
Date of acceptance Grade

Instructor

Geometric Approaches to Big Data Modeling and Performance
Prediction

Peter Goetsch

Helsinki June 6, 2018

UNIVERSITY OF HELSINKI
Department of Computer Science

Faculty of Science Department of Computer Science

Peter Goetsch

Geometric Approaches to Big Data Modeling and Performance Prediction

Computer Science

June 6, 2018 52 pages + 0 appendices

Big Data, Spark, Performance Modeling, Computational Geometry

Big Data frameworks (e.g., Spark) have many configuration parameters, such as memory size, CPU
allocation, and the number of nodes (parallelism). Regular users and even expert administrators
struggle to understand the relationship between different parameter configurations and the overall
performance of the system. In this work, we address this challenge by proposing a performance
prediction framework to build performance models with varied configurable parameters on Spark.
We take inspiration from the field of Computational Geometry to construct a d-dimensional mesh
using Delaunay Triangulation over a selected set of features. From this mesh, we predict execution
time for unknown feature configurations. To minimize the time and resources spent in building
a model, we propose an adaptive sampling technique to allow us to collect as few training points
as required. Our evaluation on a cluster of computers using several workloads shows that our
prediction error is lower than the state-of-art methods while having fewer samples to train.

Tiedekunta — Fakultet — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

ii

Contents

1 Introduction 1

2 The Big Data Landscape 4

2.1 Cloud Computing . 5

2.2 MapReduce . 5

2.3 Spark . 7

3 Spark Benchmarking in a Clustered Environment 11

3.1 Executor Memory . 12

3.2 Executor Cores . 13

3.3 Executor Parallelism . 14

3.4 Complete Topography . 14

3.5 Conclusions . 15

4 Related Work 17

5 Delaunay Triangulation Framework for Spark Modeling 21

5.1 Spark Modeling and Performance Tuning 21

5.2 Primitives . 22

5.3 Delaunay Triangulation Framework 23

5.4 Problem Statement . 25

5.5 Modeling . 26

5.5.1 Feature Selection . 26

5.5.2 Runtime Data Collection . 27

5.5.3 Delaunay Triangulation . 27

5.5.4 Calculating Prediction Hyperplane 33

5.6 Prediction . 33

iii

5.7 Sampling . 34

5.7.1 Seed Sampling . 35

5.7.2 Adaptive Sampling . 36

5.8 Implementation . 38

6 Evaluation Methodology and Results 38

6.1 Environment . 39

6.2 Data Generation . 39

6.3 Sampling Evaluation . 39

6.4 Model Evaluation . 41

6.5 Synthetic Workload Evaluation . 43

6.6 Discussion . 44

7 Conclusions and Future Work 47

References 49

1

1 Introduction

Today Big Data is ubiquitous in our daily lives. Big Data influences everything
from the daily weather forecast and our route to work, to the food in the grocery
store and our favorite sports game. We constantly interact with Big Data, whether
we notice it or not. Driving this growth of Big Data over time has been the rise
of Cloud computing which has enabled low-cost computation, storage, and network
for the masses. Many frameworks have been introduced to organize fault-tolerant
Big Data computation in a distributed, fault-prone environment like the Cloud.
Frameworks such as Spark [ZCF+10], MapReduce [DG04] and Hadoop [Whi09] are
among the leaders of general-purpose Big Data frameworks which are capable of
handling many Big Data workloads such as Machine Learning, Streaming, Graphs,
SQL, etc. These frameworks have gained popularity because they have been designed
from the ground-up for execution in clustered, fault-tolerant environments like the
Cloud.

In Cloud environments where resources are billed down to the second, it is crucial
that applications run efficiently. This is particularly true in the case of Big Data
frameworks, which are by their nature resource intensive. However, this is easier
said than done. Big Data frameworks are complicated pieces of software, requiring
deep knowledge of distributed systems, databases, hardware and programming to
understand fully. For the end-users submitting the jobs, which are most-often not
systems engineers, the task of tuning a Big Data job can be daunting. Big Data
frameworks have hundreds of configuration parameters which are often left to the
default setting, leading to wasted time and resources. In Chapter 3 we run a series of
benchmarks against various Spark workloads to demonstrate the complex relation-
ships between some key Spark parameters, namely parallelism, memory allocation,
and CPU core allocation. For just these three tuning parameters, we demonstrate
the dynamic relationships present between them. In some newer Big Data systems
like Spark, building an accurate model that takes into account all the tuning param-
eters is extremely challenging. Our benchmarking results reinforce the complexity
of Big Data systems, reiterating the need of performance tuning in these systems.
The process of determining which parameters are relevant for a particular job is
very crucial, yet very difficult for non-technical users. Compounding things is the
fact that parameters which are good for one job may be awful for another seemingly
similar job.

2

To address this challenge, many tuning frameworks have been proposed for Big
Data systems. To create a tuning framework, one first must create a model of the
underlying system that can predict performance under a wide range of hypothetical
workloads. Models of systems can be classified either as white-box or black-box. In
white-box models, the inputs of the system are related to the output(s) by trying
to understand how the individual pieces in a system impact its input and output.
On the contrary, black-box models do not try to understand the internals of a
system, but rather search for a blind mathematical relation between input and
output. Black-box models often employ Machine Learning techniques, but it is not
a rule. In practice however, models are not purely white-box or black-box. On top
of a model, a tuning framework can be built which selects runtime configuration
parameters to optimize a user-defined metric. A fast runtime is a potential goal
for some tuning situations, while others might want to optimize data locality or
minimize total resource usage.

For MapReduce, we have seen Starfish [HLL+11] and MRTuner [SZL+14], which offer
unique approaches to optimizing the MapReduce jobs. For the newer Spark, we have
seen the black-box Ernest [VYF+16] model and some other white-box approaches
(e.g. [WK15, SS17]). In general, we observe that MapReduce-type frameworks have
more white-box models because MapReduce has a simple internal structure that
lends itself well to white-box approximations. For systems like Spark, which are
more complicated internally, many black-box models have been proposed. These
are all novel approaches, however, they are either (1) constrained by the number of
features available in the model, (2) inaccurate for common use cases, or (3) requiring
high amounts of training data to achieve good results.

In this Thesis, we provide an answer to the research problem of predicting
runtime for Big Data jobs at various runtime configurations, given some
samples of past system behavior. To evaluate the model in our experiments,
we introduce a metric called the Mean Absolute Percentage Error (MAPE), which
is the average of the Percent Errors for a set of estimated runtimes (T̂) and actual
runtimes (T):

MAPE =
100%

l

l∑
i=1

|Ti − T̂i
Ti
| (1)

where l is the number of specific feature configurations to be tested.

3

We search for a prediction model with a minimized Mean Absolute Percentage Error
for the space parameterized by the model. From an accurate prediction model, ac-
curate tuning suggestions can be developed. We model job features against runtime,
forming a mesh over them, from which we may interpolate runtime predictions for
unknown feature configurations. We introduce the Delaunay Triangulation [Del34]
for creating the mesh, and an iterative sampling technique, Adaptive Sampling,
for optimally picking samples for the model. Our model works with an arbitrary
amount of features, forming a mesh in any number of dimensions. The Delaunay
Triangulation is one of many possibilities borrowed from the field of Computational
Geometry for making the mesh covering of the feature space. Paired with the De-
launay Triangulation, we propose Adaptive Sampling, which works to iteratively
improve the model by optimally selecting samples based upon their estimated util-
ity to the model. Our model works well over other traditional black-box techniques
such as Linear Regression [Nas07] and the Gaussian Process [Ras04] because it re-
quires fewer samples to achieve a high prediction accuracy, and also works in an
arbitrary number of dimensions. Furthermore, our Delaunay Triangulation model
is generic enough that it may be applied to not only other Big Data frameworks
(MapReduce, Hadoop, etc.) but also general black-box systems with large inputs
and complex internals. In summary, the main contributions of this Thesis are as
follows:

1. We propose a framework to model the performance of Big Data applications
using Delaunay Triangulation by constructing a mesh over a set of selected
features, which enables the prediction of the whole configuration space.

2. We propose an adaptive sampling technique to discover the areas of abrupt
change in the performance space, which consequently leads to a small predic-
tion error and minimizes the time and resources cost.

3. The Delaunay Triangulation model and the adaptive sampling algorithms are
implemented and comprehensively evaluated on the Spark platform across mul-
tiple workloads. Our evaluation result shows that the Delaunay Triangulation
model outperforms the state-of-the-art methods in terms of prediction accu-
racy and sample data size.

The layout of this Thesis is as follows. In Chapter 2 we introduce Cloud computing
and its relevance to today’s Big Data frameworks, as well as an overview of the cur-
rent Big Data frameworks, with an emphasis on Spark. In Chapter 3, we deep-dive

4

into Spark and benchmark its performance characteristics against various workloads.
In Chapter 4 we perform a survey of the current literature on performance tuning
and modeling for Big Data frameworks like Spark and MapReduce. In Chapter 5
we present the main design and theory behind our Delaunay Triangulation model
supported by adaptive sampling. In Chapter 6 we thoroughly evaluate the presented
model, followed by a discussion and finally, concluding remarks in Chapter 7.

2 The Big Data Landscape

The term "Big Data" has been around since at least the 1990s, when it was first
used in [Mas99] and [WI98] (among others). In the early 2000s, it became clear that
"Big Data" was an emerging field, and efforts were made to define it formally. It
has been widely accepted across academia and industry that Big Data is data which
can be characterized by three Vs: volume, velocity, and variety [Lan01]. Volume
refers to the sheer volume of data coming into systems today, which is ever-growing
in size. Velocity refers to the speed at which the data is traveling through today’s
systems, whereby it increasingly comes from streaming sources where it can only
be read once. Finally, variety refers to the many types of data that systems today
are having to process, for example not only highly-structured relational data but
also unstructured data sources like images, audio, and biometric data. This "3V"
approach to Big Data first originated in [Lan01], and has been extended upon over
the years to include a fourth "V" of "Value," "Veracity" and others. Value in this
context indicates the value potential that can be unlocked from Big Data [HYA+15],
whereas "Veracity" indicates the uncertainty of incoming data which must be taken
into account [WB13]. Still others have avoided the nV approaches to Big Data and
instead offered more general definitions. In a cornerstone 2011 report, the McKinsey
Global Institute defined Big Data as "datasets whose size is beyond the ability of
typical database software tools to capture, store, manage, and analyze" [MCB+11].
Other similar definitions exist. While there are many definitions to Big Data, even
more than 20 years after its birth, they all approach on the same idea. It is important
to note that due to its nature, Big Data has primarily been an industry-driven
research field, swapping advancements with traditional academia over the years.
This tight collaboration has lead to many innovations but has also blurred the lines
in this field between traditional academics and industrial applications.

5

2.1 Cloud Computing

The rise of Big Data can be directly attributed to the rise of Cloud computing in
the last two decades. Cloud computing is a huge topic itself, but for our needs, it is
sufficient to define it as "the applications delivered as services over the Internet and
the hardware and systems software in the data centers that provide those services"
[AFG+10]. The rise of Cloud computing has transformed computation (and the
associated network and storage components) into a utility service model in which
(1) users have access to seemingly infinite resources, (2) users require no upfront
commitment to access these resources, and (3) users only pay for the resources that
they use. Cloud computing allows individuals and organizations to access practically
infinite compute resources at economical costs. Because of these benefits, Cloud
computing usage has experienced high growth rates. This adoption has created a
feedback loop: users come to the Cloud because it is cheap, and when more users
come, Cloud vendors are able to use the economies of scale to make things cheaper.
This feedback loop continues to drive down costs. Inexpensive computation, storage,
and network resources have been the driver of Big Data growth. In past times, an
organization would have to buy and provision hardware themselves, then supply
it with enough workloads to achieve a high rate of utilization. Today the Cloud
distributes the up-front and operational costs, leaving the user only to pay for what
they use. This fundamental transformation in the way users perform computation
has lead to huge growth in Big Data.

2.2 MapReduce

The rise of Cloud computing allows end-users to focus on extracting value from
their data, rather than managing infrastructure. From this starting point, the field
of Big Data has been able to grow exponentially. It can be argued that Big Data
began to gain widespread popularity in industry and academia around the time that
Google released papers in the early 2000s on their distributed file system (GFS)
and MapReduce systems [GGL03, DG04]. These papers spurred the creation of
the Hadoop framework, which includes open-source versions of a distributed file
system, and MapReduce. MapReduce’s simple programming model can be used to
implement many applications. The simple flow of Map→ Shuffle→ Reduce is easy
to understand and makes building systems based upon it almost trivial. Because of
this, MapReduce gained widespread adoption in practice throughout the mid-2000s

6

and early 2010s.

The rise of MapReduce brought with it much interest and funding for its research
during this same time [HAG+16]. One important takeaway from all this research is
the limitations of MapReduce. One of the most significant weaknesses of MapRe-
duce is its poor performance with algorithms that run in iterations, whose results
build upon previous results [DN14]. Algorithms like Pagerank, K-means, and simple
regressions have poor performance in MapReduce because they require multiple it-
erations to converge, with each iteration being a complete MapReduce process with
disk reads and writes on each end. At the end of each MapReduce iteration, results
are written back to disk, adding significant overhead over the course of many itera-
tions. Other well-documented weaknesses of MapReduce are (1) its lack of support
for stream, interactive and real-time processing, (2) its high bisectional traffic gen-
eration within a cluster and (3) its inefficiencies in load balancing [DN14, HAG+16].
Naturally, systems have been developed to patch these weaknesses of MapReduce,
however, there is only so much that can be done to fix a flawed system. MapReduce
is an excellent tool for what it was designed for. Its simple programming interface
and ability to handle most problems across an enterprise have helped it to become
famous. MapReduce is not the fastest, but it is easy to understand and much can
be solved with it, so its popularity has remained.

For the general enterprise that simply needs a data processing engine, MapReduce
is a great solution. For other environments that aren’t the general use case, another
solution is needed. As Cloud computing has become more ubiquitous in organiza-
tions, the costs of MapReduce’s inefficiencies have become more visible due to the
pay-per-use nature of Cloud computing. Furthermore, in the time since MapReduce
was introduced in circa 2000, organizations have come to expect more from their
data processing frameworks that were not even on the horizon during MapReduce’s
development. Enterprises today put more emphasis on real-time (stream) and in-
teractive processing of their data, rather than the offline approach of MapReduce.
Enterprises also are handling more graph-based data, which is often iterative in na-
ture and suffers from the drawbacks mentioned above. Above all, enterprises need a
fast and efficient data processing framework. In earlier days, enterprises with their
own hardware could run MapReduce, and it did not matter if the job took longer
because they had already bought-in. Today when Cloud resources are billed to the
second, the inefficiencies in frameworks like MapReduce show. For these reasons,
a new generation of Big Data processing frameworks has been introduced. Some

7

frameworks attempt to solve one problem well, for example Apache Kafka1 and
Flink2 for handling streams and Apache Giraph3 for graph processing. While others
have tried to solve the general problem of creating a Big Data processing framework
which addresses the inefficiency of MapReduce and also handles graph processing,
streams processing and more. One such framework that is leading in this area is
Spark [ZCF+10], and is what forms the backbone of this thesis.

2.3 Spark

Apache Spark is a general-purpose Big Data cluster computing engine that was
first introduced around 2010 by researchers from UC-Berkeley [ZCF+10, ZCD+12].
Spark was created to make iterative data processing algorithms run faster, but
it performs well in most other cases too. It is built around a distributed mem-
ory abstraction called Resilient Distributed Datasets (RDDs) [ZCD+12], which will
shortly be described in detail. Spark outperforms MapReduce in almost all bench-
marks [SQM+15]. All programming problems that can be solved with MapReduce
are able to be solved with Spark. Spark’s advantage is that it can solve much more;
the Map-Reduce pattern is just one of many patterns supported in Spark. Spark
accomplishes all of this in a distributed and fault-tolerant fashion.

Resilient Distributed Datasets (RDDs) are the central idea to which Spark is built
upon, and their understanding is crucial. RDDs represent large data sets in-memory
in a fault-tolerant fashion [ZCD+12]. RDDs are read-only data abstractions: once
a RDD has been created, users can transform it ("write") into another RDD by
performing transformations on it like filter, join and reduceByKey. Further-
more, once created, users can themselves decide upon how to handle caching of
RDDs (called persistence) into memory (on-heap or off-heap) and disk with various
combinations and serialization options.

The key idea to understand about RDDs is that they store the steps for how to
compute a dataset, not necessarily the data set itself. This "lineage" is represented
internally as a directed acyclic graph (DAG) [ZCD+12]. Data sets are only con-
structed fully in memory when they are absolutely needed in the program, otherwise,

1https://kafka.apache.org/
2https://flink.apache.org/
3https://giraph.apache.org/

8

they are kept in the lineage state. Representing RDDs in this fashion makes them
resilient to faults, and can also preserve memory in the system because they only
consume memory when absolutely required by the application. RDDs are a similar
concept to distributed shared memory (DSM) [NL91], however RDDs use coarse-
grained updates (e.g. "apply that function to each item in this dataset"), whereas
DSM operates at a much finer-grained level (e.g. "update value at 0xc81cf6b2"). It
may not even be fair to compare RDDs and DSM directly because they are memory
abstractions created for different purposes, at different times. RDDs are read-only
and used in applications which apply transformations in bulk, whereas DSM is both
read and write and is used in applications with fine-grained, random memory access
patterns. Since DSM is the closest comparison we have today to RDDs, making the
comparison is hard to avoid.

The primary benefit that RDDs have over DSM is the high fault tolerance, and
consequently, by utilizing RDDs, Spark achieves a high level of fault-tolerance. One
significant reason why is because RDDs do not have to duplicate or checkpoint data
because any lost partition of an RDD can be recomputed on-the-fly from its lineage.
In addition, the lazy-evaluation of RDDs means that if a node fails, it has a smaller
probability of having the RDD data actually evaluated and written into memory.
Finally, because of the immutable nature of RDDs, lost partitions can quickly be
recovered more quickly than if there was some state in them to preserve.

By representing data sets in-memory in an efficient and fault-tolerant manner, Spark
programs achieve high performance across many different kinds of workloads. In
particular, the usage of RDDs has enabled Spark to handle iterative workloads very
well. For iterative algorithms, iterations are implemented as transformations of
existing RDDs. In contrast to MapReduce, another iteration of the algorithm does
not necessitate a read-write cycle from the disk. Another aspect of Spark that makes
it fast is its fine-grain control given to developers of data partitioning. Application
developers can use context about the application to distribute RDD partitions across
nodes in a cluster, thereby reducing overall cross-traffic between nodes as well as
speeding up RDD recovery in the case of a node failure. A final aspect of Spark
which makes it fast is the immutable nature of RDDs. With immutability, there is
much less state to keep track of in each partition, which often enables partitions to
be computed in parallel.

Resilient Distributed Datasets form the foundation of Spark, upon which all the
other tooling is written. From an architectural point of view, a Spark application

9

Figure 1: Coordination of job tasks in Spark 4

consists of a driver program and any number of worker nodes. The driver program
runs the main application code and manages workers in a cluster, who actually
perform the computation tasks. Each worker contains one or more executors which
further divide-up the computation tasks within each worker. Refer to Table 1 for
summary of these components and Figure 1 for a visual reference of the overall Spark
architecture.

At the center of each Spark program is a cluster resource manager such as Apache
Mesos or Hadoop’s YARN [HKZ+11, VMD+13]. Spark also offers options to run in
"standalone" mode, but for this work, we will only focus on cluster mode because
the standalone mode is not a realistic runtime for production workloads.

Spark exposes an application library in a number of conventional programming
languages and runtimes, forming the core platform of Spark. On top of this core
platform sit official modules that provide extra functionality. The first module
is Spark SQL and DataFrames, which is an extension to Spark which exposes a
SQL-like query interface for programs to run against RDDs. For data that is more
structured in nature, Spark SQL is used to interactively query against it, as if it were
in a vast SQL database. On top of Spark SQL is Spark Streaming, which provides
a way to run computation on streaming data. Also on top of Spark SQL is MLlib,

4https://spark.apache.org/docs/latest/img/cluster-overview.png

10

Table 1: Spark Terminology
Term Definition
Executor A process that manages the execution of tasks. Remains

alive for the duration of the job.
Task A self-contained unit of computation taken from the

overall job.
Worker Any node capable of hosting ≥ 1 executor processes.
Driver Main controller for the job; coordinates with executors

to manage job execution.

a machine learning toolbox containing many common machine learning algorithms,
as well as some common patterns used in machine learning scripts. Finally, there
is GraphX, an extension to handle graph-based data more efficiently. As we have
explored earlier, there presently exists frameworks dedicated to handling each of
these components separately. The benefit of using Spark here is that once the data
has been expressed as an RDD, it can be passed around from Spark SQL to MLlib to
GraphX without unloading to disk. The drawback, of course, is that the solutions
designed from the ground-up to solve a specific problem (e.g., Apache Kafka for
streaming workloads or Giraph for graphs) often perform better than a framework
like Spark which was designed to solve a general problem.

In comparison to Hadoop’s MapReduce, Spark outperforms it in almost all bench-
marks. Spark in particular shows dominance in iterative algorithms (K-Means,
regressions, etc., exactly what it was designed for), with up to 20x speedups over
MapReduce [ZCF+10, SQM+15]. The speedups can be attributed to (1) the earlier
discussed RDD design model which reduces overall I/O in the system and (2) Spark’s
smaller initialization and termination time, which has a considerable influence on
"small" workloads. It has however been shown that for some large shuffle-heavy
workloads (such as Sort), MapReduce outperforms Spark due to its superior reduce-
side shuffler design [SQM+15], it can be argued that comparing Spark to MapReduce
directly is not a fair comparison because the systems were created years apart to
address different requirements. MapReduce was primarily designed for single-pass
analytics algorithms, whereas Spark was designed for iterative and interactive algo-
rithms.

As we have seen, Spark performs very well and can solve more problems compared

11

Table 2: Key Spark Configuration Parameters
Executor Parameter Configuration Parameter
Count spark.executor.instances

Executor Memory spark.executor.memory

Executor Threads spark.executor.cores

Our Parameter Configuration Parameter
Memory spark.executor.instances × spark.executor.memory

CPU Cores spark.executor.instances × spark.executor.cores

to its predecessors. This speedup can primarily be attributed to the use of Resilient
Distributed Datasets as the intermediate storage used during computation.

3 Spark Benchmarking in a Clustered Environment

Up to this point, Spark has been discussed at a theoretical level. Because the goal
of this thesis is to build a system which is practical in nature, some work should
be done to understand the practical side of Spark. To dig deeper into the internals
of Spark, some benchmarks have been performed, with each benchmark trying to
expose a different characteristic in Spark. Because there is presently little literature
on this topic, the benchmarks here were run ourselves. From these benchmarks, we
can gain some key insights which will be applied later for the main contribution of
this work.

Spark is released with a few hundred configuration parameters to each job that can
be tuned by the user5, many of which have an impact on the job’s performance.
Recall from earlier that the Spark driver program initializes executors, and each
executor can run multiple tasks, each task being responsible for computing some
portion of the overall job. In Spark, the method we use to vary the amount of
memory and CPU cores given to each job is to tune (1) the number of executors
using spark.executor.instances, (2) the number of parallel tasks per executor
using spark.executor.cores, and (3) the amount of memory per executor using
spark.executor.memory. From these parameters, the total amount of resources

5https://spark.apache.org/docs/latest/configuration.html#spark-properties

12

(memory and CPU cores) assigned to a single job6 can be easily calculated. Both
the Spark configurations and the total resource calculations have been summarized
in Table 2.

Jobs were run in the University of Helsinki’s Ukko high performance computing clus-
ter7 on 1-3 nodes, each node exposing 16 virtual-cores (vcores) and 64 GB of virtual
memory (vmem). Spark 2.1.0 was run on top of HDFS (utilizing an NFS under-
neath) and along with YARN as the container manager. For each round of tests, we
ran a collection of different workloads provided by the HiBench Big Data benchmark-
ing library, which provides a collection of standardized workload implementations
[HHD+10]. In particular, we ran the following workloads: Terasort, WordCount, K-
Means Clustering, Bayesian Classification, Pagerank, and SQL-Join. These specific
workloads were picked because they display a wide variety of resource usage (e.g.
memory, CPU, disk I/O, etc.). More space is devoted later to describe the testing
environment and workload characteristics in detail.

3.1 Executor Memory

The first benchmark performed was to see how memory impacts runtime. The re-
sults can be found in Figure 2. We observe a binary behavior among the algorithms.
Firstly, we observe that memory has no influence on the runtime for algorithms that
make a single pass at the data like WordCount, Terasort, and SQL join. These algo-
rithms require a base-level of memory to operate, and adding more memory has no
impact on the overall performance. It is interesting also to note that the WordCount
and Terasort algorithms perform at the same speed, even with less memory than the
size of the data set. This indicates that for this class of algorithms, Spark operates
on them without pulling them entirely into memory as an RDD at once. Secondly,
we observe for the iterative algorithms (PageRank, K-Means, Bayes), that there
is an exponential relationship between runtime and memory allocation. As more
memory is given to each executor, both algorithms’ runtimes drop exponentially,
until they reach a point (around 17GB/executor for PageRank and 7GB/executor
for K-Means) where adding more memory has no impact. What this indicates is

6The total job resources are often written using the notation nvmg (for example 10v40g) where
n and m are integers denoting the total cores and memory given to the job, respectively.

7https://www.cs.helsinki.fi/en/compfac/high-performance-cluster-ukko

13

0 2 4 6 8 10 12 14 16 18 20 22 24 26
0

200

400

600

800

1,000

1,200

1,400

1,600

Memory per Executor (GB)

Jo
b
R
un

ti
m
e
(s
)

Executor Memory versus Job Runtime

WordCount (64GB)
K-Means

Terasort (6.4GB)
Pagerank
SQL Join
Bayes

Figure 2: Benchmarking impact of allocated memory on job performance against
common Big Data workloads on Spark.

that for iterative algorithms, their runtime is relatively high until they have been
given enough memory to store the intermediate results completely in memory. Even
if some fraction of the results do not fit into memory, the results indicate that having
to perform I/O to disk for this portion with each iteration is very costly for the job’s
performance.

3.2 Executor Cores

The second benchmark performed was to see how the number of cores assigned to
each executor impacts runtime. The results can be found in Figure 3. What we
observe for all algorithms is that there is also an exponential relationship between
the number of cores given to a job and its runtime. The results suggest that there
is a baseline amount of cores required by each Spark job, and once that threshold
has been passed, the benefits of adding more cores are reduced. Running a Spark
job on only one core is slowest, whereas adding just two or three more cores can
significantly improve the performance.

14

0 2 4 6 8 10 12 14 16
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

CPU Cores per Executor

Jo
b
R
un

ti
m
e
(s
)

Executor Cores versus Job Runtime

WordCount(64GB)
K-Means

Terasort (6.4GB)
Pagerank
SQL Join
Bayes

Figure 3: Benchmarking impact of CPU cores on job performance against common
Big Data workloads on Spark.

3.3 Executor Parallelism

The third benchmark performed was to see how the worker (container) size impacts
runtime. In this benchmark, we fixed the total resources given to a job at 12 vcores
and 24GB memory but varied how many executors were created. The results can be
found in Figure 4. What we observe is that for all algorithms, the container size has
no impact on the job’s performance. The benchmark shows that no matter how the
total resources are divided into pieces, the job is still getting the same amount in
total. We would expect to have perhaps slightly higher runtimes as the job becomes
more parallelized because of the extra overhead of coordinating all the executors.
This was not observed except for the Pagerank benchmark. This indicates either
that most jobs require >6 parallel executors before they face this issue, or that it is
not a valid concern.

3.4 Complete Topography

Our final benchmark is not a benchmark among workloads, but rather a survey of a
complete performance surface for the K-Means workload in three dimensions (CPU

15

2 3 4 5 6
0

200

400

600

800

1,000

1,200

1,400

Executors Allocated

Jo
b
R
un

ti
m
e
(s
)

Parallelism (Executor Number) versus Job Runtime

WordCount(64GB)
K-Means

Terasort (6.4GB)
Pagerank
SQL Join
Bayes

Figure 4: Benchmarking parallelism (number of executors) on job performance
against common Big Data workloads on Spark.

Cores, Memory, and Runtime). Refer to Figure 5. The surface is a combination
of the Executor Core and Executor Memory benchmarks for only the K-Means
workload. When combined, we see how two features can join to form a surface.
We display the results in three dimensions because it is easy to illustrate, but it
is important to remember that a surface like this can be formed in the same way
in even higher dimensions. For the K-Means surface, we observe a maximum in
runtimes when approaching 〈0, 0〉, and an exponential decrease in runtimes when
radiating away from 〈0, 0〉. Note that the runtime drops faster for the axis of Memory
than the axis of CPU Cores. It is typical for other Spark workloads to display this
asymmetry, though we have not included other results here.

3.5 Conclusions

The benchmarks that we have run highlight a few fundamental properties about
the performance of Spark jobs. Firstly, for the executor memory and executor core
benchmarks, we can identify points in the graph at which the benefit of adding more
resources is diminished. We call these points turning points. They are essential in
Spark applications because they separate the graph into two regions: one region

16

1

2

3

4

5

1
2

3
4

5

1,000

2,000

3,000

CPU Cores

Memory (GB)

R
un

ti
m
e
(s
)

Complete K-Means 3d Surface

Figure 5: K-Means surface in three dimensions (Memory, CPU cores and runtime).

where adding more resources dramatically reduces the runtime, and another where
adding further resources reduces the runtime only barely.

The second thing to take away from these benchmarks is the complex relationship
that exists in Spark between memory, CPU and other resources. We observe a
push-pull relationship between resources. For example, after a point, giving more
memory to a job does not matter because then CPU or I/O becomes the bottleneck
for performance. This idea is not trivial. Naively, one would think the way to
speed up a memory-bound job is to simply give it more memory. Giving more
memory will speed it up, but only along with additional amounts of CPU and other
resources. By varying a single resource and holding the others constant, we see from
the benchmarks that runtime performance does not improve. From this, we see just
how interconnected resources are in Spark jobs.

A final takeaway from these benchmarks is the difficulties of doing experiments in
a non-virtualized, fault-prone, multi-tenant environment like Ukko8. It was dis-
covered that if there are idle resources, a YARN container will try to use them.
This is particularly true for CPUs and can skew experiment results. Furthermore,

8https://www.cs.helsinki.fi/en/compfac/high-performance-cluster-ukko

17

in practice, it is quite difficult to say how much resources a job used accurately.
With CPUs for example, there is hyperthreading happening at the processor level,
followed by an abstraction of actual cores to virtual-cores at the resource manager
(YARN) level, and then at runtime, there are potentially multiple users competing
for these resources. When this happens, there is no way for Spark or any other layer
to definitively know how much resources they have used or had access to during some
period. Each layer has an idea, but with so many layers of resource abstractions,
this idea becomes meaningless at some point. One way to address this problem is
to run many trials of each test, and then it becomes easy to pick out the trials in
which another user was draining resources on the node. Another way to address
this might be to implement virtualization on Ukko for all users, which would have
much stronger resource control and monitoring. A final solution might be to enable
Control Groups9 (cgroups) across all Ukko nodes, which is a kernel-level resource
manager.

These baselines have focused on three trivial parameters to Spark jobs: container
size, virtual memory, and virtual-cores. Future work might look at other aspects
such as I/O tuning and serialization to see how they impact the job’s performance.
From these benchmarks, we have gained critical insights into Spark that will allow
us to look seriously at the question of modeling and performance tuning Spark.

4 Related Work

When examining literature on Spark performance prediction and tuning, we can
first look back to works on MapReduce/Hadoop because they are similar enough
to Spark, where some techniques are still relevant. In terms of research, Spark is
a new system built upon the same primitives as MapReduce/Hadoop. Therefore,
when performing research on a system like Spark, we should not ignore the previous
works in MapReduce/Hadoop. There are two previous works from the MapRe-
duce/Hadoop literature which we will consider here: Starfish and MRTuner. Both
approach the problem of job optimization from different directions. Starfish is an op-
timizer for MapReduce built to integrate tightly into the existing Hadoop ecosystem
[HLL+11]. Starfish takes both a macro and a micro approach to tuning Hadoop. At

9https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt

18

the micro level, Starfish optimizes tuning parameters on the job-level. It uses a tech-
nique called Dynamic Instrumentation [CSL+04] to analyze the individual Map and
Reduce programs submitted by the user. By using Dynamic Instrumentation, the
instrumentation does not slow the original program. From this analysis, Starfish’s
just-in-time optimizer can build a job profile capturing (1) the job’s timing of each
sub-stage, (2) an idea of the data flow, and (3) resource usage throughout the job’s
lifetime. From this job profile, Starfish has a good idea of the overall job behavior
and can suggest optimal parameters to the job.

Starfish not only considers performance at the job and sub-job level but also at
the higher workflow and workload levels. The main idea is to not only tune single
jobs but rather collections of jobs. In large organizations with many jobs executing
daily, there are significant gains to be had by looking at the overall picture. Starfish
can, for example, reorganize the job order and data placement to achieve higher
data locality over the course of many jobs. By examining both micro and macro
optimizations for MapReduce, Starfish achieves significant performance gains than
the default settings for MapReduce/Hadoop.

In contrast to Starfish, MRTuner only focuses on optimizations at the job level
[SZL+14]. Even though Starfish has a job-level component, the approach of MR-
Tuner is different. To optimize job runtimes, MRTuner attempts to optimize parallel
execution between map and reduce tasks. By achieving maximum parallel execution
between tasks, MRTuner can better utilize system resources. The critical insight of
MRTuner is its Producer-Transporter-Consumer (PTC) cost model, which is one of
the few cost models for MapReduce jobs that takes into account parallel execution
and the overlapping of the map, shuffle, and reduce tasks. Another significant contri-
bution of MRTuner is their reduction of system parameters, which can significantly
decrease the optimal configuration search space.

Starfish and MRTuner approach the job of MapReduce tuning from different sides.
There is not one correct approach; both have good and bad aspects. Starfish’s use of
dynamic instrumentation is clever because it enables a lightweight execution model
to be built without impacting the performance of the application in the process.
Likewise, MRTuner’s PTC cost-based model is a theoretical approach to the same
goal. One area MRTuner excels over Starfish is in the reduction of configuration
parameters, which enable faster and more-optimal tuning results. Similarly, it was
clever of Starfish to also include optimizations at the macro or workload level, though
perhaps it would be better to fork those into a separate project because they are

19

not mainly related to optimizations at the job level. Both approaches from the
MapReduce world have provided some valuable insights which we can apply to
Spark and perhaps other Big Data frameworks in the future.

Because of the complexity of Spark over MapReduce and other predecessors, re-
search into modeling, predicting and performance tuning Spark applications is still
in relative infancy. It is a hard problem. Nonetheless, a few have tried to tackle it
from different directions. Similar to what we have seen in MapReduce, approaches
can take a white-box analytical (cost-based) approach or a black-box machine learn-
ing approach. The first serious system to consider for Spark performance prediction
is Ernest [VYF+16]. The goals of Ernest are (1) to predict runtimes of large Spark
jobs efficiently and (2) suggest optimal runtime resource configurations. It uses a
black-box approach combined with machine learning. Spark jobs are run on small
input sizes, then a linear model is built, from which optimal coefficients can be se-
lected using the Non-Negative Least Squares regression variant. The authors claim
that a linear model works well enough because of the tendency of Big Data analytics
jobs to be linear in nature themselves. Once the prediction model has been created,
Ernest uses it to select the optimal number of machines and machine types. To
shorten the overhead from the system, Ernest also uses optimal experiment design
[Puk93] to select optimal training data sets. Ernest can suggest parameters based
upon shortened runtime and cost minimization, although it appears flexible enough
to be able to optimize parameters based upon some other metric.

Other cost-based models for Spark have been developed in recent times, e.g. [SS17]
and [WK15]. Both approaches are very similar in nature. Recall that in Spark, jobs
are divided up into stages, with each stage containing one or more tasks. The number
of stages is dependant upon the program structure, and tasks dependant upon the
data size and layout (partitioning). The above models work first by running the
entire job on small input sizes to capture resource usage (e.g., I/O, memory, cache
usage, serialization time, etc.) at the task-level. From there, they can estimate the
number of tasks and their runtimes that would be used for larger datasets. Implicit
in these models is the assumption that resource usage scales somewhat linearly as
the data input size grows (this is the same assumption made by Ernest). The two
cost-based models can predict performance characteristics relatively well for the
selected workloads and data sizes.

In the presented black-box and white-box approaches to performance prediction,
one thing that stands out is the difficulties in predicting the I/O demands of Spark

20

Figure 6: Dependencies between Performance Tuning, Predicting and Modeling

applications. The predominant method today of building models based upon small
input samples cannot accurately model the I/O consumption at larger data sizes.
For some shuffle-heavy jobs like Sort and WordCount where I/O is a factor, this
can make predictions less accurate, as has been found in [WK15]. In Spark-like
environments, resources such as virtual memory and virtual-cores scale well with
the input size, but I/O it does not. Models which are not based upon sampling and
extrapolation may address this limitation, however, no serious proposals have yet
been proposed to our knowledge.

By looking at previous research in MapReduce with systems like Starfish and MR-
Tuner, we have been able to see the motivation behind newer systems for Spark such
as Ernest. In MapReduce, it has been shown that black-box and white-box solu-
tions can work well. Likewise in Spark, the current research indicates that the same
division is also present. Because of MapReduce’s simplified Map-Shuffle-Reduce ar-
chitecture, it was easier to develop white-box models for its behavior. For Spark
and its parallel nature, it is harder to build accurate models that do not over-fit.
Despite this, we have covered two published attempts, and there are undoubtedly
more in the works along this path.

21

5 Delaunay Triangulation Framework for Spark

Performance Modeling

5.1 Spark Modeling and Performance Tuning

The previous benchmarks have shown the dynamic performance space that exists for
Spark applications. Adding or subtracting just one CPU core or 2GB of memory can
have an enormous impact on the job’s performance. Modeling and understanding
this performance space is essential because, at the Big Data scale, these costs add up.
Inefficient jobs translate into a direct loss of time and resources for an organization.
To have a job run efficiently, it means that we have searched all the possible execution
configurations and selected an optimal one.

So far we have avoided defining what an "optimal" Spark job is. Optimal for whom?
A business leader might want all cluster computing jobs to be tuned so that the least
overall amount of resources are used. Likewise, a Data Scientist probably wants
their Spark job to run as fast as possible so that they can iterate on the results.
Furthermore, a cluster administrator might tune the jobs by some other metric,
such as grouping them onto as few machines as possible. The key idea here is
that "performance tuning" is an ambiguous term because it means different things
to different stakeholders. This thesis began with the thought that "performance
tuning" Spark was a binary subject – there is a right way and a wrong way to do
it. However, it was quickly discovered that there is no single correct answer to this
question.

Given this paradox of performance tuning that exists in Spark applications, it was
decided to focus on modeling Spark applications. Performance tuning depends on
the ability to predict system performance under many situations, which itself re-
quires a flexible and realistic model of the system (refer to Figure 6). An accurate
model of an application’s performance space can be used to tune applications to-
wards many different performance goals and also predict future performance under
different runtime configurations.

22

5.2 Primitives

Our method borrows the algorithm of Delaunay Triangulation from Computational
Geometry. As such, some basic terms and concepts used in our work are defined
following.

Figure 7: Convex hull bounding a convex region (left) and a non-convex hull bound-
ing a non-convex region (right).

Convex Region A convex region [MS15] has the property that any line segment
joining any two points lies completely within the region. We show an example in
Figure 7, illustrating convex region and non-convex region.

Convex Set A convex set [MS15] represents the points inside a convex region.

Convex Hull It is the fundamental construction of Computational Geometry. The
convex hull [BDH96] of a set of points is the smallest convex set that contains the
points. Refer to Figure 7.

Hyperplane It is the generalization of a plane in three dimensions to higher dimen-
sions. That is, any (d-1) subspace in Rd. In n dimensions, a hyperplane is defined
by the equation b = a1n1 + a2n2 + ...+ annn where each ai and b are constants.

Simplex It is the generalization of a triangle to different dimensions. In d dimen-
sions, the concept of a triangle becomes a d-simplex. For example in Figure 8, a 2d
triangle is a 2-simplex, a 3d tetrahedron is a 3-simplex, and so on. Furthermore,
each simplex is constructed of facets, which form the boundary (i.e., min and max
values) of the surface. The number of facets in a simplex is a function of the number
of edges.

23

Figure 8: A 1-simplex (line), 2-simplex (triangle) and 3-simplex (tetrahedron). A
Delaunay Triangulation in Rd constructs d-simplexes.

Delaunay Triangulation "The unique triangulation of a set of sites so that the
circumsphere of each triangle has no sites in its interior. The dual graph of the
Voronoi Diagram." [For92]

Voronoi Diagram "The set of all Voronoi faces. The dual graph of the Delaunay
Triangulation." [For92]

Voronoi Face "The set of points for which a single site is closest (or more generally
a set of sites is closest)." [For92]

Circumsphere / Circumcircle A circle or sphere formed around a polygon that
touches all of the points of the polygon.

As is hopefully apparent, most items here are just generalizations of 2d concepts to
arbitrary dimensions.

5.3 Delaunay Triangulation Framework

As we have now seen, there are many important aspects to consider when perfor-
mance tuning Big Data frameworks like Spark. Proper performance tuning is built
doubly upon (1) a good model of the underlying system, and (2) predictions for sys-
tem performance at various runtime configurations. In this work, we contribute a
model for predicting job runtimes on Spark which applies to other Big Data frame-
works. Future works may expand upon this framework to add the final piece of
performance tuning.

Many models place constraints on the features that may be included. For example,
Ernest [VYF+16] constrains their model to the dataset (input size) and machine
type, and the models presented in [SS17] are constrained to executor number, ex-

24

ecutor cores, and executor memory. Some models can support more features, but it
requires significant work to recalculate them, especially those which are white-box
in nature. The model we propose in this chapter is not tied to any particular set
of features and can be applied with equal utility to an arbitrary amount of fea-
tures. Furthermore, by generalizing the features available to the model, we open
the model up to broader applications and adoptions. In this chapter, we will first
formally discuss our approach to the modeling of Spark applications. Secondly, a
novel geometric method for predicting Spark runtimes will be introduced and an-
alyzed. Thirdly, we will tie everything together into an end-to-end algorithm for
predicting Spark runtimes. This chapter lays the theoretical foundation required to
understand our approach and the proceeding experiments and discussions.

To model Spark’s runtime and make predictions, we have created a black-box model
using the history of the job at various feature configurations as our primary guide.
A black-box approach was taken because of the aforementioned complexities of the
Spark framework. The Ernest framework [VYF+16] also makes use of a black-box
model and achieves satisfactory results, so it has already been proven to work for
Spark. There are of course white-box models for Spark (we have analyzed a few
here), however, as these systems become more complex, it can be argued that black-
box models will carry more of a significance. White-box models can only handle
increasing complexity in a system to a threshold, before a black-box approach must
be taken.

In this section, we present our framework for making runtime predictions under
multi-dimensional feature configuration scenarios. Supporting the framework is the
Delaunay Triangulation and Adaptive Sampling techniques. We begin by sampling
the feature space using Latin Hypercube Sampling (LHS), a space-filling sampling
technique well-suited for higher-dimensional spaces. With these samples, we com-
bine them with first boundary samples, thereby forming enough seed samples to con-
struct the initial model. The model itself is constructed by computing the Delaunay
Triangulation over the seed samples, which is a technique to split the data into a
set of interconnected simplexes (triangles), forming a mesh over the data set. From
these simplexes, we lift them into a higher dimension by including their runtime,
and then we calculate the hyperplane passing through the vertices of each simplex.
From this hyperplane, predictions for unknown runtime configurations may be made
by linear interpolation. To improve the model, we propose a sampling technique,
Adaptive Sampling, which uses LHS sampling combined with a utility function to

25

Table 3: Variable Reference
Abbrev. Description

n Number of (current) samples
m Number of LHS samples
d Number of features
F Configuration space (available runtime configurations)
Fi Specific runtime configuration
T̂ Estimated runtime
T (Fi) Runtime at a specific Fi runtime configuration

strategically pick the next optimal sample to add to the model. The details of each
step are given in the proceeding sections.

5.4 Problem Statement

At a high level, we want to use historical runtime data to predict the runtime of
future jobs under different parameter configurations for arbitrary Big Data jobs
like those running on the Spark framework. More formally, given n samples S =

{〈Fi, T (Fi)〉|1 ≤ i ≤ n} , a configuration space F , a prediction model PM(·) returns
the estimated running time T̂ for F :

T̂ = PM(S, F) (2)

where each configuration Fi = {f1, f2, ..., fd} (1 ≤ i ≤ n) includes d features (pa-
rameters) and the corresponding runtime is T (Fi). To evaluate the model in our
experiments, we introduce a metric called the Mean Absolute Percentage Error
(MAPE), which is the average of the Percent Errors for a set of estimated runtimes
(T̂) and actual runtimes (T):

MAPE =
100%

l

l∑
i=1

|Ti − T̂i
Ti
| (3)

where l is the number of specific feature configurations to be tested. For reference,
we have included a table (refer to Table 3 summarizing the important variables used
in our model and the proceeding sections.

In general, this problem can be converted to a general prediction problem with
historical data (i.e., training data), which can be solved by a statistics machine

26

learning method such as Multivariate Linear Regression (LR) [Nas07] or Gaussian
Process (GP) [Ras04]. However, as we will show in our evaluation section, these
existing methods require massive training data points for better prediction, and they
are very costly to construct an accurate performance model for Big Data analytics
platform.

The goal of this Thesis is to develop a novel method for accurate runtime prediction
for Big Data analytics jobs. Since acquiring training data samples can be expen-
sive, our approach emphasizes efficient system model building with as few training
samples as possible.

5.5 Modeling

Our model of the underlying Big Data system is based upon a d-dimensional De-
launay Triangulation and a set of overlaid (d + 1)-dimensional hyperplanes. To
create the model, we must first select features; then we must collect runtime data,
construct the Delaunay Triangulation, and finally, calculate the hyperplanes. A
high-level summary is given below:

1. Select a set of d features (parameters) to build the model around, {f1, f2, ..., fd},
e.g., {memory, vcores}.

2. Gather a set of previous job runtimes at specific feature configurations, e.g.,
{16 GB, 4 VCores} → 455 seconds. Runtimes may be collected from previous
historical data, or strategically sampled as needed.

3. Generate Delaunay Triangulation in Rd space using the set of d features.

4. For each d-simplex returned from the Delaunay Triangulation containing (d+1)
vertices, add the actual runtimes to each of the (d+1) points and then calculate
the hyperplane passing through the vertices of the d-simplex.

5. Solve the equation for the hyperplane in terms of runtime and use this to make
runtime predictions.

5.5.1 Feature Selection

The first step in building our model is to select a set of d features, {f1, f2, ..., fd}, to
contain in the model. For most Spark workloads, as our benchmarking data (refer to

27

Chapter 3) has shown, the amount of memory and CPU cores (vcores) allocated has
one of the largest impacts on a job’s performance. For an initial model of a Spark
system, we suggest starting with those features. Other influential features might
include input size, data locality, bisection bandwidth, and serialization techniques.
Our model is unique in that it does not constrain to fixed features, but rather allows
the user to apply any collection of features. Instead of using conventional wisdom,
a user may also use automated techniques (e.g., [APGZ17]) to select features.

5.5.2 Runtime Data Collection

Since the performance metric is the runtime, the next step is to generate input data
for different feature configurations to form the basis of our model. Intuitively, as
more data is sampled, a more accurate model can be constructed. It is, however, a
research challenge to build an accurate model using as few sample data as required.
To this end, we develop a feedback-driven sampling solution to select points which
have a high potential for improving the accuracy of the model. The detailed sampling
method will be described in Section 5.7. Here, it is sufficient to understand that a
subset of the available input data is strategically selected to build the model upon.

5.5.3 Delaunay Triangulation

After runtime data has been collected (refer previous section), the next step is to
plot it into a d-dimensional space. To enable runtime predictions, the objective
is to fit a hypersurface to the data so that predictions can be made for unknown
〈f1, f2, ..., fd〉 points. The hypersurface should:

1. Assume that each 〈f1, f2, ..., fd〉 point cannot have multiple runtime values,
i.e. it resembles a proper function that passes the vertical-line test.

2. Pass through each historical 〈f1, f2, ..., fd〉 → runtime point

3. Be quick to compute and avoid major recomputation for the addition or re-
moval of a single point

4. Minimize prediction error for unknown 〈f1, f2, ..., fd〉 values

The naive approach to this problem is to take a black-box machine learning (ML)
approach to it. There are two problems with a machine learning approach: training

28

Figure 9: Example of a polygon mesh used in computer graphics 10

cost and model accuracy. The machine learning approach works from the assumption
that there is a pool of data to train the model with initially. This assumption is not
always optimal because in a potentially costly environment like the public Cloud,
it is better to have a usable model as fast as possible, and then iterate from there.
Machine learning models take many data to train and test before they are accurate
enough for production use.

The second problem with a machine learning approach is the accuracy uncertainties
of the model. The problem with higher dimensional regressions is that for a given
Spark workload, multiple regressions need to be performed before one is possibly
found which meets the criteria outlined above. Some workloads might exhibit to-
pography that lends itself well to a higher dimensional quadratic regression, while
others might be better suited for a quartic or linear regression. The shape of the
surface can be highly dynamic (also consider the possibility of outlier points), and
because of this, many regressions of different degrees may have to be performed
before an adequate one is potentially found.

It is indeed possible to apply machine learning techniques such as a d-dimensional
linear regression to this problem, and future works may do so, but there exists

10https://www.sci.utah.edu/the-institute/highlights/24-research-highlights/
cibc-highlights/439-cleaver.html

29

Figure 10: Delaunay Triangulation over a set of random points 11

a simpler solution. Instead of defining the surface as one smooth function, it is
more comfortable and better in many aspects to break the surface into a piece-
wise collection of hyperplanes. The inspiration for this solution comes from the
computer graphics world. In computer graphics, the requirements are similar, i.e.,
cost-effectively approximating an object’s shape with high accuracy. In computer
graphics, the typical solution is to construct a mesh of polygons that wrap the
surface, giving an approximation of it. We will borrow this idea and apply it to our
problem of fitting the performance space of Spark.

A Delaunay Triangulation [Del34] is used to divide an n-dimensional surface into a
collection of conjoined simplexes. Formally, a Delaunay Triangulation is "the unique
triangulation of a set of sites so that the circumsphere of each triangle has no sites
in its interior" [For92]. Figure 10 shows the Delaunay Triangulation for a set of 50
random points. Over a set of points, the Delaunay Triangulation will partition them
into a set of triangles in a fashion such that each point P of a given triangle is not
inside the circumcircle of any other triangle.

A Delaunay Triangulation can be constructed from the dual graph of a Voronoi di-
agram. Together, Delaunay Triangulations and Voronoi diagrams form the building

11https://people.eecs.ku.edu/~jrmiller/Courses/775/InClass/
TessellationExamples/TessellationExamples.html

30

blocks of the field of Computational Geometry [Zem10]. Voronoi diagrams are used
in many related applications, but not this work. Despite this, Voronoi diagrams
are so closely linked that many works consider both as one. In two dimensions, the
Delaunay Triangulation partitions the feature space into a set of 2-simplexes (tri-
angles). In general, in d dimensions, the Delaunay Triangulation forms d-simplexes.
It is manageable to display in two or three dimensions, but it gets quickly complex
after that. We have chosen the Delaunay Triangulation in particular over other
techniques because:

1. It prefers to form equilateral simplexes as much as possible, leading to less
"sliver" simplexes, which are problematic for interpolation of the values within.

2. It is easily extensible into higher dimensions – the math remains unchanged.

3. Many efficient algorithms have been developed to produce and traverse Delau-
nay Triangulations.

Other polygon-mesh generation methods exist, but few are as simple or have been
studied as extensively as the Delaunay Triangulation.

To generate a Delaunay Triangulation for a set of points in Rd space, we utilize
the relationship12 between Delaunay Triangulations in Rd and a parabola in Rd+1

[BDH96]. At a high level, we first compute the convex hull of the point set in
Rd+1 space (by lifting to a parabola), then project the convex hull back into Rd

space, leaving the Delaunay Triangulation in Rd. The convex hull is a fundamental
construction in Computational Geometry and has wide applications in many areas.
Because of this, many efficient algorithms have been developed to generate convex
hulls. For this reason, we will use a convex hull in Rd+1 as the starting point for
our Delaunay Triangulation. Convex hull algorithms are extremely well-researched
due to their applications in computer graphics, and hence, all can be used since
the Delaunay Triangulation is itself a convex hull problem. Other methods exist to
generate Delaunay triangulations and Voronoi diagrams, however, implementation
is more difficult in higher dimensions. As experience has proven, it is easier to form
our Delaunay Triangulation from the well-known convex hull base.

12This relationship between the Delaunay Triangulation and parabola projection is explored
further in [BDH96]

31

In our model, we use the Quickhull algorithm [BDH96] to form a convex hull of
the points in Rd+1. Pseudocode for the algorithm can be found in Algorithm 1.
There are many variations to the Quickhull algorithm, and the one presented is
a simplified version (it quickly becomes complex in higher dimensions). Quickhull
runs in Θ(n log n) with a worst-case complexity of O(n2). The worst-case complex-
ity occurs when points have unfavorable (highly symmetric) distributions. In our
system, we do not consider this to be a valid cause for concern because our sam-
pling method described in Section 5.7 ensures that we asymmetrically pick points,
thereby avoiding the pitfalls of high-symmetry. The algorithm is very similar to
Quicksort because it uses a divide-and-conquer recursive approach to solving the
problem. There exist many variations to Quickhull, and the one listed here is the
easiest from an understanding perspective.

32

Algorithm 1: Quickhull [BDH96]
Result: Subset of input points that form the convex hull
Input : Set of points S in any Rd where d > 1

Create d-simplex with d+ 1 points;
foreach facet F do

foreach unassigned point p do
if if p is above F then

assign p to F ’s outside set;
end

end

end
foreach facet F with a non-empty outside set do

select the furthest point p of F ’s outside set;
initialize the visible set V to F ;
forall unvisited neighbors N of facets in V do

if p is above N then
add N to V ;

end

end
the set of horizon ridges H is the boundary of V ;
foreach ridge R in H do

create a new facet from R and p;
link the new facet to its neighbors;

end
foreach new facet F ′ do

foreach for each unassigned point q in an outside set of a facet in V do
if q is above F ′ then

assign q to F ′’s outside set;
end

end

end
delete the facets in V ;

end

After the convex hull has been created in Rd+1, we project it downward back to Rd,
thereby giving the Delaunay Triangulation.

With Delaunay Triangulations, we have what we need to create a polygon mesh over
a generic 〈f1, f2, ..., fd〉 → runtime Spark feature space. Delaunay Triangulations
provide a reasonable approximation of the underlying surface topography and offer a
simple alternative to d-dimensional regressions. There are many algorithms available
for creating the Delaunay Triangulations efficiently (O(n ∗ log(n)) time or better),

33

and furthermore, they have been extensively studied by computer scientists.

5.5.4 Calculating Prediction Hyperplane

The Delaunay Triangulation partitions the feature space into a series of simplexes,
and we construct a hyperplane by bringing in the runtime dimension for each sim-
plex. This process is best explained by stepping through in two and three dimen-
sions, then extrapolating into higher dimensions. In two dimensions, e.g., 〈f1, f2〉,
the Delaunay Triangulation generates 2-simplexes (triangles), each naturally con-
taining three points. For each point 〈f1, f2〉, we add the runtime as the third di-
mension (e.g. 〈f1, f2, runtime(f1, f2)〉), then compute the hyperplane containing
these three points. In three dimensions, e.g. 〈f1, f2, f3〉, the Delaunay Triangulation
creates 3-simplexes (tetrahedrons), each containing four points. From that, we add
runtime in and then compute the hyperplane containing each of the tetrahedron’s
points. As we travel into higher dimensions, the process remains the same. In other
words, in a model constructed with d features, we must lift it into Rd+1 by including
runtime in a separate step.

Once we have the equation for each hyperplane, we can solve it in terms of runtime,
thereby giving us a function to predict runtime based upon the features in the model.
The generic scalar form of a hyperplane of d dimensions (e.g. β0 =

∑d
i=1 βixi) solved

in terms of runtime, t, is given in Equation 4, with the assumption that runtime is
always the last term of the equation, i.e. xn.

t = xd =
β0 −

∑d−1
i=1 βixi
βd

(4)

5.6 Prediction

Once hyperplanes have been computed for each simplex, the final step is to determine
which simplex a given point belongs to. When the simplex’s hyperplane has been
obtained, we simply can plug the known feature values into Equation 4 to get the
estimated runtime at that specific configuration. A formal procedure can be found
in Algorithm 2.

Note that this prediction algorithm relies heavily on the assumption that any poten-
tial prediction values will lie inside the convex hull of the model. This is precisely

34

why in the approach that we picked 2d boundary samples at the extremes of the
feature configuration space. This step ensures that any future predictions will fall
inside the convex hull, and thus have a simplex for prediction. Points lying outside
the convex hull ("outer-hull" points) are difficult to predict because their values
must be extrapolated from a hyperplane inside the hull. By selecting boundary
samples at the beginning, we can avoid this situation.

Algorithm 2: Runtime Prediction with Delaunay Model
Result: Predicted runtime t for configuration F

Input : Model M in Rd space containing a set of d-simplexes and attached Rd+1

hyperplanes
Input : F = 〈f1, f2, ..., fd〉
foreach si ∈M do // simplex si

if F ∈ si then
h← hyperplane(si);
t← h(F) ; // predict runtime by its hyperplane

return t;

end

end

5.7 Sampling

Bootstrapping the initial model is an essential consideration for our system. If
there is no previous historical data, what is the smallest set of samples that can
be gathered to achieve the most-accurate model? Likewise, if some historical data
exists, which subset of this data should be chosen for the initial model? The model
should minimize the number of initial samples required for construction. In higher-
dimensional configuration spaces, it is crucial to identify those samples which have
the highest impact on the model. Furthermore, once the initial model has been
constructed, how can the model be improved to some goal utilizing the least amount
of samples? These are all important considerations, which our sampling technique
addresses.

Naive sampling approaches in situations like this are random and gridding sam-
pling. Random sampling selects points at random from the configuration space
without replacement. Gridding sampling divides the configuration space into a uni-
form grid and then selects samples equidistant from each other. These sampling

35

methods produce sub-optimal models because they do not consider the underlying
data values, resulting in over-sampling of regions where there are little change and
under-sampling where there is high change. We introduce a novel sampling tech-
nique, Adaptive Sampling, which selects more samples in regions where the rate of
change is high, and fewer samples where there is no change in the topography. To
build an accurate performance model, it is crucial to quickly identify the regions of
high-change in the performance surface, which we accomplish with Adaptive Sam-
pling.

Our sampling technique is divided into two phases: seed sampling and Adaptive
Sampling. In seed sampling, we select an initial set of points to seed the model
with. After the initial model has been created, it can be iteratively improved by
adding more samples using the Adaptive Sampling technique.

5.7.1 Seed Sampling

We go through the following steps to generate the seed samples:

1. Determine d features to include in the model and their bounds, thereby forming
the feature space, F , for the model. We normalize the feature space ∈ [0, 1].

2. Use Latin Hypercube Sampling (LHS) [Ima08] to select m feature configu-
rations. In the LHS technique, samples are chosen in a way such that the
complete range of value elements is fully represented. However, LHS may gen-
erate bad spreads where all samples are spread along the diagonal. Therefore,
we maximize the minimum distance between any pair of samples. Suppose we
have n samples, we will select the sample set X∗ such that:

X∗ = arg max
1<i<n

min
f
(xi1)

1 ,..f
(xi

d
)

d ∈DLHS ,x1 6=... 6=xd

Dist(f (xi
1)

1 , ..., f
(xi

d)

d) (5)

where Dist is a typical distance metric, e.g., Euclidean distance in our imple-
mentation.

3. Combine LHS samples with 2d boundary samples (taken from the minimum
and maximum points of each feature axis) to gather 2d + m seed samples
for the initial model. There are two reasons for including boundary points.
First, we include boundary points to ensure that all possible unknown runtime

36

configurations lie within the convex hull, thereby avoiding making predictions
outside of the convex hull ("outer-hull" points), where there is no appropriate
hyperplane for reference. Second, by selecting boundary points along with the
initial LHS samples, we ensure an even distribution of points for the initial
Delaunay Triangulation and avoid the complexity pitfalls of highly-symmetric
point distributions.

5.7.2 Adaptive Sampling

The intuition behind our iterative sampling technique is to select new points for the
model which are close to the greatest runtime changes. These areas need samples
the most because they indicate an area where small changes in feature values may
result in significant changes in runtime. We introduce a utility metric to compute
the distance between predicted point and its hyperplane. Intuitively, a higher utility
value indicates a larger distance to the points of its prediction hyperplane and thus
a higher potential improvement to the model. Given samples X from LHS domain
DLHS and the n samples S with d features, we achieve predicted runtime ˆT (i) by
sample X(i) and its hyperplane S ′ ⊆ S with h sample 〈F (i)

k , T (F
(i)
k)〉, 1 < k < h.

The utility U(X(i)) of sample X(i) is defined as follows:

U(X(i)) =
1

h

h∑
k=1

(
1

d+ 1
(

d∑
j=1

(f
(i)
k,j −X

(i)
j)2 + (T (F

(i)
k)− ˆT (i))2)) (6)

where h is the number of points constructing its hyperplane. The iterative sampling
technique proceeds as follows until a stopping condition has been met:

1. Use Latin Hypercube Sampling across the entire feature space to re-sample m
sample points X.

2. Use the current model to compute the utility U(·) of X.

3. Rank all samples by utility and pick the largest U(X(i)) as the next sample to
add to the model. The next sample’s features F(n+1) is achieved as follows:

F(n+1) = arg max
X∈DLHS

U(X) (7)

4. Adaptive Sampling continues until a stopping condition has been met. We
define an explicit threshold of prediction error as the stopping condition. In
our empirical experiments, we continue selecting more sampling points into
the model until the average error (i.e. MAPE) ≤ 5% has been reached.

37

1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

Configuration values

ru
nt
im

e

(a)
DT model Sample candidates

1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

Configuration values

(b)

Figure 11: The next sample point to pick based on the current DT model. (a) Pick
configuration value 2. (b) Pick configuration value 5.

It is important to note that the above sampling technique balances the conflicting
tasks of exploration (understanding the global surface of the model) and exploitation
(going regions where the performances of adjacency points change fast) that arise
in model building. Achieving this balance is nontrivial. We provide an example to
illustrate the idea of picking next point by the utility as follows.

Figure 11 depicts an example scenario with synthetic data. Suppose three experi-
ments have been done, and the collected data points shown in sub-figure (a). Sup-
pose the runtime is 3.5 for configuration value 2 by linear regression from points
(1, 6) and (3, 1). Based on the points (1, 6), (3, 1), we compute the utility U = 3.625

for this candidate point 2 by Equation 6. Similarly U = 2.005 for point 5. We choose
point 2 to be the next sample point for experiments because the run-time between
1 and 3 decreases steeply (by exploitation). Further, suppose the actual runtime for

Algorithm 3: Adaptive Sampling
Result: prediction model: PM

Input: sample set: S; initial prediction model: PM

repeat
DLHS ← LHS(S)
F(n+1) = arg maxX∈DLHS

U(X) // Eq. 7
PM ← update(PM,F(n+1), T (F(n+1)))

S ← S − F(n+1)

until stopping condition is met
return PM

38

configuration value 2 is 4. Then we updated the model shown in sub-figure (b). At
that moment, we compute 1.25 and 2.005 utility for configuration value 2.5 and 5,
respectively. We chose the configuration value 5 as our next sample, because of the
large uncertainty of points between 3 to 7 (by exploration).

5.8 Implementation

We implement the Delaunay Triangulation model as a Python project organized
as a set of modules13. We implement Delaunay Triangulation by using a Python
wrapper14 for the qhull15 library which internally uses the Quickhull Algorithm
(Algorithm 1) to determine the Convex Hull and resulting Delaunay Triangulation
for a set of points. The qhull library also contains useful abstractions for the
components in the triangulation, such as determining if a simplex contains a point.
On top of qhull we utilize numpy for linear algebra primitives, and scikit-learn16

[PVG+11] for LR [Nas07] and GP [Ras04] implementations.

Latin Hypercube Sampling is developed in Python from scratch. More performance
may be gained by writing more components from scratch, however, the implemen-
tations provided by the referenced modules have been sufficient for our evaluation
presented in the next section.

6 Evaluation Methodology and Results

In this chapter, we present the empirical results to evaluate our approach system-
atically. We implemented against three sampling techniques: random, grid and
adaptive sampling. We compared the Delaunay Triangulation framework with lin-
ear regression and Gaussian processing. Experimental results show the superiority
of the adaptive sampling and the Delaunay Triangulation model. We achieve lower
prediction error with fewer samples to build the model. The detail of the evaluation
is following.

13Project Homepage: https://github.com/HY-UDBMS/d-Simplexed
14https://pypi.org/project/pyhull/
15http://qhull.org/
16http://scikit-learn.org/stable/index.html

39

6.1 Environment

On the software side, we used Apache Spark v2.1.0 on top of Hadoop v2.8.1. With
Hadoop, we use HDFS as our distributed filesystem, and YARN as our resource man-
ager. This is a typical open-source Spark software stack. From the hardware side,
our experiments were run on the Ukko high performance computing cluster, made
available by the Department of Computer Science at the University of Helsinki17.
The cluster consists of over 200 Dell PowerEdge M610 servers, each having 32GB of
RAM, 2 Intel Xeon E5540 2.53GHz CPUs and four cores per CPU, making (with
hyperthreading) 16 virtual-cores available. For our experiments, we used one node
as the YARN ResourceManager, with two separate worker nodes being running the
YARN NodeManager process. It is worth noting that the cluster has a network file
system (NFS) which we used as the primary HDFS storage node.

6.2 Data Generation

For our evaluations, we use a mixture of data collected from the previous bench-
marks and synthetic data based upon the benchmark data. Due to the many points
to collect, we collected enough initial points uniformly throughout the feature space,
built a Delaunay Triangulation model from them, and used it to predict the remain-
ing points in the feature space. We then use this data for the actual evaluation, as
if it were collected as the result of a Spark workload. This approach allows us to
emulate large data sets without having to perform hundreds or thousands of per-
formance samples. It is key to understand that to evaluate the model, it does not
matter where the data comes from, so long as the same data used for building the
model is the same used for verifying its accuracy. By generating the evaluation data
for the model, we enable a deeper analysis because there is orders-of-magnitude
more granular data to test our model against.

6.3 Sampling Evaluation

The first set of experiments is performed to compare various sampling techniques to
build a performance model. We implemented three approaches: random sampling,

17https://www.cs.helsinki.fi/en/compfac/high-performance-cluster-ukko

40

8 50 100 150 200
0

5

10

20

#samples

M
A
P
E
(%

)
WordCount 80GB data

Random Gridding Adaptive

8 50 100 150 200
0

5

10

#samples

K-Means 80GB data

Figure 12: Comparison of sampling techniques; Random Sampling, Grid Sampling,
and Adaptive Sampling. Adaptive Sampling excels in discovering the samples to
improve the model.

grid sampling, and our adaptive sampling. A model is constructed with two differ-
ent features: memory and vcores. As we have seen from our benchmarking results
(refer to Chapter 3), the amount of memory and CPU cores given to a job has one
of the most significant influences on its performance. For that reason, we have in-
cluded memory and vcores as the initial feature set. In each sampling approach, we
select four boundary points and four seed samples retrieved using LHS sampling,
giving eight samples to create the initial model with. The model is then iteratively
improved by adding new samples 1-by-1 and evaluating the Mean Absolute Predic-
tion Error (MAPE) at each step. We used K-means workload with 5GB and 80GB
data size. For the 80G data, the configuration space spans from 40-240GB memory
and 60-160 vcores. For the 5GB data, the space includes 10-60GB memory and
5-25 vcores. In both settings, the unit size of each step is 2GB memory and one
vcore. We randomly reserved 10% of configuration space samples as the test data
(excluding the eight seed samples). This applies to the rest of the experiments.

Figure 12 plots the prediction error (i.e MAPE) for three sampling techniques. It
shows that given the same number of samples, adaptive sampling achieves the small-
est error ratio among three techniques. It indicates that adaptive approach can be
used to build a more accurate performance model.

The performance of random sampling is weak, especially when the model has very
few sampling points. This is because when there are few points in the model, there is

41

8 40 80 120 160 200
0
5

10

20

30

40

50

#samples

M
A
P
E
(%

)
K-Means 5GB data

LR GP DT

8 40 80 120 160 200
0
5

10

20

30

40

50

#samples

K-Means 80GB data

Figure 13: Comparison of the prediction models for K-means workload; Multivariate
Linear Regression (LR), Gaussian Process (GP), and Delaunay Triangulation (DT).
With 5GB and 80GB data, the Delaunay Triangulation model reaches less than 5%
error by 8.6% and 0.18% configuration spaces, respectively.

a high probability that the next random point selected will fall in a region which has
small performance change and therefore the new sample cannot make a significant
contribution to predicting the critical turning point of performance. Grid sampling
is better than random sampling, and it performs well at the beginning phase because
it evenly distributes the chance of picking points in the model. In contrast to the grid
and random sampling, our adaptive sampling selects the points that continuously
improve the accuracy of the model. The adaptive sampling technique avoids picking
points in the regions where there is little change in topography. In the 80GB data
set, this behavior is especially pronounced, where adaptive sampling zooms-in on
the critical region of the model which has an abrupt performance change, while grid
and random sampling use a static strategy to pick points randomly or uniformly.

6.4 Model Evaluation

The second set of experiments compares our method to two machine learning meth-
ods, namely Multivariate Linear Regression (LR) [Nas07] and Gaussian Process
(GP) [Ras04].

Figure 13 shows the experimental results against K-means workload with 5GB and
80GB data, respectively. The Delaunay Triangulation model is the best method in

42

8 40 80 120 160 200
0
5

10

20

30

40

50

#samples

M
A
P
E
(%

)

WordCount 80GB data
LR GP DT

Figure 14: Comparison of the prediction models for WordCount workload; Multi-
variate Linear Regression (LR), Gaussian Process (GP), and Delaunay Triangula-
tion (DT). With 80GB data, the Delaunay Triangulation model reaches less than
5% error by 0.22% configuration spaces.

8 40 80 120 160 200
0
5

10

20

30

40

50

#samples

M
A
P
E
(%

)

PageRank 80GB data
LR GP DT

Figure 15: Comparison of the prediction models for PageRank workload; Multivari-
ate Linear Regression (LR), Gaussian Process (GP), and Delaunay Triangulation
(DT). With 80GB data, the Delaunay Triangulation model reaches less than 5%
error by 0.27% configuration spaces.

43

Table 4: Workload evaluation. The Delaunay Triangulation model achieves less
than 5% prediction error rate with less than 1% samples.

Workload #configurations Samples(%) Error(%)
WordCount 40-240GB 0.16 4.40
K-Means 60-160Vcores 0.22 4.66
PageRank step size: 2GB 1Vcore 0.27 4.43

both datasets with a varied number of samples. In particular, LR performs poorly
since a linear model faces difficulty in capturing non-linear behavior. The GP model
works relatively better than LR. However, it has the problem of over-fitting for the
data as more points are loaded into the model. Our Delaunay Triangulation model
outperforms the other two approaches. This is because of two reasons: 1) when
new sample points are added, the Delaunay Triangulation model prefers to fit them
locally, that is, their placement only impacts a few adjacent simplexes, rather than
the entire model (in the case of GP and LR); and 2) the Delaunay Triangulation
model uses utility (in Equation 6) function to judiciously pick the next point for
sampling to improve the model as sample size increases continuously. Figure 14
and Figure 15 show the experimental results against WordCount and PageRank
workload, respectively, which demonstrate the similar trend as K-means workload.

Table 4 shows the error ratios of our Delaunay Triangulation method with different
sample ratios varied from 0.16 to 0.27 against three workloads. It indicates that the
Delaunay Triangulation model selects a very small fraction of data (0.2%) while
accurately predicting the performance on most of points (4.5% error ratio), which
strongly motivates its application in practice.

6.5 Synthetic Workload Evaluation

In the last set of experiments, we sought to analyze the performance of models
against a synthetic workload. We create a synthetic 120×120 =14400 point 〈f1, f2〉
surface to demonstrate the model’s flexibility under a hypothetical runtime condi-
tion, where the runtimes have massive turbulence as shown in Figure 16. We assume
that some Big Data workloads may exhibit such behavior and it is an interesting
surface to challenge with our model.

We evaluated this synthetic surface with three models and present the results in
Figure 17. We did not plot LR performance here, because its corresponding MAPE is

44

30
60

90
120

30 60 90 120

0

20

40

f1
f2

R
un

ti
m
e
(×

10
0s
)

Figure 16: Synthetic workload with a massive turbulent surface illustrated in three
dimensions.

more than 100% all the time. GP is much better than LR, but it still cannot achieve
a smaller error than 10%. The reason is that GP considers the surface as a whole and
cannot adapt to the local flexibility. On the contrary, our Delaunay Triangulation
model keeps discovering the unknown regions and continuously improving the model
(thanks to the utility function), and it finally achieves 6% error while selecting only
3% data points.

6.6 Discussion

Building an accurate model of a Big Data system like Spark is a hard but essential
task. As we have seen, the topography of Spark performance spaces can be very
turbulent. Subtle changes in one feature can have a significant impact on the job’s
runtime. Likewise, there can also be vast areas in the topography of no change.
Our models must capture the topography of this dynamic space using the least
amount of resources and samples as possible. Our presented model utilizing the
Delaunay Triangulation can handle these situations. Our results show its superiority
in achieving not only high prediction accuracy with a low amount of samples, but also
its tendency to approach on 0.0% prediction error when the others fail. Furthermore,
the model’s sparing use of points is especially noteworthy. In our results, we observe
very high prediction accuracy even after the initial seed sampling phase, which is
often only 8 points over a multi-thousand value configuration space. In most cases,

45

8 100 200 300 400
0

5

10

20

30

40

50

#samples

M
A
P
E
(%

)

Synthetic data
GP DT

Figure 17: Comparison of the models for synthetic turbulent surface. The Delaunay
Triangulation model achieves less than 6% error by sampling less than 3% data.

we observe that with <1% of the samples, we achieve <5% prediction error over the
remaining space. That is remarkable.

The most significant benefit our model has over Linear Regression, Gaussian Pro-
cess, and other models is its generality. In this work we have presented our Delaunay
Triangulation model with d = 2 features, however, we have previously shown that
it can be extended into higher dimensions. It is possible to extend the model to
higher dimensions based upon previously gathered data. When moving to a higher
dimension, the previously gathered data becomes a subset of the new higher dimen-
sional space. So then, to efficiently build the model, one can gather the missing
data around the existing subset of data. In this fashion, the existing data can be
reused for future models. Other models (e.g., Machine Learning) are not as flexible
when adding or subtracting dimensions. For example, a linear regression might work
well with d = 2 features, however, a quadratic or cubic regression might perform
better with d = 5 features. With many Machine Learning techniques, it is often the
case that multiple variations need to be evaluated before an optimal one is found.
Our Delaunay Triangulation model works sufficiently without variation in any space.
The generality of the Delaunay Triangulation model is one of its biggest strengths.

46

Another strength of our Delaunay Triangulation model is its use of Adaptive Sam-
pling to select new samples for the model optimally. We have developed and tested
our Adaptive Sampling technique, showing its superiority over other trivial sampling
techniques like random and gridding. The Adaptive Sampling technique works well
when the Big Data administrator does not (yet) know the underlying performance
characteristics for their workload. In other scenarios where more historical data is
present, or the user is knowledgeable about the performance of their job under var-
ious feature configurations, it might be advantageous to write a custom sampler to
achieve even a tighter fit to the data and/or a faster convergence rate. We recom-
mend using Adaptive Sampling because it works well for most workloads, however,
it is entirely possible with the Delaunay Triangulation architecture to plug-in a dif-
ferent sampler. The only constraint is to ensure that the model is seeded with points
forming a convex hull over the feature space so that an outer-hull scenario is avoided
(refer Section 5.6).

Our discussion throughout this work has been mostly theoretical, however, the ap-
plications of our Delaunay Triangulation model to Big Data analytics applications
are numerous. The presented model can handle many different application scenarios.
Here we list a few scenarios which can benefit from our model.

1. Unknown or turbulent surfaces : When the topography of the workload in any
dimension changes rapidly, is unknown or is difficult to visualize, our method
sees no difference because it can handle all scenarios above as equal.

2. Complex dependent variables : In the case of non-independent variables, many
existing modeling techniques (such as Multivariate Linear Regression (LR)
[Nas07]) fail because the relationship between variables is difficult to capture.
However, our model excels in this scenario because the disjoint nature of the
Delaunay Triangulation allows it to be an effective tool for capturing subtle
changes and complex relationships in the workload’s topography.

3. Multiple variables and large configuration spaces : Large Big Data systems can
have many tuning knobs and a large range of tuning values, thereby leading to
an exponential number of possible configuration combinations. Our method
only uses few critical samples to discover the underlying performance surface
of these systems, regardless of the number of features or size of the feature
space.

47

Our presented model is well-adapted to handle the above scenarios. Its generic
nature and ease-of-extensibility allow it to support many different modeling appli-
cations. While we have benchmarked it against Spark, it is certainly not limited
there and can be applied to other Big Data frameworks with equal utility.

7 Conclusions and Future Work

Here we have presented a geometric approach to modeling runtimes for Big Data sys-
tems like Spark. Our Delaunay Triangulation model including Adaptive Sampling
provides a highly-extensible alternative to Machine Learning, requiring less initial
data and iterations to achieve a highly-accurate model. We have implemented the
model in python and benchmarked it against common multivariate modeling solu-
tions like Linear Regression and Gaussian Process, showing its superiority in most
scenarios.

To the best of our knowledge, this is the first model proposed in the domain of
Big Data modeling which applies a geometric (Delaunay Triangulation) approach
to solving the modeling problem. For this reason, we believe there are significant
research opportunities available in this area. Below we enumerate some of the in-
teresting future work possible from this foundation:

1. Alternative Meshing Methods : The core idea of the Delaunay Triangulation
method is to wrap a surface in polygons, which can then be used to interpolate
values within. Though we have reasonably justified our choice for picking the
Delaunay Triangulation, there exists many other polygon mesh techniques
which could be investigated. Some techniques developed for applications in 2,
3 or 4 dimensions may produce a better model, but lack extensibility to higher
dimensions. Likewise, there may exist some other solutions, like the Delaunay
Triangulation, which work sufficiently in many higher dimensions. The field
of Computational Geometry is rich in these methods to examine.

2. Grey-box Approaches : Earlier we have examined other models for Big Data
platforms, and reached the conclusion that they can be either white-box or
black-box in nature. There is however opportunity to mesh the properties of
both types into a grey-box model. In a grey-box model, parts of the system
that are easily reasoned are approximated in a white-box fashion, while the
parts that are not clear or overly complex are approximated in a black-box

48

fashion. In this way, we take the best of both sides. For example, our black-box
Delaunay Triangulation model could be modified to use white-box techniques
to reduce its number of features used in the model, thereby using knowledge
of the internals of the system to reduce its complexity.

3. Iterative Model Computation: In scenarios where performance is at a premium,
such as in mobile and embedded devices, it may be beneficial to research
the options for adding new samples into an existing Delaunay Triangulation
without having to recompute it from scratch. When the samples in the model
reach over 500-1000, it can become a costly operation to compute the Delaunay
Triangulation. In this situation, it would be a large performance benefit to
only recompute the region of the model which is changing.

4. Performance Tuning : Our model has been demonstrated to accurately predict
runtimes for unknown runtime configurations. This provides a core component
of a performance tuning framework. We can use this functionality to search
the runtime configuration space for possible tuning optimizations. Once an
accurate prediction model has been created, performance tuning reduces to a
search problem. As we have discussed earlier, performance tuning is guided by
the individual towards their own goals, whether that is lowest runtime, least
resource usage etc. Our model provides enough features to support all of these
possible tuning constraints.

5. Applications to Other Domains : In this work, we have modeled the perfor-
mance of Big Data frameworks as a function of their inputs. Notice that this
is, however, a very generic description of almost any complex system. All sys-
tems have some inputs that lead to some output(s). Our presented Delaunay
Triangulation model could potentially be used in the future to model other
systems where multiple inputs map to a single output. The applications are
most-relevant in Big Data systems, however, they are equally applicable in
other fields.

Our presented Delaunay Triangulation model utilizing Adaptive Sampling is a ge-
ometric solution to modeling Big Data frameworks such as Spark. It provides a
simpler alternative to the current best practices and opens exciting avenues for fu-
ture research.

49

References

AFG+10 Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski,
A., Lee, G., Patterson, D., Rabkin, A., Stoica, I. et al., A view of cloud
computing. Communications of the ACM, 53,4(2010), pages 50–58.

APGZ17 Aken, D. V., Pavlo, A., Gordon, G. J. and Zhang, B., Automatic
database management system tuning through large-scale machine learn-
ing. SIGMOD Conference. ACM, 2017, pages 1009–1024.

BDH96 Barber, C. B., Dobkin, D. P. and Huhdanpaa, H., The quickhull algo-
rithm for convex hulls. ACM Transactions on Mathematical Software
(TOMS), 22,4(1996), pages 469–483.

CSL+04 Cantrill, B., Shapiro, M. W., Leventhal, A. H. et al., Dynamic instru-
mentation of production systems. USENIX Annual Technical Confer-
ence, General Track, 2004, pages 15–28.

Del34 Delaunay, B., Sur la sphere vide. Izv. Akad. Nauk SSSR, Otdelenie
Matematicheskii i Estestvennyka Nauk, 7,793-800(1934), pages 1–2.

DG04 Dean, J. and Ghemawat, S., Mapreduce: Simplified data processing
on large clusters. Proceedings of the 6th Conference on Symposium
on Opearting Systems Design & Implementation - Volume 6, OSDI’04,
Berkeley, CA, USA, 2004, USENIX Association, pages 10–10.

DN14 Doulkeridis, C. and Nørvåg, K., A survey of large-scale analytical query
processing in mapreduce. The VLDB Journal, 23,3(2014), pages 355–
380.

For87 Fortune, S., A sweepline algorithm for voronoi diagrams. Algorithmica,
2,1-4(1987), page 153.

For92 Fortune, S., Voronoi diagrams and delaunay triangulations. In Com-
puting in Euclidean geometry, World Scientific, 1992, pages 193–233.

GGL03 Ghemawat, S., Gobioff, H. and Leung, S.-T., The Google file system,
volume 37. ACM, 2003.

HAG+16 Hashem, I. A. T., Anuar, N. B., Gani, A., Yaqoob, I., Xia, F. and
Khan, S. U., Mapreduce: Review and open challenges. Scientometrics,
109,1(2016), pages 389–422.

50

HHD+10 Huang, S., Huang, J., Dai, J., Xie, T. and Huang, B., The hibench
benchmark suite: Characterization of the mapreduce-based data anal-
ysis. Data Engineering Workshops (ICDEW), 2010 IEEE 26th Inter-
national Conference on. IEEE, 2010, pages 41–51.

HKZ+11 Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A. D.,
Katz, R. H., Shenker, S. and Stoica, I., Mesos: A platform for fine-
grained resource sharing in the data center. NSDI, volume 11, 2011,
pages 22–22.

HLL+11 Herodotou, H., Lim, H., Luo, G., Borisov, N., Dong, L., Cetin, F. B.
and Babu, S., Starfish: a self-tuning system for big data analytics. Cidr,
volume 11, 2011, pages 261–272.

HYA+15 Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A. and
Khan, S. U., The rise of "big data" on cloud computing: Review and
open research issues. Information Systems, 47, pages 98–115.

Ima08 Iman, R. L., Latin hypercube sampling. Wiley StatsRef: Statistics
Reference Online.

Lan01 Laney, D., 3d data management: Controlling data volume, velocity and
variety. META Group Research Note, 6,70(2001).

Mas99 Mashey, J. R., Big data and the next wave of infrastress problems,
solutions, opportunities, Jun 1999. URL http://static.usenix.org/

event/usenix99/invited_talks/mashey.pdf.

MCB+11 Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh,
C. and Byers, A. H., Big data: The next frontier for innovation, com-
petition, and productivity.

MS15 Morris, C. C. and Stark, R. M., Finite Mathematics: Models and Ap-
plications. John Wiley & Sons, 2015.

Nas07 Nasrabadi, N. M., Pattern recognition and machine learning. Journal
of electronic imaging, 16,4(2007), page 049901.

NL91 Nitzberg, B. and Lo, V., Distributed shared memory: A survey of issues
and algorithms. Computer, 24,8(1991), pages 52–60.

Puk93 Pukelsheim, F., Optimal design of experiments, volume 50. siam, 1993.

51

PVG+11 Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V. et al.,
Scikit-learn: Machine learning in python. Journal of machine learning
research, 12,Oct(2011), pages 2825–2830.

Ras04 Rasmussen, C. E., Gaussian processes in machine learning. In Advanced
lectures on machine learning, Springer, 2004, pages 63–71.

SQM+15 Shi, J., Qiu, Y., Minhas, U. F., Jiao, L., Wang, C., Reinwald, B. and
Özcan, F., Clash of the titans: Mapreduce vs. spark for large scale
data analytics. Proceedings of the VLDB Endowment, 8,13(2015), pages
2110–2121.

SS17 Singhal, R. and Singh, P., Performance assurance model for applications
on spark platform. Technology Conference on Performance Evaluation
and Benchmarking. Springer, 2017, pages 131–146.

SZL+14 Shi, J., Zou, J., Lu, J., Cao, Z., Li, S. and Wang, C., Mrtuner: a toolkit
to enable holistic optimization for mapreduce jobs. Proceedings of the
VLDB Endowment, 7,13(2014), pages 1319–1330.

VMD+13 Vavilapalli, V. K., Murthy, A. C., Douglas, C., Agarwal, S., Konar,
M., Evans, R., Graves, T., Lowe, J., Shah, H., Seth, S. et al., Apache
hadoop yarn: Yet another resource negotiator. Proceedings of the 4th
annual Symposium on Cloud Computing. ACM, 2013, page 5.

VYF+16 Venkataraman, S., Yang, Z., Franklin, M. J., Recht, B. and Stoica,
I., Ernest: Efficient performance prediction for large-scale advanced
analytics. NSDI, 2016, pages 363–378.

WB13 Ward, J. S. and Barker, A., Undefined by data: a survey of big data
definitions. arXiv preprint arXiv:1309.5821.

Whi09 White, T., Hadoop: The Definitive Guide. O’Reilly Media, Inc., first
edition, 2009.

WI98 Weiss, S. M. and Indurkhya, N., Predictive data mining: a practical
guide. Morgan Kaufmann, 1998.

WK15 Wang, K. and Khan, M. M. H., Performance prediction for apache spark
platform. High Performance Computing and Communications (HPCC),

52

2015 IEEE 7th International Symposium on Cyberspace Safety and Se-
curity (CSS), 2015 IEEE 12th International Conferen on Embedded
Software and Systems (ICESS), 2015 IEEE 17th International Confer-
ence on. IEEE, 2015, pages 166–173.

ZCD+12 Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley,
M., Franklin, M. J., Shenker, S. and Stoica, I., Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster comput-
ing. Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation. USENIX Association, 2012, pages 2–2.

ZCF+10 Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S. and Stoica, I.,
Spark: Cluster computing with working sets. HotCloud, 10,10-10(2010),
page 95.

Zem10 Zemek, M., Regular triangulation in 3d and its applications. 2010.

