
Improving the running time of repeated pattern discovery
in multidimensional representations of music

Otso Björklund

Master’s Thesis
UNIVERSITY OF HELSINKI
Department of Computer Science

Helsinki, April 21, 2018

Faculty of Science Department of Computer Science

Otso Björklund

Improving the running time of repeated pattern discovery in multidimensional representations of music

Computer Science

Master’s Thesis April 21, 2018 67

music information retrieval, computational music analysis, repeated pattern discovery

Methods for discovering repeated patterns in music are important tools in computational music
analysis. Repeated pattern discovery can be used in applications such as song classification
and music generation in computational creativity. Multiple approaches to repeated pattern
discovery have been developed, but many of the approaches do not work well with polyphonic
music, that is, music where multiple notes occur at the same time. Music can be represented as
a multidimensional dataset, where notes are represented as multidimensional points. Moving
patterns in time and transposing their pitch can be expressed as translation. Multidimensional
representations of music enable the use of algorithms that can effectively find repeated patterns
in polyphonic music.

The research on methods for repeated pattern discovery in multidimensional representa-
tions of music is largely based on the SIA and SIATEC algorithms. Multiple variants of both
algorithms have been developed. Most of the variants use SIA or SIATEC directly and then
use heuristic functions to identify the musically most important patterns. The variants do
not thus typically provide improvements in running time. However, the running time of SIA
and SIATEC can be impractical on large inputs.

This thesis focuses on improving the running time of pattern discovery in multidimensional
representations of music. The algorithms that are developed in this thesis are based on SIA
and SIATEC. Two approaches to improving running time are investigated. The first approach
involves the use of hashing, and the second approach is based on using filtering to avoid the
computation of unimportant patterns altogether.

Three novel algorithms are presented: SIAH, SIATECH, and SIATECHF. The SIAH
and SIATECH algorithms, which use hashing, were found to provide great improvements
in running time over the corresponding SIA and SIATEC algorithms. The use of filtering
in SIATECHF was not found to significantly improve the running time of repeated pattern
discovery.

ACM Computing Classification System (CCS):

• Theory of computation~Design and analysis of algorithms

• Applied computing~Sound and music computing

Tiedekunta — Fakultet — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — Övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

Contents
1 Introduction 1

2 Background 2
2.1 Music terminology . 2
2.2 String representations of music 4
2.3 Multidimensional representations of music 4
2.4 Pattern discovery in music . 7
2.5 Alternative methods of pattern discovery 8

3 The SIA family of algorithms 11
3.1 Maximal translatable patterns and translational equivalence

classes . 11
3.2 The Structure Induction Algorithm SIA 17
3.3 Variants of SIA . 19

3.3.1 The SIACT algorithm 19
3.3.2 The SIAR algorithm 20

3.4 The SIATEC algorithm . 25
3.5 Variants of SIATEC . 28

3.5.1 Heuristic functions . 29
3.5.2 The COSIATEC algorithm 30
3.5.3 The SIATECCompress algorithm 32
3.5.4 Forth’s algorithm . 33

4 Improving the running time of MTP and TEC computation
by hashing 35
4.1 The SIAH algorithm . 35

4.1.1 Experiments . 38
4.2 The SIATECH algorithm . 41

4.2.1 Experiments . 48

5 Improving the running time of TEC computation by filter-
ing 51
5.1 An upper bound on compression ratio 51
5.2 SIATECHF: SIATECH with filtering 53

5.2.1 Experiments . 56

6 Conclusions 61

References 63

ii

1 Introduction
Identifying important structures in music is a crucial part of music analysis
[4]. Important and characteristic structures in a piece of music are often
patterns that are repeated throughout the piece. Efficient methods for finding
repeated patterns in music can thus be useful for a variety of tasks, such as
song classification [37] and computational music generation [10].

The algorithms covered in this thesis operate on symbolic representations
of music. Although there are standard ways of representing Western music
symbolically, such as music notation [3] and MIDI [51], specialized represen-
tations can make pattern finding more efficient. Pattern finding in music is
often performed by representing music as strings and using string algorithms.
One limitation of the string-based approach is that certain types of musical
patterns cannot be effectively found by string algorithms when multiple
notes occur simultaneously. Multidimensional representations of music and
related algorithms have been developed to overcome this limitation of string
representations [41].

When music is represented as a multidimensional dataset, finding repeated
patterns becomes a geometric problem. The translation operation can used to
express moving a pattern in time and transposing the pitches in the pattern.
What sets finding patterns in multidimensional music datasets apart from
many problems in computational geometry, is that only the translation
operation is of interest. Often in computational geometry, patterns are also
rotated, scaled, and mirrored (e.g., in [1, 5, 45, 23]). For example, in [5],
the problem of finding maximal repeatable patterns is very similar to the
computational problems solved by the algorithms described in Section 3.
However, in [5], rotations, scalings, and mirrorings of the pattern are also
considered repetitions. In computational geometry the problems concerning
patterns often also involve checking if a pattern can be contained within a
shape (e.g., in [2]). The problems in computational geometry are typically
more complicated than finding translations of patterns. As a result, the
algorithms for geometric problems are typically more complicated than is
necessary for repeated pattern discovery in music. Developing specialized
solutions can therefore lead to faster algorithms.

In previous research on repeated pattern discovery in multidimensional
representations of music, the SIA and SIATEC algorithms by Meredith et al.
[41] have a central role. Many repeated pattern discovery algorithms that
use multidimensional representations are based on them. In [41], it is noted
that the running time of the SIA and SIATEC algorithms could be improved,
and that heuristics should be developed for identifying the musically most
important patterns in the outputs of SIA and SIATEC. The development of
algorithms based on SIA and SIATEC has mostly concentrated on the use
of heuristic functions to filter out musically unimportant patterns without
any improvements in running time being gained. In this thesis the focus is

1

on improving the running time of repeated pattern discovery by developing
algorithms based on SIA and SIATEC. Two research questions are explored
in this thesis:

1. Is it possible to develop algorithms that provide the same outputs as
SIA and SIATEC but require less time?

2. Is it possible to use filtering by heuristic functions to improve the
running time of pattern discovery?

The goal related to the first research question is improving the running
time of repeated pattern discovery in general. With the second research
question, the aim is to provide an algorithm that outputs musically important
patterns and also improves running time by avoiding the computation of
unimportant patterns. The algorithms that are developed in this thesis
are evaluated by comparing their running times to those of the previously
developed algorithms. Comparisons are based on time complexity analyses
and empirical running time measurements.

This thesis consists of four main sections. The background on related
music terminology, music representations, and pattern discovery in music is
covered in Section 2. Previously developed algorithms for repeated pattern
discovery in multidimensional representations of music are described in
Section 3. Novel algorithms that are based on SIA and SIATEC, and that
use hashing to improve the running time of repeated pattern discovery are
presented in Section 4. In Section 5, a filtering method is presented that
does not require finding all occurrences of a pattern to compute its musical
importance. A novel algorithm employing the method is also described in
the section.

2 Background
The algorithms covered in this thesis are intended for repeated pattern
discovery in music. A brief overview of relevant music terminology is therefore
provided. The reader is assumed to be familiar with Western music theory
and notation.

2.1 Music terminology

The symbolic representations of music and algorithms covered in this thesis
are designed for pattern discovery in music that can be represented using
Western music notation (see [3]) or MIDI [51]. The term score is used to
refer to the notated representation of a piece of music. Music is considered
to consist of notes, and each note has at least a pitch and a duration.
Notations used with pitchless percussion instruments are not considered
in the representations covered in this thesis. The durations of notes are

2

expressed as fractions of a whole note. For example, instead of using the
term crotchet for a duration that is one fourth of a whole note the equivalent
name quarter note is used. The beginning of a note is called its onset and
the ending of a note its offset. The term pattern is used to refer to a sequence
of notes. Notes in a pattern can also occur at the same time. The formal
definition of pattern in the context of pattern discovery in multidimensional
representations of music is given in Section 3.1.

It is assumed that the tuning system in use is twelve-tone equal tempera-
ment (12Tet) (see [47]), in which there are twelve pitches in each octave,
and pitch-classes such as A[and G] are considered equal. In 12Tet pitches
can be easily mapped into integers such as MIDI note numbers (see [51]).
The integer representation of the pitch of a note in 12Tet is called the
chromatic pitch number of the note. Pitch can also be represented using
the morphetic pitch number of a note. The morphetic pitch of a note is
defined by its position on the staff [41]. For example the pitches A4, A[4, and
A]4 have the same value when represented using morphetic pitch because
they are all placed in the same position on a staff [34]. If the chromatic
pitch number is used in comparing patterns, only chromatic transpositions
of a pattern can be found. Using morphetic pitch numbers makes finding
certain diatonic transpositions of a pattern easier. If the pitch names are not
known, for example, if the input is a MIDI-file, they can be computed using
a pitch spelling algorithm, such as the one presented in [34]. Transpositions
of a note can be expressed by adding a constant to the pitch number of
the note. For example, transposing a note chromatically by a major fourth
would be expressed by adding 4 to its chromatic pitch number. For the
interval between pitches, the term pitch interval will be used in this thesis
to differentiate it from the general use of the term interval. Pitch intervals
can also be expressed as integers, and the pitch interval number between two
notes is the difference of the pitch numbers of the notes.

Music can be represented as a sequence of note events such as note onsets.
Two musical patterns may have the same rhythm even if the notes in the
patterns do not have the same durations. This can occur when there are
rests between the notes. If the durations of the notes were compared, these
rhythms would not be considered the same. However, if the onset times of
the notes were compared, the rhythms would be found equal. Using note
onsets in comparing rhythms thus makes it easier to match patterns with
the same rhythm.

Western music is often polyphonic. In the context of this thesis, polyphony
means that multiple notes can sound at the same time. Conversely mono-
phonic music is such where notes do not occur simultaneously. In this thesis
the term voice refers to a monophonic sequence that occurs as a part of
polyphonic music. For example, a monophonic violin part in orchestral music
is a single voice.

3

2.2 String representations of music

The notes or note events in a score can be represented as a string or a set of
strings. String representations allow the use of string algorithms in finding
occurrences of musical patterns in a score. The use of string representations
will only be briefly explained as the focus of this thesis is on algorithms
which take as their input a multidimensional representation of music. A
brief overview of string representations of music is given because string
representations have been widely used for repetition discovery in music [41],
and the purpose of multidimensional representations of music (see Section
2.3) is to overcome some of the limitations of string representations.

In [41], string representations of music are divided into two categories:
event strings and interval strings. In an event string symbols can represent the
pitches of note events. The durations of note events can also be represented
in an event string. One limitation of event strings is that it is difficult to find
transposed occurrences of a pattern in an event string consisting of note event
pitches. Using interval strings makes finding such pattern occurrences easier.
In an interval string the symbols represent the transformations between
consecutive note events [41]. For example, an interval string can represent
the pitch intervals between consecutive note events. Finding transposed
occurrences of a pattern in an interval string can thus be easier than finding
them in an event string.

Polyphony causes many challenges in representing music using strings.
Representing simultaneous note events as strings in such a way that string
algorithms can still be used to find occurrences of musical patterns is not
straightforward. Often in string representations of polyphonic music, the
note events are associated with monophonic voices. The string representation
of a score then becomes a set of strings with a string for each voice (e.g., in
[27], [26], [15]). Finding occurrences of patterns that move from one voice to
another in such a representation is not simple. Alternatively, music can be
represented as a sequence of simultaneous events in a string representation.
In [29], a sequence of polyphonic music was represented as a sequence of sets
of integers, i.e., characters in an integer alphabet. A similar approach was
also used in the viewpoints representation of music presented in [14] (see also
Section 2.5). In addition to the difficulties related to handling polyphony, it
is also difficult to find occurrences of patterns that have gaps in them using
string algorithms [41].

2.3 Multidimensional representations of music

This section discusses how a piece of music can be represented as a mul-
tidimensional dataset [41]. The formal definitions related to vectors and
point-sets are found in Section 3.1. One of the reasons for using multidi-
mensional representations is to simplify the processing of polyphonic music.

4

In multidimensional representation of music, note events are represented as
k-dimensional vectors (i.e., points), and the score of a piece is represented as
a finite subset of Rk. Often the note events being represented are the onsets
of notes, and their properties are represented by the components of a vector.
The terms vector and point are used interchangeably in this thesis to refer
to the elements of a vector space. Note events can also be represented as
line-segments represented by a pair of points where the first element in the
pair represents the onset of the note and the second point represents the
offset (e.g., in [48], [32]).

The first component of a note event vector typically represents the onset
time of the note measured from the beginning of the score. Time can be
measured by counting sixteenth notes [41] or tatums. The tatum for a dataset
is the largest common divisor of note duration and onset in the dataset [39].
When the first component of vectors represents time, the vectors can easily
be sorted so that their order reflects the temporal order of note events in the
music being represented.

The second component of note event vectors is often the pitch number.
This can be the chromatic or morphetic pitch number. Both the chromatic
and morphetic pitch numbers can also be used as separate components of
the vector.

Onset time and pitch are the two basic properties of note events that are
represented by the components of a vector. Other properties can be added
by increasing the dimensionality of the vectors. For example, in polyphonic
music the voice to which a note event belongs can be expressed as an integer
and added as a dimension. In a similar way any property of a note event that
can be represented as a real number can be added to the vector representation
of a note event.

Figure 1 below shows the first two beats of the C-major prelude from
J.S. Bach’s Das Wohltemperierte Klavier (BWV 846). In Figure 1a, the
excerpt is shown in standard notation. Figure 1b shows the excerpt as a plot
of a 2-dimensional point-set. In Figure 1c, the excerpt is shown as a list of
three-dimensional points where the third component represents the staff of
the note (0 for top staff and 1 for bottom staff).

5

&
?

c
c

‰ œ œ œ œ œ œ ‰ œ œ œ œ œ œ
≈ .jœ œ ≈ .jœ œ˙ ˙

∑
∑

©

Score

(a) Standard notation

0 1 2 3 4 5 6 7

60
65

70
75

Time
C

hr
om

at
ic

 p
itc

h

(b) 2-d point-set

{(0, 60, 1), (1, 64, 1),
(2, 67, 0), (3, 72, 0),
(4, 76, 0), (5, 67, 0),
(6, 72, 0), (7, 76, 0)}
(c) 3-d point-set

Figure 1: Example of a multidimensional representation (BWV 846).

Finding patterns in a multidimensional representation of a score is
achieved by translating, i.e. moving, points. If a pattern is repeated in
a piece, then there is a vector by which the points in the pattern can be
translated to obtain the second occurrence of the pattern. Simultaneously
occurring note events simply have the same the same onset time and han-
dling polyphonic music does not require any special considerations. With
multidimensional representations there is no need to handle simultaneous
events as sets or to divide the music into a set of monophonic voices as is
the case with string representations [41].

Multidimensional representations of music can be used for a variety of
tasks related to searching musical scores. In [50] and [48], multidimensional
representations were used for content-based music information retrieval, in
which the goal is to find occurrences of a given query pattern in a database
of music. This is also called pattern matching (see Section 2.4). In [48],
an algorithm that uses multidimensional representations for finding both
exact and approximate occurrences of a query pattern is presented. In the
same study, an algorithm that uses line-segments to find those occurrences
that have the most overlap with the query pattern is also presented. Line-
segments were also used by Lubiw and Tanur [32] in their approximate
pattern matching algorithm. In [6], a randomized algorithm is presented

6

for approximate matching, in which a subset of the pattern needs to match
some points in the dataset.

2.4 Pattern discovery in music

In [25], approaches to pattern finding in music are divided into two categories:
pattern matching and pattern discovery. The goal in pattern matching is to
find occurrences of a given pattern in a corpus of music whereas in pattern
discovery no input patterns are typically given to the algorithms. The goal
of pattern discovery is to find important musical structures in a piece of
music or between multiple pieces of music. Pattern discovery within a single
piece of music is known as intra-opus discovery, and the discovery of common
patterns in a corpus is termed inter-opus pattern discovery. The algorithms
covered in this thesis are mainly intended for intra-opus pattern discovery.
Matching and discovery can aim to find exact or approximate occurrences of
patterns [25].

Repetition is considered to be an important part of many aspects of
music. Meyer [44] considers repeated patterns to play an important role
in creating musical style. Many concepts of musical form are based on the
repetition of sections. For example, the sonata form, which has been used
widely in Western classical music since the nineteenth century, is based on
repetition of the first part of a movement [46].

The quality of the patterns discovered by a pattern discovery algorithm
can be evaluated by comparing the output to reference data, which is often
an analysis of important patterns by domain experts [25]. This reference
data is used as the ground truth.

Repeated pattern discovery is useful for a variety of tasks in computational
music analysis. One part of music analysis is dividing the music into smaller
elements and investigating the role of those elements [4]. Finding repeated
patterns is therefore an important part of music analysis even though it is
not necessarily a complete analysis of a piece of music [7].

Lartillot and Toiviainen [27] have applied repeated pattern discovery to
the motivic analysis of music. They define motives as "musical structures that
constitute one of the most characteristic descriptions of music." [27, p. 281]
Repeated pattern discovery can be used for compressing the representation of
music. In [31], the compressed representation of a piece of music is considered
to be an explanation or an analysis of the piece. The quality of analysis is
evaluated by how effectively the analysis compresses the piece. In [35], the
idea of music analysis as compression was applied to fugues from the first
book of J.S. Bach’s Das Wohltemperierte Klavier. Using compression by
finding repeated patterns as a method for indentifying themes is discussed
in [33] and [40]. The repeated patterns discovered in a piece of music can
be used to compare it to other pieces for similarity. For example, in [37],
repeated pattern discovery and compression were used for classifying folk

7

tunes. Inter-opus pattern discovery can be used for analyzing the style of a
composer and finding occurrences of material re-use by composers (e.g., in
[9]).

The set of discovered patterns can be used to model musical style in
computational creativity. In [10], using discovered patterns in evaluating
the output of a creative musical system is discussed. Repeated pattern
discovery is also useful as a preprocessing step for pattern matching. Finding
repeated structures is used as a part of the pattern matching algorithm
SIA(M) [43, 50].

2.5 Alternative methods of pattern discovery

This section provides a brief overview of selected repeated pattern discovery
methods that do not handle music as a multidimensional point-set. These
methods have been selected because they are either intended for polyphonic
music or they have been presented only recently.

Conklin [14] presents a method that extends the multiple viewpoint
system to polyphonic music. In the multiple viewpoint system there are
multiple independent views for each event in a score [16]. Views describe
the properties of an event. For a note event these views can represent the
pitch, duration, and articulation of the note. Viewpoints can also represent
differences between events, such as pitch intervals between notes. In the
system there are also events for key and time signature changes. Onset times
of events are measured in sixteenth notes and pitch is represented using
chromatic pitch numbers and scale degrees. Music is essentially represented
as a set of sequences that contains a sequence for each view, such as pitch or
duration.

Using the multiple viewpoint system for pattern discovery in monophonic
music is discussed in [15]. In the polyphonic extension presented in [14],
music is represented as musical objects that can be notes, simultaneities,
or sequences. Simultaneities consist of objects that have the same onset
time and sequences consist of objects that do not have any temporal overlap.
In order to have simultaneously occuring notes that do not have the same
onset time in the same simultaneity, a full expansion can be performed. In
the fully expanded score, all pitches are duplicated for each unique onset
time in the original score. A viewpoint pattern is defined as a fragment
that occurs in multiple pieces in a corpus. The significance of a pattern is
evaluated by computing its p-value in the corpus. In [14], the p-value of a
pattern is defined as the probability that the pattern occurs at least as many
times in a randomly selected corpus of the same size. How exactly viewpoint
patterns are computed is not described in detail in [14]. It is simply stated
that the algorithm uses a suffix tree data structure. No analysis of the time
complexity of the algorithm and no empirical measurements of running times
are provided. The method was applied to a set of Bach chorales, but no

8

evaluation of the quality of the discovered patterns is given in [14].
Lartillot’s [26] method for repeated pattern discovery uses a representation

that is similar to the multiple viewpoints system. Music is represented using
parameters that represent properties of note events and parameters that
represent differences between consecutive note events (e.g., pitch intervals).
Patterns are discovered by using a pattern prefix tree. The tree is built in a
single pass of the score. New patterns can be detected by using an associative
table for each parameter. In the associative table of a parameter p, there
is an entry for each value v, containing all notes in the score with value v
for the parameter p. At the end of the pass, all the discovered patterns are
found in the pattern prefix tree.

One challenge in Lartillot’s method is that it produces a very large
number of patterns [26]. The number of discovered patterns can be reduced
by applying a closure operation to each possible set of pattern repetitions. The
set of patterns is thus assigned a description called its closed pattern, which is
the least frequently occurring pattern that contains all the other patterns in
the set as a subsequence. Another way the number of patterns in the output
can be limited, is by detecting cyclic patterns. Cyclic patterns occur when
a pattern is repeated multiple times successively. Consecutive repetitions
of a pattern lead to a large number of redundant patterns. By detecting
cyclic patterns it is possible to limit the number of redundant patterns in the
output. Lartillot’s method was submitted to the 2014 MIREX competition
on discovering repeated themes and sections. The method was generally
able to discover more of the transformed occurrences of patterns than the
other algorithms submitted to the competition [26]. No analysis of the time
complexity or empirical measurements of the running time of the method
are provided in [26].

The pattern discovery method presented in [49] uses wavelet analysis
to find repeated patterns in music. Wavelet analysis is a signal analysis
method that is used in audio signal processing. In wavelet analysis a wavelet
is compared with a time-series or signal to calculate the similarity between
the wavelet and the different positions of the time-series or signal. In [49],
continuous wavelet analysis with the Haar wavelet was used for segmenting
music for pattern discovery.

9

0 2 4 6 8

60
65

70
75

Time

C
hr

om
at

ic
 p

itc
h

Figure 2: Pitch signal representation of the BWV 846 excerpt.

In order to use signal processing methods with a symbolic representation
of music, the chromatic pitch of the music is sampled at regular time intervals
to produce a pitch signal. Figure 2 above depicts a pitch signal representation
of the BWV 846 excerpt. In the figure, pitch has been sampled at a rate of
one sample per sixteenth-note. The pitch signal is divided into segments using
either constant-duration segmentation or using wavelet analysis. Constant-
duration segmentation is performed by dividing the signal into segments
of constant size. In addition, the segments are normalized by subtracting
the average pitch of the segment from each pitch value in the segment. In
the wavelet based segmentation approaches, the wavelet transform of the
signal is computed, and then the signal produced by the wavelet transform
is segmented at either zero crossings or absolute maxima to produce pattern
occurrences.

After segmentation the segments are compared to each other for similarity
by using Euclidean distance, city block distance, or dynamic time warping.
In addition, similar consecutive segments are concatenated to form units.
These units are then clustered using their similarity ratings and ranked so
that the clusters that have the highest compression ratio are first in the
output. The clusters correspond to repeated patterns in the music.

In [49], the quality of the discovered patterns was evaluated using the
JKU PDD dataset. Different segmentation and similarity measures were
compared and the results were also compared with other pattern discovery
methods. No time complexity analysis of the method is given in [49], but
running times were measured and compared with the other pattern discovery
approaches that were submitted to the 2014 MIREX competition. The
methods presented in [49] were found to be the fastest. The second fastest
method in the comparison was SIATECCompress (see [36] and Section 3.5.3).

The methods presented in [26] and [49] work with polyphonic music only
when the music is partitioned into monophonic voices. Patterns that move

10

from one voice to another cannot be discovered using these methods. The
multiple viewpoints system presented in [14] is similarly unable to discover
patterns that move between voices. Even though the methods presented in
this section do not directly use string representations of music, they have
similar limitations when applied to polyphonic music.

3 The SIA family of algorithms
The SIA family of algorithms consists of SIA, SIATEC, and their variants.
The goal of these algorithms is to find occurrences of maximal translatable
patterns (MTPs) in multidimensional representations of music (see Section
2.3). The term point-set is also used for referring to a multidimensional
dataset [39]. Section 3.1 presents the relevant definitions and notations
needed to describe the algorithms. The Structure Induction Algorithm (SIA)
is presented in Section 3.2, and its variants are presented in Section 3.3.
Section 3.4 presents SIATEC and Section 3.5 its variants.

3.1 Maximal translatable patterns and translational equiva-
lence classes

This section provides the formal definitions and mathematical notations used
to describe the functions computed by SIA and SIATEC in [41, 39]. Results
on the upper and lower bounds for the number of MTPs in a dataset are
also presented.

Music is represented as a multidimensional dataset D, which is a finite
subset of Rk. A dataset D is a proper set, and all elements in it are thus
distinct. The dimensionality k depends on the number of properties that are
represented for each note event (see Section 2.3). The number of elements in
D is denoted by |D|. Unless specified otherwise, n is used to denote the size
and k the dimensionality of D. If D is ordered, then the (i+ 1)th element of
D is denoted by D[i], where 0 ≤ i < |D|. The elements of a dataset D are
k-dimensional vectors, i.e., points. Moreover, array notation with zero-based
indexing is used for referring to the elements of sorted tuples and components
of vectors. For a vector v ∈ Rk and integer i such that 0 ≤ i < k, v[i] is
the (i + 1)th component of v. When an ordered set V consists of tuples
or vectors, the array notation can be chained such that V [i][j] denotes the
(j + 1)th element or component of the (i+ 1)th element of V .

A vector v ∈ Rk can be translated by a vector t ∈ Rk. This is denoted
by v + t and corresponds to vector addition. The difference vector d from
vector u to v is the vector by which u needs to be translated to obtain v.
This is the vector difference d = v − u. The worst-case time complexity of
addition, subtraction, and equality comparison for k-dimensional vectors is
assumed to be O(k).

11

Angle brackets ”〈·〉” are used when an ordered set or tuple is written out
as a list of elements. Parentheses ”(·)” are used when the components of a
vector are written out. This notation differs from the notations used in [41]
and [39]. The rationale for this distinction is that addition and subtraction
are assumed to be defined only for vectors. The ” ⊕ ” operator denotes
concatenation of ordered sets.

Sorting datasets and patterns is an integral part of SIA and SIATEC.
The ordering that is used for vectors and tuples is lexicographical ordering.

Definition 1. Lexicographical ordering [41].
For k-dimensional vectors (or k-tuples) u and v, u < v if and only if there
exists an integer i such that 0 ≤ i < k and u[i] < v[i] and u[j] = v[j] for
0 ≤ j < i. If u < v (respectively u > v), then u is said to be less than
(greater than) v.

Vectors that are lexicographically greater than the zero vector are called
positive vectors. The zero vector is denoted by 0̄. The worst-case time
complexity of the lexicographical comparison of k-dimensional vectors is
assumed to beO(k). For k-tuples where comparisons between elements can be
performed in constant time, the worst-case time complexity of lexicographical
comparison is also assumed to be O(k). Any ordered set of vectors or tuples
that is sorted in ascending lexicographical order is denoted by a subscript s.
For example, when the set A is sorted, it is denoted As.

A pattern P is also a finite subset of Rk. All patterns are assumed to
be ordered sets in this thesis. Pattern P can be translated by a vector v,
denoted by P + v [39]. This is the set of all points in P translated by v:

P + v = {p+ v | p ∈ P}. (1)

A pattern P is translatable by a vector v in dataset D if and only if
P + v ⊆ D [41]. The translational equivalence relation is used in pattern
comparisons by many algorithms in this thesis.

Definition 2. Translational equivalence.
Two patterns P and Q are translationally equivalent if and only if there
exists a vector v such that P + v = Q. This is denoted by P ≡T Q [39].

Translational equivalence is an equivalence relation [41]. If a dataset D
contains a subset Q that is translationally equivalent to a pattern P , then
P is said to occur in D, and Q is an occurrence of P in D. The algorithms
of the SIA family of algorithms are used to find occurrences of maximal
translatable patterns in a multidimensional dataset.

Definition 3. Maximal Translatable Pattern (MTP) (Eq. 1 of [41]).
The maximal translatable pattern for a vector v in a dataset D, denoted by
MTP (v,D), is the largest pattern translatable by v in D. This is formally

12

expressed as

MTP (v,D) = {d | d ∈ D ∧ d+ v ∈ D}. (2)

For the MTP of a vector v in D to be non-empty, v must occur as a
difference vector between at least two points in D [41]. In order to find all
MTPs in a dataset D, it is sufficient to compute the MTPs only for difference
vectors between points of D. All non-empty MTPs for a dataset D can thus
be found by computing the set

P(D) = {MTP (d2 − d1, D) | d1, d2 ∈ D}.

The MTP for 0̄ in D is the whole dataset D. Finding the MTP for 0̄
is therefore not considered important. It is not even necessary to compute
MTPs for all difference vectors between points of D to discover all non-empty
MTPs in D. In Lemma 1 of [41], it is stated that for a dataset D and vector
v,

MTP (v,D) + v = MTP (−v,D).

In order to find all MTPs (besides the MTP for 0̄) in a dataset D, computing
the set

P ′(D) = {MTP (d2 − d1, D) | d1, d2 ∈ D ∧ d1 < d2} (3)

is thus sufficient [41]. To retain information about the vector for each MTP,
instead of computing P ′(D), the set

S(D) = {〈d2 − d1,MTP (d2 − d1, D)〉 | d1, d2 ∈ D ∧ d1 < d2} (4)

can be computed. Each element 〈v, P 〉 in S(D) is an ordered pair where v is
a vector and P is the corresponding MTP in D.

0 1 2 3 4 5 6 7

60
65

70
75

Onset time

C
hr

om
at

ic
 p

itc
h

x

x

x

(a) 2-dimensional plot

v MTP (v,D)
(1, 4) {(0, 60), (3, 72), (6, 72)}
(1, 5) {(2, 67), (5, 67)}
(2, 9) {(2, 67), (5, 67)}
(3, 0) {(2, 67), (3, 72), (4, 76)}
(3, 12) {(0, 60), (1, 64)}
(6, 12) {(0, 60), (1, 64)}

(b) MTPs with size at least 2

Figure 3: MTPs in the BWV 846 excerpt.

13

Figure 3 above shows a 2-dimensional representation of the Bach excerpt
used in Figure 1. In Figure 3a, the MTP for the vector (3, 0) is displayed
with crosses and in Table 3b, the corresponding line is bolded. MTPs of size
1 were omitted from the table.

Meredith et al. [41] consider MTPs to be often associated with musically
significant repetitions. The repetitions of a pattern that are discovered by
finding MTPs are exact in the sense that the points of a pattern must match
exactly when translated. How exact these matches are from a musical point
of view depends on the choice of representation. For example, if only the
onsets of notes are included in the vectors and durations are excluded, then
it is enough that the note onsets match. Thus, variation in note durations
is allowed. Multidimensional representations allow there to be additional
points between the points of a repeated pattern. Embellishments of a musical
pattern where notes have been added between the notes of the pattern can
therefore be found by discovering MTPs [41]. The translationally exact
once hypothesis [8] states that if a pattern is repeated in varied form in a
piece of music, then some majority subset of the pattern is also repeated
exactly at least once in the piece. Assuming the hypothesis is true, finding
exactly repeated patterns, such as MTPs, can be used as a part of finding
approximate repetitions by clustering similar patterns together.

The total number of points in all MTPs in a dataset D is equal to the
number of positive difference vectors between points of D:∑

P∈P ′(D)
|P | = n(n− 1)

2 . (5)

There can thus be at most n(n− 1)/2 non-empty MTPs in a dataset in the
case that all MTPs consist of only a single point [41]. The number of MTPs
in a dataset also has a lower bound.

Theorem 4. For a dataset D of size n, the set P ′(D) contains at least n− 1
MTPs.

Proof. All points in D are distinct, and thus all difference vectors from any
d ∈ D to lexicographically greater points in D are distinct. There are n− 1
distinct difference vectors originating from the lexicographically smallest
point in D. The set P ′(D) contains an MTP for each positive difference
vector occurring between points of D. There are therefore at least n − 1
MTPs in P ′(D).

The number of MTPs that can occur in a dataset is thus bounded by

n− 1 ≤ |P ′(D)| ≤ n(n− 1)
2 . (6)

The examples in Eq. 7 and Eq. 8 show that it is possible to construct
datasets in which the minimum or maximum number of MTPs occur. The

14

2-dimensional dataset

Dmin = {(i, c) | i = 0, 1, . . . , n− 1}, (7)

where c is a constant and n the size of the dataset, has exactly n − 1
MTPs. For any d1, d2 ∈ Dmin such that d1 < d2, the difference between d1
and d2 can be expressed as d2 − d1 = (m, 0), where m is an integer such
that 1 ≤ m ≤ n − 1. There are therefore at most n − 1 distinct positive
difference vectors between the points of Dmin. There are exactly n−1 distinct
difference vectors originating from the lexicographically smallest point in
Dmin. Therefore |P ′(Dmin)| = n− 1.

For each MTP to contain only a single point, all positive difference
vectors between the points of a dataset must be distinct. This occurs in the
2-dimensional dataset

Dmax =
{(

i,
i∑

m=0
εm

)
| i = 0, 1, . . . , n− 1

}
, (8)

where ε > 0 and n is the size of the dataset. The factor ε can be used to
scale down the values of the second components. Let a, b, c, d ∈ Dmax such
that a > b and c > d. The only solution to the equation a − b = c − d is
that a = c and b = d, indicating that all positive difference vectors between
points of Dmax are distinct and |P ′(Dmax)| = n(n− 1)/2.

The sizes and numbers of MTPs that generally occur in datasets of
various styles of music may not be close to the bounds in Eq. 6. The datasets
Dmin and Dmax are of theoretical interest and are used for investigating the
effect of MTP counts and sizes on the running time of algorithms in Sections
4.1.1 and 4.2.1.

From the definition of MTP (Definition 3), it is clear that any MTP in
S(D) must occur at least twice in D. There can be more occurrences of an
MTP than the two found by computing S(D). All occurrences of a pattern
P in D can be found by computing the translational equivalence class of P
in D.

Definition 5. Translational Equivalence Class (Eq. 10 of [41])
For pattern P in D, the translational equivalence class (TEC) of P in D is
the set

TEC(P,D) = {Q | Q ≡T P ∧Q ⊆ D}. (9)

All occurrences of all MTPs in D can be found by computing the set

T (D) = {TEC(MTP (d2 − d1, D), D) | d1, d2 ∈ D ∧ d1 < d2}. (10)

The TEC for pattern P in D can be represented as a pair 〈P, T (P,D)〉, where
the first element is the pattern and the second element T (P,D) is the set of

15

translators for P in D [41]. A translator t for P in D is a vector by which P
is translatable in D. The set of translators for P in D is the set

T (P,D) = {t | P + t ⊆ D}. (11)

The set of patterns that are translationally equivalent to P in D can be
obtained by simply translating P by each t ∈ T (P,D).

By using the above representation of a TEC, the set of all TECs in D
can be represented by the set

T ′(D) = {〈MTP (d2−d1, D), T (MTP (d2−d1, D), D)〉|d1, d2 ∈ D∧d1 < d2}.
(12)

Table 1 below shows the TECs for all MTPs in the Bach excerpt of Figure
1. Each TEC is represented by a pattern and its set of translators. The table
illustrates three aspects of MTP TECs:

1. A pattern consisting of a single point p has all the differences between
p and the points in the dataset as its translators. The TEC of a
single-point pattern is not particularly interesting because regardless
of which point in the dataset is selected as the pattern, the pattern
will have the same set of occurrences in the dataset. The pattern will
also cover the entire dataset.

2. There are 6 MTPs of size greater than 1 in the Bach excerpt (see Figure
3b), but there are only 4 TECs in Table 1 with a pattern larger than
a single point. This is because some of the MTPs are translationally
equivalent, and therefore they belong to the same TEC. There can be
fewer TECs of MTPs in a dataset than there are MTPs.

3. The zero vector is present in each pattern’s set of translators. If a
pattern is a subset of a dataset D, then the pattern is always trans-
latable by the zero vector in D, making the zero vector in the set of
translators redundant. To further compress the representation of TECs,
it is possible to omit the zero vector from the set of translators [38]. In
this thesis 0̄ is always assumed to be included in the set of translators
of a TEC.

MTP Translators
{(4, 76)} {(−4,−16), (−3,−12), (−2,−9), (−1,−4),

(0, 0), (1,−9), (2,−4), (3, 0)}
{(0, 60), (1, 64)} {(0, 0), (3, 12), (6, 12)}
{(2, 67), (5, 67)} {(0, 0), (1, 5), (2, 9)}
{(2, 67), (3, 72), (4, 76)} {(0, 0), (3, 0)}
{(0, 60), (3, 72), (6, 72)} {(0, 0), (1, 4)}

Table 1: MTP TECs in the BWV 846 excerpt.

16

3.2 The Structure Induction Algorithm SIA

The Structure Induction Algorithm SIA by Meredith et al. [41] computes
the set S(D) (Eq. 4) of all MTPs in a multidimensional dataset D.

SIA is depicted in Algorithm 1. First, the dataset D is sorted in ascending
lexicographical order to produce the sorted set Ds (line 2). This step can be
performed in O(kn logn) time using a modified merge-sort [41].

Algorithm 1 The Structure Induction Algorithm for computing the set of
MTPs in a dataset (Figure 13.5 of [39]).

1: function SIA(D)
2: Ds ← SortLex(D)
3: V ← 〈〉
4: for i← 0 to |Ds| − 2 do . Compute difference vectors
5: for j ← i+ 1 to |Ds| − 1 do
6: V ← V ⊕ 〈〈Ds[j]−Ds[i], i〉〉
7: Vs ← SortLex(V)
8: M ← 〈〉
9: v ← Vs[0][0]

10: P ← 〈Ds[Vs[0][1]]〉
11: for i← 1 to |Vs| − 1 do . Partition Vs

12: if Vs[i][0] = v then
13: P ← P ⊕ 〈Ds[Vs[i][1]]〉
14: else
15: M ←M ⊕ 〈〈v, P 〉〉
16: v ← Vs[i][0]
17: P ← 〈Ds[Vs[i][1]]〉
18: M ←M ⊕ 〈〈v, P 〉〉
19: return M

On lines 3–6 the set

V = {〈Ds[j]−Ds[i], i〉 | 0 ≤ i < j < |Ds|} (13)

is computed. The elements of V are ordered pairs where the first element is
the difference vector from the (i+ 1)th element to the (j + 1)th element of
Ds. The second element is the index of the vector from which the difference
is computed. This is called the origin index of the difference vector. V can
also be thought of as a vector table, as depicted in Table 2 below for the
BWV 846 excerpt. As it is only necessary to compute the positive difference
vectors (see Eq. 3) to find all MTPs, the set of difference vectors in V is
sufficient for finding all MTPs in D. In the vector table this means that only
values on the subdiagonals (or superdiagonals if the placement of the from
and to vectors is switched) are computed. The total number of k-dimensional

17

difference vectors in V is n(n−1)/2. The space required by V is thus O(kn2),
and V can be computed in worst-case O(kn2) time [41].

From
To (0, 60) (1, 64) (2, 67) (3, 72) (4, 76) (5, 67) (6, 72) (7, 76)

(0, 60)
(1, 64) 〈(1, 4), 0〉
(2, 67) 〈(2, 7), 0〉 〈(1, 3), 1〉
(3, 72) 〈(3, 12), 0〉 〈(2, 8), 1〉 〈(1, 5), 2〉
(4, 76) 〈(4, 16), 0〉 〈(3, 12), 1〉 〈(2, 9), 2〉 〈(1, 4), 3〉
(5, 67) 〈(5, 7), 0〉 〈(4, 3), 1〉 〈(3, 0), 2〉 〈(2,−5), 3〉 〈(1,−9), 4〉
(6, 72) 〈(6, 12), 0〉 〈(5, 8), 1〉 〈(4, 5), 2〉 〈(3, 0), 3〉 〈(2,−4), 4〉 〈(1, 5), 5〉
(7, 76) 〈(7, 16), 0〉 〈(6, 12), 1〉 〈(5, 9), 2〉 〈(4, 4), 3〉 〈(3, 0), 4〉 〈(2, 9), 5〉 〈(1, 4), 6〉

Table 2: Vector table V for the BWV 846 excerpt.

If there is a pair 〈v, i〉 ∈ V , then the point Ds[i] is translatable by v in
D. All points translatable by vector v in D can be found by finding all pairs
in V that have v as their first element. Therefore

MTP (v,D) = {Ds[p[1]] | p ∈ V ∧ p[0] = v}.

All MTPs in D can be found by partitioning V so that the pairs with the
same vector as their first element are placed in the same partition. The
second elements (the origin indices) of pairs in a partition are then used to
find the MTP points from Ds.

Partitioning V is performed by first sorting V to produce the ordered
set Vs (line 7). Using a modified version of merge-sort, the sorting of V can
be accomplished in worst-case O(kn2 logn) time [41]. The lexicographical
ordering of Vs ensures that pairs with the same vector as their first element
are placed in consecutive indices.

On lines 8–18 the set Vs is partitioned. The vector-MTP pairs are
collected into the set M by iterating through Vs. Vector v is used for keeping
track of the difference vector and the set P is used for collecting the MTP
points. As long as the first element of the pair at the current index is equal
to v (line 12), the points at the origin indices in Ds belong to the same MTP.
When a pair is found that does not have v as its first element, then all points
of the MTP for v in D have been collected in P . The pair 〈v, P 〉 is added
to M , and v and P are updated for collecting the next MTP (lines 15–17).
After the loop of lines 11–17 is finished, the last MTP is added to M on line
18 so that M = S(D).

Finding the MTPs from Vs takes O(kn2) time in the worst case. The
time complexity of SIA is dominated by sorting V on line 7, resulting in an
overall worst-case time complexity of O(kn2 logn). The space complexity of
SIA is O(kn2), which results from the size of V [41].

18

3.3 Variants of SIA

SIA outputs at most n(n − 1)/2 MTPs for a dataset with n points [41].
Considering that the number of subsets in such a dataset is 2n, the output
of SIA leaves out a great number of possible patterns. However, the set of
discovered patterns can still be very large and contain a great number of
patterns that are not musically important [41]. In this thesis the quality of
a pattern is used to refer to the musical significance or importance of the
pattern. Two variants of SIA by Collins [7] are presented: SIACT (Section
3.3.1) aims to improve the quality of discovered patterns and SIAR (Section
3.3.2) aims to both improve the quality of patterns and decrease running
time by limiting the size of the output.

3.3.1 The SIACT algorithm

The goal of SIACT is to solve the problem of isolated membership [13, 7, 12].
The problem of isolated membership occurs when an MTP P contains a
subpattern P ′ ⊂ P that is musically more important than P . The MTP P
thus consists of an important pattern P ′ and temporally isolated members.
There can also be multiple subpatterns in an MTP that are musically more
important than the MTP itself.

SIACT begins by computing the set of all MTPs in a dataset D by using
SIA. The output of SIA is processed by applying a compactness trawler
procedure to obtain patterns without isolated members. The compactness of
a pattern P that occurs in D is defined as the ratio of points belonging to P
and the number of points in D that are in the region of P [42]. In [7], the
region of P in D is defined as the set of points in D that are lexicographically
between the first and last points of Ps, the lexicographically sorted version
of P . For a pattern P its compactness in D is defined by

c(P,D) = |P |
|{d ∈ D | Ps[0] ≤ d ≤ Ps[|P | − 1]}| . (14)

For a pattern in a k-dimensional dataset D of size n, its compactness in
D can be computed in worst-case O(kn) time, and the complexity can be
reduced if D is sorted lexicographically [7].

SIACT takes two parameters: the compactness threshold 0 < a ≤ 1
and the cardinality threshold b ≥ 1. After all MTPs in the input dataset
D have been computed using SIA, the compactness trawler procedure is
run on each MTP. The output of SIACT is the set of patterns produced
by performing the compactness trawler procedure on each MTP. The com-
pactness trawler algorithm presented in [7] is shown in Algorithm 2. The
CompactnessTrawl function returns all contiguous subpatterns of Ps that
have compactness of at least a in D and are of at least size b. Points that do
not belong to any pattern in the set X returned by CompactnessTrawl
are considered isolated members and are discarded.

19

Algorithm 2 The compactness trawler procedure used in SIACT.
1: function CompactnessTrawl(Ps, D, a, b)
2: X ← 〈〉
3: i← 0
4: for j ← 0 to |Ps| − 1 do
5: Q← 〈Ps[i], . . . , Ps[j]〉
6: Q′ ← Q
7: if j < |Ps| − 1 then
8: Q′ ← Q′ ⊕ 〈Ps[j + 1]〉
9: if c(Q′, D) < a then

10: if |Q| ≥ b then
11: X ← X ⊕Q
12: i← j + 1
13: return X

According to Collins [7], performing compactness trawling takes O(kn)
time, but Collins does not provide an analysis of this and does not make clear
what the time complexity of computing compactness (line 9 of Algorithm 2)
is assumed to be. As SIACT uses SIA, it is clear that the time and space
complexities of SIACT are at least those of SIA.

In [13], a comparative evaluation of SIACT, SIA, and COSIATEC (see
Section 3.5.2) was conducted. The algorithms were applied to the discovery
of patterns within pieces of Baroque keyboard music. SIACT was able to
discover more of the musically salient patterns present in the ground truth
analyses than SIA and COSIATEC.

Meredith [39] has criticized the compactness trawler in SIACT for the
fact that the output depends on the order in which the pattern is scanned.
The compactness trawler procedure scans patterns from the lexicographically
smallest point to the largest. If the order is reversed, the procedure can
output a different set of patterns. According to Meredith [39], the musical and
psychological basis for a pattern selection procedure whose output depends
on scanning order is questionable.

3.3.2 The SIAR algorithm

SIAR aims to improve upon the running time and pattern quality of SIA by
computing only a subset of the MTPs in the input dataset [7]. Instead of
computing all subdiagonals of the vector table V (see Table 2), as is done in
SIA, SIAR computes only r subdiagonals of V . In [7], the difference vectors
are placed on the superdiagonals, but in this thesis, the difference vectors are
always placed on the subdiagonals for consistency. Collins [7] considers SIAR
to be similar to using a sliding window of size r in SIA. SIAR can be used
instead of SIA in SIACT [8]. No detailed description of the implementation

20

of SIAR is provided in [7]. The description of SIAR in Algorithm 3 is based
on Figure 13.14 of [39].

Algorithm 3 Structure Induction Algorithm for r subdiagonals.
1: function SIAR(D, r)
2: Ds ← SortLex(D)
3: V ← 〈〈Ds[j]−Ds[i], i〉 | 0 ≤ i < j < |Ds| ∧ j ≤ i+ r〉
4: Vs ← SortLex(V)
5: E ← 〈patterns obtained by partitioning Vs by first elements〉
6: L← 〈e[j]− e[i] | e ∈ E, 0 ≤ i < j < |e|〉
7: Ls ← SortLex(L)
8: v ← Ls[0]
9: f ← 1

10: M ← 〈〉
11: for i← 1 to |Ls| − 1 do
12: if Ls[i] = v then
13: f ← f + 1
14: else
15: M ←M ⊕ 〈〈v, f〉〉, f ← 1, v ← Ls[i]
16: M ←M ⊕ 〈〈v, f〉〉
17: M ← SortDescendingByFrequency(M)
18: S ← 〈〉
19: for i← 0 to |M | − 1 do . Compute MTPs
20: S ← S ⊕ 〈Ds ∩ (Ds −M [i][0])〉
21: return S

SIAR starts by sorting the dataset D. On line 3 the r subdiagonals of
the difference vector table V are computed. This can be performed exactly
as in SIA (lines 4–6 of Algorithm 1) but with the added limitation that
j ≤ i + r. On line 4 V is sorted to obtain Vs which is partitioned into
translatable patterns based on the first elements, i.e., the difference vectors.
The translatable patterns are stored in the ordered set E (line 5). Lines
2–5 of SIAR are implemented just like in SIA (see Algorithm 1), with the
exceptions that all subdiagonals are not computed and that the set E does
not contain the translators related to the patterns.

On line 6 all intrapattern differences are computed and stored in the
ordered multiset L. Intrapattern differences are positive difference vectors
that occur between points belonging to the same pattern. This is roughly
equal to running SIA so that each of the patterns in E is used as an input
dataset but without computing the MTPs [39]. The ordered set M is
computed next. M contains all the distinct vectors in L in descending order
of frequency (the number of occurrences). M is computed by first sorting
L (line 7) and then computing the frequencies of vectors in L by iterating

21

through Ls and adding the vector-frequency pairs to M (lines 11–16). M
is then sorted in descending order based on the frequencies collected in the
loop (line 17).

The MTP for vector v in dataset D can be found by computing the
intersection of D and D translated by −v [39]. This method is used in the
loop on line 20 to find the MTP in D for each vector in M . The MTPs are
collected in the set S, which is returned by the algorithm.

No time or space complexity analysis of SIAR is provided in [7]. The
implementation of SIAR presented in [39] is likewise provided without any
complexity analysis. Collins states in [7] that the initial results on using
SIAR were found positive in regard to both running time and quality of
patterns, but further research is required. In the study of [39], using SIAR
instead of SIA as a part of COSIATEC did not improve the quality of the
output when quality was measured using compression ratio.

One of the main goals of SIAR is to improve upon the running time of SIA.
An analysis of the worst-case time and space complexity of the implementation
of SIAR presented in [39] (see Algorithm 3 above) is presented here. The
time and space complexity of SIAR depends on the sizes of the sets L and
M . Lemmas 6 and 7 provide asymptotic upper bounds for their sizes.

Lemma 6. Let D be a dataset of size n and r the number of subdiagonals
computed in the difference vector table. Then |L| = O(rn2).

Proof. The size of L is equal to the total number of intrapattern differences:

|L| =
∑
e∈E

|e|(|e| − 1)
2 . (15)

The total number of points in the patterns in E is equal to the number of
difference vectors on the r subdiagonals of the difference vector table V . For
a given r and n, the sizes of the patterns and the size of L thus depend on
the number of patterns in E. Suppose that splitting a pattern of size p into
two smaller patterns of sizes p−m and m, where p > m, increases the size
of L. Based on Eq. 15, it would follow that

p(p− 1)
2 <

(p−m)(p−m− 1)
2 + m(m− 1)

2
⇒ p2 − p < p2 − p− 2pm+ 2m2

⇒ pm < m2

⇒ p < m,

which contradicts p > m. Therefore, the size of L cannot increase as the
number of patterns increases, and L is largest when there is the least number
of patterns in E.

There are at least r patterns in E because all difference vectors originating
from the same point are distinct (see proof of Theorem 4) and because there

22

are points from which r difference vectors are computed. There are thus
at least r distinct difference vectors in the difference vector table V , which
means that at least r translatable patterns will be discovered on line 5 when
V is partitioned. In the case that there are exactly r patterns in E, the
sizes of the patterns can be inferred from the difference vector table V . In
each column of V , the vectors are distinct and in ascending order as the
column is read from top to bottom (see Table 2). For there to be exactly r
patterns in E, there must be only r distinct difference vectors in V . This
can only occur if all vectors within each subdiagonal are equal. For example,
all places on the first subdiagonal contain the difference vector v1, on the
second subdiagonal all contain v2 and so on. Each subdiagonal corresponds
to a translatable pattern. When the number of patterns in E is r, the
sizes of the patterns in E are equal to the sizes of the subdiagonals, that is
(n− 1), (n− 2), . . . , (n− r).

By plugging in the above pattern sizes into Eq. 15, an upper bound for
the size of L is obtained:

|L| ≤
r∑

i=1

(n− i)(n− i− 1)
2 = O(rn2).

The case where |L| =
∑r

i=1(n − i)(n − i − 1)/2 occurs when the input
dataset is Dmin (Eq. 7) as each subdiagonal of V corresponds to an MTP
when V is computed for a Dmin dataset.

The set M is computed by removing all duplicates from L, and thus the
size of M is equal to the number of distinct intrapattern differences in L.

Lemma 7. Let D be a dataset of size n. Then |M | = O(n2).

Proof. All intrapattern differences in L are positive difference vectors that
occur between points of D. There cannot be more distinct intrapattern
differences than there are positive difference vectors between points of D.
The size of M is therefore bounded by

|M | ≤ n(n− 1)
2 = O(n2).

It is reasonable to consider how tight a bound the one given in Lemma 7
is. Consider the 2-dimensional dataset

D′ = Dmax ∪ (Dmax + (0, 1)),

where Dmax is as defined by Eq. 8, |Dmax| = n, and |D′| = 2n. The set
Dmax + (0, 1) is Dmax translated by the vector (0, 1). All difference vectors

23

between points of Dmax are distinct, and Dmax clearly forms a pattern
translatable by (0, 1) in D′. In the sorted dataset D′s, every other point is
from Dmax and every other from Dmax + (0, 1), i.e., if D′s[i] ∈ Dmax, then
D′s[i+ 1] ∈ Dmax + (0, 1). This means that the translatable pattern formed
by Dmax will be discovered on lines 2–5 of SIAR even when r = 1. There
are n(n− 1)/2 distinct intrapattern differences in Dmax, and therefore the
size of M is quadratic in n when SIAR is run on the dataset D′.

Using Lemmas 6 and 7, it is possible to analyze the worst-case time
complexity of SIAR.

Theorem 8. Let D be a k-dimensional dataset of size n. Then the worst-
case time complexity of running SIAR on D with parameter r (r � n) is
O(kn3), and the worst-case space complexity is O(krn2).

Proof. Lines 2–5 of Algorithm 3 are essentially the same as running SIA but
with only r subdiagonals of V computed. The time complexity of lines 2–5
is therefore dominated by sorting V . The size of V is equal to the number of
elements on the r subdiagonals, that is

|V | =
r∑

i=1
(n− i) = rn− r(r + 1)

2 = O(rn).

Sorting V takes O(krn log rn) time in the worst case, and the worst-case
space complexity of lines 2–5 is O(krn), which is caused by the size of V .

Computing L on line 6 requires performing |L| vector subtractions, and
sorting L takes O(k|L| log |L|) time. Based on Lemma 6, the worst-case time
complexity of computing and sorting L is O(krn2(log r + logn)).

The time required to compute M on lines 11–16 also depends on the size
of L. M is computed by iterating through all elements of L and performing
a vector comparison for each element. The worst-case time complexity of
computing M is thus O(krn2). Based on Lemma 7, sorting M can be
performed in O(n2 logn) time using a comparison-based sorting algorithm.
Sorting M does not depend on the dimensionality k because sorting is based
on comparing frequencies.

The number of iterations in the loop on lines 18–20 is equal to |M |. In
the body of the loop, the intersection can be computed in O(kn) time by
using the sorted dataset. Translating the dataset also takes O(kn) time.
The loop on lines 18–20 thus takes O(|M |kn) time. Applying Lemma 7, the
worst-case time complexity of computing the MTPs on lines 18–20 is O(kn3).

The worst-case time complexity of SIAR is dominated by finding the
MTP for each vector in M . The worst-case time complexity of SIAR is
O(kn3), and the worst case occurs when the size of M is quadratic in n.
The space complexity of SIAR is dominated by the size of L, resulting in an
overall worst-case space complexity of O(krn2).

24

Although the worst-case time complexity of SIAR is greater than that of
SIA, SIAR can be faster on small datasets. In practice, the running time of
SIAR depends greatly on the size of translatable patterns found in the input
dataset. Section 4.1.1 provides empirical results on the running times of both
SIAR and SIA. It is especially notable that the worst-case time complexity
of SIAR does not depend on the parameter r. In Theorem 8, it is assumed
that r is much smaller than n. In the case that r = n, the worst-case time
complexity of SIAR is O(kn3 logn), which is caused by sorting L.

3.4 The SIATEC algorithm

The algorithm SIATEC by Meredith et al. [41] computes the set T ′(D) (Eq.
12) of TECs for all MTPs in a dataset D. SIATEC is depicted in Algorithms
4 and 5, which are based on Figure 13.7 of [39] and the presentation of
SIATEC in [41].

SIATEC begins by finding all MTPs in D by computing the set of
difference vectors V (lines 3–9 of Algorithm 4), sorting it to obtain Vs (line
11), and then computing the set of MTPs M by partitioning Vs (lines 12–25).
This is roughly equal to running SIA on the input dataset D.

MTPs can be translationally equivalent (see Definition 2), in which case
their TECs will be equal. The version of SIATEC presented in [41] uses
the vectorized representations of MTPs to avoid computing the same TEC
multiple times. The vectorized representation of a pattern Q is an ordered
set of difference vectors that occur between consecutive points of Q, that is

V EC(Q) = 〈Q[1]−Q[0], Q[2]− P [1], . . . , Q[l − 1]−Q[l − 2]〉, (16)

where l is the size ofQ (Eq. 18 of [41]). If the points in patternsQ and U are in
ascending lexicographical order, then Q and U are translationally equivalent
if and only if their vectorized representations are equal [41]. Vectorized
representations can thus be used to compare patterns for translational
equivalence. On line 26 SIATEC computes the vectorized representation
of each MTP and sorts the MTPs in ascending order of the size of their
vectorized representation. MTPs that have vectorized representations of equal
size are sorted lexicographically based on their vectorized representations.
After sorting, MTPs that are translationally equivalent occur in consecutive
indices of M . Avoiding the computation of the same TEC multiple times is
performed by incrementing the index i until an MTP that does not have the
same vectorized representation as P is found (lines 34–36).

In the presentation of SIATEC in [41], the sets Vs and Ds are used to
compute the vectorized representations of the MTPs. The description of
SIATEC in Algorithm 4 somewhat simplifies this process, although the result
is the same. In a newer presentation of SIATEC in [39], computing the
vectorized representations of MTPs is omitted altogether, and the same TEC
can be computed multiple times. No reason for this omission is given in [39].

25

Algorithm 4 The SIATEC algorithm for computing the set of MTP TECs
in a dataset.

1: function SIATEC(D)
2: Ds ← SortLex(D)
3: V ← 〈〉
4: W ← empty |D| × |D| array
5: for i← 0 to |D| − 1 do . Compute difference vectors
6: for j ← 0 to |D| − 1 do
7: w ← 〈Ds[j]−Ds[i], i〉
8: if j > i then
9: V ← V ⊕ 〈w〉

10: W [i][j]← w

11: Vs ← SortLex(V)
12: M ← 〈〉
13: v ← Vs[0][0]
14: P ← 〈Ds[Vs[0][1]]〉
15: C ← 〈Vs[0][1]〉
16: for i← 1 to |Vs| − 1 do . Partition Vs

17: if Vs[i][0] = v then
18: P ← P ⊕ 〈Ds[Vs[i][1]]〉
19: C ← C ⊕ 〈Vs[i][1]〉
20: else
21: M ←M ⊕ 〈〈P,C, v〉〉
22: v ← Vs[i][0]
23: P ← 〈Ds[Vs[i][1]]〉
24: C ← 〈Vs[i][1]〉
25: M ←M ⊕ 〈〈P,C, v〉〉
26: M ← SortByVectorizedRepresentations(M)
27: T ← 〈〉
28: i← 0
29: while i < |M | do . Compute TECs
30: P ←M [i][0]
31: C ←M [i][1]
32: X ← FindTranslators(P,C,W,D)
33: T ← T ⊕ 〈〈P,X〉〉
34: i← i+ 1
35: while i < |M | ∧ V EC(M [i][0]) = V EC(P) do
36: i← i+ 1
37: return T

In SIATEC all difference vectors between the points of Ds are computed

26

and stored in the table W along with their origin indices so that

W [i][j] = 〈Ds[j]−Ds[i], i〉

for 0 ≤ i < |D| and 0 ≤ j < |D| [41]. Each MTP is added to M in the form
of a triple 〈P,C, v〉, where P is the pattern, C is an ordered set of indices
for the points of P in Ds, and v is the vector for which P is the MTP in D.

Algorithm 5 Procedure used by SIATEC on line 32 to find the set of
translators for an MTP.

1: function FindTranslators(P,C,W,D)
2: R← 〈0〉
3: for j ← 1 to |P | − 1 do . Initialize R
4: R← R⊕ 〈0〉
5: X ← 〈〉
6: while R[0] ≤ |D| − |P | do
7: for j ← 1 to |P | − 1 do . Update R
8: R[j]← R[0] + j

9: v0 ←W [C[0]][R[0]][0]
10: found← false
11: for c← 1 to |P | − 1 do
12: while R[c] < |D| ∧W [C[c]][R[c]][0] < v0 do
13: R[c]← R[c] + 1
14: if R[c] ≥ |D| ∨ v0 6= W [C[c]][R[c]][0] then
15: break . v0 cannot be a translator
16: if c = |P | − 1 then . v0 found in all pattern columns
17: found← true
18: if found ∨ |P | = 1 then
19: X ← X ⊕ 〈v0〉
20: R[0]← R[0] + 1
21: return X

The set of indices C for an MTP P and the vector table W are used in
the FindTranslators procedure (Algorithm 5) to find the set of trans-
lators T (P,D). Once all MTPs have been computed, SIATEC uses the
FindTranslators procedure to find the set of translators for each MTP in
M (lines 27–33 of Algorithm 4). The set T , returned by SIATEC, contains
the TEC for each MTP in D as a pair consisting of the pattern and its set
of translators in D. Essentially, T = T ′(D) on line 37 of SIATEC.

The set of translators for a point at index i in Ds can be computed using
W :

T ({Ds[i]}, D) =
|D|−1⋃
j=0
{W [i][j][0]}.

27

When the set of indices C for the points of a pattern P in Ds is known, the
set of translators for P can also be found using W [41]:

T (P,D) =
⋂
i∈C

T ({Ds[i]}, D) =
⋂
i∈C

(|D|−1⋃
j=0
{W [i][j][0]}

)
.

FindTranslators uses the above results to find the set of translators
for a pattern P in D using the table W and the set of indices C of the
points of P in Ds. W is a table, just like V (see Table 2), but with all the
values computed. Going down any column in W , the difference vectors are in
ascending order so the intersection of a set of columns in W can be computed
by scanning through each of the columns once. In Algorithm 5 the array R is
used for keeping track of the indices in each column of W that contains the
difference vectors originating from a point belonging to P . The value R[i] is
the index in the column for the (i+ 1)th point of P . If the same difference
vector is found in two columns, W [i1][j1][0] = W [i2][j2]][0], and i1 < i2, then
j1 < j2. This is exploited in updating R on lines 7–8 of Algorithm 5. If v0 is
found in all columns for the pattern P , then v0 is a translator for P in D.
The set X is used for keeping track of the found translators, and at the end
of the FindTranslators routine, X is the set T (P,D) as defined by Eq.
11.

The worst-case time complexity of finding all MTPs in SIATEC is
O(kn2 logn), just as in SIA. The worst-case time complexity of sorting
the MTPs based on their vectorized representations is also O(kn2 logn) [41].
Finding translators for MTPs requires scanning O(n) lines of W for each of
the n(n− 1)/2 points in the set of MTPs. The worst-case time complexity
of finding translators and the whole SIATEC is thus O(kn3). The space
complexity of SIATEC is dominated by the size of the table W , resulting in
an overall space complexity of O(kn2) [41].

3.5 Variants of SIATEC

The set of all MTPs for a dataset often contains many patterns that are
not musically important [41]. The set of TECs for all MTPs computed
by SIATEC can therefore also contain TECs for patterns that are not
musically important. Three variants of SIATEC are presented in this section,
COSIATEC (Section 3.5.2), SIATECCompress (Section 3.5.3), and Forth’s
algorithm (Section 3.5.4). The above algorithms use SIATEC to compute
TECs and then select a subset of TECs using heuristic functions. The goal of
the algorithms is to provide a musically better quality output than SIATEC
by only outputting the musically most important TECs. SIAR and SIACT
can be used in SIATEC instead of SIA, and the modified version of SIATEC
can be used with the variants of SIATEC although these variants do not
necessarily improve the quality of the output [38].

28

3.5.1 Heuristic functions

COSIATEC, SIATECCompress, and Forth’s algorithm all use compression
ratio (or factor) as one of their most significant heuristic functions. The
idea behind using compression ratio as a musical heuristic function is that
the compressed representation or encoding of a score can be considered an
analysis of the piece [35, 38, 39]. COSIATEC, SIATECCompress, and Forth’s
algorithm are essentially point-set compression algorithms [38]. The com-
pression ratio of a TEC depends on the size of its pattern, set of translators,
and covered set. The covered set of a TEC is the union of all points in the set
of patterns in the TEC [38]. For a TEC Q = 〈P, T 〉, where P is the pattern
and T is the set of translators (including 0̄), the covered set of Q is defined
by

COV(Q) =
⋃
t∈T

P + t. (17)

A set of TECs T is said to cover a dataset D if

D =
⋃

Q∈T
COV(Q).

The compression ratio of a TEC Q = 〈P, T 〉 is defined by

CR(Q) = |COV(Q)|
|P |+ |T | − 1 . (18)

Eq. 18 is based on Eq. 5 of [38]. In this thesis, the set of translators T is
assumed to contain 0̄, unlike in [38]. Subtracting 1 from the size of the set of
translators is therefore necessary in Eq. 18 to make it equal to Eq. 5 of [38].

In addition to compression ratio, compactness is also used as a heuristic.
The compactness of a pattern is the ratio of the points belonging to the
pattern and all points in the pattern’s region [38]. In Section 3.3.1, one
definition of compactness is presented in Eq. 14. Another type of compactness
is bounding-box compactness. In bounding-box compactness the region is
defined as the smallest box that contains all points of the pattern, and the
edges of the box are aligned to the axes [41]. Figure 4 below shows an
example of a bounding-box in two dimensions for the pattern denoted by
crosses. The bounding-box compactness of the pattern in the example is
exactly 1 as all points within the bounding-box belong to the pattern.

29

0 1 2 3 4 5 6 7

60
65

70
75

Onset time

C
hr

om
at

ic
 p

itc
h

x

x

x

Figure 4: Bounding-box in two dimensions.

The relation of different heuristic functions to the perceived importance of
musical patterns was investigated by Collins et al. [11]. Undergraduate music
students (n = 12) were asked to rate the musical importance of patterns
selected from mazurkas by Chopin. Approximately half of the patterns were
selected by hand and the rest were selected randomly from the output of
SIATEC. Based on the ratings, a predictive linear regression model was built.
Compactness and compression ratio were found to be important parameters
in the model, indicating that they are related to the perceived importance
of musical patterns. However, the generality of the results is very limited
because the experiment used a stylistically limited selection of patterns and
the number of subjects was only 12.

3.5.2 The COSIATEC algorithm

COSIATEC [42, 36] computes a set of TECs that cover the input dataset D
and form a compressed representation of D. The covered sets of the TECs
output by COSIATEC do not overlap, i.e., the intersection of the covered
sets of the TECs is empty. The TECs in the output are in descending order
of quality.

The pseudocode for COSIATEC is shown in Algorithm 6. COSIATEC
copies the input dataset D into P and then keeps finding the best TEC TB

from P and removing its covered set from P (lines 5–7) until P is empty.
Removing the covered set of TB from P ensures that no two TECs in T
share points. COSIATEC is essentially a greedy compression algorithm [36].

30

Algorithm 6 COSIATEC (Figure 1 of [36]).
1: function COSIATEC(D)
2: P ← Copy(D)
3: T ← 〈〉
4: while P 6= ∅ do
5: TB ← GetBestTec(P,D)
6: T ← T ⊕ 〈TB〉
7: P ← P \ COV(TB)
8: return T

The main logic of COSIATEC is implemented in the GetBestTec
function. GetBestTec computes all MTPs in P , iterates through them
and computes the TEC for each. If the current computed TEC is the best
so far, it will be stored. The best MTP TEC found in P is returned by
GetBestTec [39]. The result is the same as running SIATEC on P and then
iterating through the TECs to find the best one [38]. The implementation of
COSIATEC presented in [42] also computes the conjugate TEC for each TEC
and selects the conjugate if it is found better. The conjugate TEC for a TEC
Q = 〈P, T 〉 consists of pattern P ′ formed by translating the first point of
pattern P by all translators in T . The set of translators T ′ for the conjugate
TEC is obtained by computing the difference vectors from the first point of
P to all other points in P [42]. In the presentation of COSIATEC in [39],
computing conjugate TECs is omitted. The quality of TECs is compared
in the following way: given two TECs in P ⊆ D, the better TEC is the one
with

1. higher compression ratio,

2. higher bounding-box compactness in D,

3. larger covered set,

4. larger pattern,

5. lesser difference between the first components of the first and last points
of the pattern (pattern width), or

6. lesser bounding box area (pattern area) [42].

The properties that are lower down in the list are considered only if the TECs
are equal in the properties higher up in the list. For example, bounding-box
compactness is only compared if the compression ratios are equal. The
version of COSIATEC in [39] omits comparison of pattern size, pattern
width, and pattern area from the evaluation of TEC quality.

The running time of COSIATEC can be great with large datasets because
COSIATEC runs SIATEC on each iteration of the loop and the worst-case

31

time complexity of SIATEC is O(kn3) for a k-dimensional dataset with
n points [42]. On the other hand, the output of COSIATEC can be of
better quality than that of SIATECCompress or Forth’s algorithm. In [37],
COSIATEC was found to perform best in folk song classification. COSIATEC
also produced more compact encodings of the input dataset than other similar
algorithms in both [37] and [39].

3.5.3 The SIATECCompress algorithm

SIATECCompress [42, 39] computes a set of TECs that cover the input
dataset D and form a compressed representation of D, just like COSIATEC,
with the exception that in the output of SIATECCompress, the covered sets
of the TECs may overlap. SIATECCompress only runs SIATEC once and is
faster than COSIATEC [42].

Algorithm 7 SIATECCompress (Figure 13.16 of [39]).
1: function SIATECCompress(D)
2: T ← SIATEC(D)
3: T ← SortDescendingByQuality(T)
4: D′ ← ∅
5: E ← 〈〉
6: for i← 0 to |T | − 1 do
7: T ← T [i]
8: S ← COV(T)
9: if |S \D′| > |pattern(T)|+ |translators(T)| then

10: E ← E ⊕ 〈T 〉
11: D′ ← D′ ∪ S
12: if |D′| = |D| then
13: break
14: R← D \D′
15: if |R| > 0 then
16: E ← E ⊕ 〈〈R, 〈〉〉〉
17: return E

SIATECCompress, depicted in Algorithm 7, starts by computing all
TECs in the dataset and then sorts the TECs in descending order based on
their quality (lines 2–3). The quality of TECs is evaluated the same way as
in COSIATEC [42] (see Section 3.5.2).

A subset of TECs is selected from the sorted set of TECs T in the for-
loop on lines 6–13. Starting from the best TEC, SIATECCompress iterates
through the set of TECs T , adding TECs to the set E until the dataset
D is covered by E or no more TECs of sufficient quality are left in T . A
TEC T is added to E if the number of new points that T adds to E is larger

32

than the number of points needed to represent T as a pair of pattern and
set of translators (line 9). The set D′ is used to keep track of points already
covered by TECs in T . The loop is terminated on line 13 if the whole dataset
is covered by the selected TECs.

If the loop is not terminated on line 13, there can be points in the dataset
that are not covered by the TECs in E. These points form the residual
point-set R [39]. If R is not empty, then it is added to E as a TEC, with R
as the pattern and and an empty set of translators (line 16).

SIATECCompress does not compress the input dataset as well as COSI-
ATEC, but it is faster [39]. In the study of [37], SIATECCompress did not
perform as well as COSIATEC or Forth’s algorithm in folk song classification.
In finding repeated patterns SIATECCompress can perform similarly to
COSIATEC [38].

3.5.4 Forth’s algorithm

Forth’s algorithm [18] runs SIATEC once and selects a set of TECs from
the output of SIATEC. Like SIATECCompress, Forth’s algorithm selects
a set of TECs whose covered sets may overlap. It is possible for Forth’s
algorithm to output a set of TECs that does not cover the input dataset
[39]. Forth’s algorithm takes two threshold parameters that are used in
selecting TECs. Compression ratio and compactness of patterns are the most
important criteria for pattern selection also in Forth’s algorithm [18].

Forth’s algorithm, depicted in Algorithm 8 below, handles TECs as
covered sets and takes two threshold parameters cmin and σmin. First, the
set of TECs T for the input dataset D is computed using SIATEC (line
2). The set P is used for keeping track of the points covered by the already
selected TECs, and the output is collected in the ordered set S. TECs are
selected from T until either D is covered, or there are no more TECs of
sufficient quality in T . On line 7 the covered set of the best TEC is assigned
to Cbest. FindBest returns the covered set of the TEC that maximizes the
weight function (Eq. 19), and the number of new points added to the cover
by the TEC is at least cmin. The weight function used in FindBest is

weight(T) = c · CR(T)n · compactness-v(T)n, (19)

where T is a TEC, c is the number of points in COV(T) that are not in P ,
CR(T) is compression ratio (Eq. 18), and compactness-v(T) is compactness
where region is defined as in Eq. 14, but the notes in the region also have
to occur in a voice that is present in the pattern. Compression ratio and
compactness are both linearly normalized to be in the interval [0, 1] [18],
which is denoted by the subscript n.

33

Algorithm 8 Forth’s algorithm. After Figure 13.10 of [39].
1: function Forth(D, cmin, σmin)
2: T ← SIATEC(D)
3: S ← 〈〉, P ← ∅
4: found← true
5: while P 6= D ∧ found do
6: found← false
7: Cbest ← FindBest(T , cmin, P)
8: if Cbest 6= nil then
9: found← true

10: P ← P ∪ Cbest

11: i← 0, primaryFound← false
12: while ¬primaryFound ∧ i < |S| do . Find primary TEC
13: if |S[i][0] ∩ Cbest| / |S[i][0]| > σmin then
14: S[i]← S[i]⊕ 〈Cbest〉 . Add as secondary
15: primaryFound← true
16: i← i+ 1
17: if ¬primaryFound then
18: S ← S ⊕ 〈〈Cbest〉〉 . Add as primary
19: return S

In the output of Forth’s algorithm, TECs are either primary or secondary
[39]. If Cbest is found, then on lines 11–16 Forth’s algorithm searches for a
primary TEC in S to which Cbest could be added as a secondary TEC. If
there is a primary TEC in S such that it shares a proportion of points in
Cbest that exceeds the threshold σmin (line 13), then Cbest is secondary to the
primary TEC. Otherwise, Cbest is added as a primary TEC. The output set
S contains ordered sets where the first element is the covered set of a primary
TEC and the other elements are covered sets of the related secondary TECs.

No analysis of time complexity or experimental running time measure-
ments are provided for Forth’s algorithm in [18]. Forth’s algorithm only
runs SIATEC once so it can be expected to be faster than COSIATEC. In
folk-song classification Forth’s algorithm performed better than SIATEC-
Compress but not as well as COSIATEC [37]. In repeated pattern discovery
Forth’s algorithm can perform better than COSIATEC and SIATECCom-
press, depending on whether compactness trawling (see Section 3.3.1) is used
[38].

34

4 Improving the running time of MTP and TEC
computation by hashing

Hashing can be used to improve the running time of both MTP and TEC
computation. This section presents the algorithms SIAH (Section 4.1) and
SIATECH (Section 4.2), which use hashing to improve the running time of
computing the set of MTPs and TECs for a dataset. Both algorithms are
compared empirically against algorithms described in Section 3.

4.1 The SIAH algorithm

In [39], Meredith suggests that the running time of SIA can be improved by
using hashing to partition the difference vector table V instead of sorting
the table. The average, or expected, running time thus obtained would be
O(kn2). This section presents the algorithm SIAH, which uses hashing to
compute the set of MTPs for a dataset.

In SIAH the partitioning of the set of positive difference vectors is
accomplished by using a dictionary structure where the keys are placed into
a hash table. In a dictionary the keys can be used to access satellite data
[17, p.229–230]. In the case of the dictionary needed for SIAH, the keys
are difference vectors, and the satellite data for each key is a list of origin
indices for that difference vector. The operations that the dictionary needs
to support are inserting and searching. For a dictionary H, H[v] is used to
denote the satellite data associated with key v, and keyset(H) is the set of
keys that have been inserted into H.

The implementation of SIAH requires a hashing scheme for k-dimensional
vectors such that when they are used as keys in a dictionary, inserting and
searching take O(k) expected time. This expected running time can be
obtained by using universal hashing. In universal hashing the hash function
is selected at random from a class of functions when program execution is
started. The class of functions is designed in such a way that the probability
of two keys being mapped to the same slot in the hash table by a randomly
selected function is at most 1/m, where m is the number of slots [17, p. 265–
267].

In [28], Lemire and Kaser present multiple classes of strongly universal
hash functions for strings. A class of hash functions is strongly universal
if the hash values of any two keys are independent of each other [28]. The
Multilinear class of strongly universal hash functions presented in Theorem
3.1(i) of [28] can be used in the implementation of SIAH. Strongly universal
hashing is ensured for strings of fixed length. Multilinear is defined by

h(s) =
((

m1 +
n∑

i=1
mi+1si

)
mod 2K

)
÷ 2L−1, (20)

35

where the multipliers mi are random integers in the range [0, 2K), and si

denotes the ith character of the string s. The characters si are integers in
the range [0, 2L), K and L are positive integers such that K > L− 1, and n
is the length of s. The symbol ÷ denotes division where the result is rounded
down to the nearest integer. The time complexity of computing h(s) is O(n)
[28].

The Multilinear class of hash functions can be used for hashing k-
dimensional vectors if each component is expressed using a fixed number of
bits. For example, in an implementation of SIAH, the components of vectors
could be expressed as 64-bit floating point numbers. The bits of components
can be concatenated together to form a string representation of a vector
such that each block of L consecutive bits is considered a character in an
integer alphabet. The length of the string representation is linear in the
dimensionality k and can be computed in O(k) time. The length of the string
representation is also fixed because in any input dataset all vectors have the
same dimensionality. The value of a hash function from the Multilinear
class can be computed in O(k) time for the string representation of a k-
dimensional vector. Using a hash function from the Multilinear class thus
ensures O(k) expected time insert and search operations for vectors in a
hash table.

SIAH is depicted in Algorithm 9. The algorithm is very similar to SIA
except that there is no need to sort the set of difference vectors between
points in D. No difference vector table is used as the origin indices can be
placed directly in the dictionary H. On lines 4–10 all positive difference
vectors between points of D are computed. The difference vectors are used
as keys in the dictionary structure H, and a list of origin indices is associated
with each key. If the difference vector d is already a key in H, then the
origin index is appended to the end of the list (line 8). Otherwise, the index
is added as a new list on line 10. No sorting of the indices is necessary
to ensure that the points in each pattern are in ascending order because i
is only incremented in the loop on lines 4–10. At the end of the loop, H
contains all positive difference vectors between points of D as keys and for
each difference vector a list of its origin indices in Ds in ascending order.

On lines 12–17 the MTPs are collected into the setM by iterating through
the keys of H and using the list of indices I for each key to find the points
in Ds. The set M contains all non-empty MTPs in the dataset D at the end
of the algorithm. In SIAH the set M is not ordered because in the output
of SIAH, the MTPs are not in any particular order, unlike in the output of
SIA. Theorem 9 provides the time and space complexity of SIAH

36

Algorithm 9 SIA with partitioning by hashing.
1: function SIAH(D)
2: Ds ← SortLex(D)
3: H ← empty dictionary
4: for i← 0 to |Ds| − 2 do . Compute difference vectors
5: for j ← i+ 1 to |Ds| − 1 do
6: d← Ds[j]−Ds[i]
7: if d ∈ keyset(H) then
8: H[d]← H[d]⊕ 〈i〉
9: else

10: H[d]← 〈i〉
11: M ← {}
12: for v ∈ keyset(H) do . Find MTPs using H
13: I ← H[v]
14: P ← 〈〉
15: for i← 0 to |I| − 1 do
16: P ← P ⊕ 〈Ds[I[i]]〉
17: M ←M ∪ {〈v, P 〉}
18: return M

Theorem 9. Let D be a k-dimensional dataset of size n. The expected
running time of SIAH on D is O(kn2), and the worst-case space complexity
of SIAH on D is O(kn2).

Proof. Sorting D on line 2 takes O(kn logn) time when a comparison-based
sorting algorithm is used. In the loop on lines 4–10, exactly n(n−1)/2 vector
subtractions are computed, and the same number of searches and inserts on
H are performed. The subtractions are computable in worst-case O(k) time,
and the operations on H take O(k) expected time. The expected running
time of lines 2–10 is therefore O(kn2).

Computing the set M also takes O(kn2) expected time. In the loop on
lines 12–17, the number of search operations on H is at most n(n − 1)/2
because there can be at most that many distinct positive difference vectors
between points of D. The total number of indices through which the loop
iterates is exactly the total number of points in all MTPs found in the
dataset, which is n(n− 1)/2. The overall expected running time of SIAH is
thus O(kn2).

The hash table in H can be implemented so that its size is linear in the
number of keys [17, p. 256], and the number of indices in the lists associated
with the keys is the total number of points in MTPs. The space required by
H is thus O(kn2). The space required by M is also O(kn2). Therefore the
worst-case space complexity of SIAH is O(kn2).

The quadratic expected running time of SIAH depends on the operations

37

on H, taking O(k) expected time. Two distinct keys can be mapped to
the same slot by the hash function, causing a hash collision to occur [17,
p. 257]. It is possible that all difference vectors between the points of D
are distinct and still map to the same slot in the hash table in H. In such
case the worst-case time complexity of search operations becomes linear in
the number of keys (see [17, p. 258–259]), resulting in a worst-case time
complexity of O(kn2) for searching H. The worst-case time complexity of
SIAH is thus O(kn4). However, using universal hashing makes the worst
case very unlikely, and SIAH is fast in practice, as is shown in Section 4.1.1.

4.1.1 Experiments

An experimental evaluation of the running times of SIA, SIAR, and SIAH is
presented in this section. SIACT is not included in the comparisons because
its purpose is not to improve running time. The purpose of the experiments
was to compare the running times of the algorithms and to investigate the
effect of output size on running time. Output size is measured in the number
of MTPs.

The algorithms were implemented in Python 3 without any additional
libraries. The source code for the implementations is available at https://
github.com/otsob/repeated_pattern_discovery. Python 3 was chosen
because the implementations were only intended for comparisons between
algorithms. Therefore, the implementations did not need to perform optimally
as long as they were comparable with each other. All sorting operations in the
algorithms used Python’s built-in sort-function1. The dictionary structure in
SIAH was implemented using Python’s built-in dictionary structure2, which
uses a hash table for the set of keys. The hash function for vectors was based
on the Multilinear family (see Eq. 20) with K = 64 and L = 32. The
components of the vectors were expressed as floating point numbers. The
computation of the hash function was simplified by using the floating point
numbers directly as the characters of the string s in Eq. 20 and performing
the arithmetic on the floating point numbers. This potentially decreased
the performance of the hash function, but the time saved by avoiding the
transformation of vectors into bit strings was more significant overall. The
hash values for vectors were cached to avoid unnecessarily computing the
hash value multiple times for the same vector. In SIAR the parameter r
was set to 3. This value for r was chosen because the same value is used in
[39] for comparisons of output quality between unmodified COSIATEC and
COSIATEC with SIAR.

The experiments were run on a machine equipped with two Intel Xeon
1https://docs.python.org/3/library/stdtypes.html#list.sort (accessed 12

February 2018).
2https://docs.python.org/3/library/stdtypes.html#dict (accessed 12 February

2018).

38

https://github.com/otsob/repeated_pattern_discovery
https://github.com/otsob/repeated_pattern_discovery
https://docs.python.org/3/library/stdtypes.html#list.sort
https://docs.python.org/3/library/stdtypes.html#dict

E5540 CPUs and 32GB of memory running Ubuntu 14.04. Three types of
2-dimensional datasets were used: Dmin, Dmax, and Drand sets. In the Dmin

datasets (see Eq. 7) the number of MTPs is n− 1, and in the Dmax datasets
(see Eq. 8) the number of MTPs is n(n − 1)/2. These datasets have the
minimum or maximum number of MTP occurrences possible (see Eq. 6). A
scaling factor ε = 0.01 was used in the Dmax datasets. The Drand datasets
were created by generating patterns of random vectors with pattern sizes
drawn uniformly at random from the range [n/100, n/4]. Each pattern was
copied and translated 1 to 30 times by a random vector. The number of
translated copies was also selected uniformly at random. The purpose of
generating random datasets in this way was to ensure that there would be
translatable patterns in the datasets. The Drand datasets were used in place
of datasets of music due to the poor availability of large scores in suitable
format. The dimensionality of datasets was set to k = 2 in order to limit
the time used in vector operations. The time complexity of all compared
algorithms is linear in the number of dimensions. Therefore, investigating
the effects of dimensionality on running time was not considered important.

The maximum sizes of the datasets were initially limited to n = 7000
with the aim of keeping the running times below one hour. In the case of
the Drand datasets, the size was extended to n = 8000 due to the running
time of SIAR seeming anomalously large at n = 7000.

Figures 5a, 5b, and 5c below show running time against dataset size for
the different datasets. In Figure 5d, running times for Drand datasets are
shown against output size on a logarithmic scale.

The output produced by SIAR from the Dmax datasets is empty because
all translatable patterns that are discovered on the r subdiagonals consist of
only a single point. There are no intrapattern differences to be computed
from the patterns and no MTPs are computed. The running time of SIAR
was thus very low for the Dmax datasets. SIAH was consistently faster than
SIA on the Dmax datasets.

The performance of SIA and SIAH on the Dmin datasets was similar to
their performance with the Dmax datasets, with SIAH being consistently
faster than SIA. The greatest difference between the Dmax and Dmin datasets
was found in the performance of SIAR, which was slower than both SIA and
SIAH with the Dmin datasets of all tested sizes. This was because the Dmin

datasets caused the case in which the number of non-distinct intrapattern
differences is maximized (see Lemma 6 and Theorem 8).

On the Drand datasets SIAH is clearly the fastest with the largest dataset
sizes. The most interesting result with the Drand datasets occurred in the
running time of SIAR. At n = 7000 the running time of SIAR was over
5220s. The Drand measurements were extended to datasets with n = 8000
to see if the running time of SIAR would increase further with the size of
the dataset increasing. With n = 8000 the running time of SIAR dropped
to 1748s. The reason for this was that SIAR computed 39 063 MTPs from

39

the Drand dataset with n = 7000, and only 11 536 MTPs from the dataset
with n = 8000. The running time of SIAR was affected more by the number
of MTPs it computes than by the size of the input dataset. This is in line
with the time complexity analysis of SIAR in the proof of Theorem 8.

1000 2000 3000 4000 5000 6000 7000

0
20

0
40

0
60

0
80

0
10

00

Mtp count max

n

ru
nt

im
e

(s
)

SIA
SIAH
SIAR

(a) Dmax datasets

1000 2000 3000 4000 5000 6000 7000

0
50

0
10

00
15

00
20

00
25

00

Mtp count min

n

ru
nt

im
e

(s
)

SIA
SIAH
SIAR

(b) Dmin datasets

1000 2000 3000 4000 5000 6000 7000 8000

0
10

00
20

00
30

00
40

00
50

00

Rand pat

n

ru
nt

im
e

(s
)

SIA
SIAH
SIAR

(c) Drand datasets

1e+03 1e+04 1e+05 1e+06 1e+07

10
20

50
10

0
20

0
50

0
20

00
50

00

Random patterns, output sizes

Number of MTPs computed

ru
nt

im
e

(s
)

SIA
SIAH
SIAR

(d) Drand datasets

Figure 5: Running times of MTP discovery algorithms.

Figure 5d shows the running times of the algorithms for theDrand datasets
against output size, i.e., the number of MTPs the algorithm computed from
the dataset. The output sizes of SIA and SIAH was the same because they
both compute all MTPs in the dataset. The output size of SIAR was smaller
than the output of SIA and SIAH for all Drand datasets. Although the
output of SIAR was small compared to SIA and SIAH, SIAR took more
time per MTP. In SIAR the time complexity of computing each MTP that
is added to the output is linear in the size of the dataset. This is likely to

40

be the reason why the running time of SIAR was so strongly affected by
the number of MTPs it output. The running time benefits that SIAR gains
over SIA by only computing the r subdiagonals are lost when the size of the
output grows.

The running times of SIA were consistently higher on the Drand datasets
than on the Dmax and Dmin datasets. The cause of this is not clear although
it might be related to the number of memory allocations performed on the
dynamic lists that are used in the implementations. Finding the reasons for
the differences in the performance of SIA on different types of datasets would
require further measurements which are beyond the scope of this thesis.

In two cases the running time of SIAH decreases when the size of the
dataset grows. This occurs with the Dmax datasets when moving from
n = 5000 to n = 6000 and with the Drand datasets when moving from
n = 6000 to n = 7000. The randomly selected multipliers in the hash function
could not have been the cause of this as they were kept the same across
all experiments, except for the runs on the n = 8000 Drand datasets, which
were run separately. It is possible that with the difference vectors computed
between the points of the larger dataset, fewer hash collisions occurred, and
the hash table functioned more effectively. Overall, the performance of SIAH
was very similar with different types of datasets, which implies that SIAH is
likely to be fast in practice with a variety of different datasets.

4.2 The SIATECH algorithm

This section presents a novel algorithm SIATECH that uses hashing to
compute the set of all MTP TECs T ′(D) (Eq. 12) for a dataset D. The
purpose of SIATECH is to improve upon the running time of SIATEC. An
empirical comparison of running times between SIATECH and SIATEC is
provided in Section 4.2.1.

SIATECH, depicted in Algorithm 10 below, uses a dictionary H where
the keys are inserted into a hash table similarly to SIAH. In addition to using
H to compute MTPs, SIATECH also uses H to find the translators for each
MTP. On lines 4–10 all positive difference vectors are computed and the
corresponding indices in Ds are stored in H. In SIATECH the target indices
of positive difference vectors are also stored. For a vector v ∈ keyset(H),
the list H[v] contains pairs of indices 〈i, j〉, where i is the origin index and j
the target index, such that Ds[i] + v = Ds[j]. Once all positive difference
vectors are computed, the target indices of a vector v in the list H[v] are
the indices of points in Ds that are produced when MTP (v,D) is translated
by v. The target indices are used by the FindTranslatorsH procedure
depicted in Algorithm 11. The origin indices in H[v] are used to compute the
MTP P for v in D (lines 14–17 of Algorithm 10). Lines 2–17 of SIATECH
are roughly equal to running SIAH on the dataset D.

To avoid computing the same TEC multiple times, the translators for

41

P are computed only if a TEC for a translationally equivalent MTP has
not already been computed. Translational equivalence is compared using
the vectorized representations of MTPs. The set C contains vectorized
representations of the patterns in the previously computed TECs. If the
vectorized representation of P is in C, then the TEC for P is already in the set
of computed TECs T , and it is unnecessary to compute the translators for P
in D. The set C is implemented as a hash table by using the Multilinear
class of hash functions (see Eq. 20). The Multilinear class of hash
functions provides strongly universal hashing for variable length strings that
are not terminated by a zero character (Theorem 3.1. of [28]). A string
representation can be formed for any pattern by concatenating the string
representations of the vectors (see Section 4.1) in the pattern. A non-zero
character can be added to the end of the string representations of patterns
to ensure that the strings do not end in a zero character. Forming such a
string for a k-dimensional pattern P can be performed in O(k|P |) time, and
the length of the string is O(k|P |). The time complexity of computing the
value of a hash function from the Multilinear class is linear in the length
of the string [28]. Therefore, the hash function for the string representation
of a pattern can be computed in O(k|P |) time.

If P contains only a single point, then its set of translators T in D is
computed on lines 20–22. Otherwise, the FindTranslatorsH procedure
is used. At the end of the loop, the TEC 〈P, T 〉 is added to T , and the
vectorized representation of P is added to C (lines 25–26). On line 27 the set
T contains the TEC for each MTP in D. The MTPs are not computed in any
particular order in SIATECH. There are two consequences to this. Firstly,
the output of SIATECH is not in any particular order and therefore the set
T returned by SIATECH is not an ordered set. Secondly, the occurrence of
an MTP that is used as the pattern in the representation of a TEC might
not be the same in the output of SIATEC and SIATECH. Although both
SIATEC and SIATECH compute the set T ′(D), they might produce different
representations of TECs.

The overall structure of SIATECH is very similar to that of SIATEC.
Both algorithms first compute MTPs and then use a procedure to compute
the sets of translators for TECs. The main difference between the two
algorithms is in their method of finding translators. SIATECH uses the
vectorized representations (see Eq. 16) of MTPs and the dictionary H to
find the set of translators of each TEC.

42

Algorithm 10 SIATEC with hashing.
1: function SIATECH(D)
2: Ds ← SortLex(D)
3: H ← empty dictionary
4: for i← 0 to |Ds| − 2 do . Compute difference vectors
5: for j ← i+ 1 to |Ds| − 1 do
6: d← Ds[j]−Ds[i]
7: if d ∈ keyset(H) then
8: H[d]← H[d]⊕ 〈〈i, j〉〉
9: else

10: H[d]← 〈〈i, j〉〉
11: T ← {}
12: C ← {}
13: for v ∈ keyset(H) do
14: P ← 〈〉
15: for i← 0 to |H[v]| − 1 do . Compute MTP
16: k ← H[v][i][0]
17: P ← P ⊕ 〈Ds[k]〉
18: if V EC(P) /∈ C then
19: T ← 〈〉
20: if |P | = 1 then . Compute translators for single point MTP
21: for i← 0 to |Ds| do
22: T ← T ⊕ 〈P [0]−Ds[i]〉
23: else
24: T ← FindTranslatorsH(P,H, Ds)
25: T ← T ∪ {〈P, T 〉}
26: C ← C ∪ {V EC(P)}
27: return T

The translators for a pattern P are computed by finding all subsets
of the dataset D that are translationally equivalent to P . The vectorized
representation of P is employed in the process by applying the following
results. Let Ps and Qs be sorted patterns of length l > 1 and i an integer
such that 0 ≤ i ≤ l − 2. Any point in Qs, except the first one, can be
expressed using the previous point and the vectorized representation of Qs,
that is

Qs[i+ 1] = Qs[i] + V EC(Qs)[i].
If V EC(Ps) = V EC(Qs), then

Qs[i+ 1] = Qs[i] + V EC(Ps)[i].

If the above equation holds for all values of i, then the vectorized represen-
tations are equal. Lemma 10 shows how the above relates to translational

43

equivalence.

Lemma 10. Let Ps and Qs be lexicographically sorted patterns of length
l > 1. Then Qs[i+ 1] = Qs[i] + V EC(Ps)[i] for i = 1, . . . , l − 2 if and only
if Ps ≡T Qs.

Proof. By applying the definition of vectorized representation (Eq. 16) and
the relation Ps ≡T Qs ⇔ V EC(Ps) = V EC(Qs) (Eq. 19 of [41]), it can be
directly deduced that

Qs[i+ 1] = Qs[i] + V EC(Ps)[i], i = 1, . . . , l − 2
⇔ V EC(Ps)[i] = Qs[i+ 1]−Qs[i], i = 1, . . . , l − 2
⇔ V EC(Ps)[i] = V EC(Qs)[i], i = 1, . . . , l − 2
⇔ V EC(Ps) = V EC(Qs)

⇔ Ps ≡T Qs.

The FindTranslatorsH procedure of SIATECH is based on the result
presented in Lemma 10. Recall that the target indices in H[v] are the indices
of all points in Ds that can be produced by translating points in D by v.
The purpose of storing target indices in H is to make translating any points
during the FindTranslatorsH procedure unnecessary. The points within
any MTP computed in SIATECH are in ascending lexicographical order. All
patterns given to FindTranslatorsH as input are therefore in ascending
lexicographical order.

The FindTranslatorsH procedure is depicted in Algorithm 11. The
procedure finds the lexicographically greatest points, i.e., the last points, of all
patterns in D that are translationally equivalent to P . This is accomplished
by traversing sequences of points in D such that the second point in a
sequence can be produced by translating the first point by V EC(Ps)[0],
the third point by translating the second point by V EC(Ps)[1] and so on.
Each of the fully traversed sequences forms a pattern that is translationally
equivalent to P . This is shown in the proof of Theorem 11. The last points
of the sequences are used for computing the set of translators for P in D.

In Algorithm 11, the ordered set A is used for keeping track of the indices
in Ds of the last points of the sequences. Once A is initialized on lines 2–5,
A contains the target indices in H[V EC(P)[0]]. These are the indices in Ds

of all points that can be produced by translating points in D by V EC(P)[0].

44

Algorithm 11 The procedure used by SIATECH to find the translators for
an MTP.

1: function FindTranslatorsH(P,H, Ds)
2: A← 〈〉
3: v ← V EC(P)[0]
4: for i← 0 to |H[v]| − 1 do . Initialize A
5: A← A⊕ 〈H[v][i][1]〉
6: for i← 1 to |V EC(P)| − 1 do
7: v ← V EC(P)[i]
8: L← H[v]
9: A′ ← 〈〉

10: j ← 0
11: k ← 0
12: while j < |A| ∧ k < |L| do . Find matching indices
13: if A[j] = L[k][0] then
14: A′ ← A′ ⊕ L[k][1]
15: j ← j + 1
16: k ← k + 1
17: else if A[j] < L[k][0] then
18: j ← j + 1
19: else if A[j] > L[k][0] then
20: k ← k + 1
21: A← A′ . Update A
22: T ← 〈〉
23: p← P [|P | − 1] . Use the last point of P to compute translators.
24: for i← 0 to |A| − 1 do
25: T ← T ⊕ 〈Ds[A[i]]− p〉
26: return T

On lines 6–21 the set A is updated by finding the indices of points that
can be used to extend the sequences. This is done by comparing the indices
in A with the origin indices in L. The list L contains the index pairs in
H[V EC(P)[i]]. Let a ∈ A be the index of the last point of a sequence S and
〈o, t〉 be an index pair in L. If a = o, then the point Ds[a] can be translated
by V EC(P)[i] to produce the point Ds[t]. This means that the sequence S
can be extended by Ds[t]. The index t is added to A′ as it is the index of a
point that can be used to extend a sequence. The loop on lines 12–20 finds
all indices in A that match origin indices in L and adds the corresponding
target indices in L to A′. As all indices in the lists in H are in ascending
order, finding the matching indices can be performed by scanning through
each list once. At the end of the loop, A is updated by assigning A′ to it
(line 21).

45

On line 22 the set A contains the indices of the last points of sequences in
D that can be produced using V EC(P). The last point of P , the indices in A,
and the sorted dataset Ds can thus be used to compute the set of translators
T for P in D on lines 22–25. The correctness of the FindTranslatorsH
procedure is shown in the proof of Theorem 11.

Note that the set A will not be empty at any point of the FindTransla-
torsH procedure once it has been initialized. Each pattern P that is given
to FindTranslatorsH as an argument in SIATECH is an MTP. Therefore,
there are always at least two translators for P in D. No benefit can thus be
gained from checking whether A is empty and terminating the loop on lines
6–21 before i = |V EC(P)|.

Theorem 11. For a lexicographically sorted pattern Ps in dataset D such
that |Ps| > 1, FindTranslatorsH computes the set of translators T (Ps, D)
as defined by Eq. 11.

Proof. All references to lines in the proof refer to Algorithm 11. Each index
in the set A corresponds to a point in D. Therefore, the proof can be
simplified by referring to the points in D directly by using the following
notation. Let A1 ⊂ D denote the set of points that corresponds to the indices
in A after initialization on lines 2–5. Let Ai+1 ⊂ D denote the set of points
that corresponds to the indices in A at the end of the ith iteration of the
loop on lines 6–21. Let l denote the size of Ps.

The set A1 is computed by finding all points translatable by V EC(Ps)[0]
in D and then translating them by V EC(Ps)[0], that is,

A1 = MTP (V EC(Ps)[0], D) + V EC(Ps)[0].

Therefore, for each point a1 ∈ A1 there exists a point a0 ∈ D such that
a1 = a0 + V EC(Ps)[0].

In the loop on lines 6–21, the computation corresponds to first finding all
points in Ai that are translatable by V EC(Ps)[i] in D and then translating
them by V EC(Ps)[i] to produce the set Ai+1. Therefore, for each ai+1 ∈ Ai+1
there exists a point ai ∈ Ai such that ai+1 = ai + V EC(Ps)[i].

On the last iteration of the loop on lines 6–21, the set Al−1 is computed.
For each point al−1 ∈ Al−1 there exists a sequence of points S = 〈a0, . . . , al−1〉
such that ai+1 = ai + V EC(Ps)[i] for i = 0, . . . , l − 2. From Lemma 10 it
follows that S ≡T Ps. Each vector in V EC(Ps) is positive and each point
in S besides the first one is produced by adding a vector from V EC(Ps) to
the previous point. The points in S are clearly in ascending lexicographical
order, and al−1 is the lexicographically greatest point in S.

The set of difference vectors between the last point of Ps and the points
in Al−1 is thus the set of translators for Ps in D. This set is computed on
lines 22–25 and returned by the algorithm. FindTranslatorsH therefore
computes exactly the set T (Ps, D).

46

Based on Theorem 11 it is evident that SIATECH computes the TECs
for MTPs correctly. Therefore, the output of SIATECH on dataset D is the
set T ′(D) (Eq. 12). The time and space complexity of SIATECH is analyzed
next.

Theorem 12. Let D be a k-dimensional dataset of size n. The expected run-
ning time of SIATECH on D is O(kn3), and the worst-case space complexity
of SIATECH on D is O(kn2).

Proof. Computing the MTPs in D on lines 2–17 of SIATECH is practically
equal to running SIAH on D. The expected running time of lines 2–17 is
therefore O(kn2) (see Theorem 9).

The size of the vectorized representation of a pattern P is |P | − 1.
The total number of vectors in the vectorized representations of all MTPs
computed by SIATECH is thus O(n2). The set C is implemented as a hash
table by using a string representation of P and a hash function from the
Multilinear class. The expected running time of searching C for a pattern
P is O(k|P |). Inserting P into C also takes O(k|P |) expected time. All
search operations on C (line 18) and insertions into C (line 26) during the
execution of SIATECH therefore take O(kn2) expected time in total.

A pattern with size 1 is handled only once, and computing the set of
translators for this kind of single-point pattern takes O(kn) time. The more
significant part of SIATECH in regard to running time is the FindTrans-
latorsH procedure. For a pattern P the FindTranslatorsH procedure
iterates through V EC(P), and for each vector v ∈ V EC(P) the procedure
performs a search in H and iterates through H[v] and A. The search takes
O(k) expected time. The size of H[v] is the number of times v occurs as
a positive difference vector between points of D. This is equal to the size
of MTP (v,D). The size of both H[v] and A is bounded from above by the
size of the largest MTP in the set of all MTPs S(D) (see Eq. 4) computed
in SIATECH. Let m denote the size of the largest MTP in S(D). The
expected running time of computing translators for all MTPs in S(D) is
O(kmn2). The largest MTP in S(D) can have at most n− 1 points. Thus,
the expected running time of computing translators for all MTPs is O(kn3).
The expected running time of SIATECH is dominated by computing the
translators, resulting in an overall expected running time of O(kn3).

The number of index pairs in the lists inH is O(n2). The space complexity
of SIATECH is dominated by the size of H and C, which both contain O(n2)
k-dimensional vectors, leading to a worst-case space complexity of O(kn2)
for SIATECH.

In the worst case the search operations on H and C are linear in the
number of keys. This occurs if all keys used in H and C map to the same slot.
For both the number of keys is quadratic in n. The search operations on C on
line 18 of Algorithm 10 take O(kn4) time in total in the worst case. Running

47

FindTranslatorsH on all vectors in the vectorized representations of the
MTPs also takes O(kn4) time in the worst case because a search of H is
performed on each of the O(n2) vectors. The worst-case time complexity of
SIATECH is O(kn4).

The asymptotic upper bound on the expected running time of SIATECH
is the same as the asymptotic upper bound on the worst-case time complexity
of SIATEC. Also the worst-case time complexity of SIATECH is greater
than that of SIATEC. However, the FindTranslatorsH procedure used
by SIATECH can be more efficient than the corresponding FindTransla-
tors procedure used by SIATEC. The running time of FindTranslators
depends on the size of the input dataset, whereas the running time of Find-
TranslatorsH depends on the size of MTPs found in the input dataset.
If the maximum size of the MTPs found in the input dataset is small, then
SIATECH can be notably faster than SIATEC.

4.2.1 Experiments

Experiments were conducted to compare the running times of SIATEC and
SIATECH. The experimental setup was the same as in the experiments
presented in Section 4.1.1. The algorithms were implemented in Python
3, and the experiments were run on a machine with two Intel Xeon E5540
CPUs and 32GB of memory. A version of SIATEC that does not compute
the same TEC multiple times was chosen because computing the same
TEC multiple times was found to greatly increase the running time of
SIATEC. SIATECH does not compute the same TEC multiple times either
so such an implementation of SIATEC was considered more comparable to
SIATECH. SIATEC was implemented according to [41], where the vectorized
representations of MTPs were computed using the sorted difference vector
table Vs and the sorted dataset Ds.

The set C in SIATECH was implemented using Python’s built-in set3 data
structure. The hash function for patterns was based on the Multilinear
class of hash functions. The hash function was simplified by using the compo-
nents of the vectors directly as the characters in the string representation and
by performing the computation using floating-point arithmetic. A non-zero
character was not added to the end of the string representation. These
simplifications potentially compromise the guarantee of strongly universal
hashing, but the performance of the hash function was considered adequate
even in the simplified form. The hash function for vectors was implemented
as specified in Section 4.1.1.

The Dmax (Eq. 8), Dmin (Eq. 7), and Drand datasets were used as the
input datasets in the experiments. All datasets were 2-dimensional, and
their size was limited to n = 4000 due to the large running times of the

3https://docs.python.org/3/library/stdtypes.html#set (accessed 22 February
2018).

48

https://docs.python.org/3/library/stdtypes.html#set

algorithms. The Drand datasets were generated in the same manner as in the
experiments presented in Section 4.1.1. New Drand datasets were generated
for the experiments on SIATEC and SIATECH.

500 1000 1500 2000 2500 3000 3500 4000

0
10

0
20

0
30

0
40

0

MTP count max

n

ru
nt

im
e

(s
)

SIATEC
SIATECH

(a) Dmax datasets

500 1000 1500 2000 2500 3000 3500 4000
0

20
00

0
40

00
0

60
00

0
80

00
0

MTP count min

n

ru
nt

im
e

(s
)

SIATEC
SIATECH

(b) Dmin datasets

500 1000 1500 2000 2500 3000 3500 4000

0
50

00
10

00
0

15
00

0

Random patterns

n

ru
nt

im
e

(s
)

SIATEC
SIATECH

40
0

(c) Drand datasets

n Avg. MTP Max MTP TECs
500 1.11 52 223
1000 1.05 51 10 392
1500 1.08 58 48 757
2000 1.11 465 35 629
2500 1.19 108 284 469
3000 1.20 105 414 357
3500 1.20 196 524 222
4000 1.18 309 447 615

(d) MTP sizes and TEC counts in Drand

datasets

Figure 6: Runtimes of TEC discovery algorithms.

Figure 6a shows the running time measurements for the Dmax datasets,
Figure 6b for the Dmin datasets, and Figure 6c for the Drand datasets. In
Figure 6d, the average and maximum sizes of MTPs and the number of TECs
in the Drand datasets is shown.

All MTPs found in the Dmax datasets contain only a single point. There-
fore, there is only a single TEC to be found in the datasets regardless of their
size. Running SIATEC and SIATECH on the Dmax datasets is quite similar
to running the algorithms without computing the translators for any MTPs.
The running times on these datasets are not interesting as such, but they
offer a point of comparison for evaluating the effectiveness of the procedures
the algorithms use for computing translators.

The running times of both SIATEC and SIATECH are considerably
greater on the Dmin datasets than on the Dmax datasets. In the case of
SIATECH, this is caused by the fact that the vector (1, 0) occurs n− 1 times

49

as a difference vector between the points of a Dmin dataset of size n, i.e.,
|MTP ((1, 0), Dmin)| = n − 1. The vectorized representations of MTPs in
the Dmin datasets also only consist of the vector (1, 0). The size of the
list L in Algorithm 11 will thus be n− 1 for each vector in the vectorized
representation of P . Assuming that the searches in H are performed in O(k)
time, this is the worst case for the FindTranslatorsH procedure.

The FindTranslators procedure (Algorithm 5) of SIATEC uses the
difference vector table W to find the translators. In the case of the Dmin

datasets, each diagonal of W contains only a single distinct difference vector,
i.e., on the first subdiagonal all vectors are (1, 0), on the second subdiagonal
all vectors are (2, 0) and so on. The FindTranslators procedure will thus
access all columns at the indices in C for each vector in the column C[0] that
is within the range defined by the condition of the while-loop (line 6). In
short, the loop on lines 11–17 will never be terminated on line 15. The Dmin

datasets thus cause worst-case performance also for the FindTranslators
procedure of SIATEC.

For computing the MTPs in a dataset, SIATEC uses SIA, and SIATECH
uses SIAH. The performance of SIA is quite similar on the Dmax and Dmin

datasets, as is the performance of SIAH (see Figures 5a and 5b). Therefore,
it can be reasoned that the difference in the running times of SIATEC and
SIATECH between the Dmax and Dmin datasets is mostly caused by the
time required to compute the translators for the MTPs. For both algorithms
the biggest factor contributing to their running times is the computation of
the translators. Although the Dmin datasets do not necessarily cause worst-
case performance overall for SIATEC or SIATECH, they cause worst-case
performance for the procedures they use for computing the sets of translators
for TECs.

On the Dmax and Dmin datasets, the growth of running time against
dataset size is similar for both SIATEC and SIATECH. The difference in
the performance of SIATEC and SIATECH is more notable on the Drand

datasets. The running time of SIATECH is considerably smaller than the
running time of SIATEC for the Drand datasets where n ≥ 2500. When
going from n = 2000 to n = 2500, the number of TECs in the datasets
increases drastically (see Figure 6d). In SIATEC the time complexity of the
FindTranslators procedure has a lower bound that is linear in the size
of the dataset. Therefore, the increase in the number of TECs along with
an increase in dataset size causes a steep increase in the running time of
SIATEC. On the other hand, the running time of SIATECH is not as greatly
affected by the increase in the number of TECs. The running time of the
FindTranslatorsH procedure of SIATECH depends more on the size of
the MTPs found in the dataset than on the size of the dataset.

Recall that in the FindTranslatorsH procedure the time required
per vector v in V EC(P) is linear in the size of MTP (v,D), where D is the
dataset. Although the size of an MTP in a dataset of size n can be at most

50

n − 1, the MTPs in the Drand datasets are generally much smaller. The
average size of the MTPs in the Drand datasets is at most 1.20, and the
maximum size of MTPs is less than n/10 for most of the datasets. Computing
the set of translators in SIATECH is thus very fast in the case of the Drand

datasets.
SIATECH is faster than SIATEC on all datasets used in the experiments.

The difference between the running times of the algorithms is greatest on
the Drand datasets where the number of TECs is large and the size of MTPs
is small. The advantage of SIATECH on these datasets is mostly due to the
effectiveness of the FindTranslatorsH procedure. However, it is possible
that the structure of the Drand datasets makes the performance difference
between SIATEC and SIATECH greater than what it would be on music
datasets in general.

5 Improving the running time of TEC computa-
tion by filtering

The variants of SIATEC described in Section 3.5 use heuristic functions
to filter the output of SIATEC. The goal of the algorithms is to improve
only the quality of the output by filtering out TECs that are not considered
musically important. The running time of the variants is greater than the
running time of SIATEC because all of the variant algorithms run SIATEC at
least once on the input dataset during their execution. This section explores
the possibility of using filtering to improve running time by avoiding the
computation of certain TECs. Section 5.1 presents results on how the set
S(D) (Eq. 4) of MTPs in a dataset D can be used to compute an upper
bound on the compression ratio of a TEC in D without computing the TEC.
In Section 5.2, the upper bound on compression ratio is used for filtering
MTPs in a novel algorithm SIATECHF.

5.1 An upper bound on compression ratio

Recall that the TEC of a pattern P in a dataset D is the set of all subsets
of D that are translationally equivalent to P (see Definition 5). Let Q
be TEC(P,D) represented as pattern and its set of translators in D, that
is, Q = 〈P, T 〉. If the set of translators T includes the zero vector, then
|T | = |TEC(P,D)|. In other words, the number of times the pattern P
occurs in D is equal to the size of T . It is possible to obtain an upper
bound for the number of occurrences of pattern P in D by considering the
intrapattern difference vectors. Let the set of positive intrapattern difference
vectors of P be denoted by

∆(P) = {p2 − p1 | p1, p2 ∈ P ∧ p1 < p2}.

51

The same vector can occur multiple times in ∆(P), i.e. ∆(P) is a multiset.
Translating P by any vector does not change ∆(P). Thus, every time the
pattern P occurs in D all difference vectors in ∆(P) occur between some
points in D. The pattern P cannot have more occurrences in D than the least
frequent vector in ∆(P) has in ∆(D). Recall that the count of occurrences
for a vector v in ∆(D) is equal to the size of MTP (v,D). The size of the
set of translators T is thus bounded by

|T | ≤ min
v∈∆(P)

|MTP (v,D)|.

The size of P also sets an upper bound on the size of the set of translators
in D. If P ⊆ D and |P | = |D|, then P can only be translated by 0̄ in
D. Decreasing the size of P by one can add at most one translator to T .
Therefore, the size of the set of translators is also bounded by

|T | ≤ |D| − |P |+ 1.

By combining the above, the upper bound

|T | ≤ min
(

min
v∈∆(P)

|MTP (v,D)|, |D| − |P |+ 1
)

(21)

for the size of the translator set of the TEC Q is obtained. Next, this upper
bound is used to derive an upper bound on the size of the covered set of Q
and the compression ratio of Q.

Let τ(P) denote the upper bound on the size of T as defined by Eq. 21.
The size of the covered set (see Eq. 17) of Q = 〈P, T 〉 is largest when the
points produced by translating P by all translators in T are distinct. This is
equal to all patterns in TEC(P,D) being disjoint. The size of the covered
set is therefore bounded by

|COV(Q)| ≤ |P ||T |.

By plugging in the upper bound for the size of T , the bound

|COV(Q)| ≤ |P |τ(P) (22)

is obtained.
The compression ratio (see Eq. 18) of a TEC Q = 〈P, T 〉 has an upper

bound
CR(Q) ≤ |P ||T |

|P |+ |T | − 1 ,

which results from assuming that all patterns in the TEC are disjoint. The
above upper bound increases if P is not empty and the size of T is increases.
As |T | ≤ τ(P), it is possible to plug τ(P) into the above inequality:

CR(Q) ≤ |P |τ(P)
|P |+ τ(P)− 1 . (23)

52

An upper bound on the compression ratio of TEC Q = 〈P, T 〉 in D can thus
be computed without computing the set of translators T by using the upper
bound on T of Eq. 21.

5.2 SIATECHF: SIATECH with filtering

In [30], intrapattern difference vectors were used for filtering in an algorithm
that performs pattern matching using a multidimensional representation
of music. A similar idea is employed in the algorithm SIATECHF, which
takes as its input a multidimensional dataset D and a compression ratio
threshold cmin. The output of SIATECHF contains all MTP TECs in the
input dataset that have a compression ratio of a least cmin. Intrapattern
vectors and the upper bound on compression ratio of Eq. 23 are used to
perform prefiltering: if the upper bound on compression ratio computed for
an MTP does not exceed cmin, then the TEC for that MTP is not computed
at all. In addition to prefiltering, it is necessary to compute the exact
compression ratio of TECs before adding them to the output. This is called
postfiltering. Prefiltering could also be performed by using the upper bound
on the number of translators or the upper bound on the size of the covered
set. Compression ratio is used in SIATECHF because compression ratio is
considered to reflect the musical salience of patterns [11]. The output of
SIATECHF can also be filtered further by using other heuristics, such as
pattern compactness (see Section 3.5.1).

The size of the set of all intrapattern differences ∆(P) is quadratic in
the size of P . Although using all intrapattern vectors to compute the upper
bound is likely to result in a tighter bound, it can be too time consuming
for prefiltering to actually improve running time. For prefiltering to improve
the running time of SIATECHF, prefiltering must be faster than computing
the TEC for an MTP and then performing postfiltering by computing the
exact compression ratio of the TEC.

The expected running time of the FindTranslatorsH procedure (Al-
gorithm 11) is O(kn|P |) and Ω(k|P |) for a k-dimensional pattern P . The
exact compression ratio of a TEC Q = 〈P, T 〉 depends on the size of the
covered set of Q. Computing the covered set requires translating |P | points
by |T | translators and collecting the distinct points thus produced. By using
a hashtable to collect the distinct points, the covered set can be computed
in O(k|P ||T |) expected time. To ensure that prefiltering decreases running
time, the time complexity of computing the upper bound on the compression
ratio of TEC(P,D) should be at most linear in the size of P . This can be
accomplished by using only a subset of ∆(P). The inequality of Eq. 21 holds
if ∆(P) is replaced by any subset of ∆(P). The upper bound on compression
ratio thus also holds when using a subset of ∆(P).

53

For computing the upper bound on the number of translators (Eq. 21),
SIATECHF uses the set

∆′(P) = V EC(P)⊕ 〈P [|P | − 1]− P [0]〉, (24)

where V EC(P) is the vectorized representation of P (see Eq. 16). The
pattern P is assumed to be in ascending lexicographical order. The difference
vector from the first point to the last point of P is added to ∆′(P) in order to
diversify the set of vectors used for computing the upper bound. According
to [24], small pitch intervals between consecutive notes are more common
than large pitch intervals in multiple styles of music. The onset times of
consecutive note events can also be very close to each other due to meter,
which is the regular pulse of rhythm that often occurs in music. If the
points in a pattern represent consecutive note events, then the vectors in
their vectorized representation can be very similar to each other and also
very frequent in ∆(D). Using a more diverse subset of ∆(P) than just
V EC(P) can therefore provide a tighter upper bound on compression ratio.
Adding the difference vector from the first point to the last point of P thus
potentially improves the bound while only adding one vector to the subset.
The size of ∆′(P) is equal to the size of P . Another possibility would be to
use the difference vectors originating from the first point of P . Finding the
best choice of subset for computing the upper bound on compression ratio
would require computing distributions of intrapattern vectors for MTPs that
occur in a large and diverse corpus of music. Due to the poor availability of
scores in suitable format, finding the optimal choice of intrapattern vectors
is beyond the scope of this thesis.

For prefiltering to work efficiently, an effective method for finding the
size of any MTP in S(D) is needed. This is provided by the dictionary H.
SIATECHF uses H in exactly the same way as SIATECH (see Algorithm
10). Given a k-dimensional dataset D, once all difference vectors and cor-
responding indices are inserted into the dictionary H, it is possible to find
the size of the MTP for any vector in keyset(H) in O(k) expected time.
This requires that the size of the lists is also computed and saved when the
difference vectors are computed. The upper bound on the compression ratio
of TEC(P,D) can thus be computed in O(k|P |) expected time by using the
set ∆′(P) and H.

SIATECHF, depicted in Algorithm 12 below, is almost identical to
SIATECH. The differences between the two are that SIATECHF takes the
compression ratio threshold cmin as an argument, and on lines 9 and 12 pre-
and postfiltering are performed. The computation of H (line 3), P (line 7),
and T (line 10) is performed exactly as in SIATECH (see Algorithm 10).

54

Algorithm 12 SIATECH with pre- and postfiltering.
1: function SIATECHF(D, cmin)
2: Ds ← SortLex(D)
3: H ← ComputeDifferences(Ds)
4: T ← {}
5: C ← {}
6: for v ∈ keyset(H) do
7: P ← ComputeMTP(v,H)
8: if V EC(P) /∈ C then
9: if CRUB(P) ≥ cmin then . Prefiltering

10: T ← ComputeTranslators(P,H)
11: Q← 〈P, T 〉
12: if CR(Q) ≥ cmin then . Postfiltering
13: T ← T ∪ {Q}
14: C ← C ∪ {V EC(P)}
15: return T

The upper bound on the compression ratio for pattern P is computed on
line 9 by using the set ∆′(P) (Eq. 24) to compute the upper bound τ(P) on
the number of translators as defined by Eq. 21. The value of τ(P) is plugged
into Eq. 23 to compute the upper bound on the compression ratio of the
TEC of P in D. If the upper bound on the compression ratio of the TEC
for P in D is less than the threshold cmin, then the compression ratio of the
TEC cannot exceed cmin and it is unnecessary to compute the translators
for P in D.

The compression ratio of a TEC can, of course, be lower than the upper
bound computed during prefiltering. It is therefore necessary to compute
the exact compression ratio of Q and perform postfiltering on line 12. Only
TECs that have a sufficiently high compression ratio are added to T so that
SIATECHF returns only those TECs that have a compression ratio of at
least cmin.

For SIATECHF to provide running time improvements over SIATECH on
large datasets, its expected running time should not exceed that of SIATECH.
Theorem 13 shows that performing pre- and postfiltering does not increase
expected running time.

Theorem 13. Let D be a k-dimensional dataset of size n. The expected
running time of SIATECHF on D is O(kn3), and the worst-case space
complexity of SIATECHF on D is O(kn2).

Proof. The upper bound on the compression ratio of the TEC of a pattern P
in D is computable in O(k|P |) expected time. The total number of points in
all MTPs computed in SIATECHF is quadratic in n. Therefore, prefiltering
takes O(kn2) expected time in total during the execution of SIATECHF.

55

Computing the exact compression ratio of TEC Q = 〈P, T 〉 requires
computing the covered set of Q, which takes O(k|P ||T |) expected time.
The rest of the compression ratio computation consists of constant time
operations. The number of translators is at most n for any pattern in D.
Computing the compression ratios for all MTP TECs can be accomplished
in O(kn3) expected time.

The rest of SIATECHF is equal to SIATECH, which has an expected
running time of O(kn3) (Theorem 12). The overall expected running time of
SIATECHF is therefore O(kn3).

Pre- and postfiltering do not increase the space complexity of SIATECHF
beyond that of SIATECH. From Theorem 12 it follows that the worst-case
space complexity of SIATECHF is O(kn2).

The expected running time and space complexity of SIATECHF are
equal to those of SIATECH. Whether SIATECHF is faster than SIATECH
in practice is investigated in Section 5.2.1.

5.2.1 Experiments

Experiments were conducted to investigate the effects of pre- and postfiltering
on the running time of computing TECs. A comparison of running time
and output between SIATECHF and the point-set compression algorithms
described in Section 3.5 was also conducted. All algorithms were implemented
in Python 3, and the setup of the experiment was the same as described
in Sections 4.1.1 and 4.2.1. For all measurements the algorithms were run
on 2-dimensional random pattern Drand datasets that were generated in
the manner that is described in Section 4.1.1. New Drand datasets were
generated for the experiments presented in this section.

Figure 7 below shows the running times of SIATECH, SIATECH with
added postfiltering (SIATECH-PF) and SIATECHF with two different com-
pression ratio threshold values. The value of the used threshold is given in
parentheses after the name of the algorithm in the plot legend.

Adding postfiltering to SIATECH increases the running time on the
larger datasets as can be expected. On the smaller datasets the running
time is slightly smaller. This is potentially caused by the smaller size of the
output when postfiltering is used. A smaller output size possibly results in
fewer memory allocations in the dynamic list used in the implementation to
contain the output.

Prefiltering improves running time so that SIATECHF is faster than
SIATECH on all input datasets. However, the improvement is not great.
Increasing the compression ratio threshold was expected to improve the
running time further as more patterns would be filtered already at the
prefiltering stage. The running times of SIATECHF between threshold values
cmin = 3 and cmin = 5 are almost identical. Based on the measurements

56

presented in Figure 7, performing prefiltering in SIATECHF does not provide
a significant improvement in running time over SIATECH.

1000 2000 3000 4000 5000 6000

0
20

0
40

0
60

0
80

0
10

00

Random patterns

n

ru
nt

im
e

(s
)

SIATECH
SIATECH−PF(3)
SIATECHF(3)
SIATECHF(5)

Figure 7: Effects of pre- and postfiltering on running time.

500 1000 1500 2000 2500 3000

1
10

10
0

10
00

10
00

0

Random patterns

n

ru
nt

im
e

(s
)

COSIATEC
SIATECHF(3)
SIATECCompress
Forth's algorithm

Figure 8: Filtering algorithm running times on Drand datasets.

Figure 8 shows running time measurements of COSIATEC, SIATECCom-
press, Forth’s algorithm, and SIATECHF on Drand datasets. The running

57

times are given on logarithmic scale as the differences in the running times
of the algorithms are great. In the implementations of COSIATEC, SIATE-
CCompress, and Forth’s algorithm, SIATEC was replaced by SIATECH to
make their comparison with SIATECHF less affected by the running time
differences between SIATEC and SIATECH. The parameter values for Forth’s
algorithm (see Algorithm 8) were set to cmin = 15 and σmin = 0.5 after [39].
The compression ratio threshold in SIATECHF was set to cmin = 3 as the
overall compression ratio of the output of COSIATEC is approximately 3 in
[39].

The differences between the running times shown in Figure 8 are notable.
However, a direct comparison of the running times is not very informative
as the algorithms produce different outputs. SIATECHF is the fastest on
all datasets. The most interesting result is that COSIATEC can be faster
than SIATECCompress and Forth’s algorithm when SIATEC is replaced by
SIATECH.

Table 3 below shows the output sizes of Forth’s algorithm, SIATECCom-
press, and SIATECHF on the same Drand datasets that were used for the
running time measurements. For each dataset the recall of SIATECHF is
given when the output of the compared algorithm is taken as the ground
truth, i.e., the correct set of TECs. In this case, recall is the fraction of TECs
in the output of the compared algorithm that is also present in the output
of SIATECHF. COSIATEC is not included in the comparison because the
output of COSIATEC contains TECs that are not TECs of MTPs in the
input dataset. For any dataset the output of SIATECHF would typically only
include at most one TEC that is also present in the output of COSIATEC.

The output size of SIATECHF is greater on all datasets than the output
of Forth’s algorithm and SIATECCompress. However, the recall is low in
most cases. The output of SIATECHF thus consists mostly of TECs that
Forth’s algorithm and SIATECCompress filter out as unimportant. Although
Forth’s algorithm and SIATECCompress use compression ratio in selecting
TECs, their outputs also contain TECs with low compression ratios. This
explains the generally low recall of SIATECHF when the output of Forth’s
algorithm or SIATECCompress is used as the ground truth.

Table 4 below shows the minimum, maximum, and average compres-
sion ratios of TECs in the outputs of COSIATEC, Forth’s algorithm, and
SIATECCompress. The outputs of all point-set compression algorithms
contain TECs with a compression ratio of around 1 on all datasets used in
the experiments. The average compression ratios of the TECs in the outputs
are also often lower than the threshold cmin = 3 used in SIATECHF. On the
Drand dataset, with n = 1000, the TECs in the outputs of Forth’s algorithm
and SIATECCompress have the highest average compression ratio. In Table
3, SIATECHF has the highest recall on the same dataset.

58

Dataset Compared Output SIATECHF SIATECHF
size algorithm size output size recall
500 Forth’s algorithm 10 48 0.50
1000 Forth’s algorithm 24 337 0.92
1500 Forth’s algorithm 23 111 0.48
2000 Forth’s algorithm 10 67 0.30
2500 Forth’s algorithm 7 88 0.29
3000 Forth’s algorithm 3 122 0.33
500 SIATECCompress 21 48 0.33
1000 SIATECCompress 21 337 0.95
1500 SIATECCompress 21 111 0.52
2000 SIATECCompress 27 67 0.78
2500 SIATECCompress 45 88 0.56
3000 SIATECCompress 45 122 0.40

Table 3: Output size comparison and recall of SIATECHF.

Dataset size Algorithm min CR max CR avg. CR
500 COSIATEC 1.00 3.86 2.04
1000 COSIATEC 1.00 5.91 2.64
1500 COSIATEC 1.00 6.30 2.74
2000 COSIATEC 1.00 5.40 3.37
2500 COSIATEC 1.00 5.09 3.08
3000 COSIATEC 1.00 7.75 3.50
500 Forth’s algorithm 1.00 3.46 2.80
1000 Forth’s algorithm 1.00 5.73 3.91
1500 Forth’s algorithm 1.00 6.07 3.34
2000 Forth’s algorithm 1.00 2.92 1.96
2500 Forth’s algorithm 1.00 2.92 1.96
3000 Forth’s algorithm 1.00 7.03 3.14
500 SIATECCompress 1.01 3.86 2.54
1000 SIATECCompress 1.01 5.91 4.49
1500 SIATECCompress 1.01 6.30 3.35
2000 SIATECCompress 1.02 5.40 3.62
2500 SIATECCompress 1.01 5.09 3.04
3000 SIATECCompress 1.01 7.75 3.17

Table 4: Minimum, maximum, and average compression ratios in outputs on
Drand datasets.

The reason why there are TECs with a low compression ratio in the
outputs of COSIATEC, Forth’s algorithm, and SIATECCompress is likely
to be the algorithms’ preference for TECs that do not overlap with already

59

selected TECs. In COSIATEC the covered sets of the TECs in the output
do not overlap at all, and Forth’s algorithm and SIATECCompress also
filter out TECs that share multiple points with already selected TECs. The
algorithms can therefore select TECs with a low compression ratio if the
selected TECs add new points to the output. In SIATECHF compression
ratio is the only criterion for TEC selection.

The use of prefiltering does not provide significant improvements in
running time. The benefit of prefiltering is mostly that it cancels out the
added cost of postfiltering. Filtering in SIATECHF can thus be performed
without making the algorithm slower than SIATECH. Unlike the point-set
compression algorithms, SIATECHF does not aim to produce a compressed
representation of the input dataset. While the idea behind the point-set
compression algorithms is to provide output that can be considered an
analysis of the input score, SIATECHF simply finds TECs that exceed the
given compression ratio threshold. The outputs of the point-set compression
algorithms and SIATECHF are therefore very different.

SIATECHF, or a similar algorithm, could be usable in a pattern discovery
application. The user of the application would give thresholds for parameters
that the patterns in the output would need to exceed. Compression ratio
provides a heuristic that emphasizes the importance of both the pattern size
and the number of repetitions. However, the idea of compression ratio is
not very intuitive in the context of music [11], and it could be difficult for
users to select a suitable threshold value for compression ratio. Prefiltering
can also be performed using MTP size and the number of repetitions by
employing the upper bound of Eq. 21. These parameters could be easier for
users to grasp in the context of pattern discovery in music.

One way to improve the output quality of SIATECHF would be to add
further filtering based on other heuristics. SIATECHF could even be used
in the point-set compression algorithms by running it with a low value for
compression ratio threshold. For example, the running time of SIATEC-
Compress is mostly caused by sorting the set of TECs and selecting the best
TECs. As the output of SIATECHF is likely to be smaller than the set of
all TECs for the input dataset, SIATECHF could offer significant running
time improvements when used in the point-set compression algorithms. How-
ever, as the results presented in Tables 3 and 4 indicate, the output of the
point-set compression algorithms would likely change when using SIATECHF.
Whether leaving out TECs with a low compression ratio from the output
of the point-set compression algorithms decreases the musical quality of the
output requires further research.

60

6 Conclusions
In this thesis we set out to investigate two approaches to improving the
running time of MTP and TEC computation. The first approach built on
the suggestion of Meredith [39] to use hashing in SIA to improve its running
time. The second approach involved the use of filtering by compression ratio
to avoid the computation of musically unimportant TECs. The time and
space complexities of algorithms for which asymptotic bounds are easily
analyzable are given in Table 5. For the point-set compression algorithms,
running time depends so greatly on the structure of the input dataset that
analyzing time complexity as a function of input size is not very informative.

Algorithm Time complexity Space complexity
SIA O(kn2 logn) worst-case O(kn2) worst-case
SIAR O(kn3) worst-case O(krn2) worst-case
SIAH O(kn2) expected O(kn2) worst-case
SIATEC O(kn3) worst-case O(kn2) worst-case
SIATECH O(kn3) expected O(kn2) worst-case
SIATECHF O(kn3) expected O(kn2) worst-case

Table 5: Algorithm time and space complexities on k-dimensional datasets of
size n. The r in the space complexity of SIAR is the number of subdiagonals
in the difference vector table (see Section 3.3.2).

The results on improving the running time of MTP and TEC computation
in general were promising. Using hashing to partition the difference vectors
between points of the input dataset in SIAH was found to provide great
improvements in running time over SIA. The expected running time of
SIAH is also lower than the worst-case running time of SIA and SIAR.
The SIATECH algorithm did not provide improvements in time complexity
over SIATEC. However, SIATECH improved the running time of TEC
computation in practice. SIATECH was found to be significantly faster than
SIATEC in cases where the size of MTPs in the input dataset is small. This
improvement is attributable to the FindTranslatorsH procedure that
SIATECH uses to compute the translator sets for MTPs. The worst-case
time complexities of SIAH and SIATECH are greater than those of SIA and
SIATEC. The use of universal hashing makes the worst case unlikely, and
thus SIAH and SIATECH work efficiently in practice.

The results on using filtering to improve the running time of TEC compu-
tation were not as encouraging as the results on using hashing. Prefiltering
in SIATECHF did not provide notable improvements in running time over
SIATECH. The output of SIATECHF was found to differ greatly from the
output of SIATECCompress and Forth’s algorithm. Whether outputting
only TECs that have a compression ratio exceeding a given threshold can be

61

used to find musically important patterns requires further research.
There are multiple interesting topics for further research and experimen-

tation. The lack of large music datasets in suitable format poses challenges
for experimentation. The running time of the algorithms often depends on
the structure of the input dataset, that is, the size and number of MTPs and
TECs in the dataset. The structure of the random pattern datasets that were
used in the experiments does not necessarily correspond to that of music
datasets. Measuring the running times of the algorithms on stylistically
varied music datasets would provide more informative comparisons of the
real-world performances of the algorithms. Evaluating the quality of filtering
methods also requires a diverse set of ground truth analyses by domain
experts. The availability of such analyses is currently very limited, which
makes it challenging to develop new musically justified heuristics for filtering.

Improvements in the space complexity of the algorithms are needed if
the algorithms are to be used in practice on large datasets such as orchestral
scores. The quadratic space complexity of the algorithms can make it very
impractical to run the algorithms on large datasets. To decrease space
complexity, it is necessary to avoid keeping all MTP points in memory. This
may require methods for filtering MTPs already during the computation of
MTPs. The prefiltering method used in SIATECHF requires that all MTPs
are computed, and thus it is not suitable as such for prefiltering MTPs.

Whether it is possible to compute the set of all MTPs S(D) (Eq. 4) for
a dataset D in subquadratic time is not known. A subquadratic solution
would clearly require a way to compute S(D) without computing all positive
difference vectors between points of D. One possible approach to analyzing
the hardness of computing S(D) is by relating it to the 3Sum problem. The
3Sum problem [20, 21] is a decision problem, where given a set of n real
numbers, the goal is to decide whether there are 3 elements in the set such
that their sum is 0. A problem P is said to be 3Sum-hard if an algorithm that
solves P in subquadratic time can be used to solve 3Sum in subquadratic
time [20]. Many problems in computational geometry are known to be 3Sum-
hard [2]. In [32] and [6], it is shown that there are 3Sum-hard problems in
pattern matching using multidimensional representations of music. It has
been conjectured that no subquadratic solutions to 3Sum exist, implying a
quadratic lower bound for 3Sum-hard problems [22]. However, subquadratic
solutions to 3Sum have been recently discovered [22, 21, 19]. If a lower
bound on the time complexity of computing S(D) exists, it provides further
motivation for developing algorithms that do not compute all MTPs.

Although the impact of prefiltering on the running time of SIATECHF
is not great, SIATECHF provides an example of how prefiltering can be
employed in TEC computation. Avoiding the computation of musically
unimportant MTPs and TECs altogether can decrease running time and space
requirements, and improve the quality of output. It is therefore a promising
approach to further improving repeated pattern discovery algorithms that

62

operate on multidimensional representations of music.

References
[1] Akutsu, Tatsuya: On determining the congruence of point sets in d

dimensions. Computational Geometry, 9(4):247–256, 1998.

[2] Barequet, Gill and Har-Peled, Sariel: Polygon containment and trans-
lational min-Hausdorff-distance between segment sets are 3SUM-hard.
International Journal of Computational Geometry & Applications,
11(4):465–474, 2001.

[3] Bent, Ian D., Hughes, David W., Provine, Robert C., Rastall, Richard,
Kilmer, Anne, Hiley, David, Szendrei, Janka, Payne, Thomas B.,
Bent, Margaret, and Chew, Geoffrey: Notation. In Grove Music On-
line. Oxford Music Online. Oxford University Press, accessed Decem-
ber 4, 2017, 2017. http://www.oxfordmusiconline.com/subscriber/
article/grove/music/20114pg7.

[4] Bent, Ian D. and Pople, Anthony: Analysis. In Grove Music On-
line. Oxford Music Online. Oxford University Press, accessed Decem-
ber 7, 2017, 2017. http://www.oxfordmusiconline.com/subscriber/
article/grove/music/41862.

[5] Braß, Peter: Combinatorial Geometry Problems in Pattern Recognition.
Discrete & Computational Geometry, 28:495–510, 2002.

[6] Clifford, Raphaël, Christodoulakis, Manolis, Crawford, Tim, Meredith,
David, and Wiggins, Geraint: A Fast, Randomised, Maximal Subset
Matching Algorithm for Document-Level Music Retrieval. In Proceedings
of the 7th International Conference on Music Information Retrieval
(ISMIR 2006), Victoria, Canada, 2006.

[7] Collins, Tom: Improved methods for pattern discovery in music, with
applications in automated stylistic composition. PhD thesis, The Open
University, 2011.

[8] Collins, Tom, Arzt, Andreas, Flossmann, Sebastian, and Widmer, Ger-
hard: SIARCT-CFP: Improving precision and the discovery of inexact
musical patterns in point-set representations. In Proceedings of the
14th International Society for Music Information Retrieval Conference
(ISMIR 2013), Curitiba, Brazil, 2013.

[9] Collins, Tom, Arzt, Andreas, Frostel, Harald, and Widmer, Gerhard: Us-
ing Geometric Symbolic Fingerprinting to Discover Distinctive Patterns

63

http://www.oxfordmusiconline.com/subscriber/article/grove/music/20114pg7
http://www.oxfordmusiconline.com/subscriber/article/grove/music/20114pg7
http://www.oxfordmusiconline.com/subscriber/article/grove/music/41862
http://www.oxfordmusiconline.com/subscriber/article/grove/music/41862

in Polyphonic Music Corpora. In Meredith, David (editor): Computa-
tional Music Analysis, pages 445–474. Springer International Publishing,
2016.

[10] Collins, Tom, Laney, Robin, Willis, Alistair, and Garthwaite, Paul H.:
Using Discovered, Polyphonic Patterns to Filter Computer-generated
Music. In Proceedings of the International Conference on Computational
Creativity, pages 1–10, Lisbon, Portugal, 2010.

[11] Collins, Tom, Laney, Robin, Willis, Alistair, and Garthwaite, Paul H.:
Modeling Pattern Importance in Chopin’s Mazurkas. Music Perception,
28(4):387–414, 2011.

[12] Collins, Tom and Meredith, David: Maximal Translational Equivalence
Classes of Musical Patterns in Point-Set Representations. In Mathe-
matics and Computation in Music: 4th International Conference, MCM
2013, Proceedings. Lecture Notes in Computer Science, Vol. 7937, pages
88–99. Springer, Berlin, 2013.

[13] Collins, Tom, Thurlow, Jeremy, Laney, Robin, Willis, Alistair, and
Garthwaite, Paul H.: A comparative evaluation of algorithms for discov-
ering translational patterns in Baroque keyboard works. In Proceedings
of the 11th International Society for Music Information Retrieval Con-
ference (ISMIR 2010), Utrecht, Netherlands, 2010.

[14] Conklin, Darrell: Representation and Discovery of Vertical Patterns in
Music. In Anagnostopoulou, Christina, Ferrand, Miguel, and Smaill,
Alan (editors): Music and Artificial Intelligence. Lecture Notes in Com-
puter Science, vol 2445, pages 32–42. Springer, Berlin, 2002.

[15] Conklin, Darrell and Anagnostopoulou, Christina: Representation and
Discovery of Multiple Viewpoint Patterns. In Proceedings of the Inter-
national Computer Music Conference (ICMC 2001), La Habana, Cuba,
2001.

[16] Conklin, Darrell and Witten, Ian H.: Multiple viewpoint systems for
music prediction. Journal of New Music Research, 24(1):51–73, 1995.

[17] Cormen, Thomas H., Leiserson, Charles E., Rivest, Ronald L., and
Stein, Clifford: Introduction to Algorithms. The MIT Press, 3rd edition,
2009.

[18] Forth, Jamie C.: Cognitively-motivated geometric methods of pattern
discovery and models of similarity in music. PhD thesis, Department of
Computing, Goldsmiths, University of London, 2012.

[19] Freund, Ari: Improved Subquadratic 3SUM. Algorithmica, 77(2):440–
458, 2017.

64

[20] Gajentaan, Anka and Overmars, Mark H.: On a class of O(n2) problems
in computational geometry. Computational Geometry, 5(3):165–185,
1995.

[21] Gold, Omer and Sharir, Micha: Improved Bounds for 3SUM, k-SUM,
and Linear Degeneracy. CoRR, abs/1512.05279, 2015. http://arxiv.
org/abs/1512.05279.

[22] Grønlund, Allan and Pettie, Seth: Threesomes, Degenerates, and Love
Triangles. CoRR, abs/1404.0799, 2014. http://arxiv.org/abs/1404.
0799.

[23] Heffernan, Paul J. and Schirra, Stefan: Approximate decision algorithms
for point set congruence. Computational Geometry, 4(3):137–156, 1994.

[24] Huron, David: Sweet Anticipation : Music and the Psychology of Expec-
tation. The MIT Press, 2006.

[25] Janssen, Berit, Haas, W. Bas de, Volk, Anja, and Kranenburg, Peter van:
Finding Repeated Patterns in Music: State of Knowledge, Challenges,
Perspectives. In Aramaki, Mitsuko, Derrien, Olivier, Kronland-Martinet,
Richard, and Ystad, Sølvi (editors): Sound, Music, and Motion. CMMR
2013. Lecture Notes in Computer Science, vol 8905, pages 277–297.
Springer, Cham, 2013.

[26] Lartillot, Olivier: Automated Motivic Analysis: An Exhaustive Ap-
proach Based on Closed and Cyclic Pattern Mining in Multidimensional
Parametric Spaces. In Meredith, David (editor): Computational Music
Analysis, pages 273–302. Springer International Publishing, 2016.

[27] Lartillot, Olivier and Toiviainen, Petri: Motivic matching strategies for
automated pattern extraction. Musicae Scientiae, Discussion Forum
4A, pages 281–314, 2007.

[28] Lemire, Daniel and Kaser, Owen: Strongly Universal String Hashing is
Fast. The Computer Journal, 57(11):1624–1638, 2014.

[29] Lemström, Kjell: String Matching Techniques for Music Retrieval. PhD
thesis, University of Helsinki, 2000.

[30] Lemström, Kjell, Mikkilä, Niko, and Mäkinen, Veli: Filtering meth-
ods for content-based retrieval on indexed symbolic music databases.
Information Retrieval Journal, 13(1):1–21, 2010.

[31] Louboutin, Corentin and Meredith, David: Using general-purpose com-
pression algorithms for music analysis. Journal of New Music Research,
45(1):1–16, 2016.

65

http://arxiv.org/abs/1512.05279
http://arxiv.org/abs/1512.05279
http://arxiv.org/abs/1404.0799
http://arxiv.org/abs/1404.0799

[32] Lubiw, Anna and Tanur, Luke: Pattern matching in polyphonic music
as a weighted geometric translation problem. In Proceedings of the 5th
International Conference on Music Information Retrieval (ISMIR 2004),
Barcelona, Spain, 2004.

[33] Meredith, David: Point-set algorithms for pattern discovery and pattern
matching in music. In Crawford, T. and Veltkamp, R. C. (editors):
Proceedings of the Dagstuhl Seminar on Content-Based Retrieval (No.
06171), Dagstuhl, Germany, 2006.

[34] Meredith, David: The ps13 pitch spelling algorithm. Journal of New
Music Research, 35(2):121–159, 2006.

[35] Meredith, David: Analysis by compression: Automatic generation of
compact geometric encodings of musical objects. In The Music Encoding
Conference, Mainz, Germany, 2013.

[36] Meredith, David: COSIATEC and SIATECCompress: Pattern Discovery
by Geometric Compression. In MIREX 2013. Competition on Discovery
of Repeated Themes and Sections, Curitiba, Brazil, 2013.

[37] Meredith, David: Using point-set compression to classify folk songs.
In The Fourth International Workshop on Folk Music Analysis (FMA
2014), Istanbul, Turkey, 2014.

[38] Meredith, David: Music Analysis and Point-Set Compression. Journal
of New Music Research, 44(3):245–270, 2015.

[39] Meredith, David: Analysing Music with Point-Set Compression Algo-
rithms. In Meredith, David (editor): Computational Music Analysis,
pages 335–366. Springer International Publishing, 2016.

[40] Meredith, David: Using SIATECCompress to Discover Repeated Themes
and Sections in Polyphonic Music. In MIREX 2016. Competition on
Discovery of Repeated Themes and Sections, New York, USA, 2016.

[41] Meredith, David, Lemström, Kjell, and Wiggins, Geraint A.: Algorithms
for discovering repeated patterns in multidimensional representations
of polyphonic music. Journal of New Music Research, 31(4):321–345,
2002.

[42] Meredith, David, Lemström, Kjell, and Wiggins, Geraint A.: Algorithms
for discovering repeated patterns in multidimensional representations of
polyphonic music. Cambridge Music Processing Colloquium, Department
of Engineering, University of Cambridge, 2003.

[43] Meredith, David, Wiggins, Geraint A., and Lemström, Kjell: Pattern
Induction and matching in polyphonic music and other multidimensional

66

datasets. In Proceedings of the 5th World Multiconference on Systemics,
Cybernetics and Informatics, Orlando, Florida, USA, 2001.

[44] Meyer, Leonard B.: Style and Music. Theory, History, and Ideology.
University of Pennsylvania Press, 1989.

[45] Rezende, P.J. de and Lee, D.T.: Point Set Pattern Matching in d-
Dimensions. Algorithmica, 13(4):387–404, 1995.

[46] Rosen, Charles: Sonata Forms. Revised Edition. W. W. Norton &
Company, Inc., 1988.

[47] Thompson, William F.: Intervals and Scales. In Deutsch, Diane (editor):
Psychology of Music, pages 107–140. Elsevier, 2013.

[48] Ukkonen, Esko, Lemström, Kjell, and Mäkinen, Veli: Geometric Algo-
rithms for Transposition Invariant Content-Based Music Retrieval. In
Proceedings of the 4th International Conference on Music Information
Retrieval (ISMIR 2003), Baltimore, Maryland, USA, 2003.

[49] Velarde, Gissel, Meredith, David, and Weyde, Tillman: A Wavelet-Based
Approach to Pattern Discovery in Melodies. In Meredith, David (editor):
Computational Music Analysis, pages 303–333. Springer International
Publishing, 2016.

[50] Wiggins, Geraint A., Lemström, Kjell, and Meredith, David:
SIA(M)ESE: An Algorithm for Transposition Invariant, Polyphonic
Content-Based Music Retrieval. In Proceedings of the 3rd International
Conference on Music Information Retrieval (ISMIR 2002), Paris, France,
2002.

[51] Wikipedia contributors: MIDI — Wikipedia, The Free Encyclopedia,
2017. https://en.wikipedia.org/w/index.php?title=MIDI&oldid=
812897338, accessed December 4, 2017.

67

https://en.wikipedia.org/w/index.php?title=MIDI&oldid=812897338
https://en.wikipedia.org/w/index.php?title=MIDI&oldid=812897338

	Introduction
	Background
	Music terminology
	String representations of music
	Multidimensional representations of music
	Pattern discovery in music
	Alternative methods of pattern discovery

	The SIA family of algorithms
	Maximal translatable patterns and translational equivalence classes
	The Structure Induction Algorithm SIA
	Variants of SIA
	The SIACT algorithm
	The SIAR algorithm

	The SIATEC algorithm
	Variants of SIATEC
	Heuristic functions
	The COSIATEC algorithm
	The SIATECCompress algorithm
	Forth's algorithm

	Improving the running time of MTP and TEC computation by hashing
	The SIAH algorithm
	Experiments

	The SIATECH algorithm
	Experiments

	Improving the running time of TEC computation by filtering
	An upper bound on compression ratio
	SIATECHF: SIATECH with filtering
	Experiments

	Conclusions
	References

