Association Rule Discovery from Collaborative Mobile Data

Jiri Hamberg

Master’s Thesis

UNIVERSITY OF HELSINKI
Department of Computer Science

Helsinki, May 3, 2018

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

Tiedekunta — Fakultet — Faculty Laitos — Institution — Department

Faculty of Science Department of Computer Science

Tekija — Forfattare — Author

Jiri Hamberg

Ty6n nimi — Arbetets titel — Title

Association Rule Discovery from Collaborative Mobile Data

Oppiaine — Larodmne — Subject

Computer Science

Tyo6n laji — Arbetets art — Level Aika — Datum — Month and year Sivuméiidra — Sidoantal — Number of pages
Master’s Thesis May 3, 2018 67

Tiivistelmd — Referat — Abstract

Sophisticated mobile devices have rapidly become essential tools for various daily activities of
billions of people worldwide. Subsequently, the demand for longer battery lives is constantly
increasing. The Carat project is advancing the understanding of mobile energy consumption
by using collaborative mobile data to estimate and model energy consumption of mobile
devices.

This thesis presents a method for estimating mobile application energy consumption from
mobile device system settings and context factors using association rules. These settings and
factors include CPU usage, device travel distance, battery temperature, battery voltage, screen
brightness, used mobile networking technology, network type, WiFi signal strength, and WiFi
connection speed. The association rules are mined using Apache Spark cluster-computing
framework from collaborative mobile data collected by the Carat project.

Additionally, this thesis presents a prototype of a web based API for discovering these
association rules. The web service integrates Apache Spark based analysis engine with a
user friendly front-end allowing an aggregated view of the dataset to be accessible without
revealing data of individual participants of the Carat project.

This thesis shows that association rules can be used effectively in modelling mobile device
energy consumption. Example rules are presented and the performance of the implementation
is evaluated experimentally.

ACM Computing Classification System (CCS):

Information systems — Information systems applications — Data mining — Association rules
Information systems — Information systems applications — Mobile information processing
systems

Avainsanat — Nyckelord — Keywords

Data Analysis, Data Mining, Mobile Devices

Sailytyspaikka — Forvaringsstéalle — Where deposited

Muita tietoja — Ovriga uppgifter — Additional information

Contents

1

2

8

Introduction

Background

2.1 Mobile Data Collection and Analysis
2.2 Battery Life of Mobile Devices
2.3 Association Analysis

Carat Data

3.1 EmergyRate.
3.2 CPUUsageLevel
3.3 Travel Distance
3.4 Battery Temperature,
3.5 Battery Voltageo L.
3.6 Screen Brightness o 0.
3.7 Mobile Network Technology
3.8 Network Type.
3.9 WiFi Signal Strength o 0oL
3.10 WiFi Link Speed

Association Analysis

4.1 Formal Problem Definition.
4.2 Frequent Pattern Mining Using Frequent Pattern Growth

4.3 Generating Association Rules from Frequent Patterns

Spark and the MapReduce Programming Model
5.1 Spark Usage o

Implementation

6.1 Service Front End00
6.2 Service BackEnd
6.3 Analysis Engine

Results

7.1 Performance Evaluation
7.2 Overview on Generated Rules
7.3 Discussion

Conclusion

References

ii

18
20
20
28

30
31

34
36
40
43

49
49
53
61

63

65

1 Introduction

Sophisticated mobile devices are becoming increasingly more common world-
wide. In fact, the International Telecommunication Union estimates that
the number of mobile devices with Internet connections was over 3.8 billion
in 2016 [1]. With this rapid growth in the number mobile devices, it is
increasingly relevant to understand how these devices are used and how the
usage patterns affect the energy consumption of these devices.

The Carat project [14, 15, 19, 20, 18] has collected data from over 850,000
mobile devices worldwide since its initiation in 2012. The Carat data is
collected from mobile device users that have installed the Carat mobile
application on their device. An analysis server collects data samples sent by
the Carat mobile applications whenever the user opens the mobile application.
Samples are collected by the mobile application whenever the battery level
of the device changes. The data samples consist of a list of system settings
and context factors, a list of currently running applications and the current
level of battery life. The analysis server uses the collaborative measurements
to identify energy consumption anomalies from the users’ applications as
well as to estimate the energy consumption of individual applications.

This thesis work develops an alternative method for estimating how
the above mentioned context factors, system settings, and running mobile
applications of a mobile device affect its energy consumption. This method
mines the Carat dataset for association rules related to a mobile application
of the user’s choice. The association rules are filtered so that the consequent
of the rules will be an energy consumption estimate and the antecedents of
the rules will contain a precondition about the values of some context factors
and system settings of a mobile device. These association rules can then be
interpreted as energy consumption predictions of an application given a set
of preconditions about the context factors and system settings of a mobile
device.

Association rule discovery, or association analysis, is a well known data
mining technique that is commonly used to discover interesting relationships
in a dataset without making many assumptions about the structure of the
data. Recent advances in the association rule discovery algorithms [8, 13]
allow this form of analysis to be performed quickly for relatively large datasets
using distributed algorithms. These features make association analysis an
appealing choice of methodology for the study of mobile application data.

A secondary goal of this work is to implement a web based prototype
API, which could be used to allow third parties, such as mobile application
developers, to have access to the energy consumption predictions from the
Carat dataset. Peltonen et al. [19] have explored different aspects of allowing
third parties to have limited access to the Carat dataset. The implementation
described in this thesis work attempts to conform to the constraints which
Peltonen et al. describe, in order to protect the privacy of the users of the

Carat mobile application. Using association rule mining effectively hide all
the details about individual Carat users, protecting their privacy, while also
enabling reasonably detailed aggregated view of the dataset.

Key research questions that this thesis answers are:

1. Is it possible to generate association rules efficiently and scalably from
large datasets? The solution should be fast enough to be used in a
real-time query API while still having reasonable predictive power?

1.1. How do state of the art association rule generation techniques
scale as the size of the dataset is increased?

1.2. Can association rules be generated quickly enough to support a
real-time energy prediction query API?

2. How to select interesting and useful association rules from the set of
all generated rules?

3. How to implement a user friendly web based query engine for discovering
the association rules?

This thesis consists of three main parts. Chapters one to five present
the related literature and the theory on which this thesis work relies on,
and explains the Carat data from which the results are derived. Chapter
six presents the implementation of the analysis engine as well as the user
interface. Chapters seven and eight present the results and the conclusion of
this work.

2 Background

Mobile devices are becoming increasingly common [1] all around the world.
To understand and characterize the different aspects of mobile device usage,
various methods of data collection and analysis have been proposed in the
literature. Despite technological advances, battery life remains a factor that
severely limits the scope of mobile device usage. The literature proposes
methods for both accurately modelling energy consumption and for decreasing
the energy consumption of devices. Association analysis is a standard data
mining technique that has been widely applied. A couple of recent examples
of utilizing association analysis for different data mining tasks are shown
here to give a sense of the variety of the problems for which the association
analysis is applicable.

2.1 Mobile Data Collection and Analysis

Various approaches have been used for collecting and analysing data from
mobile devices. Multiple applications have been proposed for collecting
detailed logging information from a relatively small number of smart phone
users [7, 6, 23]. This kind of logging data can be utilized to find device
and application usage patterns, to building statistical models that predict
individual user’s future behaviour, and to building regression models which
accurately predict individual users energy consumption.

Large scale data collection and analysis platforms have also been proposed
for studying mobile data. Wagner et al. [24] describe a mobile data collection
system that has been used to collect usage information from 12,500 Android
mobile devices. The authors discuss challenges regarding privacy, security,
transparency, and accountability of their data collection and analysis system.

Oliver et al. [16, 17] have studied diurnal mobile device usage patterns
and energy consumption patterns using a dataset collected from over 15,000
BlackBerry mobile devices. The data consists of the devices backlight activity,
the operating system’s idle counter measurements, battery level and charging
activity, device shut down events, and device type and operating system
version.

Oliner et al. [14, 15] have used mobile device system settings and context
factors collected from over 500,000 devices to detect energy consumption
anomalies in mobile applications. The analysis system called Carat collects
samples containing list of currently running applications, level of battery
life and other context factors and system settings from the users that have
installed the Carat mobile application. These samples are sent to an analysis
server which is implemented using Spark cluster-computing framework. The
applications with anomalous energy consumption are labelled as energy hogs
if they consume above average amount of energy on most users’ systems.
If an application only consumes more than average energy under specific

circumstances, such as on a specific version of an operating system, then the
anomaly is labelled as an energy bug. After analysing the samples collected
from all users, the analysis server informs the Carat mobile application about
discovered energy hogs and bugs. The mobile application can then notify the
user about hogs or bugs affecting the user’s system and even estimate the
amount of battery life that could be saved by shutting off such applications.

To detect an energy hog application, the authors estimate the reference
battery drain probability distribution by using data points that do not have
the subject application running. They likewise estimate the subject battery
drain probability distribution by using only data points that have the subject
application running. If the expected value of the subject distribution is
notably higher than the reference distribution’s expected value, then the
application is labelled as an energy hog. An application that is not an energy
hog can be detected as an energy bug by estimating the subject application’s
energy drain probability distribution assuming some context factors such as
a specific operating system version. The energy drain distribution is then
estimated by using only data points that have the subject application running
and meet the criteria of the context factors. If the subject distribution, given
the specific context factors, has an expected value that is notably higher
than the reference distribution’s expected value, then the application can be
labelled as an energy bug. The detected difference in the expected values
of the probability distributions gives an estimate of how much energy can
be saved by not using an energy hog or bug application. An application
can have multiple energy bugs with different sets of context factor criteria.
The authors detected a total of 233,258 instances of energy bugs and 10,110
energy hogs from a total of 102,421 applications that were present in the
collected dataset.

2.2 Battery Life of Mobile Devices

As mobile devices become increasingly essential for our every day lives, the
demand for longer battery lives is constantly increasing. Despite the impact
that mobile device battery life has on every day lives of hundreds of millions
of people worldwide, the factors which affect a mobile device’s battery life
have not been studied extensively.

Mobile networking is an active area of research where mobile device
energy consumption has an import role. New mobile networking technologies
are being developed constantly and providing faster, more reliable and more
energy efficient mobile networking solutions for customers is a profitable
business for the internet service providers of the world. Consequently, it is
no surprise that funding and research efforts have gravitated towards the
field.

As a concrete example of such research, the impact of using 2G and 3G
networks for the mobile phone battery life has been compared by Perrucci et

al. [21]. The authors used a Nokia N95 phone to test the relative battery
consumption of various tasks comparing the results of using GMS, a 2G
mobile networking technology and UMTS, a 3G mobile networking technology.
The tasks for which the battery consumption was measured included sending
50 SMS messages of 100 bytes, downloading 100 megabytes of data, and
performing a 5 hour voice call.

The conclusion of the study is that different networking technologies are
energy efficient in different tasks. While the UMTS network is significantly
more energy-efficient for downloading data, the GMS is more energy-efficient
when sending SMS messages or performing voice calls. The authors argue
that this information could be used to minimize energy consumption of
mobile phones when multiple networking technologies are available.

Another perspective from which the mobile device energy consumption
has been studied in recent years, is offloading or remote execution of programs.
The idea of offloading is simple: since CPU intensive tasks tend to consume
a lot of energy, computing tasks can be executed remotely in a dedicated
server or cloud environment. However, transferring data to and from the
offloading platform also consumes energy and imposes other constraints such
as delay, connectivity, availability, security concerns and potential costs of
using such a platform.

One approach to decreasing mobile device energy consumption using
computation offloading is proposed by Qian and Andresen [22]. In this work,
the authors propose a programming model and a runtime environment called
Jade for creating processes that are offloading aware. Programs written
using their programming model will be subject to custom task scheduling.
The scheduler communicates with available computing servers exchanging
information about their available computing resources such as the number
of CPUs and the amount of RAM to make decisions on where certain tasks
should be offloaded to. Upon first execution of each task that uses Jade,
the task will be profiled in order to find out if the program is suitable
for offloading in future executions. The profiler collects statistics such as
runtime, energy consumption and size of the task. Whenever a remotable
task, that has been profiled, is executed, the Jade environment performs an
optimization step where it tries to figure out the optimal way to execute
the remotable task. The optimizer estimates the energy consumption of the
task for each available offloading server as well as the mobile device itself
and chooses the host that is estimated to be the most energy efficient for the
execution of task.

The authors wrote two applications to evaluate their systems performance.
The first program performed facial recognition on photos on the phone,
chosen by the user. The other program simulated a navigation application
by performing Dijkstra’s shortest path finding algorithm on a graph. Both
applications were run both locally and with offloading enabled. When using
offloading, the programs’ energy usage was reduced by 34% and by 39%

respectively. The execution time of the programs was also reduced by 37%
and 45% respectively.

The usage patterns of mobile devices and applications have also been
the subject of various studies and play a role in the energy consumption of
the mobile devices. Ferreira et al. [7] have shown that mobile applications
are frequently used in short bursts of activity they call micro-usage. This
micro-usage is especially prevalent in social applications and applications
that provide users with notifications. The authors suggest that the operating
system of a mobile device could possibly optimize resource allocation by
identifying applications that are often subject to micro-usage.

Falaki et al. [6] have studied and characterized the usage patterns of 255
mobile phone users. The authors have discovered a large diversity in the
average mobile phone usage statistics such as the amount of network traffic,
total energy consumption, number of installed applications, and the diurnal
user activity. The authors suggest that energy consumption modelling can
be enhanced by incorporating personalized usage statistics into the models.
They also demonstrate this idea by implementing a energy drain prediction
model that accurately predicts user’s energy consumption based on the user’s
past usage patterns and recent activity.

Regression models have been used to model energy consumption of
Android mobile devices based on context factors and system settings by Shye
et al. [23]. The authors show that the CPU usage and screen brightness
are the two dominant energy consumption factors in their data which they
collect using a custom Android logging application. They also use the data to
characterize the users’ workloads and develop an application which gradually
lowers an Android phone’s screen brightness and CPU usage to decrease
energy consumption while attempting to keep the changes small enough to
be hard for the user to notice. The authors show that the power saving
application is able to save up to ten percent of total battery life. For the
study, the application was tested by 20 users, 15 of which said they would
use the optimizations that the application provides.

Peltonen et al. [20, 18] have described a way to model a mobile device’s
battery life as a function of various context factors and system settings in-
cluding type, speed and activity of the network that the device was connected
to, screen brightness, CPU usage, battery health, voltage and temperature,
and the movement of the device. Using conditional mutual information, the
model estimates the impact of these factors and variables on the energy con-
sumption of the mobile device. Using this information, the authors construct
a decision tree based recommendation system called Constella. The Constella
application provides the user of a mobile device with recommended actions
to increase remaining battery life. The system compares the current values
of the context factors and system variables of the device with the model
described above, discovering which changes are estimated by the model to
save the most battery life. An example of such recommendation could be

"Change from mobile to WiFi network. Expected improvement 33m 33s £+
57s".

2.3 Association Analysis

Association analysis is a data mining method developed to find common
patterns from large databases. The method was famously conceived to
find common patterns in shopping cart content databases in order for the
supermarkets to optimize the layout of their stores [2]. Since then, the
method has been applied to a wide variety of data mining problems.

Karabatak and Cevdet Ince [11] have used association rule generation
and a neural network to train an expert system for detecting breast cancer.
The input data of the expert system consists of nine variables describing
the clump and a cell specimen of the suspected cancer tissue. The authors
use the Apriori algorithm [3] to discover association rules between the input
variables. The discovered rules are then used for feature extraction and
dimension reduction of the input data. Extracted features are then used as
the training data for a multilayer perceptron which is used to classify the
tumors to either malignant or benign class. After 3-fold cross validation
on a database of 699 records, one combination of association rule assisted
feature extraction and neural network achieved a correct classification rate
of 97.4% whereas a network which used the original nine variables as input
only achieved a correct classification rate of 95.2%.

In another study, Karabatak et al. [12] have used association analysis to
classify textures. In this study, images of textures are transformed using a
wavelet transformation. Each pixel is then mapped to range 0 to 2 based on
brightness of the transformed pixels. Items for the association rule generation
are then generated using a 3 x 3 sliding window, essentially concatenating the
nine pixels in the sliding window. Apriori algorithm [3] is used to generate
frequent item sets from the items. The frequent item sets and their related
support values are then used to characterize the texture from which the
transaction database is generated. In order to classify an unseen texture
image, the authors generate the frequent item sets and related support values
and use a shortest distance classifier to label the new image to one of the
texture classes. Their training and testing data consists of 500 texture images
of size 128 x 128. The images are gray scale representations of 10 classes of
textures, such as bark, plastic bubbles and brick wall. In the test scenario,
the classifier had a success rate of 97%.

3 Carat Data

The Carat data consists of samples containing mobile device system settings
and context factors, current battery level, the list of currently running mobile
applications and a user specific identification token unique to each Carat
application installation. The Carat mobile application periodically collects
these samples, typically when the device’s battery level changes [15]. The
application sends all collected samples to the server whenever the user opens
it or another sample is taken while the application is open.

Since we are interested in the effects that the mobile device system
settings and context factors have on the energy consumption rate of the
device, the samples need to be examined as a time series to estimate the
energy drain rate over time. This has been done by grouping all samples
according to their user identification token. The grouped tokens are then
sorted according to the time that the sample was taken. These sorted samples
are then paired up so that the first sample and the second sample make
up pair number 1, the second and the third sample make up sample pair
number 2 and so forth. These sample pairs are used as the basis of this
analysis. The energy rate of a sample pair is calculated as the difference of
the samples’ battery levels divided by the difference of their time stamps.
The set of running applications for a sample pair is decided to be the union
of both samples’ running applications. For all other system settings and
context factors, the more recent sample of the pair is used to determine the
context factors and system settings of the sample pair.

Since the Carat data comes from a large number of unsupervised clients,
there is no guarantee for the integrity of the data. A faulty device or a hostile
client may produce erroneous or tampered data. It is therefore essential to
apply proper pre-processing to the data in order to minimize the effect that
invalid data points have on further analysis.

Let us give a brief description of each of the system settings and context
factors that were used as part of the analysis. Association analysis requires
discrete data, as explained in Chapter 4. We therefore describe the way each
of these variables is discretized. The following presentation of the data is
based on a subset of the Carat data consisting of samples that were collected
between 26.8.2016 and 3.10.2016 that had Facebook mobile application
running. For increased uniformity and simplicity, the data set only contains
samples from clients running Android operating system.

3.1 Energy Rate

Energy rate of a mobile device is the velocity at which the mobile devices
battery is discharging. The unit of the energy rate is percentage per second.
This means that an energy rate of 0.05% would drain the whole battery in

just 0.10%% = 2000s = 33minutes. Any data points where the energy rate

160000

140000

120000

100000

80000

Number of Samples

60000

40000

20000

. — ; =
0.02 0.03 004 0.05
Energy Rate

0

Figure 1: Histogram of energy rates with 75 bins in green. The dotted red
lines show the boundaries of the four equal mass bins.

was negative, meaning the device’s battery was recharging, were filtered out.

Figure 1 shows a histogram of the energy rate distribution. The distri-
bution appears to be a rough approximation of an exponential distribution.
The distribution does not seem have an evident categorical division. Thus,
the data was discretized by dividing it to four bins of equal mass. The dis-
cretization boundary points along the energy rate -axis were 0.0011, 0.0038
and 0.0083.

3.2 CPU Usage Level

CPU usage level is the fraction of time that the central processing unit(s) of
the mobile device were busy when the sample was collected. The CPU usage
level is in a unit of percentages of the maximum level. All CPU usage levels
that were below zero or greater than 1 were discarded as faulty data.

Figure 2 shows a histogram of the CPU usage level distribution. The
distribution very roughly approximates the uniform distribution except for
100% and 0% CPU usage levels, which are quite overrepresented. The data
was discretized into four bins of equal frequency. The discretization boundary
points along the CPU usage -axis were 0.39, 0.63 and 0.85.

High CPU usage rate has been shown to increase the level mobile device
energy consumption [23, 20], and has been identified as one of the most
significant variables in predicting a device’s energy consumption. One would
therefore assume the CPU utilization level to appear as an antecedent for
rules which predict high energy consumption.

80000

70000

60000

50000

40000

Number of Samples

30000

20000

10000

CPU Level

Figure 2: Histogram of CPU usage levels with 75 bins in green. The dotted
red lines show the boundaries of the four equal mass bins.

3.3 Travel Distance

Travel distance is the distance in meters, that the mobile device moved
between the two samples. Moving mobile phone users have been shown to
consume less energy on average compared to stationary ones [18]. This could
be due to stationary users being more likely to actively use their devices.

Figure 3 shows a histogram of the travel distance distribution. Most
of the mass of the distribution is concentrated in the close proximity of
zero with other values having very low frequencies. The travel distance was
discretized to two categories: mowing, if the travelled distance was greater
than 100 meters, and static otherwise.

3.4 Battery Temperature

Battery temperature is the measured mobile device battery temperature in
degrees Celsius. Temperatures less than five degrees were discarded as it is
very rare for a battery temperature to be that low even in subzero climates.
Likewise battery temperatures of over 100 degrees were discarded, as healthy
devices very rarely reach such high battery temperatures.

Figure 4 shows a histogram of the battery temperature distribution.
The distribution approximates a normal distribution with some skewedness.
Notably, there is a small cluster of measurements near zero degrees Celsius.
This is most likely due to mobile devices systematically reporting a value of
zero if the measurement data is not available. The data was discretized into
four bins of equal frequency. The discretization boundary points along the
battery temperature -axis were 27, 31 and 34.

High battery temperature has been shown to cause increased battery

10

900000

800000

Fooooo

600000

500000

400000

Number of Samples

300000

200000

100000

2000 4000 6000 8000 10000
Travel Distance

=]

Figure 3: Histogram of travel distance with 75 bins

T0000

60000

50000

=
=
=
=

Number of Samples
]
(=)
=]
=]

%]
=
=
=]
=]

10000

10 20
Battery Temperature

T
-10

Figure 4: Histogram of battery temperatures with 75 bins in green. The
dotted red lines show the boundaries of the four equal mass bins.

11

600000

500000 -

400000

300000 -

Number of Samples

200000

100000

20 25 30 5 40 45 5.0 55
Violtage

Figure 5: Histogram of battery voltages with 75 bins in green.

consumption [18]. The increase in battery temperature cannot always be
explained by CPU usage alone, and other factors such as the ambient tem-
perature can affect the battery temperature. It is to be expected that high
battery temperature appears as an antecedent of many rules predicting very
high energy consumption.

3.5 Battery Voltage

Battery voltage is the electric potential difference generated by the battery
in units of volts. Different devices may carry batteries with different voltages.
A malfunctioning battery that is near end of its lifetime may give lower than
usual voltage readings.

Figure 5 shows a histogram of battery voltage distribution from the Carat
data. The voltages are clustered almost discretely around values of 2, 3
and 4 volts. The voltages were accordingly divided to three bins to reflect
this clustering. The discrete voltage data is due to a bug in the Carat data
collection software which rounds the readings to integer values. This bug
affects the data set used in this thesis work, but has since been fixed. By
using a more recent dataset, one would be able to use continuous battery
voltage readings in the analysis, which would likely increase the predictive
power and accuracy of the generated association rules.

3.6 Screen Brightness

Screen brightness is system setting that takes integer values between -1
and 255. Higher values correspond to higher screen brightness. The value
negative one has a special meaning indicating automatic screen brightness,

12

60000

50000

=
=
=1
=]

Number of Samples
5]
o
[=]
(=]

20000

10000

0 50 100 150 200 250
Screen Brightness

Figure 6: Histogram of screen brightness divided to 100 bins in green. The
dotted red lines show to boundary points of the four equal mass bins.

where the screen’s brightness is adjusted according to changing illumination
of the environment [20].

Figure 6 shows a histogram of the screen brightness values, where the
values of -1 have been removed. The brightness values seem to roughly
follow a uniform distribution, although very high screen brightness settings
seem to be over represented. Approximately half of the samples had their
brightness value at -1, indicating automatic brightness setting. Since the
automatic setting is categorically different from all other brightness values,
the brightness attribute was discretized in the following way: the value -1
formed it’s own bin labelled as "auto', while the other numerical values were
divided to four bins of equal mass. The boundary points of the equal mass
bins along the screen brightness -axis were 52, 112 and 195.

Increase in screen brightness has been shown to cause increased energy
consumption in mobile devices [23, 20] while low and automatically adjusted
screen brightness values lead to decrease in energy consumption. It is
expected that this phenomena shows up in the association rules as well.

3.7 Mobile Network Technology

The mobile network technology is a system property that reports the name
of the mobile technology that mobile device is using for its mobile data
communication. Common values include LTE, HSPA, EDGE and UTMS.
Figure 7 shows a histogram of all mobile network types in the Carat data.
Numeric values were mapped to mobile network type names according to
Android developer reference manual '. Ambiguous values such as "unknown',

"https://developer.android.com /reference/android /telephony/ TelephonyManager.html

13

500000

400000 |
300000 -

200000 +

-l m

Mumber of Samples

100000

]
@ F PP e® 00‘;\ nﬁ*‘“ esﬁe' R o2 v

Figure 7: Histogram of mobile network technologies in Carat data.

"null" as well as any numerical value not listed in the Android developer
reference manual, were combined to a single bin labelled as "unknown".

Different mobile networking technologies have been shown to have varying
energy consumption performance depending on the task [21]. Based on this
observation, one would assume that different mobile network technologies
should appear as antecedents for association rules predicting either high
or low energy consumption depending on the network usage pattern of the
mobile application.

3.8 Network Type

Network type is a system property that is reported by the mobile device
to indicate the type of the data connection. Typically this is either mobile
or wifi, indicating the use of mobile networking or a wireless local area
networking respectively. Some more exotic alternatives can however be found
in the data, such as bluetooth tethering, where the network access is enabled
by bluetooth tunneling through another device.

Figure 8 shows a histogram of all network types found in the Carat data.
Values null and unknown were considered ambiguous and were combined
under the label unknown.

The choice of networking technology has been shown to affect the energy
consumption of mobile devices [18, 10]. As a general rule, using WiFi network
for downloading data is more energy efficient than using a mobile networking
technology. Therefore a reasonable hypothesis is to expect to see association
rules with mobile networking type as an antecedent for rules predicting high
energy consumption, at least in case of applications that download a lot of
data.

14

G00000

500000

400000 F

300000

200000

100000

qh“‘ nl\\

'

13 3
\i‘*{\c‘ﬂ e@a‘\&
o

e
o

Figure 8: Histogram of network types in Carat data

3.9 WikFi Signal Strength

WiFi signal strength is a system property that the mobile device uses to
signify the strength of the wireless local area network. WiFi connection
strength is reported as an integer value in the range -100 to 0, where 0
signifies the strongest signal. Presumably, the WiFi signal strength is in
units of decibels relative to milliwatt (dBm). The Android API seems to
report a value of -127 when no reading is available. Values less than -100 were
excluded from the data as these are very unlikely to be real measurements.

Figure 9 shows a histogram of WiFi signal strengths in Carat data. The
distribution seems to approximate a normal distribution reasonably well.
The data was discretized in four bins with equal mass, the boundaries of
which were -68.0, -59.0 and -50.0.

Poor WiFi signal strength has been shown to decrease battery life of
mobile devices [18]. This is likely due to increase in the noisiness of the
connection, leading to increased data loss and retransmissions, which require
extra energy. This effect is expected to be seen in the association rules
generated for applications that rely heavily on networking.

3.10 WiFi Link Speed

WiFi link speed is a system property that the mobile device uses to report the
current wireless local area network link speed. The link speed is presumably
reported in units of mega bits per second (mbps).

WiFi link speed has been shown to have an impact on the mobile device
energy consumption [18, 23]. Increase in link speed seems to lead to an
increase in energy consumption, although this connection does not appear

15

16000

14000 4

12000 A

10000 4

8000 A

Number of Samples

T —u
—60 —40 —20 0
Wifi Signal Strength (dBm)

Figure 9: Histogram of WiFi signal strengths readings with 100 bins in green.
The dotted red lines show the boundaries of the four equal mass bins.

to be nearly as significant as WiFi signal strength for example. The slight
increase in energy consumption might be due to users with faster link being
able to consume downloadable content more quickly, thus draining the battery
more efficiently.

Figure 10 shows a histogram of the WiFi link speeds in the Carat data.
The link speeds were divided to four bins of equal mass. The boundary
points of the bins along the link speed -axis were 54.0, 72.0 and 130.0.

16

100000 1

80000 4

60000 4

Number of Samples

40000 1

20000

o 100 200 300 400 500
WiFi Link Speed {mbps})

Figure 10: Histogram of WiFi link speed with 100 bins in green. The dotted
red lines show the boundary points of the four equal mass bins.

17

4 Association Analysis

Association rule mining is the task of finding associations between items in
a database of transactions. The technique was originally developed in 1993
to identify patterns in consumers grocery purchasing behaviour [2]. Since
then however, association analysis has found applications in wide variety of
domains.

Association rule mining is an attractive method for modelling non-linear
relationships of variables. Many of the mobile device system settings and
context variables are highly dependent on one another and therefore their
combined effect on the energy consumption is difficult to estimate using
linear models. Many non-linear modelling techniques require additional
knowledge about the structure of the data. Association rule mining requires
relatively few assumptions about the data to be made. In fact the only
preprocessing that is necessary in order to apply the association rule mining,
is data discretization.

Let us consider a hypothetical dataset shown in table 1. The dataset
consists of mobile device system settings and energy usage measurements.
The dataset has three continuous valued variables: energyRate, the rate at
which the battery is discharging; CPULevel, the device’s CPU usage level
and screenBrightness, the brightness of the device’s screen. Each of these
variables takes floating point values ranging from 0.0 to 1.0.

Since association rule mining requires each variable of the database to
be binary valued, a discretization of the variables must be performed. To
discretize a continuously valued variable, we need to replace the continuous
variable with multiple binary valued variables, each corresponding to an
interval or cluster of values of the continuous variable. The details of
discretization of Carat data are discussed in Chapter 3. For simplicity, let us
consider a simple discretization strategy, where each continuous variable is
split to two binary variables by creating two bins at cut point 0.5. Tables 2
and 3 demonstrate this idea.

Since every group of variables that is created by discretization is mutually
exclusive, a more concise notation for this dataset can be used, as shown in
Table 4.

Having transformed the raw data to binary variables, the goal of the

energyRate | CPULevel | screenBrightness
0.21 0.58 0.30
0.80 0.46 0.61
0.76 0.65 0.93
0.58 0.99 0.54

Table 1: Hypothetical mobile device measurements inspired by Carat dataset

18

energy=low | energy=high | CPU=low
True False False
False True True
False True False
False True False

Table 2: Hypothetical mobile device measurements after discretization using
long notation. First half of the columns.

CPU=high | screen=low | screen=high
True True False
False False True
True False True
True False True

Table 3: Hypothetical mobile device measurements after discretization using
long notation. Second half of the columns.

energyRate | CPULevel | screenBrightness
low high low

high low high

high high high

high high high

concise notation

19

Table 4: Hypothetical mobile device measurements after discretization using

association analysis is then to produce a list of association rules, given some
measure of interestingness. For the database given above, an association rule
mining algorithm might find the following association rule

{CPU Level = high, screenBrightness = high} = {energyRate = high}

This rule implies that high CPU utilization together with high screen
brightness associates with high level of energy consumption.

4.1 Formal Problem Definition

Let I = {x1,x2, ...,z } be a set of binary variables called items. A transaction
database T is then a multiset of subsets of I, where each element of T' denotes
a transaction. To give the exact problem of association rule discovery,
concepts of support and confidence need to be introduced.

Support of an item set X in database T is defined as the fraction of all
transactions in 7' that contain the item set [9].

[{X'eT|X CX'}]
T
Confidence of a rule X = Y, where X and Y are item sets of T', is defined

as the fraction of transactions in T' containing item set X which also contain
Y [9].

supp(X) =

supp(XUY)
supp(X)

The problem of association rule discovery can now be formalized the
following way. Given a transaction database T, minimum support level s,
where 0 < s < 1 and minimum confidence level ¢, where 0 < ¢ < 1, find all
rules X = Y where conf(X = Y) > ¢, supp(X) > s and supp(Y') > s [9].

The association rule discovery problem can be further divided into two
distinct sub-problems, namely frequent pattern mining problem and rule
generation problem. A frequent pattern P of database T is a subset of I
such that supp(P) > s. The frequent pattern mining problem is the task
of finding all frequent patterns from a given database. The rule generation
problem on the other hand, is the task of generating all association rules
with sufficient confidence from the frequent patterns.

conf(X=Y)=

4.2 Frequent Pattern Mining Using Frequent
Pattern Growth

Frequent pattern growth is an efficient algorithm for the frequent pattern
mining problem [8]. The FP-growth algorithm has been shown to outperform
the time consumption of traditional Apriori pattern mining algorithm [3]

20

by more than an order of magnitude when mining large databases [8]. The
algorithm utilizes a specialized data structure called FP-tree, a kind of prefix
tree, to speed up the frequent pattern generation. The FP-tree data structure
consists of nodes, each of which have tree fields: item name, item count
and node link. The item name tells which item the node represents. The
item count signifies the number of transactions containing the item, that
can be reached by following the path of nodes in the FP-tree leading to this
node. The node link contains a pointer to the next node in the FP-tree with
the same node name. An exception to this format is the root node of the
FP-tree, which does not have any of these fields, but only has links to child
nodes. Algorithm 1 shows how to constructs a FP-tree for a transaction
database [8].

The algorithm consists of two procedures. The entry point for the algo-
rithm is the buildF P Tree-procedure, which takes no parameters and returns
the newly built FP-tree. The sub-program insertTree takes a transaction
Trans, that is sorted by descending item frequency, and an incomplete FP-tree
T as its parameters. The insertTree procedure walks down T in a path
determined by the items in Trans, incrementing the counts of nodes on the
path. If there is no existing path to walk down on at any point, the insertTree
creates a new node with count 1 as a child of the last node that was walked
over.

The buildFPTree procedure proceeds the following way. In line 1, the
transaction database is scanned and the different item names together with
their frequencies are collected to variable F. In line 2, keys of F' are sorted in
descending order of support and items which have support less than minimum
support s. The sorted and filtered key-count-pairs are stored in variable L.
In line 3, the root of node of the FP-tree is created and stored in variable T.
In line 4, a for loop that iterates over each transaction in the transaction
database is entered. The loop yields the transactions in a variable called
Trans. In line 5, the contents of variable Trans are sorted according to the
ordering induced by L and infrequent items (items which have support that
is less than s) are filtered out of Trans. In line 6, the sub-program insertTree
is called passing parameters Trans and T. The for loop entered on line 4 is
exited. Finally on line 7, T, which now contains the complete FP-tree, is
returned.

The insertTree procedure consists of the following steps. In lines 1-3, we
check if parameter Trans is empty and return if so. In lines 4-5, we store
the first item of parameter Trans in variable N and the rest of the items in
variable tail. In line 6, we enter an if statement with the conditional "7 has a
child A such that h has the same item name as N". In line 7 we increment the
count of N by one. In line 8 we call insertTree recursively with parameters
tail and h. In line 9, we exit the then-branch of the if statement and enter
the else-branch. In line 10, we create a new node with item-name equal to
N, count equal to 1 and we link 7" as the node’s parent. The newly created

21

N

[L BN

(=2 JNG | B VL] N

o

10

11

Data: A transaction database DB, minimum support threshold s
Result: FP-tree for the database
Algorithm buildFPTree (DB, s)
F < Scan DB and collect a map of items and their frequencies
L < Sort keys of F' in descending order of support filtering out
items which have support < s
T < root node of the FP-tree
for transaction Trans in DB do
sort Trans according to L and filter out infrequent items
insertTree(Trans, T')
end
return T
Procedure insertTree(Trans, T)
if Trans is empty then

return
end
else
N <« first item of Trans
tail < tail of Trans
if T has a child h such that N.item-name == h.item-name
then
h.count +=1
insertTree(tail, h)
end
else

n < create new node with item-name = p.item-name and
count = 1 and link 7 as its parent
insertTree(tail, n)

end

end
Algorithm 1: Fp-tree construction

22

Items Frequency Ordered and Filtered Items
a,b,c,d,e,h|c, e h,a, b, d
c,d, e h c,e h,d
c,e h c,e h
a, b,c,ej c,e,a, b
c, h c, h
, 1 d

Table 5: Example transaction database for illustrating FP-tree generation.

node is stored in variable n. In line 11 we call insertTree recursively with
tail and n as its parameters.

To better illustrate the process of building an FP-tree from a transaction
database, let us go through an example that uses a simple made up transaction
database. First step of building a FP-tree, is to sort each transaction by
decreasing order of frequency of its items in the database. Infrequent items
are also filtered out based on the minimum support. Table 5 shows the
example transaction database as well as the frequent items in descending
order of frequency. A single traversal over the database is required in order
to sort the transactions.

For this example, let us consider a minimum support of 0.3. Since the
number of transactions in our database is 6 and % <03 < %, all items with
frequency less than 2 can be filtered out. Thus items i and j are not included
in the second column of table 5.

To construct the FP-tree we start with a node labelled as "root". We
then take the first transaction and walk over its elements in the frequency
order. We start from the root node of the FP-tree. Since the roo node has
no child nodes, we add a child node labelled with "c¢" and set its count to
1. We remove the item "c¢" from the transaction being handled. Then we
continue the walk from the node labelled with "c¢". The procedure is repeated
with the remaining items of the transaction, continuing the walk from the
node labelled "c". The FP-tree after processing the first transaction is shown
in Figure 11.

Next, the second transaction is processed as follows. We again start
walking down FP-tree from the root node processing items in the second
transaction. Since the root node has a child node labelled with "c¢" we
increment its count to 2 and remove item "c¢' from the transaction being
processed. Since the node has a child node labelled with "e" and our next item
to be processed is "e", we move to the node labelled with "e" and increment
its count by one and remove item "e" from the transaction being processed.
The same process is applied to item "h" and the node labelled with "h". The
next item to process is "d", but the node labelled with "h" does not have a

23

Node links

Figure 11: FP-tree after processing the first transaction

child node labelled with "d". We therefore add a child node labelled with "d"
and add 1 to the count of the node labelled with "h". Figure 12 shows the
progress after processing the second transaction of the database.

Repeating the same procedure for the rest of the transactions yields
complete FP-tree as illustrated in Figure 13.

The dashed arrows in Figure 13 represent node links. The FP-tree
maintains a table of linked lists for each distinctly named item. Whenever a
node is added to the FP-tree, a pointer to that node is also added to the
linked list corresponding to that nodes label.

The way an FP-tree is constructed guarantees, that all FP-trees have the
so called node-link property [9]. What it means, is that for any frequent item,
all frequent patterns containing that item can be constructed by following
the item’s node-links starting from the item’s head in the FP-tree header.
Let us consider the FP-tree in Figure 13. Starting from the bottom of the
node links, we examine which frequent patterns can be extracted by following
the node link. For item "d", we can trivially extract a frequent pattern
"d:3". In addition, we have to consider the three prefix paths of "d" which
are accessible from the node links of item "d": (c:5, e:4, h:3, a:1, b:1, d:1),
(c:5, e:4, h:3, d:1) and (d:1). These three paths form the conditional pattern
base [9] of "d". To extract all frequent patterns containing item "d", we
start by substituting all the item counts in each of the prefix paths in the
conditional pattern base of "d" with the count of "d" in the prefix path. This

24

Node links

Figure 13: Complete FP-tree

25

Node links

Figure 14: Conditional FP-tree of item d.

is done to account for the fact that on each of the prefix paths of "d", the
other items appear together with "d" exactly as many times as "d" itself. We
also leave out the element "d" itself. We now get the transformed conditional
pattern base (c:1, e:1, h:1, a:1, b:1), (c:1, e:1, h:1). The next step towards
the frequent patterns containing "d", is to construct a conditional FP-tree of
"d" [9]. The construction of the conditional FP-tree conforms to the same
set of rules as a normal FP-tree. The only difference is that a prefix path in
the conditional pattern base, such as (x:n, y:n, z:n) should be interpreted as
n distinct transactions containing the items x, y and z. Figure 14 shows the
conditional FP-tree of item d constructed from the transformed conditional
pattern base. Since there is only a single path in the conditional FP-tree, one
can generate all the remaining frequent patterns containing item d by taking
all combinations of items c, e, h and concatenating them with d. Each such
pattern has support equal to the minimum support among the items in the
combination. In this case, we would get frequent patterns {cd:2, ed:2, hd:2,
ced:2, chd:2, ehd:2, cehd:2} in addition to the trivial pattern d:3. But what
would happen if the conditional FP-tree contained multiple paths? In this
case one would recursively construct a new conditional FP-tree for the item
whose node link yields multiple paths. Following this procedure for each
node link in the original FP-tree, one can generate all the frequent patterns.

Formalizing the method discussed above yields Algorithm 2 [9]. The
algorithm FPGrowth takes as its arguments an FP-tree and a minimum
support threshold. In line 1 of the algorithm, a procedure patternGrowth
is called with the FP-tree and an empty sub-pattern denoted by value null.
The procedure patternGrowth has two parameters. The first parameter is a
conditional FP-tree and the second parameter is the sub-pattern for which
the conditional FP-tree was built. Initially, the procedure will be called with
the whole FP-tree and empty sub-pattern. The algorithm will recursively
simplify the conditional FP-tree until the tree only contains a single branch,
from which the frequent patterns can be easily generated. In line 1, the

26

Data: FP-tree constructed using Algorithm 1, minimum support
threshold s
Result: All frequent patterns of the database
Algorithm FPGrowth (FP-tree, s)
‘ patternGrowth(F'P-tree, null)
Procedure patternGrowth (tree, sub-pattern)

juny

1 if tree contains only single path P then
for each combination C of items in P do
generate frequent pattern C'U sub-pattern with support =
minimum support of items in C
end
end
else
for each node in the header of tree do
C <« pattern node.item U sub-pattern with support =
node.support
generate pattern C' with support = node.support
B + construct conditional pattern base of C' constrained by
minimum support threshold s
9 T < construct the conditional FP-tree of C' from B
constrained by minimum support threshold s
10 if T is non-empty then
11 patternGrowth(T, C)
end
end
end

Algorithm 2: Fp-growth

27

procedure checks if the conditional FP-tree only has one branch. If so, the
frequent patterns of the conditional FP-tree are outputted in lines 2-3 after
which the procedure is finished. If the conditional FP-tree had more than
one branch, we go to line 5, where we start to iterate over all nodes reachable
from the conditional FP-tree’s header’s node-links. In line 6, we create a
new pattern by appending the node’s item to the current sub-pattern. The
pattern is stored to variable C. The new pattern’s support is set to be equal
to the support of the node that is being iterated. In line 7, the pattern
C is appended to the output of the program. In lines 8-9, a conditional
FP-tree of pattern C' is constructed and stored in variable T. In lines 10-11
we recursively call patternGrowth with the newly constructed conditional
FP-tree T and pattern C. After line 11, we exit the iteration loop and the
procedure is finished.

4.3 Generating Association Rules from Frequent Patterns

The frequent patterns may reveal some interesting structures in the transac-
tion database, as they effectively capture frequent co-occurrence of various
items. Although this may be enough for some application domains, it is often
the case that one would ultimately want to reveal some causal relationships
between items or sets of items in the database. The association rules offer a
rudimentary but fairly scalable solution for discovering "if X then Y" type of
relationships between subsets of items in the frequent patterns. It should be
noted here, that the field of causal inference expands far beyond scope of
this thesis work and the association rules should at best be considered as
candidates for causal relationships, not as proofs of such.

Given a set of frequent patterns F, and a minimum confidence threshold
¢, the task of generating the association rules can be accomplished by the
following method:

1. For each set of items I in F

1.1. For each non-empty subset A of I
i. If conf(A =1\ A)> cthen output rule A=1\A4

While the proposed method does work when the size of the frequent
patterns is small, this approach quickly becomes infeasible as the length of
the patterns grow. Given a frequent pattern I with | I | items, there are
a total of 2|/l subsets of which 2 — 2 need to be tested as the set I itself
and the empty set can be discounted. Fortunately, a technique exists for
pruning the search space, as described by Agrawal et al. [4]. The confidence
measure has the anti-monotone property, meaning that for any frequent
pattern I = {A, B,C, D} the following inequality holds:

conf(ABC = D) > conf(AB = CD) > conf(A = BCD,)

28

Data: A set of frequent patterns F, a minimum confidence threshold ¢
Result: Association rules discovered from the frequent patterns
Algorithm generateRules(F, ¢)
1 for each frequent pattern P in F do
C <+ candidate rule generator of P ordered by increasing
length of candidate rule’s consequent set length
while C has more candidate rules do
r <— get next candidate rule from C
if conf(r) > c then
‘ output r

N

[B N

end

else
Remove all candidates rules r’ from C where
r.consequents C r'.consequents

o

end

end

end
Algorithm 3: Generating association rules from frequent patterns

Since moving items from the antecedent set to the consequent set never
increases the confidence of the rule, one can potentially prune an enormous
amount of candidate rules by iterating the candidate rules in ascending order
of length of the candidate rule’s consequent set [4]. After each iteration,
if the candidate rule being processed did not have high enough confidence,
then all remaining candidate rules whose consequent set contains a subset
of the current candidate rules consequent set, can be pruned since the anti-
monotone property guarantees that any such rule has confidence no higher
than the current candidate rule.

Algorithm 3 gives an outline on how to generate association rules from
frequent patterns with search tree pruning. The details of how to generate
the combinations of items and how to implement the pruning of the search
space are not presented here. The algorithm takes a set of frequent patterns
and a minimum confidence threshold as its arguments and returns the set of
association rules discovered from the frequent patterns. In line 1 we start
to iterate over the frequent patterns. In line 2 we initialize the candidate
rule generator storing it to variable C. In line 3, we enter a while loop which
is terminated when generator C has no more candidate rules to generate.
In line 4 we store the next candidate rule from C' to variable r. In lines
5-6, we test if the confidence of candidate rule r is greater or equal to the
minimum confidence threshold and output the rule if the criteria is met. If
the confidence criteria was not met, we prune the candidate rule space of
generator C' in lines 7-8.

29

5 Spark and the MapReduce Programming Model

MapReduce is a programming model and an associated implementation
that emerged to simplify common tasks associated with big data processing.
These include managing parallel and distributed computing and ensuring
fault tolerance of the computations [5]. The model is heavily influenced
by functional programming, a programming paradigm that emphasises the
use of pure functions and avoiding mutable state. As the name MapReduce
suggests, the computational model of a MapReduce system is based on two
higher order functions, map and reduce.

Spark is a MapReduce system implemented in the Scala programming
language that is built around an abstraction called Distributed Resilient
Datasets (RDDs) [25]. The RDD abstration allows Spark to implement
efficient fault tolerance. A common way of achieving fault tolerance is by
maintaining multiple redundant copies of all datasets. Each time a dataset
is mutated, all copies are mutated as well. While this certainly makes the
system tolerant to lost datasets, it imposes quite significant overhead as
each update needs to be replicated and extra space is required by the copies.
Instead of maintaining redundant copies of each dataset, Spark solves the
problem of fault tolerance by maintains the lineage of its datasets. The
lineage of an RDD is a collection of instructions that specify how the RDD
was computed from other RDDs. In case the Spark system loses an RDD; it
can recreate the lost dataset by tracing its lineage back to existing RDDs
and applying the instructions to recompute the lost dataset.

The Spark runtime consists of a driver application and one or more
worker application to which the driver application connects to and assigns
tasks [25]. In a typical scenario, the worker applications reside on separate
compute nodes of a computer cluster.

The programming interface that Spark provides is analogous to the
collection library in the Scala standard library. The interface offers two types
of functions: transformations that construct new RDDs from existing ones,
such as map and filter, and actions that either save data to disk or return
values to the application, such as collect and reduce [25]. Transformations
are computed lazily, which allows pipelining consecutive transformations
and constructing a lineage graph of the computation before computation
even takes place. Actions are used to execute work flows constructed by
transformations and return the results to the application or write them to the
disk. The map function, defined for class RDD/[T], where T is the element
type parameter of the RDD, has essentially the following type signature

maplU](f : (T) = U) : RDD[U]

The function produces a new RDD with element type U by applying
function f to each element of the original RDD. Similarly, function filter has

30

the type signature

filter(f : (') = Boolean) : RDDIT]

and works by constructing a new RDD by including those elements of the
original RDD where predicate f is true. The action collect has the simple
type signature

collect() : Array[T|

as it merely returns the results of the computation performed by transfor-
mations on the RDD to the application. The reduce action has the signature

reduce(f : (I, T)=1T):T

and it works conceptually by applying the binary operator f iteratively
to elements of the RDD until there is only one element left. The order and
pairing of the elements is not specified to allow parallel computation and thus
the operator needs to be commutative and associative in order to guarantee
deterministic results.

5.1 Spark Usage

Let us look at a simple example to illustrate the usage of Spark. Suppose
we have a text file where each line contains a decimal number and we wish
to calculate the sum of all positive numbers in the file. The following Scala
program implements this task.

31

1 object SumNumbers {

3 def initSpark(): SparkSession = {

4 val sparkMaster = Properties

5 .envOrNone ("SPARK_MASTER") . get

6

7 SparkSession.builder ()

8 .appName ("SumNumbers")

9 .master (sparkMaster)

10 .get0OrCreate ()

11 }

12

13 def main(args: Array[String]) {

14 val session = initSpark()

15 val sc = session.sparkContext

16

17 val numbers: RDD[Double] = sc

18 .textFile (args (0))

19 .map (_.toDouble)

20 val positive: RDD[Double] = numbers
21 .filter(_ >= 0)

22 val sum: Double = positive.reduce(_ + _)
23 println(s"Sum of positive numbers is ${suml}")
24 }

25 }

Explicit type annotations are included at lines 17, 20 and 22 to clarify the
execution context of values numbers, positive and sum. The value numbers
as well as value positive describe transformations applied to an RDD of
strings, created at lines 17 and 18 by calling sc.textFile(args(0)). This
reads the text file given as the first command line parameter to the program
and creates an RDD whose elements are the lines in the text file. In line
19, the RDD of strings is converted to an RDD of double precision floating
point values by applying method toDouble to each element. In lines 20 to 21,
the RDD of doubles is further transformed by calling filter(_ >= 0). The
filter function, as explained above, applies a predicate to the RDD returning
a new RDD containing only the elements whose value is greater than or
equal to zero. Finally, at line 22, the call to action positive.reduce causes the
computation defined by the RDD objects to materialize and calculates the
sum of elements of RDD positive. Readers who are not familiar with Scala
programming language might find expressions such as _ .toDouble and _ + __
slightly confusing. These expressions are merely syntactic sugar for expressing
anonymous functions and can be written equivalently as z => x.toDouble
and (x,y) => = + y respectively.

32

Each RDD consists of partitions, which are independent subdivisions
of the dataset [25]. Each partition may be computed in parallel or even
on different machines. The programmer can control the number partitions
that an RDD should be divided into by calling the RDD object’s repartition
method and providing the desired number of partitions. Partitions have
their individual lineage graph specifying which partitions of the parent
RDDs they depend on. When executing a work flow, Spark groups together
transformations that can be pipelined to form stages. An RDD operation
that depends on multiple RDDs will create a stage boundary, because both
dependency RDDs will need to be materialized before the operation can be
executed.

Figure 15 shows a lineage graph of the example work flow discussed
above, assuming the default number of partitions is three. The tall rectangles
represent RDDs and the small squares inside represent the partitions of the
RDDs. Above each RDD is the name of the function that is responsible for
creating the RDD. All the RDDs are wrapped inside a single stage, because
the operations can be pipelined. The black arrows in between the partitions
represent the lineage of the partitions.

textFile map filter
1 1 1
2 2 2
3 3 3
Stage 1

Figure 15: Lineage graph of the example Spark work flow. Tall rectangles
represent RDDs and squares inside them represent partitions.

33

6 Implementation

This section discusses the implementation of the Carat developer API pro-
totype. The API aims to provide mobile application developers the ability
to discover how a client mobile device system settings and context factors
affect the energy consumption of the device.

The design of a service like this poses multiple challenges, as discussed by
Peltonen et al. [19]. The dataset itself is large and incrementally changing
as time passes, which makes static statistical analysis inconvenient. It is
therefore practical to design the service in such a way that the analysis can
be executed dynamically whenever the API is accessed. Another challenge is
to protect the privacy of the participants of the Carat project.

Association rules were selected as the basis of the API for a number of
reasons. The association rules effectively hide all the details about individual
Carat users, protecting their privacy, while also enabling reasonably detailed
view on how a devices system settings and context factors affect the energy
consumption. Association rule mining also allows convenient data processing,
as discussed in Chapter 3. Finally, efficient parallel algorithms exist for
generating association rules from huge datasets as discussed in detail in
Chapter 4.

As discussed by Peltonen et al. [19], the intention of the Carat API is to
allow application developers to retrieve information about their application by
authenticating with their developer key. The prototype described here, does
not include authentication of application developers, but rather demonstrates
the functionality that the API could offer provided that an authentication
has been successfully completed.

The implementation consists of three main components. These are the
front end web server, back end web server and the analysis engine. Figure 16
shows network level layout of these components and the way these components
communicate when the API is accessed. When a client accesses the API, the
following flow of requests takes place:

1. Client sends a HTTP request to the front end server. The request
may contain parameters that control the way the association rules are
generated.

2. Front end web server sends a HI'TP request to the back end web server
passing along the parameters from the client.

3. The back end web server dispatches a job to the analysis engine running
on Spark-cluster. Parameters provided by the client are used to control
the analysis.

4. Analysis engine sends generated association rules to the back end web
server.

34

Service
Frontend

Http request

g_oad Balancer

>

Http response

Y

Frontend
Web Server

Hitp request
Ji.“"—-—-—""‘/ Hitp response

]

Authentication

e

Client

Http request

. Hiip response
Service

Backend

Database

Results

A 4

Backend
Web Server

_ Dispatch job
<

Figure 16: High level network architecture of the Carat API prototype

35

5. Back end server sends HTTP response containing the generated rules
to the front end web server.

6. Front end server uses the association rules to generate a view for the
client.

Figure 16 shows the flow of control between the different components
of the Carat API. The prototype only implements the frontend and the
backend of the service. Implementing load balancing and authentication falls
outside the scope of this thesis. Some implementation constraints of the
authentication module are discussed by Peltonen et al. [19].

6.1 Service Front End

The service front end is implemented using a simple web server written in
Scala programming language using Scalatra web framework version 2.4.0 and
using Javascript programming language to create the interactive content in
the web based graphical user interface. Figure 17 shows to graphical user
interface of the service. Initially, a search form will be displayed to the user,
containing three input fields for specifying the name of the application to
be analysed, the minimum support threshold and the minimum confidence
threshold. Additionally, the form contains a check box for each variable to
be excluded from the association rule generation.

The first input field accepts the name of the application. The input field
was constructed using selectize.js, a Javascript library for creating searchable
drop down lists. As the user starts typing the name of the application in the
input field a list of matching application names will be displayed under the
input field. By clicking an application name in the list, the user can select the
application of interest. To enable this functionality, the application will fetch
a list of all available application when the web page loads using an AJAX
request to the web server. Figure 18 shows how the searching and selecting
of applications by name works in practise. In this imaginary scenario, the
user is searching applications whose name includes the string "spot". The
user is then given a list of options from which to choose. Application names
such as "com.spotify.music", "fr.pb.freewifispot" and "ekawas.blogspot" will
be displayed as each of them contain the substring "spot". The matching
sections of the names are highlighted in light blue color.

The second and third input field allow the user to specify the minimum
support threshold and the minimum confidence threshold respectively, for
the association rule generation. Above each of these two input fields are
icons with question marks. These icons, when hovered over, will display an
explanation about the variable in question. This functionality is illustrated
in Figure 19 for the minimum support threshold. The icon for minimum
confidence threshold functions similarly.

36

Carat Search Engine

Application

Select application... -

Minimum Support Threshold @

Default = 0.01

Minimum Confidence Threshold @

Default = 0.5

_| Exclude CPU Usage

| Exclude Battery Temperature
_| Exclude Travel Distance

| Exclude Battery Voltage

_| Exclude Screen Brightness

_| Exclude Mobile Network Type
| Exclude Network Type
Exclude WiFi Strength
Exclude WiFi Speed

Generate Association Rules

Figure 17: Overview of the graphical user interface of the front end

37

Carat Search Engine

Application

spot] -

COm.Spotmusic
com.spotify. music
fr.ph.freewifispot
ekawas.blogspot.com
caom.age.wgg.appspot
com.spothero.spothero

com .MOTDU[S.SUTE'SFIOI

I EXCIUCE Batery lemperamre

Exclude Travel Distance

Exclude Battery Voltage

Exclude Screen Brightness
Exclude Mobile Network Type
Exclude Metwork Type
Exclude WiFi Strength
Exclude WiFi Speed

Generate Association Rules

Figure 18: Searching and selecting applications by name

38

Carat SearCh Minimum Support Threshold

Application Minimum support threshold

| determines how rare patterns will be
analysed when generating
association rules. A minimum
Minimum Support Threshold @ support threshold of 0.01 means

| that at least 1 out of every 100 data
samples must support each

generated rule. Lowering this value
Minimum Confidence Threshold | will lead to more rules being

Select application...

Default = 0.01

L1

generated and to an increase in the

Default = 0.5 L
analysis time.

Exclude CPU Usage

Exclude Battery Temperature
Exclude Travel Distance
Exclude Battery Voltage
Exclude Screen Brightness
Exclude Mobile Network Type
Exclude Network Type
Exclude WiFi Strength
Exclude WiFI Speed

Generate Association Rules

Figure 19: Helper icon pop over explaining the meaning of minimum support
threshold

Finally, the form contains a check box for each variable that is included
in the association analysis. By checking any of these check boxes, the user
can exclude a variable from the analysis.

Once the user initiates the analysis by pressing the submit button, labelled
with "Generate Association Rules", a spinner element is displayed to tell the
user that analysis is in process. Once the analysis is complete and the back
end returns the analysis results, the spinner element will be removed and
the generated rules will be displayed underneath the search form. The rule
list is organized in tabs, one for each percentile of the energy rate variable.
By clicking on a tab, the rules in which the corresponding energy rate is a
consequent, will be displayed. The way the rules are rendered is a simple
HTML table, where rules are presented in rows. The first column of the table
lists the antecedents of a rule, the second column displays the consequent of
a rule and the third column displays the confidence score of a rule. Figure 20

39

Exclude WiFi Speed
Generate Association Rules

%is Rate is 0 1S Rate is 0.012-1.0%/s

Rate is 0.0
Found 4229 rules
Antecedents Consequents Confidence

mobileNetType=hsdpa rate is 0.012 - 1.0 0.851063829787234
screen is 237 - 255

wifiStrength is -97 - -70

wifiSpeed is 0 - 52

temperature is 35 - 62

voltage is 0 - 3

distance=yes rate is 0.012 - 1.0 0.8157894736842105
mobileNetType=utms

screenis 0- 59

temperature is 35 - 62

netType=mobile

voltage is 0 - 3

mobileNetType=gprs rate is 0.012 - 1.0 0.8157894736842105
screenis 0- 59

wifiStrength is -97 - -70

cpu is 0.89 - 1.0

voltage is 0 - 3

distance=no

mobileNetType=hsdpa rateis 0.012 - 1.0 0.8125

screen is 237 - 255

wifiStrength is -60 - -51

temperature is 35 - 62

cpu is 0.42 - 0.66

wifiSpeed is 52 - 72

distance=yes rate is 0.012 - 1.0 0.8095238095238035
mobileNetType=utms

Figure 20: Example of generated association rules for the Facebook mobile
application. A minimum support threshold of 0.0001 and a confidence
threshold of 0.75 was used.

shows an example of generated rules for the com.facebook.katana mobile
application using a minimum support threshold of 0.0001 and a minimum
confidence threshold of 0.75. The displayed rules are sorted in an ascending
order of confidence to display the most significant rules first.

6.2 Service Back End

The service back end is a simple web server implemented in Scala program-
ming language using Scalatra web framework version 2.4.0. The webserver
listens for HT'TP GET requests, accepting application name, minimum sup-
port, minimum confidence and a list variable names to be excluded in the
requests URL parameters. Once a valid GET request is received, the server
creates a Spark job script based on the request parameters, and submits the
Spark job to the analysis engine. The shell script which submits the Spark
job is executed in a thread pool asynchronously to avoid making the web
server unresponsive while a Spark job is running. Once the analysis engine
has successfully executed the job, the shell script prints the association rules

40

in JSON format to its standard output stream. This output is captured and
returned as a HT'TP response to the client.

The server consists of merely three components, a servlet, a service and
a bootstrap component. The bootstrap components purpose in Scalatra is
to mount services to certain URL paths. The bootstrap component simply
mounts our servlet to match with any path, as denoted by asterisk character

class ScalatraBootstrap extends LifeCycle {
override def init(context: ServletContext) {
context .mount (new MainServlet, "/*x")

A servlet is a server component that routes incoming requests to associated
controller routines. The servlet in question is implemented is Scalatra as
follows

41

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

class MainServlet extends ScalatraServlet with
FutureSupport with JacksonJsonSupport {

val conf = ConfigFactory.load()

override val asyncTimeout = conf.getInt ("
timeout") seconds

protected implicit lazy val jsonFormats:
Formats = DefaultFormats

implicit val executor = ExecutionContext.global

before () {
contentType = formats("json")

}

get("/") {

val applicationName = Try(params ("
applicationName")) .toOption

val minSupport = Try(params("minSupport").
toDouble) . toOption

val minConfidence = Try(params("minConfidence
") .toDouble) .toOption

val excluded = Try(params("excluded")).
toOption.getOrElse ("")

applicationName.map { applicationName =>
SparkRunner . runSpark (
applicationName,
minSupport = minSupport,
minConfidence = minConfidence,
excluded = excluded
)
}.getOrElse {
BadRequest (reason = "Missing °’
applicationName’")

}
The traits FutureSupport and JacksonJsonSupport indicate, that the re-

sponse is computed asynchronously and is JSON formatted. The method call
to get("/") registers a controller routine to the root path of the servlet. The
controller routine, which is given as a call-by-name function to the second pa-
rameter list of the get call, parses URL parameters from the incoming HTTP
request and submits a new task to the SparkRunner service. In case the

42

Read Carat Filter by ol Discretize Generate N Filter out
samples application name variables association rules redundant rules

4

Figure 21: Overview of the analysis engine pipeline

applicationName is missing from the request, a BadRequest HT'TP response is
produced, otherwise the service method runSpark is executed asynchronously
and a response will be sent once the analysis engine has accomplished its
analysis. For example, suppose that the server is running on localhost and
listening on port 8888. Upon receiving a GET request to an URI such as local-
host:8888%applicationName=com.facebook.katanaésminConfidence=0.9, the
servlet would route the request to the controller routine configured under
get("/"). The routine would parse the URI parameters applicationName and
minConfidence and dispatch a Spark job to the analysis engine by invoking
SparkRunner.runSpark.

6.3 Analysis Engine

The primary function of the analysis engine is to generate association rules
from the Carat data based on provided query parameters. The query param-
eters consist of application name, minimum confidence, minimum support
and an optional list of attribute names which are to be excluded from the
analysis. The application name is used to filter out all Carat energy rate
samples in which the the application is not present. The minimum support
and minimum confidence parameters affect the association rule generation as
described in Chapter 4. The excluded attributes list controls the association
rule generation by completely ignoring all included attributes.

Figure 21 describes the process of generating association rules as a simple
pipeline consisting of four steps. We will now go through each step providing
snippets of code, taken from the analysis engine implementation, that will
shed light on the implementation in Spark programming framework.

Reading Carat samples is very simple in Spark, as is evident from the
following code snippet.

1 def readCaratRates(sampleDir: String) (implicit sc
SparkContext): RDD[fi.helsinki.cs.nodes.
carat.sample.Rate] = {
2 sc.objectFile[fi.helsinki.cs.nodes.carat.
sample.Rate] (s"${sampleDir}")
s}

The objectF'ile method of the SparkContext object will read the dataset
from a given directory. The dataset is stored as an RDD (Resilient Distributed
Dataset), that is serialized to the disk in a folder given by the sampleDir
parameter. RDD is is the data structure that Spark framework uses to

43

store, access and transform distributed datasets. The Carat samples are
initially read as instances of class fi.helsinki.cs.nodes.carat.sample. Rate.
Each Rate object contains two consecutive samples from a mobile device.
From these samples, the system settings and running mobile applications
can be extracted as described in Chapter 3

The next task that the analysis engine carries out, is to filter out all Carat
rate samples where the requested application was not running. Using the
readCaratRates method, one can compose an expression which reads Carat
rate data objects, filters out all rate objects that do not have the requested
application running and transforms the resulting rate objects to a simplified
object type of class Sample.

1 val samples = readCaratRates(ratePath).collect {

2 case rate if rate.allApps().contains(
applicationName) =>

3 Sample.fromCaratRate (rate)

4}

collect is a method defined for all instances of class RDDI[T] (where T is
a type parameter). It is analogous to the collect method from Scala standard
library, taking a partial function of signature Partial Function|T,U] (where
T and U are type parameters) and returning a new instance of RDD[U],
containing the image of the RDD|T| mapped by the partial function.

The Sample is a simple case class that merely stores all the relevant
system settings. The case class also has a companion object, in which the
method fromCaratRate is defined. The method simply constructs a Sample
instance from a Rate instance.

1 case class Sample(

2 rate: Double,

3 cpu: Double,

4 distance: Double,

5 temp: Double,

6 voltage: Double,

7 screen: Double,

8 mobileNetwork: String,
9 network: String,

10 wifiStrength: Double,
11 wifiSpeed: Double

12)

The next step in the analysis work flow, is to discretize the variables of
the data. All numerical variables were discretized to bins of equal mass, as
explained in depth in Chapter 3. The following code snippet shows how to
find the break points of the bins for continuously valued variables.

44

1 def getQuantiles (
2 data: RDD[Doublel],

3 buckets: Int,

4 relativeError: Double = 0.0001,

5 partial:

6 PartialFunction [Double, Option[String]] = Map
.empty)

7 (implicit sqlContext: SQLContext):

s Array[Double] = {

10 import sqlContext.implicits._

11

12 val percentiles = (for(i <- 1 to (buckets - 1))
yield (1.0 / buckets) * i).toArray

13 val notDefined = data.filter(x => !partial.

isDefinedAt (x))

14

15 try {

16 notDefined.toDF("col") .stat.approxQuantile ("
col", percentiles, relativeError)

17 } catch{

18 case ex: java.util.NoSuchElementException =>
Array [Double] ()

19 }

20 }

The method getQuantiles takes as an its input data, an RDD contain-
ing the values to be discretized; buckets, the number of bins to create;
relative Error, the maximum relative error that is allowed when approximat-
ing the break points of the percentiles; partial, a partial function that is used
to filter out values that should not be taken into account when approximating
the percentiles. The method uses Spark DataFrame API to approximate
the percentiles. Using a relative Error parameter larger than 0, makes the
generation of the association rules non deterministic, since the approximated
percentile break points are allowed to vary from the exact value. However,
calculating exact values for the breakpoints (by setting the relative Error
parameter to zero) slows down the generation of the association rules consid-
erably, as all of the data needs to be processed in order to calculate the break
points as opposed to calculating the break points from a sampled dataset.

Having computed the quantiles of a continuously valued variable, dis-
cretization can be achieved by using the following method

45

(o))

1 def getFeatureFromQuantiles(

2 dataPoint: Double,

3 featureName: String,

4 quantiles: Array[Doublel],

5 partial: PartialFunction[Double, Option|[

Stringl]] = Map.empty
6): Option[Stringl = {

7 if (partial.isDefinedAt (dataPoint))

8 return partial (dataPoint) .map { x =>

9 s"${featureName}={x}"

10 }

11

12 var index = quantiles.indexWhere(q => q >=
dataPoint) + 1

13 if (index == 0) index += (quantiles.length +
1)

14 Some (s"${featureName}=q${index}")

15 }

The method getFeaturesFromQuantiles takes as its input dataPoint, a
single point of data to be discretized; featureName, the name of the feature;
quantiles, the quantile break points for the variable and partial a partial
function that is used both to filter out invalid data as well as to bypass the
discretization altogether.

As a concrete example, let us examine how one could go about discretiz-
ing variable screen, which gives the screen brightness of the mobile device.
As discussed in Chapter 3.6, the variable takes values between -1 and 255,
where value -1 signifies a special case, where the screen brightness is auto-
matically adapted to the brightness of the surroundings of the device. One
could encode these preconditions to a partial function of the following form:

val screenPartial: PartialFunction[Double, Optionl[
Stringl] = {
case x if

= -1 => Some("auto")
-1 => None

X
case x if x
X 255 => None

<
case x if >

3

Using this partial function in conjunction with the methods getQuantiles
and getFeatureFromQuantiles for each data point will give the discretized
form of the variable screen.

To summarise: in order to discretize a variable such as screen, which is
assumed to be a collection of type RDD[Double], one could fist calculate the
quantiles of data using the method getFeatureFromQuantiles. One must then
define a partial function, such as the one mentioned above, that filters out

46

invalid data points and handles values with special significance. Finally, the
method getFeatureFromQuantiles could be applied to each data point of the
collection using the partial function and the quantiles.

Having discretized all the variables of the dataset, using the procedure
discussed above, one ends up with one array of strings for each sample,
which is represented in Spark by type RDD[Array[String]]. To generate the
association rules from these discrete features, MLlib, a machine learning
library for Spark was used. The library implements a parallel FPGrowth
algorithm [13] for this purpose. The FPGrowth implementation has a
limitation however, in that it can only generate rules with single consequent.
The limitation is not terribly severe for the purpose of this thesis, as the
main interest lies in finding out which variables affect the battery usage.
Therefore being limited to rules which have as their sole consequent a feature
extracted from the energy rate variable, should be sufficient. The following
snippet of code illustrates how to generate association rules using the MLIlib
APIL.

1 val fpg = new FPGrowth ()

2 .setMinSupport (minSupport)

3

4+ val model = fpg.run(features)

5

6 val rulesFiltered = model.
generateAssociationRules (minConfidence)

7 .filter { rule =>

8 rule.consequent.find { item =>

9 item.startsWith("rate=")

10 }.isDefined

11 }

The final stage of association rule generation workflow is filtering out
redundant rules. To demonstrate what is meant by redundancy in this
context, let us consider two rules such as

{A, B} = {X} (1)

{A,B,C} = {X} (2)

Additionally, let us assume that both rules (1) and (2) have equivalent
confidence. Since both rules predict the same consequents and the antecedents
of rule (1) is a subset of the antecedents of rule (2), one can conclude that
the rule (1) is the more general of the two rules, as adding item C' to the
antecedents of rule (1) does not improve the associative power of the original
rule. Since the objective of this thesis is to identify variables which have the

47

strongest association with the battery consumption of a mobile application,
we consider rule (2) redundant in the context of this thesis work.

More generally, given a set S of association rules, we consider rule R € S
redundant if there exists a rule r € S, such that R # r and r.antedecents C
R.antedecents. The following excerpt of code shows how this definition
translates to a redundancy filtering algorithm in Scala programming language

1 def pruneRules(rules: RDD[Rule[Stringl]): RDD[
Rule[Stringl] = {

2 val pruneCandidateGroups = rules.groupBy{ rule
=>
3 (rule.consequent.sorted.mkString, rule.
confidence)
4 }
5
6 pruneCandidateGroups.flatMap { case (key, group
) =>
7 val groupSorted = group.toSeq.sortBy(rule =>
rule.consequent.length)
8 var groupAsSets = group.map(rule => (rule,

rule.antecedent.toSet))

10 val toPrune: Set[Rule[Stringl]] = (for {

11 testRule <- groupAsSets

12 otherRule <- groupAsSets

13 if testRule != otherRule && testRule._2.
subsetO0f (otherRule._2)

14 } yield(otherRule._1)).toSet

15

16 groupSorted.filter (rule => !toPrune.contains (

rule))
17 }
18}

Method pruneRules takes a collection of association rules and returns a
collection of association rules which contains no redundant rules.

This concludes the analysis engine part of the implementation. From
usability perspective, generating the association rules should be fast enough
not to hinder interactive use, which implies that the rule generation should
not take more than few seconds. However, heavily optimizing the analysis
engine falls outside the scope of this thesis. In practice, the implementation
described here achieves run times of a couple of minutes with a rather modest
dataset size of 16 gigabytes.

48

7 Results

We will now look at the results of this work in two parts. In the first part
we will be looking at the performance of the application and how it affects
its usability. In the second part we will take a closer look at some examples
of generated rules. The last part of this chapter focuses on the impact of
these results and suggests ways to improve on this work.

7.1 Performance Evaluation

In order to understand the relationship between the number of generated rules
and minimum support and confidence thresholds, a series of measurements
were conducted on the Carat API prototype server. Figure 22 shows these
measurements for Facebook application and Figure 23 shows the measure-
ments for Spotify application. The figures show the relationship of generated
rules as a function of minimum support threshold and confidence threshold
as a three dimensional plot. Five series of measurements were conducted for
each application. In each series, a minimum confidence threshold range of
0.3 to 0.9 and a minimum support threshold range of 0.0001 to 0.005 were
both divided evenly by 10 points creating a grid of 100 data points where
the measurements were taken. The blue dots represent average of the five
measurements at each point of the support-confidence -grid. In sub figure A,
a plane was fitted to the measurement points using least squares method.
This was done to better illustrate the spatial configuration of the measure-
ments as well as to showcase how well the measured points are aligned on the
plane. In sub figure B, error bars were plotted to the measurements using
one standard deviation of the five measurements as the size of the error.

The number generated rules seems to grow exponentially on both axes
when approaching zero, as can be seen by how well the measurements align
with the least squares plane. This explosion in the number of generated
rules makes it difficult for the user to extract useful rules from the system
when small values for the thresholds are used. To mitigate this problem, the
system provides two features:

e The generated rules are sorted in the ascending order of their confidence,
giving the more reliable rules a greater priority.

e Attributes can be excluded from the analysis - potentially greatly
reducing the number of generated rules.

Even though there is a stochastic component in the rule generation, which
arises from the sampling of data in the variable discretization stage of the
analysis, the number of generated rules does not seem to vary much, as can
be seen from the error bars, which are barely visible.

49

0.002 T
0.001 0.9

Min g
U,
Ppore 0.000

(a) Number of rules with fitted plane

S

(b) Number of rules with error bars

Figure 22: Number of generated rules for Facebook measurements as a
function of minimum support threshold and minimum confidence threshold

50

(a) Number of rules with fitted plane

Number of ryles

(b) Number of rules with error bars

Figure 23: Number of generated rules for Spotify measurements as a function
of minimum support threshold and minimum confidence threshold

o1

Runtime (seconds)

(a) Rule generation time with best fitting plane

0]
240 T
o
w
220 8
v
200 E
et
c
3
180 &

(b) Rule generation time with error bars

Figure 24: Rule generation time for Facebook measurements as a function of
minimum support threshold and minimum confidence threshold.

52

In addition to the number of generated rules, another metric that is a
good indicator for usability of the system, is the time taken to generate the
association rules. To measure the time of the rule generation as a function
of minimum support threshold and minimum confidence threshold, a similar
set up as with the number of generated rules was used. Figure 24 shows
these measurements for the Facebook application and Figure 25 shows the
measurements for the Spotify application. Like before, the blue dots represent
the average value in five measurements series of 100 measurement points.
The red plane represents a plane that was fitted to the points using the least
squares method. The size of the error in the error bars is again the standard
deviation of the measurement at each measurement point.

The rule generation time increases as either axis approaches zero. The
deviance is not huge however, as all the measured run times fall between 160
and 260 seconds. While this is a notable difference from the users perspective,
the system remains usable even when the number of generated rules is in
the order of 10°.

All the experiments were conducted on a Spark cluster which had a single
computing server. For each run, 45 CPU cores and 1500 gigabytes of memory
were reserved, although a much smaller amount of memory would have been
sufficient. To mitigate the effect of any potential file server load, the dataset
was stored in memory using Linux shared memory file system (/dev/shm).
The dataset consisted of Carat samples from 22.6.2016 to 22.8.2016, the size
of which was a little over 16 gigabytes.

7.2 Overview on Generated Rules

For this section, four popular Android applications were selected to be
inspected with the rule generation. The selected applications were

e com.facebook.katana
e com.google.android.chrome
e com.google.android.apps.photos

e com.spotify.music

To achieve comparable results, the minimum support threshold was fixed
to 0.001 and the minimum confidence threshold was fixed to 0.5. Given that
the least popular of these applications in the dataset used for this analysis
contained little over 420,000 data points, a minimum support threshold of
0.001 means that for each generated rule, there should always be at least
420 data points supporting that rule. For each of these four applications,
a total of six of the generated rules were selected for further inspection.
These six rules were selected by taking the three most confident rules that

93

Runtime (seconds)

(a) Rule generation time with best fitting plane

1920 -@

_ 180 §

170 E

- 160 w

4 E

) 150 45-'

T 140 &
130

(b) Rule generation time with error bars

Figure 25: Rule generation time for Spotify measurements as a function of
minimum support threshold and minimum confidence threshold

54

predicted high energy consumption rate and the three most confident rules
that predicted low energy consumption rate.

Table 6 shows the generated rules for the com.facebook.katana mobile
application. Looking at the top three rules that predicted hight energy
rate for the application, it seems that using HSDPA type mobile network
connection and a high screen brightness were clearly connected to high
energy consumption. When these two factors were combined with high
battery temperature, we get the most confident of these three rules with a
confidence score of 0.5811. Slow network connections have been shown to
be linked with increased energy consumption [18]. Since HSDPA is a 3G
technology, it is reasonable to believe that its usage might contribute to
increased energy consumption. As the highest confidence rule in this category
had a confidence score of less than 0.6, one can say that there were no clear
explanations of high energy consumption to be found by these variables for
this particular application. Looking at the three most confident rules for low
energy consumption, the common factors seem to be using WiFi connection,
low battery temperature and low or medium low CPU usage. Notably, the
rules for low energy consumption had significantly greater confidence than
the rules for high energy consumption. The highest confidence for these
three rules was 0.9985 while the lowest was 0.9964.

Table 7 shows the selected rules for the com.google.android.apps.photos
application. In this case, the factors that indicated high energy consumption
were using GPRS for mobile networking, having weak WiF1i singnal strength
and low WiFi signal speed and low battery voltage. The low battery voltage
may indicate a certain set of mobile device models that perform poorly
when the other factors are also present. The confidence of these rules were
reasonable, ranging from 0.7100 to 0.7074. The most confident rules for
low energy consumption all had the common factors of using UTMS mobile
network connection, high WiFi link speed, medium low CPU usage and
weirdly enough, high screen brightness.

Table 8 shows the selected rules for the com.android.chrome mobile
application. There were no rules, within the given confidence constraint,
that predicted an energy consumption rate in the highest quantile, so instead
the three top rules in the table are the three highest confidence rules that
predicted an energy consumption rate in the third quantile within the samples
where the Chrome application was running. Within the rules which predicted
high energy consumption, common factors were high screen brightness, high
battery temperature, fast WiFi link speed and using LTE type mobile
networking. The confidence of these rules ranged from 0.6519 to 0.65. Looking
at the rules which predicted low energy consumption, common factors were
low battery temperature, fast WiFi link speed, mobile networking type
UTMS and again, oddly enough, a high screen brightness. The confidence of
the rules predicting low energy consumption were again very high, ranging
from 0.9985 to 0.9964.

95

Antecedents Consequent Confidence

mobileNetType=hsdpa
screen is 222 - 255 rate is 0.011 - 1.0 0.5811
temperature is 35 - 88

mobileNetType=hsdpa
screen is 222 - 255

cpu is 0.39 - 0.62 rate is 0.011 - 1.0 0.5464
voltage is 0 - 3
distance=no

mobileNetType=hsdpa
screen is 222 - 255 rate is 0.011 - 1.0 0.5432
cpu is 0.39 - 0.62
voltage is 0 - 3

mobileNetType=unknown
screen is 222 - 255
wifiStrength is -99 - -69 rate is 0.0 - 0.00017 | 0.9985
cpuis 0.0 - 0.39
temperature is 5 - 28
voltage is 3 - 4

mobileNetType=unknown
screen is 222 - 255
wifiStrength is -99 - -69 rate is 0.0 - 0.00017 | 0.9974
wifiSpeed is 54 - 72
cpu is 0.39 - 0.62
temperature is 5 - 28
voltage is 0 - 3

mobileNetType=unknown
screen is 222 - 255
wifiSpeed is 0 - 54 rate is 0.0 - 0.00017 | 0.9964
cpu is 0.39 - 0.62
temperature is 5 - 28
voltage is 3 - 4

Table 6: Selected rules for the com.facebook.katana mobile application

o6

Antecedents Consequent Confidence
mobileNetType=gprs
wifiStrength is -100 - -68
wifiSpeed is 0 - 54
netType=wifi rate is 0.011 - 1.0 0.7100
voltage is 0 - 3
distance=no
mobileNetType=gprs
wifiStrength is -100 - -68
wifiSpeed is 0 - 54 rate is 0.011 - 1.0 0.7082
voltage is 0 - 3
distance=no
mobileNetType=gprs
wifiStrength is -100 - -68
wifiSpeed is 0 - 54 rate is 0.011 - 1.0 0.7074
netType=wifi

voltage is 0 - 3

screen is 220 - 255
mobileNetType=utms
wifiSpeed is 144 - 6477 rate is 0.0 - 0.0015 | 0.9966
wifiStrength is -68 - -59
cpu is 0.42 - 0.67
screen is 220 - 255
mobileNetType=utms
wifiSpeed is 144 - 6477 rate is 0.0 - 0.0015 | 0.9965
wifiStrength is -68 - -59
cpu is 0.42 - 0.67
voltage is 3 - 4

screen is 220 - 255
mobileNetType=utms
wifiSpeed is 144 - 6477 rate is 0.0 - 0.0015 | 0.9936
cpu is 0.42 - 0.67
voltage is 3 - 4

Table 7: Selected rules for the com.google.android.apps.photos mobile appli-
cation

o7

Antecedents Consequent Confidence
screen is 206 - 255
wifiSpeed is 135 - 4728
temperature is 34 - 88 rate is 0.0046 - 0.011 | 0.6519
mobileNetType=lte
netType=wifi
screen is 206 - 255
wifiSpeed is 135 - 4728 rate is 0.0046 - 0.011 | 0.6506
temperature is 34 - 88
mobileNetType=lte
screen is 206 - 255
wifiSpeed is 135 - 4728
temperature is 34 - 88 rate is 0.0046 - 0.011 | 0.65
mobileNetType=lte
netType=wifi
distance=no

screen is 206 - 255
mobileNetType=utms
wifiSpeed is 135 - 4728 rate is 0.0 - 0.0015 | 0.9893
wifiStrength is -68 - -59
voltage is 3 - 4

screen is 206 - 255
mobileNetType=utms
wifiSpeed is 135 - 4728 rate is 0.0 - 0.0015 | 0.9822
temperature is 5 - 28
voltage is 3 - 4
screen is 206 - 255
mobileNetType=utms rate is 0.0 - 0.0015 | 0.9749
wifiSpeed is 135 - 4728
temperature is 5 - 28

Table 8: Selected rules for the com.google.android.chrome mobile application

o8

In Table 9 are listed the selected rules for the com.spotify.music mobile
application. In the context of the rules that predict high energy consumption,
factors high screen brightness, high WiFi link speed, quite low WiFi signal
strength, medium high battery temperature and medium high CPU usage
are all shared. Two out of three of these rules also share the factor mobile
networking type LTE and low battery voltage. The confidence of these rules
ranged from 0.8852 to 0.8821, which compared to the other application’s high
energy rules, seems very high. Among the rules that predicted low energy
consumption, shared factors were mobile networking type UTMS, a medium
high CPU usage, and a medium low wiF'i signal strength. Factors that were
shared by two out of the three rules included high screen brightness, low
battery temperature and high WiFi link speed. The confidence score of all
three of these rules was 1.0.

The generated example rules are generally not very intuitive and some
of the relations, such as the contribution of high screen brightness to low
energy consumption, are outright counter intuitive. On the bright side, the
system is able to find rules with very high confidence even with a reasonably
low support threshold of 0.001. The choice of application also seems to
have a reasonable impact on the generated rules, which is promising for the
usability of the system. Perhaps interesting is the fact that more confident
rules seem to be generated for the low energy consumption than for the high
energy consumption. Even if the system is not able to predict with any
reasonable accuracy which factors lead to large levels of energy consumption
when using a certain application, it might be useful to be able predict with
acceptable accuracy which combinations of factors lead to low levels of energy
consumption. At the very least, this kind of prediction could be a valuable
addition to a recommendation system like the one described by Peltonen et
al. [20]

99

Antecedents Consequent Confidence

screen is 210 - 255
wifiSpeed is 144 - 866
wifiStrength is -68 - -59
temperature is 34 - 60 rate is 0.012 - 1.0 0.8852
cpu is 0.61 - 0.84
mobileNetType=lte
voltage is 0 - 3

screen is 210 - 255
wifiSpeed is 144 - 866
wifiStrength is -68 - -59 rate is 0.012 - 1.0 0.8821
temperature is 34 - 60
cpu is 0.61 - 0.84
voltage is 0 - 3

screen is 210 - 255
wifiSpeed is 144 - 866
wifiStrength is -68 - -59 rate is 0.012 - 1.0 0.8821
temperature is 34 - 60
cpu is 0.61 - 0.84
mobileNetType=lte

mobileNetType=utms
wifiSpeed is 144 - 866
wifiStrength is -68 - -59 rate is 0.0 - 0.0016 | 1.0
cpu is 0.61 - 0.84
temperature is 12 - 28
voltage is 3 - 4

screen is 210 - 255
mobileNetType=utms
wifiStrength is -68 - -59 rate is 0.0 - 0.0016 | 1.0
cpu is 0.61 - 0.84
temperature is 12 - 28

screen is 210 - 255
mobileNetType=utms
wifiSpeed is 144 - 866 rate is 0.0 - 0.0016 | 1.0
wifiStrength is -68 - -59
cpu is 0.61 - 0.84

Table 9: Selected rules for the com.spotify.music mobile application

60

7.3 Discussion

This thesis work has presented a method for generating association rules from
Carat dataset in order to estimate how mobile device system settings and
context factors impact the level of energy consumption of a mobile device
when using a particular mobile application. These association rules reveal
non-trivial and perhaps unexpected connections between these settings and
context factor and the level of energy consumption within the context of
multiple mobile applications. For some reason, the generated association rules
that predict low levels of energy consumption, seem to have much higher
confidence than the rules which predict high levels energy consumption.
This may be due to various reasons. One reason might be that while the
association analysis seems to be able to capture at least some circumstances
which consistently lead to low energy consumption, the system settings
and context variables available within the Carat dataset are inadequate
for explaining unusually high energy consumption levels. It could even be
that the users whose devices have high energy consumption are generally
running multiple mobile applications at the same time, which would naturally
generate more noise to data points coming from those users. One could
potentially test this hypothesis by adding the number of running applications
to the list of variables from which the association rules are generated from.
If this was the case, then one would expect to see rules where high number
of running applications predicts high energy consumption.

Another goal of thesis work was to implement a web based interface, so
that users could search these association rules easily. The implementation
has two web servers that communicate to one another using a simple HT'TP
based API. The back end of the service resides on a Spark cluster where it
can execute the analysis engine on user supplied parameters as requested.
This way the data analysis can be wrapped inside a single exchange of HT'TP
request and response. The front end of the service handles all things related
to the graphical user interface: rendering the search form, fetching the rules
from the back end and rendering the results. The front end of the service
can reside wherever as long as the service back end can be reached by HTTP.
This two-tier architecture allows the remote use of computational resources of
a Spark cluster without exposing the Spark cluster environment to potential
security vulnerabilities that a globally accessible web server might impose.

This API could potentially be used by developers to diagnose which
factors affect the energy consumption of their application’s users. This
information could be useful for optimizing the application for scenarios
where the application is likely to consume unusually large amounts of energy.
The information could even reveal bugs which cause anomalous energy
consumption in certain conditions. Yet another use could be simply to give
a coarse-grained estimate of the energy consumption rate of the application.

The implementations of both the data analysis and the user interface

61

could be further improved. First of all, due to performance reasons, the
data set had to be limited to around 16 GB, which is more than an order of
magnitude less than the whole amount of available data. It is quite possible
that the association analysis might reveal more fine grained dependencies
between the context factors and system settings and the energy consumption
of a device, if the analysis was performed using more of the available data.
Different discretization strategies for the data might also affect the generated
rules. Discretization of most numerical variables was done using quite an
arbitrary number of percentiles, namely four. The implementation could
easily be extended to allow the user to specify the number percentiles used
in the discretization.

The user interface could be improved in multiple ways. The user interface
does not show the units of measurement nor does it show values of the break
points of the percentiles, which could give the user a clearer sense of how
a certain value range of a variable compares to the average value of the
variable. Rendering of the rules could also be improved. Paging of the rules
would be a useful feature to implement because browsing through as many
as thousands of rules in a single page is cumbersome. The user could also
benefit from a searching and filtering functionality in the front end of the
service to be able quickly find the rules that the user considers interesting.

62

8 Conclusion

This thesis work has shown that the association analysis can effectively
be applied to the domain of mobile device energy consumption modelling.
Additionally, an implementation of a web based prototype for a developer
APT for the Carat dataset has been presented. The current state of the
research of mobile device energy modelling as well as the relevant parts of
the theory of association analysis have been reviewed.

The Carat data consists of samples which are collected from users of
the Carat mobile application for the purpose collaborative energy modelling
of mobile devices. Each sample contains a list of currently running mobile
applications, energy consumption rate, CPU usage, travel distance, battery
temperature, battery voltage, screen brightness, used mobile network tech-
nology, type of network, WiF1i signal strength, and WiFi connection speed of
the mobile device. This thesis has described in detail each of these variables
as well as the discretization and preprocessing of the data that must be
performed in order to make the association rule discovery applicable. In
summary, the variables have been divided to either three or four bins of equal
mass. Some assumptions about the feasible range of the variables have been
applied in preprocessing stage to exclude potentially corrupted data points.

This work has presented the essential theoretical background of the
association analysis. It has introduced the FP-growth algorithm and the
associated data structure FP-tree as a way of discovering frequent patterns
from a dataset. It has also discussed how association rules can be generated
from the frequent patterns without having to consider all candidate rules,
giving an outline of an algorithm for pruning candidate rule search tree.

This thesis has shown how to implement a web based query engine
that can be used to discover association rules based on the Carat data.
The implementation has three major components, an analysis engine which
handles all data analysis tasks, a back-end web server that uses the analysis
engine as a service and exposes a JSON based HT'TP API, and a service
front-end that handles all user input and uses the API of the back-end server
as a service for generating the association rules. The analysis engine has been
built using Spark programming framework and specifically MLlib, a machine
learning library for Spark which implements a parallel and distributed FP-
growth algorithm.

The resulting association rules generated from the Carat data are some-
what promising. The analysis engine is consistently able to find high confi-
dence rules from various different mobile applications. It seems however, that
rules predicting high energy consumption are overall more rare and less con-
fident than the rules which predict low or near average energy consumption.
This thesis suggests some potential reasons as to why this may be the case.
In order to evaluate the performance of the implementation, the runtime and
the number generated rules have been measured as a function of the minimum

63

confidence and minimum support thresholds of the association analysis for
two popular Android mobile applications. The evaluation shows that the
runtime of the analysis clearly depends on these variables, which is to be
expected. While the runtime of the analysis shows a clear decreasing trend
along both the minimum confidence threshold and the minimum support
threshold axes, the magnitude of the analysis runtime does not change even
when small values for these variables are used. A more problematic result
from the usage point of view is the number of generated rules. Similarly
to the runtime, it shows a clear decreasing trend along both the minimum
support threshold and the minimum confidence threshold axes. Unlike the
the runtime however, the number of generated rules ranges from as low as a
dozen to tens of thousands.

Further work is needed in order to improve the implementation of the
search engine. The current implementation cannot handle tens of thousands
of generated rules in a user friendly way. Additional methods should be
considered for finding the interesting or important rules. It is also unintuitive
that the user must specify the minimum support threshold and the minimum
confidence threshold for the algorithm or settle with arbitrary default values.
The engine should ideally be able to guess or iteratively find reasonable
values for these variables based on the user preferences. Additionally, the
effect of increasing or decreasing the number of discretization percentiles
on the generated rules should be studied, or alternatively the user could
be allowed to specify the number of percentiles for each of the variables.
Further optimizing the implementation or performing experiments with more
computing capacity could potentially reveal more intricate association rules.

64

References

[1]

International Telecommunication Union, ICT Statistics. https:
//www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx,
2018. [Online; accessed 27-March-2018].

Agrawal, Rakesh, Imielinski, Tomasz, and Swami, Arun: Mining asso-
ctation rules between sets of items in large databases. SIGMOD Rec.,
22(2):207-216, June 1993, ISSN 0163-5808.

Agrawal, Rakesh and Srikant, Ramakrishnan: Fast algorithms for mining
assoctation rules. In Proceedings of the 20th International Conference
on Very Large Data Bases, VLDB ’94, pages 487—499, San Francisco,
CA, USA, 1994. Morgan Kaufmann Publishers Inc.

Agrawal, Rakesh and Srikant, Ramakrishnan: Fast algorithms for mining
association rules in large databases. Technical report, IBM Almaden
Research Center, San Jose, California, USA, June 1994.

Dean, Jeffrey and Ghemawat, Sanjay: Mapreduce: Simplified data pro-
cessing on large clusters. Commun. ACM, 51(1):107-113, January 2008,
ISSN 0001-0782.

Falaki, Hossein, Mahajan, Ratul, Kandula, Srikanth, Lymberopoulos,
Dimitrios, Govindan, Ramesh, and Estrin, Deborah: Diversity in smart-
phone usage. In Proceedings of the Sth International Conference on
Mobile Systems, Applications, and Services, MobiSys ’10, pages 179-194,
New York, NY, USA, 2010. ACM, ISBN 978-1-60558-985-5.

Ferreira, Denzil, Goncalves, Jorge, Kostakos, Vassilis, Barkhuus, Louise,
and Dey, Anind K.: Contextual experience sampling of mobile appli-
cation micro-usage. In Proceedings of the 16th International Confer-
ence on Human-computer Interaction with Mobile Devices €#38; Ser-
vices, MobileHCI 14, pages 91-100, New York, NY, USA, 2014. ACM,
ISBN 978-1-4503-3004-6.

Han, Jiawei, Pei, Jian, and Yin, Yiwen: Mining frequent patterns
without candidate generation. SIGMOD Rec., 29(2):1-12, May 2000,
ISSN 0163-5808.

Hipp, Jochen, Giintzer, Ulrich, and Nakhaeizadeh, Gholamreza: Algo-
rithms for association rule mining — a general survey and comparison.
SIGKDD Explor. Newsl., 2(1):58-64, June 2000.

Kalic, G., Bojic, 1., and Kusek, M.: Energy consumption in android
phones when using wireless communication technologies. In 2012 Pro-
ceedings of the 35th International Convention MIPRO, pages 754759,
May 2012.

65

https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx
https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Karabatak, Murat and Ince, M. Cevdet: An expert system for detec-
tion of breast cancer based on association rules and neural network.
Expert Systems with Applications, 36(2, Part 2):3465 — 3469, 2009,
ISSN 0957-4174.

Karabatak, Murat, Ince, M. Cevdet, and Sengur, Abdulkadir: Wawvelet
domain association rules for efficient texture classification. Applied Soft
Computing, 11(1):32 — 38, 2011, ISSN 1568-4946.

Li, Haoyuan, Wang, Yi, Zhang, Dong, Zhang, Ming, and Chang, Edward
Y.: Pfp: Parallel fp-growth for query recommendation. In Proceedings of
the 2008 ACM Conference on Recommender Systems, RecSys ’08, pages
107-114, New York, NY, USA, 2008. ACM, ISBN 978-1-60558-093-7.

Oliner, Adam J., Iyer, Anand, Lagerspetz, Eemil, Tarkoma, Sasu, and
Stoica, lon: Collaborative energy debugging for mobile devices. In Pro-
ceedings of the Fighth USENIX Conference on Hot Topics in System
Dependability, HotDep’12, pages 6-6, Berkeley, CA, USA, 2012. USENIX
Association.

Oliner, Adam J., Iyer, Anand P., Stoica, Ion, Lagerspetz, Eemil, and
Tarkoma, Sasu: Carat: Collaborative energy diagnosis for mobile devices.
In Proceedings of the 11th ACM Conference on Embedded Networked
Sensor Systems, SenSys ’13, pages 10:1-10:14, New York, NY, USA,
2013. ACM, ISBN 978-1-4503-2027-6.

Oliver, Earl: The challenges in large-scale smartphone user studies. In
Proceedings of the 2Nd ACM International Workshop on Hot Topics in
Planet-scale Measurement, HotPlanet ’10, pages 5:1-5:5, New York, NY,
USA, 2010. ACM, ISBN 978-1-4503-0177-0.

Oliver, Earl and Keshav, S.: Data driven smartphone energy level pre-
diction. Technical report, University of Waterloo, Waterloo, Ontario,
Canada, 2010.

Peltonen, E., Lagerspetz, E., Nurmi, P., and Tarkoma, S.: Energy
modeling of system settings: A crowdsourced approach. In 2015 IEEFE
International Conference on Pervasive Computing and Communications
(PerCom), pages 3745, March 2015.

Peltonen, E., Lagerspetz, E., Nurmi, P., and Tarkoma, S.: Too big
to mail: On the way to publish large-scale mobile analytics data. In
2016 IEEFE International Conference on Big Data (Big Data), pages
2374-2377, Dec 2016.

Peltonen, Ella, Lagerspetz, Eemil, Nurmi, Petteri, and Tarkoma, Sasu:
Constella: Crowdsourced system setting recommendations for mobile

66

devices. Pervasive and Mobile Computing, 26(Supplement C):71 — 90,
2016, ISSN 1574-1192. Thirteenth International Conference on Pervasive
Computing and Communications (PerCom 2015).

Perrucci, G. P., Fitzek, F. H. P., Sasso, G., Kellerer, W., and Widmer,
J.: On the impact of 29 and 3g network usage for mobile phones’ battery
life. In 2009 European Wireless Conference, pages 255—259, May 2009.

Qian, H. and Andresen, D.: Reducing mobile device energy consumption
with computation offloading. In 2015 IEEE/ACIS 16th International
Conference on Software Engineering, Artificial Intelligence, Networking
and Parallel/Distributed Computing (SNPD), pages 1-8, June 2015.

Shye, A., Scholbrock, B., and Memik, G.: Into the wild: Studying real
user activity patterns to guide power optimizations for mobile architec-
tures. In 2009 42nd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 168-178, Dec 2009.

Wagner, Daniel T., Rice, Andrew, and Beresford, Alastair R.: Device
analyzer: Large-scale mobile data collection. SIGMETRICS Perform.
Eval. Rev., 41(4):53-56, April 2014, ISSN 0163-5999.

Zaharia, Matei, Chowdhury, Mosharaf, Das, Tathagata, Dave, Ankur,
Ma, Justin, McCauley, Murphy, Franklin, Michael J., Shenker, Scott,
and Stoica, lon: Resilient distributed datasets: A fault-tolerant abstrac-
tion for in-memory cluster computing. In Proceedings of the 9th USENIX
Conference on Networked Systems Design and Implementation, NSDI’12,
pages 2-2, Berkeley, CA, USA, 2012. USENIX Association.

67

	Introduction
	Background
	Mobile Data Collection and Analysis
	Battery Life of Mobile Devices
	Association Analysis

	Carat Data
	Energy Rate
	CPU Usage Level
	Travel Distance
	Battery Temperature
	Battery Voltage
	Screen Brightness
	Mobile Network Technology
	Network Type
	WiFi Signal Strength
	WiFi Link Speed

	Association Analysis
	Formal Problem Definition
	Frequent Pattern Mining Using Frequent Pattern Growth
	Generating Association Rules from Frequent Patterns

	Spark and the MapReduce Programming Model
	Spark Usage

	Implementation
	Service Front End
	Service Back End
	Analysis Engine

	Results
	Performance Evaluation
	Overview on Generated Rules
	Discussion

	Conclusion
	References

