ + δZA)

)
δabI

4b
1 (B.33)

Thermal resummation diagrams:

] +^ +_
= 2a2δabΠ̄φTI

3
2 (µ

φ
) + 5b4δabΠ̄ΣTI

3
2 (µ

Σ
) + 2g2δabm

2
DTI

3
2 (mD). (B.34)
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C Diagrams for integration over the heavy scale

Diagrams contributing to light-scale matching are presented here.

C.1 Integrating out temporal scalars A0, B0 and C0

Here we assume that the triplet field is sufficiently light and can be included into the light-

scale theory. We only list contributions from the temporal scalars, which are sufficient for

parameter matching.

The φ†i,3φj,3φ
†
k,3φ`,3 correlator

` = (δijδk` + δi`δjk)
[
6h2

3I
3
2 (mD) + 2h′23 I

3
2 (m′D) + h′′23 L

3
2(mD,m

′
D)
]
. (C.1)

The φ†i,3φj,3Σa
3Σb

3 correlator

a = 4h3(3δ3 + δ′3)δijδabI
3
2 (mD). (C.2)

The Σa
3Σb

3Σc
3Σd

3 correlator

b = 8(3δ2
3 + 2δ3δ

′
3 + δ′3

2
)(δabδcd + δacδbd + δadδbc)I

3
2 (mD). (C.3)

Gauge boson Aar,3 self-energy at one-loop

arc bs =
1

3
g2

3δab(prps − δrsp2)I3
2 (mD).

Scalar doublet φ3 self-energy

At one-loop, there is the contribution

d = −
(
3h3I

3
1 (mD) + h′3I

3
1 (m′D) + 8ω3I

3
1 (m′′D)

)
δij , (C.4)

where the loop propagator is A0, B0 or C0. This gives the one-loop mass correction analo-

gously to the 4d thermal mass,

Π̄φ,3 = − 1

4π
(3h3mD + h′3m

′
D + 8ω3m

′′
D). (C.5)
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C.1 Integrating out temporal scalars A0, B0 and C0

The correction is needed to cancel IR divergent terms of the form 1/µφ,3 from two-loop

diagrams.

Two-loop contributions and the 3d ”resummation” diagrams:

e +f︸ ︷︷ ︸
(a)

+g +h︸ ︷︷ ︸
(b)

+i︸ ︷︷ ︸
(e)

+j︸ ︷︷ ︸
(f)

+k︸ ︷︷ ︸
(g)

+l︸ ︷︷ ︸
(h)

+m︸ ︷︷ ︸
(i)

(C.6)

where

(a) = −6λ3Π̄φ3δijI
3
2 (µ

φ,3
)− 3

2
a2,3Π̄Σ,3δijI

3
2 (µ

Σ,3
),

(b) = −6h3g
2
3δijB

3
4(mD,mD)− 3

4
g4

3δij B
3
5(mD,mD),

(c) = δij

(
6h2

3S
3
3(µφ,3,mD,mD) + 2h′3

2
S3

3(µφ,3,m
′
D,m

′
D)

+ 3h′′3
2
S3

3(µφ,3,mD,m
′
D)
)
, (C.7)

(d) = δij

(
18λ3h3I

3
2 (µφ,3)I3

1 (mD) + 6λ3h
′
3I

3
2 (µφ,3)I3

1 (m′D)
)
,

(e) = 3a2,3(3δ3 + δ′3)δijI
3
2 (µΣ,3)I3

1 (mD),

(f) = δij

(
12h2

3I
3
1 (µφ,3)I3

2 (mD) + 4h′3
2
I3

1 (µφ,3)I3
2 (m′D)

)
,

(g) = 6h3(3δ3 + δ′3)δijI
3
2 (mD)I3

1 (µΣ,3).

Note that two-loop contributions from the temporal gluons are of higher order.

Scalar triplet Σ3 self-energy

One-loop:

n = −2(3δ3 + δ′3)δabI
3
1 (mD), (C.8)

from which the mass correction is obtained as

Π̄Σ,3 = −mD

2π
(3δ3 + δ′3). (C.9)
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C.2 Integrating out heavy Σ

Two-loop and 3d resummation diagrams:

o +p︸ ︷︷ ︸
(a)

+q︸ ︷︷ ︸
(b)

+r︸ ︷︷ ︸
(c)

+s︸ ︷︷ ︸
(d)

+t︸ ︷︷ ︸
(e)

+u︸ ︷︷ ︸
(f)

+v +w︸ ︷︷ ︸
(g)

, (C.10)

where

(a) = −2a2,3δabΠ̄φ,3I
3
2 (µ

φ,3
)− 5b4,3δabΠ̄Σ,3I

3
2 (µ

Σ,3
),

(b) = 2a2,3

(
3h3I

3
1 (mD) + h′3I

3
1 (m′D)

)
δabI

3
2 (µφ,3),

(c) = 10b4,3(3δ3 + δ′3)δabI
3
2 (µΣ,3)I3

1 (mD),

(d) = 8h3(3δ3 + δ′3)δabI
3
2 (mD)I3

1 (µφ,3), (C.11)

(e) = 4(3δ3 + δ′3)2δabI
3
2 (mD)I3

1 (µΣ,3),

(f) = 8(3δ2
3 + 2δ3δ

′
3 + 2δ′3

2
)δabS

3
3(µΣ,3,mD,mD),

(g) = −4(3δ3 + δ′3)g2
3δabB

3
4(mD)− 2g4

3δabB
3
5(mD).

C.2 Integrating out heavy Σ

Finally, we present a diagrammatic calculation for the heavy Σ case. In this scenario, the

triplet field is integrated out together with the temporal scalars, and the relevant diagrams

are listed here.

The φ†i,3φj,3φ
†
k,3φ`,3 correlator

x = (δijδk` + δi`δjk)

(
1

3
a2

2,3I
3
2 (µΣ,3) + 6h2

3I
3
2 (mD) + 2h′23 I

3
2 (m′D) + h′′23 L

3
2(mD,m

′
D)

)
.

(C.12)

Gauge boson Aar,3 self-energy at one-loop

ary bs =
1

3
g2

3δab(prps − δrsp2)
(
I3

2 (mD) + I3
2 (µΣ,3)

)
.
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C.2 Integrating out heavy Σ

Scalar doublet φ3 self-energy

In addition to those listed in the previous section, there is the one-loop diagram

z = −3

2
a2,3δijI

3
1 (µΣ,3), (C.13)

which modifies the mass correction:

Π̄φ,3 = − 1

4π

(
3

2
a2,3µΣ,3 + 3h3mD + h′3m

′
D + 8ω3m

′′
D

)
. (C.14)

At two-loop level, new contributions are obtained from diagrams

{ +|︸ ︷︷ ︸
(a)

+}︸ ︷︷ ︸
(b)

+~︸ ︷︷ ︸
(c)

+� +�︸ ︷︷ ︸
(d)

,

(C.15)

where

(a) = 9λ3a2,3δijI
3
2 (µφ,3)I3

1 (µΣ,3) + 3a2
2,3δijI

3
2 (µΣ,3)I3

1 (µφ,3),

(b) =
15

2
a2,3b4,3δijI

3
2 (µΣ,3)I3

1 (µΣ,3),

(c) =
3

2
a2

2,3δijS
3
3(µφ,3, µΣ,3, µΣ,3), (C.16)

(d) = −3a2,3g
2
3δijB

3
4(µΣ,3)− 3

4
g4

3δijB
3
5(µΣ,3).

No mass corrections to the Σ field propagator are included in this case as the mass param-

eter µΣ,3 is heavy, and therefore terms of the form 1/µΣ,3 are IR safe.
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D One-loop counterterms in the ΣSM

In this appendix, we list the MS counterterms required for O(g4) renormalization of the

full theory. For definitions, see section 5.1. Although our diagrammatic calculation is

performed in Landau gauge, we choose to express the counterterms in a general ξ gauge.

This is useful for vacuum renormalization, necessary to obtain O(g4) corrections to the

MS parameters, which is more convenient to perform in Feynman gauge (see section 5.5).

δZA =
g2

16π2ε

(26−Nd − 2Nt

6
− 4

3
Nf − ξ

)
, (D.1)

δZB = − g′2

96π2ε

(
Nd +Nf

[
2Y 2

` + Y 2
e + 3(2Y 2

q + Y 2
u + Y 2

d )
])

= − g′2

96π2ε

(
Nd +

40

3
Nf

)
,

(D.2)

δZφ =
1

16π2ε

(3

4
(3− ξ)g2 +

1

4
(3− ξ)g′2 − 3y2

t

)
, (D.3)

δZΣ =
1

16π2ε

(
2(3− ξ)g2

)
, (D.4)

δZq = − 1

16π2ε

(1

2
y2
t + ξ

(3

4
g2 +

1

4
Y 2
q g
′2 +

4

3
g2
s

))
, (D.5)

δZt = − 1

16π2ε

(
y2
t + ξ

(1

4
Y 2
u g
′2 +

4

3
g2
s

))
(D.6)

δZl = − 1

16π2ε

ξ

4

(
3g2 + Y 2

l g
′2
)
, (D.7)

δg = − g3

16π2ε

(
44−Nd − 2Nt

12
− 2

3
Nf

)
, (D.8)

δg′ =
g′3

192π2ε

(
Nd +

40

3
Nf

)
, (D.9)

δyt = − yt
16π2ε

(
1

3
g′2 + 4g2

s + ξ
(3

4
g2 +

13

36
g′

2
+

4

3
g2
s

))
. (D.10)

Scalar counterterms:

δµ2
φ =

1

16π2

1

ε

(
6λµ2

φ +
3

2
a2µ

2
Σ −

1

4
ξµ2

φ(3g2 + g′
2
)
)
, (D.11)

δµ2
Σ =

1

16π2

1

ε

(
2a2µ

2
φ + 5b4µ

2
Σ − 2ξg2µ2

Σ

)
, (D.12)

δλ =
1

16π2

1

ε

1

2

(
24λ2 +

3

2
a2

2 +
3

8
(3g4 + g′

4
+ 2g2g′

2
)− 6y4

t − ξλ(3g2 + g′
2
)
)
, (D.13)

δa2 =
1

16π2

1

ε

(
2a2

2 + 5a2b4 + 3g4 + 6a2λ−
1

4
ξa2(11g2 + g′

2
)
)
, (D.14)

δb4 =
1

16π2

1

ε

(
a2

2 + 11b24 + 6g4 − 4ξg2b4

)
. (D.15)
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